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We present a complete explicit N ¼ 1, d ¼ 4 supergravity action in an arbitrary Jordan frame with

nonminimal scalar-curvature coupling of the form�ðz; �zÞR. The action is derived by suitably gauge fixing
the superconformal action. The theory has a modified Kähler geometry, and it exhibits a significant

dependence on the frame function �ðz; �zÞ and its derivatives over scalars, in the bosonic as well as in the

fermionic part of the action. Under certain simple conditions, the scalar kinetic terms in the Jordan frame

have a canonical form. We consider an embedding of the next-to-minimal supersymmetric standard model

(NMSSM) gauge theory into supergravity, clarifying the Higgs inflation model recently proposed by

Einhorn and Jones. We find that the conditions for canonical kinetic terms are satisfied for the NMSSM

scalars in the Jordan frame, which leads to a simple action. However, we find that the gauge singlet field

experiences a strong tachyonic instability during inflation in this model. Thus, a modification of the model

is required to support the Higgs-type inflation.
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I. INTRODUCTION

Supersymmetry imposes certain restrictions on the non-
supersymmetric models of particle physics and cosmology.
A well-known example of such restrictions is the fact that
the supersymmetric version of the standard model (SM) of
particle physics requires at least two Higgs superfields.
Meanwhile, for cosmology Einstein equations have to be
solved; therefore the supersymmetry embedding of the
Higgs model inflation requires local supersymmetry, i.e.
supergravity. Thus, one can try to see how the potential
discovery of supersymmetry may affect various models of
inflation, derived in the past in the context of general
relativity coupled to scalar fields without supersymmetry.
It would be interesting to find general restrictions, as well
as to study particular models.

Here we are motivated by a particular issue in cosmol-
ogy, the so-called ��2R coupling, which attracted a lot of
attention starting from the early days of inflation [1].
Recently, it also became quite important in the context of
SM inflation [2].

Until now, the N ¼ 1, d ¼ 4 supergravity action in an
arbitrary Jordan frame described by the frame function
�ðz; �zÞ, with arbitrary Kähler potential Kðz; �zÞ, holomor-
phic superpotential WðzÞ, and holomorphic function
fabðzÞ, was not known. Here we will derive this action,
which is the first goal of this paper. This will be achieved
by starting with the superconformal theory developed in
[3], and by gauge fixing all extra symmetries in order to get
a general supergravity action in a Jordan frame.

Our results generalize the formulation of N ¼ 1 super-
gravity in a Jordan frame for the particular case in which
the Kähler potential K and the frame function are related
by Kðz; �zÞ ¼ �3 logð� 1

3�ðz; �zÞÞ. The corresponding ac-

tion in a Jordan frame was derived in components in [4,5],
and in superspace in [6,7]. In our treatment, we will also
specify the conditions required for the frame function to
make the kinetic terms of the scalar fields canonical in the
Jordan frame.
The nonminimal coupling of scalar fields to curvature is

allowed by all known symmetries of the SM and general
relativity. If one tries to describe the early universe using
the particle physics SM coupled to gravity in the Einstein
frame, one finds the following: (1) the coupling � of the
Higgs field has to be of the order 10�13; (2) the mass of the
Higgs field has to be of the order 1013 GeV. These con-
ditions may be satisfied in a general theory of a scalar field,
but not in the simplest version of the standard model.
However, if the ��2R coupling is included, i.e. if the
embedding of the particle physics SM into the Jordan
frame gravity is considered, a satisfactory description of
cosmology for the Higgs mass in the interval between 126
and 194 GeV can be found [2]. This is possible for very
large values of the nonminimal scalar-curvature coupling
�� 104. The model predicts the cosmological parameters
ns � 0:97, and r � 0:003, which are consistent with cos-
mological observations. Thus, this model provides very
interesting predictions, which will be testable both at
LHC and by a Planck satellite.
When this work was in progress, a very interesting

proposal [8] was made for how to generalize the model
of Bezrukov-Shaposhnikov [2] in the presence of super-
symmetry. Under certain assumptions, it was found that
slow regime inflation is not possible within the supergrav-
ity embedding of the minimal supersymmetric standard
model (MSSM), but rather it is possible for the next-to-
minimal supersymmetric standard model (NMSSM; see
e.g. [9] for a recent review of NMSSM).
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In the present paper we will study the supergravity
embedding of the NMSSM and look for consistent cosmo-
logical models of the Higgs-type inflation.

First, we will derive the complete N ¼ 1 action in the
general Jordan frame, where it is very simple and has
interesting features. This will help to clarify the meaning
of the large nonminimal ��2R coupling in the context of
supergravity. In particular, the origin of the canonical
kinetic terms of all scalars of the NMSSM in the Jordan
frame is explained, whereas in the Einstein frame scalar
kinetic terms are generally very complicated.

Second, we will study the theory as a function of all
three chiral multiplets, namely, two Higgs doublets and a
singlet, and analyze various directions in the space of
scalar fields. In particular, in [8] it was shown that a
slow-roll inflationary regime is possible in NMSSM
when the Higgs fields move in the D-flat direction of the
two Higgs doublets Hu and Hv, assuming that the gauge
singlet S is small. However, it was not clear whether this
last assumption is justified, i.e. whether S ¼ 0 corresponds
to a minimum of the potential with respect to the field S
when inflation takes place in theD-flat direction of the two
doublet Higgs fields. We will show that, unfortunately, the
potential of the field S has a sharp maximum near S ¼ 0 in
this regime. This means that the inflationary regime studied
in [8] is unstable, and a search for more general models is
required to find a supersymmetric version of the Higgs-
type inflation.

The paper is organized as follows. In Sec. II we present
the complete explicit N ¼ 1, d ¼ 4 supergravity action in
an arbitrary Jordan frame with nonminimal scalar-
curvature coupling of the form �ðz; �zÞR. This includes
the bosonic as well as fermionic action. In the
special case in which the frame function �ðz; �zÞ is related
to the Kähler potential by the relation Kðz; �zÞ ¼
�3 logð� 1

3�ðz; �zÞÞ, the action reduces to the one derived

in [4,5]. In the case� ¼ �3, the action becomes the well-
known action of N ¼ 1 supergravity in the Einstein frame.

Section III is devoted to a detailed discussion of the
bosonic part of the supergravity action, which is especially
important for cosmology. In particular, sufficient condi-
tions for the kinetic terms of scalars to be canonical are
specified.

Section IV starts with a short description of the Higgs-
type inflation with nonminimal scalar-curvature coupling.
Then, we proceed with an attempt to generalize this model
to the supersymmetric case. For this purpose, we study the
embedding of the NMSSM into supergravity, focusing on
the Einhorn-Jones cosmological model [8]. We study this
model in the Jordan as well as in the Einstein frame. The
dependence of the potential on the singlet gauge field S, as
well as at large values of the Higgs fields in a D-flat
direction of the two Higgs doublets, is explicitly computed.
We find that this potential has a maximum for small values
of S near the inflationary trajectory. The resulting insta-

bility disallows the inflationary regime in the model of [8],
unless some way of stabilizing the field S is found.
Section V provides a detailed derivation of the Jordan
frame supergravity action presented in Sec. II, by gauge
fixing the extra symmetries of the superconformal action.
Finally, the Appendix contains a discussion of the cosmo-
logical behavior of the angle � between the two compo-
nents of the Higgs field.

II. COMPLETEN ¼ 1 SUPERGRAVITYACTION IN
A JORDAN FRAME

The N ¼ 1, d ¼ 4 supergravity action in a Jordan frame
with arbitrary scalar-curvature coupling is uniquely de-
fined by the frame function �ðz; �zÞ, Kähler potential
Kðz; �zÞ, holomorphic superpotential WðzÞ, holomorphic
kinetic gauge matrix fABðzÞ, and momentum map1 PA. It
is given by2 (e � ffiffiffiffiffiffiffi�g

p
)

e�1L ¼ �1
6�½RðeÞ � �c �R

�� � 1
6ð@��Þð �c � �c �Þ þL0

þL1=2 þL1 � V þLm þLmix þLd þL4f ;

(2.1)

where the curvature RðeÞ uses the torsionless connection
!�

abðeÞ, and the gravitino kinetic term is defined using

R� � ����ð@� þ 1
4!�

abðeÞ�ab � 3
2iA���Þc �: (2.2)

HereA� is the part of the auxiliary vector field containing

only bosons, namely,

A � ¼ 1
6ið@�z	@	K� @� �z

�	@ �	KÞ � 1
3A�

APA; (2.3)

where A�
A is the Yang-Mills gauge field.

The kinetic terms of spin 0, 1
2 , 1 fields in (2.1) are,

respectively, given by

L 0 ¼ � 1

4�
ð@��Þð@��Þ þ 1

3
g	 ���ð@̂�z	Þð@̂� �z ��Þ;

(2.4)

L1=2 ¼ �1
2
~g	 �� �


�� 6D
	 þ 1
2� �
	��


��@̂�z
�

� ½�1
3g� ��L	 þ 1

4L	�L �� � 1
4L	L� ��� þ H:c:; (2.5)

L 1 ¼ ðRefABÞ½�1
4F

A
��F

��B � 1
2
��A 6D�B�

þ 1
4i½ðImfABÞFA

��
~F��B þ ð@̂�ImfABÞ ��A�����B�:

(2.6)

The covariant derivatives of scalars and fermions are de-
fined as follows:

1This is also equivalently named ‘‘Killing potential,’’ and it
encodes the Yang-Mills transformations of the scalars (it may
include Fayet-Iliopoulos terms, as well).

2A derivation of this action, as well as a detailed notation, is
given in Sec. V.
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@̂ �z
	 � @�z

	 � AA
�kA

	; (2.7)

D�

	 �

�
@� þ 1

4
!�

abðeÞ�ab þ 3

2
iA�

�

	

� AA
�

@kA
	ðzÞ

@z�

� þ �	

��

�@̂�z

�;

D��
A �

�
@� þ 1

4
!�

abðeÞ�ab � 3

2
iA���

�
�A

� AC
��

BfABC:

(2.8)

The theory has a modified Kähler geometry. In particular,
as given by (2.5), the kinetic term of fermions depends on
the metric ~g	 �� � � 1

3�g	 �� þ 1
4�L	L ��, where g	 �� is the

Kähler metric and L	 � @	 lnð��Þ, L �	 � @ �	 lnð��Þ ¼
�L	 [see (5.57) and (5.43) further below]. Concerning the
kinetic terms of scalars, see Sec. III B. The potential reads

V ¼ 1
9�

2½eKð�3W �W þr	Wg	
��r ��

�WÞ
þ 1

2ðRefÞ�1ABPAPB�: (2.9)

The fermion mass terms are given by

Lm ¼ 1
2m3=2

�c �PR�
��c � � 1

2m	� �
	
� �m	A �

	�A

� 1
2mAB

��APL�
B þ H:c:;

m3=2 ¼ ð�1
3�Þ3=2eK=2W;

m	� ¼ ð�1
3�Þ3=2eK=2½r�r	W þ 2Lð	r�ÞW�;

mAB ¼ �1
2ð�1

3�Þ1=2eK=2fAB	g
	 �� �r ��

�W;

m	A ¼ �1
3i

ffiffiffi
2

p
�½ð@	 þ 1

2L	ÞPA � 1
4fAB	ðRefÞ�1BCPC�:

(2.10)

The remaining terms read

Lmix ¼ �c ��PL

�
�1

6
i�PA�

Aþ 1ffiffiffi
2

p 
	eK=2ð@	 þð@	KÞÞ

�
�
�1

3
�

�
3=2

W

�
þH:c:;

Ld ¼ 1

8
ðRefABÞ �c ��

abðFA
ab þ F̂A

abÞ���B

þ 1ffiffiffi
2

p
�
�c ��

���
	

��
�1

3
�

�
g	 ��@̂� �z

�� þ 1

4
L	@��

�

� 1

4
fAB	 �
	�abF̂�A

ab �
B � 1

3
�L	 �
	���D�c �

þH:c:

�
; (2.11)

where F̂ab
A � ea

�eb
�ð2@½�AA

�� þ gfBC
AAB

�A
C
� þ

�c ½�����AÞ [see (5.6)]. The explicit expression for the 4-

fermion termsL4f will be presented in Sec. V. Remarkably,
also L4f contains a significant dependence on the frame
function � and its derivatives.

III. BOSONIC ACTION OF N ¼ 1 SUPERGRAVITY
IN EINSTEIN AND JORDAN FRAMES

A. The Einstein frame

By setting� ¼ �3 in (2.1), the general N ¼ 1 action in
a Jordan frame reduces to the well-known action of N ¼ 1
supergravity in the Einstein frame [4,5].
It is here worth recalling some basic facts about the

structure of the bosonic sector of N ¼ 1, d ¼ 4 supergrav-
ity. In MP ¼ 1 units, the action of N ¼ 1 supergravity
coupled to chiral and vector matter multiplets is usually
given in the Einstein frame, where the curvature R appears
in the action only through the Einstein-Hilbert term 1

2 �ffiffiffiffiffiffiffiffiffiffi�gE
p

RðgEÞ, where g
��
E is the Einstein frame space-time

metric. The theory is defined by a real Kähler function
Kðz; �zÞ, by an holomorphic superpotentialWðzÞ and by an
holomorphic matrix fABðzÞ defining the action of the vector
multiplets [5]. A particular feature of the theory is the
Kähler geometry of the complex scalar fields.
The purely bosonic Lagrangian density reads

L bos
E ¼ Lgrav

E þLscalar
E þLvec

E ; (3.1)

where

Lgrav
E þLscalar

E ¼ ffiffiffiffiffiffiffiffiffiffi�gE
p ½12RðgEÞ�g	 ��@̂�z

	@̂� �z
��g��

E �VE�;
(3.2)

L vec
E ¼ ffiffiffiffiffiffiffiffiffiffi�gE

p ½�1
4ðRefABÞFA

��F
��B

þ 1
4iðImfABÞFA

��
~F��B�: (3.3)

Note that the contractions of space-time indices and the
definition of the dual field strength are performed using the
Einstein frame metric g��

E . The strictly positive-definite
metric g	 ��ðz; �zÞ of the nonlinear sigma model of scalars z	,

�z
�� is given by the second derivative of the real Kähler

potential

g	 ��ðz; �zÞ �
@

@z	
@

@�z
��
Kðz; �zÞ> 0; (3.4)

and @̂�z
	 is the Yang-Mills gauge covariant derivative of a

scalar field, defined by (2.7).
Concerning the potential VE, the F-term potential VF

E

depends on K and W. On the other hand, the D-term
potential VD

E depends on the values of the auxiliary D
fields, obtained by solving the corresponding equations
of motion:

VE ¼ VF
E þ VD

E

¼ eKð�3W �W þr	Wg	
��r ��

�WÞ þ 1
2ðRefÞ�1ABPAPB:

(3.5)

Notice that (3.5) yields that
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VJ ¼ �2

9
VE; (3.6)

where the potential in the Jordan frame VJ � V is given by
(2.9). r	W denotes the Kähler-covariant derivative of the
superpotential. The D-term potential can be presented also
in the form VD

E ¼ 1
2 ðRefABÞDADB, where DA is the value

of the auxiliary field of the vector multiplets. This is the
standard form of the purely bosonic part of the N ¼ 1, d ¼
4 supergravity action in the Einstein frame. Of course, such
a bosonic action can be made supersymmetric by adding
suitable fermionic terms (see e.g. [4,5]).

B. The Jordan frame

In order to find the action in an arbitrary Jordan frame,
one can perform a change of variables from the Einstein to
the Jordan frame. Only the metric and the fermions have to
be rescaled; the scalars and the vector fields do not change.
The metric in a Jordan frame is related to the metric in the
Einstein frame as follows (subscripts ‘‘E’’ and ’’J,’’ re-
spectively, stand for Einstein and Jordan frames through-
out)

g��
J ¼ �2g��

E ; �2 ¼ �1
3�ðz; �zÞ> 0: (3.7)

Within our treatment, we will consider the scale factor �2

as an arbitrary real function of the complex scalar fields
ðz; �zÞ. Its positivity, through (3.7), correspondingly con-
strains �ðz; �zÞ. Since the new action in a Jordan frame is
related to the standard one in the Einstein frame by a
change of variables, it is supersymmetric, as the original
one.

Instead of performing the above change of variables by
‘‘brute force,’’ in Sec. V we use as a starting point an N ¼
1, d ¼ 4 superconformal theory [3] with local SUð2; 2j1Þ
symmetry. Such a superconformal theory has a set of local
symmetries that includes all N ¼ 1 supergravity symme-
tries and, in addition, a set of extra local symmetries:
local dilatation, Uð1Þ symmetry, and special supersymme-
try. The superconformal theory has no dimensionful
parameters.

In [3] the local dilatation, Uð1Þ symmetry and special
supersymmetry were gauge fixed in a way that allowed one
to reproduce the standard N ¼ 1, d ¼ 4 supergravity ac-
tion in the Einstein frame. In fact, the purely bosonic action
of N ¼ 1 supergravity in a Jordan frame is already sug-
gested by Eq. (C.5) of [3]. The complete N ¼ 1 supergrav-
ity action in d ¼ 4 in a generic Jordan frame has been
presented in Sec. II, and it is thoroughly derived in Sec. V
through a suitable gauge fixing of superconformal super-
gravity theory [3]. This is a symmetry-inspired approach,
alternative to the ‘‘brute force’’ computation based on the
change of variables (3.7). Here we will just present the
results for the purely bosonic part of the supergravity
action in a Jordan frame, which is the most relevant one
for cosmology.

As mentioned above, the locally supersymmetric action
is defined by the choice of four independent functions: a
real Kähler potential Kðz; �zÞ, an holomorphic superpoten-
tial WðzÞ, and an holomorphic matrix fABðzÞ, determining
the kinetic vector matrix. This suffices to define theN ¼ 1,
d ¼ 4 supergravity in the Einstein frame. When dealing
with a Jordan frame, an additional fourth function, namely,
the real frame function �ðz; �zÞ, has to be specified. Thus,
the purely bosonic part of theN ¼ 1, d ¼ 4 supergravity in
a generic Jordan frame reads

Lbos
J ¼ ffiffiffiffiffiffiffiffiffiffi�gJ

p �
� 1

6
�RðgJÞ þ

�
1

3
�g	 �� ��	� ��

�

�

� @̂�z
	@̂� �z

�� � ð�	@̂z
	 �� ��@̂�z

��Þ2
4�

��2

9
VE

þLbos
1

�
: (3.8)

Here VE is the Einstein frame potential defined in (3.5),
�2

9 VE ¼ VJ � V is the Jordan frame potential given by

(2.9), and

�	 � @

@z	
�ðz; �zÞ; � �� � @

@�z
��
�ðz; �zÞ ¼ ���: (3.9)

Notice that (3.8) is implied by (2.1), (2.4), and (2.7),

observing that @�� ¼ @̂�� because in general� is gauge

invariant. Furthermore, Lbos
1;J ¼ Lbos

1;E ¼ Lbos
1 is conformal

invariant (and therefore frame independent), and it is given
by the purely bosonic part of (2.6), or equivalently by

[ð�gEÞ�1=2 times] (3.3):

L bos
1;J ¼ Lbos

1;E ¼ Lbos
1

¼ �1
4ðRefABÞFA

��F
��B þ 1

4iðImfABÞFA
��

~F��B:

(3.10)

In the Jordan frame, the contractions of space-time indices
and the definition of the dual field strength are performed
using the Jordan frame metric g

��
J given by (3.7).

It should be remarked that (3.8) yields that the geometry
of the nonlinear sigma model of scalars is of a modified
Kähler type: indeed, due to the term proportional to

ð�	@̂z
	 �� ��@̂�z

��Þ2, the metric is not Hermitian; i.e. there

are terms of the form dzdz and complex conjugate; fur-
thermore, the metric term of dzd�z is not of the Kähler type.
As a consequence of the previous treatment and compu-

tations, by setting� ¼ �3 in (3.8) the purely bosonic part
of the N ¼ 1, d ¼ 4 supergravity action in the Einstein

frame [4,5] is recovered. With the choice � ¼
�3e�ð1=3ÞKðz;�zÞ, (3.8) yields to the purely bosonic action
of N ¼ 1 supergravity in the particular Jordan frame con-
sidered in [4,5].
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C. Canonical kinetic terms for scalars

In the Einstein frame, the kinetic term of scalar fields is

given by g	 ��@̂�z
	@̂� �z

��, where g	 ��ðz; �zÞ is given by (3.4).

Thus, canonical kinetic terms are possible for the following
choice of a Kähler potential:

K ðz; �zÞ ¼ �	 ��z
	 �z

�� þ fðzÞ þ �fð�zÞ; (3.11)

where fðzÞ is a holomorphic function (associated with the
considered Kähler gauge). A 1-modulus example of the
canonical Kähler potential (3.11) is provided by the shift-
symmetric function Kðz; �zÞ ¼ � 1

2 ðz� �zÞ2, often used in

cosmology.
As pointed out above, an early version of N ¼ 1, d ¼ 4

supergravity theory in a (particular) Jordan, as well as in
the Einstein, frame was derived in [4,5] on the basis of the
superconformal calculus, with� andK related as follows:

K ð�ðz; �zÞÞ ¼ �3 logð�1
3�ðz; �zÞÞ; (3.12)

and �2 is given by (3.7).
Within such a framework, the following simpler form of

Lbos
J given by (3.8) is obtained:

Lbos;Kð�Þ
J ¼ ffiffiffiffiffiffiffiffiffiffi�gJ

p �
� 1

6
�RðgJÞ ��	 ��@̂�z

	@̂� �z
��

þ�A2
� ��2

9
VE þLbos;Kð�Þ

1

�
: (3.13)

The kinetic term for the scalar action is partly determined
by the value A� of the bosonic part of the auxiliary field

of supergravity, entering in the action Lbos
J (3.8) as

�A�A�. In the case of gauge-invariant K, A� reads3

A � ¼ 1

6
ið@̂�z	@	K� @̂� �z

�	@ �	KÞ

¼ � i

2�
ð@̂�z	@	�� @̂� �z

�	@ �	�Þ: (3.14)

The purely bosonic action (3.13) yields to the following
statement: within the relation (3.12) between K and �, in
order to have canonical kinetic terms in the Jordan frame it
is sufficient

(a) to choose the frame function � as follows:

�ðz; �zÞ ¼ �3þ �	 ��z
	 �z

�� þ JðzÞ þ �Jð�zÞ; (3.15)

where JðzÞ is holomorphic. Note that (3.12) and
(3.15) imply K to read

K ðz; �zÞ ¼ �3 log½1� 1
3�	 �	z

	 �z �	 � 1
3JðzÞ � 1

3
�Jð �zÞ�;
(3.16)

(b) to consider only (scalar) configurations for which
the contribution from the bosonic part of the auxil-
iary vector field vanishes:

A� ¼ 0: (3.17)

The embedding of the NMSSM into supergravity along
the lines suggested in [8] requires only the knowledge of
the simple case in which the relation (3.12) betweenK and
� holds. Moreover, concerning the canonicity of the ki-
netic terms of scalars, in the treatment below we will see
that condition (a) is always satisfied, and condition (b)
given by (3.17) is satisfied during the cosmological evolu-
tion, when the system under consideration depends on
three real fields: h1, h2, s. Thus, apart from the frame
function � given by (3.15), the action of the NMSSM
embedded in supergravity in the Jordan frame (3.12) along
the lines of [8] has canonical kinetic scalar terms and a

potential �2

9 VE (see Secs. IVB and IVC for details). In

particular, when only the Higgs field h is nonvanishing in
the D-flat direction, the Jordan frame supergravity poten-

tial is extremely simple and is given by �2

4 h
4, see

Eq. (4.29).

IV. SUPERGRAVITY EMBEDDING OF THE
NMSSM AND COSMOLOGY

A. Classical approximation of the Higgs-type inflation
with nonminimal � coupling

The essential reason for the new version of the SM
inflation [2] to work successfully is the following. The
SM potential with canonical kinetic term for the Higgs
field h is coupled to a gravitational field in a suitable Jordan
frame. In other words, the Lagrangian density to start with
reads

LJ ¼ ffiffiffiffiffiffiffiffiffiffi�gJ
p �

M2 þ �h2

2
RðgJÞ � 1

2
@�h@�hg

��
J

� �

4
ðh2 � v2Þ2

�
: (4.1)

At present, h ¼ v� 10�16MP and M2
P ¼ M2 þ �v2.

Therefore M � MP for
ffiffiffi
�

p
< 1016. In the subsequent in-

vestigation we will consider � < 106. In this caseM ¼ MP

with a very good accuracy. In our paper we will use the
system of units where M ¼ MP ¼ 1.
In general, the cosmological predictions have to be

compared with the observations in the Einstein frame,
related to the Jordan one through the conformal rescaling
(3.7), with

� ¼ �3ð1þ �h2Þ; �2 ¼ 1þ �h2: (4.2)

3When the Kähler potential is not gauge invariant in direction
A, the auxiliary pseudovector has an additional contribution
depending on a gauge field, þ 1

6 iA
A
�ðrA � �rAÞ, where rA is the

holomorphic part of the transformation of the Kähler potential
under gauge symmetry, �Kðz; �zÞ ¼ A½rAðzÞ þ �rAð�zÞ�; see [3].
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By switching to the Einstein frame, (4.1) yields to

L E ¼ ffiffiffiffiffiffiffiffiffiffi�gE
p ð12RðgEÞ � 1

2@�c @�c g
��
E �Uðc ÞÞ; (4.3)

where c is a canonically normalized scalar in the Einstein
frame, defined by

dc � dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 6�2h2

�4

s
; (4.4)

where

Uðc Þ ¼ �

4

�
h2ðc Þ � v2

1þ �hðc Þ2
�
2
: (4.5)

The relation between the field h and the canonically
normalized field c looks very different in three different
ranges of h. At h 	 1

� one has c � h. In the interval 1
� 	

h 	 1ffiffiffi
�

p , the relation between h and c is more compli-

cated: c �
ffiffi
3
2

q
�h2. Finally, for h 
 1ffiffiffi

�
p (or, equivalently,

c 
 1) one has h� 1ffiffiffi
�

p ec =
ffiffi
6

p
. In this regime, the potential

in the Einstein frame is very flat, which leads to inflation:

Uðc Þc!1 ) �

4�2
ð1þ e�ðð2c Þ= ffiffi

6
p ÞÞ�2: (4.6)

As one can see from (4.6), the constant (c -independent)
term in the potential Uðc Þ is �

4�2 , so nothing would work

without the nonminimal scalar-curvature coupling propor-
tional to �.

The Hubble constant during inflation in this model is

H �
ffiffiffi
�
3

q
1
2� . For the nonsupersymmetric standard model,

� ¼ Oð1Þ, so one could worry that this energy scale is
dangerously close to the possible unitarity bound �� 1=�
discussed in [10–12]. One should note, however, that most
of the arguments suggesting the existence of this bound are
based on the investigation of the theory in the small field
approximation c � h, where one can use an expansion
c ¼ hð1þ �2h2 þ � � �Þ. This approximation is valid only
for h 	 1

� , which is parametrically far from the inflation-

ary regime at h 
 1ffiffiffi
�

p . We are going to return to this issue

in a forthcoming publication; see also a discussion in [13],
and especially in [14], where it was noticed that in
NMSSM one may consider the regime with � 	 1, where
the concerns about the unitarity bound do not seem to
appear.

It is worth noting that potentials exponentially rapidly
approaching a constant positive value have been proposed
in one of the first models of chaotic inflation in supergrav-
ity [15], but at that time models of this type were lacking a
compelling motivation. Therefore, it is very tempting to
use the intuitively appealing and simple model discussed
above as a starting point, in order to analyze the Einhorn-

Jones approach [8] to embed NMSSM into N ¼ 1, d ¼ 4
supergravity, and its relevance for the issue of inflation.

B. Embedding of the NMSSM into supergravity and the
Einhorn-Jones cosmological inflationary model

The Higgs field sector of NMSSM has one gauge singlet
and two gauge doublet chiral superfields, namely [9],

z	 ¼ fS;H1; H2g; (4.7)

with

S ¼ sei	; Hu ¼ Hþ
u

H0
u

� �
; Hd ¼ H0

d

H�
d

� �
: (4.8)

As in [8], the frame function is chosen as follows:

�ðz; �zÞ ¼ �3þ ðS �SþHuH
y
u þHdH

y
d Þ

þ 3
2
ðHu �Hd þ H:c:Þ; (4.9)

where

Hu �Hd � �H0
uH

0
d þHþ

u H
�
d : (4.10)

Note that (4.9) is of the form (3.15), with J ¼ 3
2
Hu �Hd.

In this framework, the Kähler potential is related to �
through (3.12), and the superpotential is chosen to be

W ¼ ��SHu �Hd þ �

3
S3: (4.11)

Thus, the action of such an implementation of NMSSM
depends on five chiral superfields. Through explicit com-
putations, we checked that such an action admits a con-
sistent truncation in which the charged superfields, namely,
Hþ

u and H�
d , are absent. Therefore, below we deal with a

simplified action of NMSSM, containing only three super-
fields: S, H0

u, and H0
d, such that

H1 ¼ 0
H0

u

� �
; H2 ¼ H0

d

0

� �
: (4.12)

Within this truncation, the frame function and the super-
potential, respectively, read

�ðz; �zÞ ¼ �3þ ðjSj2 þ jH0
uj2 þ jH0

dj2Þ
� 3

2
ðH0
uH

0
d þ �H0

u
�H0
dÞ; (4.13)

W ¼ �SH0
uH

0
d þ

�

3
S3: (4.14)

Thus, by recalling Eqs. (3.6), (3.13), and (3.15) and by

disregarding Lbos;Kð�Þ
1 in (3.13), one obtains the following

Jordan frame supergravity scalar-gravity action for this
implementation of NMSSM:
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LNMSSM
Jffiffiffiffiffiffiffiffiffiffi�gJ
p ¼ 1

2
RðgJÞþ1

6

�
�	 ��z

	 �z
��þ3

2

ðH0

uH
0
dþ �H0

u
�H0
dÞ
�
R

��	 ��@̂�z
	@̂� �z

����A2
��VJ; (4.15)

where A� is given by (3.14).

Remarkably, the scalar-curvature coupling exhibited by
(4.15) breaks the discrete Z3 symmetry of the theory due to
the chosen cubic superpotential (4.14) of NMSSM. Such a
symmetry may generate domain walls after the spontane-
ous breaking of a symmetric phase in the early universe. In
such a case, unacceptably large anisotropies of CMB may
be generated. This is a well-known domain wall problem of
NMSSM (see e.g. [9]). The scalar-curvature coupling in
(4.13) and in (4.15) breaks the discrete Z3 symmetry. This
may help to remove the eventual domain wall problem.
Thus, it is challenging and interesting to formulate a con-
sistent cosmology within this framework.

As usual, VJ ¼ VF
J þ VD

J . In the present framework, VF
J

has a zero, second, and fourth power of the S field:

VF
J ¼ �2jH0

uj2jH0
dj2 þ ��ð �S2H0

uH
0
d þ c:c:Þ

� 2�2jSj2jH0
Aj2ð
ðH0

uH
0
d þ c:c:Þ � 2Þ

4þ 3
2jH0
Aj2 � 2
ðH0

uH
0
d þ H:c:Þ þ �2jSj4:

(4.16)

On the other hand, VD
J reads

VD
J ¼ g02

8
ðjH0

uj2 �jH0
dj2Þ2 þ

g2

8
ððHuÞy ~�Hu þðHdÞy ~�HdÞ2;

(4.17)

where ~� is the 3-vector of Pauli � matrices.
In [8] this model was described at the vanishing value of

the gauge singlet field S. In order to analyze the theory
consistently, in the present treatment we keep the full
dependence on S.

C. Cosmology in the Jordan frame

We start by checking that the CP-invariant solution
found in [8], in which S, H0

u, and H0
d are real, corresponds

to a (n at least local) minimum of VJ itself. In order to do
so, a priori we assume that these three fields are complex,
namely (s, h1, h2 2 Rþ, 	, 	1, 	2 2 ½0; 2�Þ),

S ¼ sei	; H0
u ¼ h1e

i	1 ; H0
d ¼ h2e

i	2 : (4.18)

By computing (4.15), it follows that the scalar-gravity
action depends only on the combination angles � � 	1 þ
	2 and � � 2	� 	1 � 	2. More precisely, the depen-
dence on � enters via �� cos� and the dependence on �
is via 
 cos�. In order to study CP-invariant solution(s)
with 	 ¼ 	1 ¼ 	2 ¼ 0, one has to analyze the minima of
the potential VJ, also taking into account the R-dependent
terms in (4.15) (notice that VD

J does not depend on any
phase).

First, we notice that Eqs. (4.16) and (4.17) and the
definition of � yield that the dependence on � enters
only in one term in the potential, namely,

VJð�Þ ¼ 2��jSj2jH0
ujjH0

dj cos�: (4.19)

This potential has a minimum at � ¼ 0, under the condi-
tion that �� is negative: �� ¼ �j��j.
Second, in order to deal correctly with the dependence

on �, one can look at the expected minimum of the
potential at S ¼ 0 [8]. Equation (4.16) implies that the
Jordan frame potential at S ¼ 0 is very simple:

VF
J jS¼0 ¼ �2jH0

uj2jH0
dj2: (4.20)

At S ¼ 0 the dependence on � enters only through the
frame function � given by Eq. (4.13). By switching to the
Einstein frame and recalling the relation (3.6), one obtains

ðVEð�ÞÞS¼0 ¼ 9�2jH0
uj2jH0

dj2
�2

¼ �2jH0
uj2jH0

dj2
½1� 1

3 ðjH0
uj2 þ jH0

dj2Þ þ 
jH0
ujjH0

dj cos��2
:

(4.21)

Since during inflation 1� 1
3 ðjH0

Aj2Þ> 0 [8], it can be

checked that during inflation � ¼ 0 is a minimum of VJ,
under the condition that 
> 0.
Thus, the CP-invariant solution with three real fields is

confirmed to be a minimum in the directions of angles �
and � during inflation. Therefore we can take

S ¼ s; H0
u ¼ h1; H0

d ¼ h2; (4.22)

provided that the coupling constants of the model under
consideration satisfy

�� < 0; 
 > 0: (4.23)

Notice that (4.13) and (4.22) yield that the kinetic scalar
terms in the Jordan frame are canonical, since both suffi-
cient conditions (3.15) and (3.17) are satisfied [in particu-
lar, A� ¼ 0 on scalar configurations (4.22)]:

ðLNMSSM
J Þkinetic ¼ � ffiffiffiffiffiffiffiffiffiffi�gJ

p ½ð@�sÞ2 þ ð@�h1Þ2 þ ð@�h2Þ2�:
(4.24)

It is now convenient to switch to the standard mixing of the
Higgs fields, defined as

h1 � h cos�; h2 � h sin�; (4.25)

which leaves us with two real fields, h and �, instead of h1
and h2.
Through Eq. (4.17), the D-flat direction, defined by

VD
J ¼ 0; (4.26)

requires that

sinð2�Þ ¼ 1; h21 ¼ h22 ¼ h2=2: (4.27)
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Thus, along the D-flat direction, the curvature term of
(4.15) simplifies to

ðLNMSSM
J Þcurv ¼

ffiffiffiffiffiffiffiffiffiffi�gJ
p

2

�
1� 1

3
ðs2 þ h2Þ þ 1

2

h2

�
RðgJÞ:
(4.28)

On the other hand, along the D-flat direction (4.26) and
(4.27) the F-term potential reads

VF
J ¼ �2

4
h4 � j��js2h2 � 2�2s2h2ð
h2 � 2Þ

4þ 3
2h2 � 2
h2
þ �2s4:

(4.29)

In [8] the inflationary regime driven by the Higgs within
NMSSM was shown to take place for


h2 
 1 
 h2; s � 0; � ¼ �

4
; (4.30)

in Planck units M2
P ¼ 1. For small s, (4.29) can be sim-

plified as follows:

VF
J � �2

4
h4 �

�
j��j þ 2�2

3


�
s2h2: (4.31)

The effective mass of the s field is negative, but one
actually has to take into account an effective contribution
from the curvature-scalar coupling. This latter provides a
positive contribution; however, it does not remove the
tachyonic instability of the system in the s direction.
Indeed, for small s, the complete expression of the effec-
tive potential is

~V F
J � �2

4
h4 �

�
j��j þ �2

3


�
s2h2: (4.32)

As we will see in the next section, the instability in the s
direction is very strong, corresponding to a large tachyonic
mass and a slow-roll parameter j�j � 2=3. As a result, a
rapidly developing tachyonic instability does not allow
inflation to occur in the regime studied in [8].

Note that in general instead of �� < 0 one could take
�� > 0. Correspondingly, such a choice of coupling con-
stants would stabilize the real part of the field S, but it
would lead to an equally strong instability in the direction
of its imaginary part. In other words, independently of the
sign of ��, the potential with respect to the complex field S
has a saddle point at S ¼ 0, which results in the tachyonic
instability in one of the two directions.

D. Switching to the Einstein frame

In the Einstein frame, (3.6) and (4.16) yield that the
F-term potential is

VF
E ¼ 9

�2
VJ ¼

�2

4 h
4 � j��js2h2 � 2�2s2h2ð
h2�2Þ

4þ3
2h2�2
h2
þ �2s4

½1� 1
3 ðs2 þ h2Þ þ 1

2
h
2�2 :

(4.33)

Let us compute the effective mass of the s field also in the
Einstein frame, where by definition there is no contribution
from the curvature coupling. During the inflationary re-
gime (4.30) [8], the leading behavior of the potential is

VF
E � �2


2
�
�
j��j þ �2

3


�
4s2


2h2
þOðs4Þ: (4.34)

The shape of the potential is shown in Fig. 1. The trajectory
with s ¼ 0 at large h, which was expected to be an infla-
tionary trajectory in [8], is unstable. It corresponds to the
top of the ridge for the potential VF

E ; see Fig. 1.
In order to find whether this instability is dangerous, one

should calculate the tachyonic mass of the s field and
compare it to the Hubble constant. This will allow us to
check whether the tachyonic instability develops rapidly,
or whether it occurs on a time scale much smaller than the
cosmological time scale H�1. An alternative way to ap-
proach this issue is to find the related value of the relevant
slow-roll parameter �.
To find the effective mass of the s field, attention must be

paid to the nonminimal normalization of the field S ¼ sei	.
At constant 	, the kinetic term of field S is given by

gS �S@S@ �S ¼ 2


h2
@S@ �S ¼ 2


h2
ð@sÞ2: (4.35)

Thus, in the vicinity of the inflationary trajectory s � 0
(4.30), the Lagrangian density of the field s is

FIG. 1 (color online). The F-term potential VF in the Einstein
frame. The inflationary trajectory s ¼ 0 is unstable.
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L E;s ¼ � 2


h2
ð@sÞ2 � �2


2
þ
�
j��j þ �2

3


�
4s2


2h2
þOðs4Þ:

(4.36)

In terms of the canonical scalar field ~s ¼ 2sffiffiffi



p
h , such a

Lagrangian at small fields ~s is

L E;~s ¼ � 1

2
ð@~sÞ2 � �2


2
þ
�j��j



þ �2

3
2

�
~s2 þOð~s4Þ;

(4.37)

resulting in the mass squared of the ~s field to be tachyonic:

m2
~s ��2

�
�2

3
2
þ j��j




�
< 0: (4.38)

Taking into account that during inflationH2 ¼ V=3 � �2

3
2 ,

it thus follows that

m2
~s � � 2�2

3
2
¼ � 2V

3
¼ �2H2 ¼ R=6: (4.39)

Interestingly, m2
~s resembles the conformal mass m2 ¼

�R=6, but has an opposite sign. Since jm2
~s j>H2, the

trajectory ~s ¼ 0 is exponentially unstable and unsuitable
for inflation. One can also reach the same conclusion by
computing the relevant slow-roll parameter � in the ~s
direction:

�~s � m2
~s

V
¼ � 2

3
� 2j��j


�2
<� 2

3
: (4.40)

We did not find any way to solve this problem of the
Einhorn-Jones model [8].

It should also be clearly stated that there are many other
scalar fields in this model, and the field s is not the only one
that may experience a tachyonic instability. This is sup-
ported by the results obtained in the Appendix, where the
dependence of the potential on the angular variable � is
studied. Therein, we find that in certain cases the postinfla-
tionary cosmological trajectory may experience an addi-
tional tachyonic instability and deviate from the value
� ¼ �

4 characterizing the D-flat direction (4.30).

We should emphasize, however, that these results are
model dependent. We believe that the cosmological models
based on N ¼ 1, d ¼ 4 supergravity in the Jordan frame
can be very interesting, and they certainly deserve further
investigation. In the past, a systematic study of such mod-
els was precluded by the absence of the corresponding
formalism, which we presented in a complete form in
Sec. II. In the next section we will give a detailed deriva-
tion of the complete N ¼ 1, d ¼ 4 supergravity action in a
generic Jordan frame.

V. DERIVATION OF THE COMPLETE N ¼ 1
SUPERGRAVITYACTION IN A JORDAN FRAME

Here we use the superconformal action [3] and gauge fix
it to get a complete N ¼ 1 supergravity action, including
fermions, in an arbitrary Jordan frame. Superconformal
invariance means that the action is invariant under the local
symmetries of the superconformal algebra. This involves,
apart from the super-Poincaré transformations, local dila-
tations, a local Uð1Þ R symmetry, local special conformal
transformations, and an extra special supersymmetry, de-
noted as S supersymmetry. One first constructs a ‘‘super-
conformal action,’’ i.e. an action that is invariant under all
symmetries of the superconformal algebra. Then one gets
rid of the extra symmetries by imposing gauge conditions.
The vierbein ea� and gravitino c � are the gauge fields of

the translations andQ supersymmetry, which belong to the
super-Poincaré algebra. The gauge field of local Lorentz
rotations is the spin connection !�

ab, which is a con-

strained field; i.e. it has as usual a value that depends on
e�

a and c �. We will write here the expressions in terms of

!�
abðeÞ, which is the usual torsionless spin connection of

gravity. Also the gauge fields of special conformal trans-
formations and of S supersymmetry are such composite
fields. In the expressions below, they have been substituted
by their values. On the other hand, the gauge field of the
Uð1Þ R symmetry, A�, is an auxiliary field. Its value will be

given below. Finally, the gauge field of dilatations is a field
b�, which will later be set to zero by a gauge condition for

the special conformal symmetry.
The superconformal transformations of the vierbein and

gravitino are (apart from general coordinate transforma-
tions)

�e�
a ¼ ��a

be�
b � �De�

a þ 1
2
���ac �;

�c � ¼
�
� 1

4
�ab�ab � 1

2�D þ 3
2i�T��

�
c �

þ ð@� þ 1
2b� þ 1

4!�
ab�ab � 3

2iA���Þ�� ���;

(5.1)

where �ab are the parameters of local Lorentz transforma-
tions, �D are those of dilatations, and �T are those of the
Uð1Þ R symmetry. � and � are the spinor parameters of Q
and S supersymmetry, respectively.

A. The superconformal action

We first repeat the result for the full superconformal
action using the notation that we will use in this paper.
The action contains three superconformal-invariant terms

L ¼ ½N �D þ ½W �F þ ½fAB ��APL�
B�F: (5.2)

The first one is defined by a Kähler potential N ðX; �XÞ for
the superconformal fields, the second uses a superpotential
W ðXÞ, and the third involves the chiral kinetic matrix
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fABðXÞ (where A are the gauge indices) and gauginos �A.
The matrix PL ¼ 1

2 ð1þ ��Þ projects on the left-handed

fermions. The dilatation symmetry implies that N should
be homogeneous of first order in both X and �X, W should
be homogeneous of third degree, and fABðXÞ is of zeroth
order, i.e.

XI @

@XI N ¼ �X
�I @

@ �X
�I
N ¼ N ; XI @

@XI W ¼ 3W ;

XI @

@XI fAB ¼ 0: (5.3)

The superconformal chiral multiplets contain the bo-
sonic fields XI and fermions �I ¼ PL�

I. We assume
that they transform under the gauge symmetries depending
on Killing vectors kA

IðXÞ,
�XI ¼ AkA

I; ��I ¼ A@JkA
I�J: (5.4)

These Killing vectors should satisfy homogeneity equa-
tions due to the conformal symmetry and leaveN andW
invariant.4 These statements can be encoded in the follow-
ing equations:

@ �JkA
I ¼ 0; XJ@JkA

I ¼ kA
I;

N IkA
I þN �IkA

�I ¼ 0;

P A ¼ 1
2iðN IkA

I �N �IkA
�IÞ ¼ iN IkA

I ¼ �iN �IkA
�I;

@ �IP A ¼ iN J �IkA
J; W IkA

I ¼ 0: (5.5)

We use here the notation that derivatives onN andW are
denoted by adding indices, similar to (3.4).
The physical fields of the chiral and gauge multiplets

transform as follows under the superconformal transforma-
tions:

�XI ¼ ð�D þ i�TÞXI þ 1ffiffiffi
2

p ���I;

��I ¼
�
� 1

4
�ab�ab þ 3

2
�D � 1

2
i�T

�
�I þ 1ffiffiffi

2
p PLðD6 XI þ FIÞ�þ ffiffiffi

2
p

XIPL�;

�AA
� ¼ � 1

2
�����

A;

��A ¼
�
� 1

4
�ab�ab þ 3

2
�D þ 1

2
i�T��

�
�A þ

�
3

2
�D þ 3

2
i���T

�
�A þ

�
1

4
�abF̂ab

A þ 1

2
i��DA

�
�;

D�X
I ¼ ð@� � b� � iA�ÞXI � 1ffiffiffi

2
p �c ��

I � AA
�kA

I;

F̂ab
A ¼ ea

�eb
�ð2@½�AA

�� þ gfBC
AAB

�A
C
� þ �c ½�����AÞ:

(5.6)

After elimination of the auxiliary fields, the terms in (5.2)
mix. The scalars form a Kähler manifold with metric,
connection, and curvature given by

GI �J ¼ N I �J; �I
JK ¼ GI �LN JK �L;

RI �KJ �L ¼ N IJ �K �L �N IJ �MG
M �MN M �K �L:

(5.7)

The superconformal action5 can be split into several parts:

e�1L ¼ 1
6N ½�Rðe; bÞ þ �c �R

� þ e�1@�ðe �c � �c �Þ�L0

þL1=2 þL1 � V þLm þLmix þLd þL4f :

(5.8)

The leading kinetic terms of the matter multiplets are

L0 ¼ �GI �JD
�XID�

�X
�J;

L1=2 ¼ �1
2GI �J½ ��I ^6D�

�J þ 1
2
��

�J ^6D�I�;
L1 ¼ ðRefABÞ½�1

4F
A
��F

��B � 1
2
��A 6D�B�

þ 1
4i½ðImfABÞFA

��
~F��B þ ðD�ImfABÞ ��A�����B�:

(5.9)

The potential in the conformal form is

V ¼ VF þ VD ¼ GI �JW I
�W �J þ 1

2ðRefÞ�1ABP AP B:

(5.10)

Bilinear fermion terms can be divided into those that give
rise to physical masses, terms relevant for the super–Brout-
Englert-Higgs mechanism and terms with derivative cou-
plings to bosonic fields:

4Note that this does not imply that the Kähler potential or
superpotential of the Einstein theory should be invariant under
the gauge transformations, as we will see below.

5There is a possible generalization including a Chern-Simons
term (see [16]), which we neglect here.
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Lm ¼ 1

2
W �c �PR�

��c � � 1

2
rIW J

��I�J þ 1

4
GI �J �W �JfABI ��

APL�
B þ ffiffiffi

2
p

i

�
�@IP A þ 1

4
fABIðRefÞ�1BCP C

�
��A�I

þ H:c:;

Lmix ¼ �c � �PL

�
1

2
iP A�

A þ 1ffiffiffi
2

p W I�
I

�
þ H:c:;

Ld ¼ þ 1

8
ðRefABÞ �c ��

abðFA
ab þ F̂A

abÞ���B þ 1ffiffiffi
2

p
�
GI �J

�c � 6DX
�J���I � 1

4
fABI ��

I�abF̂A
ab�

B

� 2

3
N I

��I���D�c � þ H:c:

�
:

(5.11)

Finally, the 4-fermion terms are

L4f ¼ 1

96
N ½ð �c ���c �Þð �c ���c � þ 2 �c ���c �Þ � 4ð �c �� � c Þð �c �� � c Þ�

þ
�
� 1

4
ffiffiffi
2

p fABI �c � ��I ��APL�
B þ 1

8
rIfABJ ��

I�J ��APL�
B þ H:c:

�

þ 1

16
e�1"���� �c ���c �

�
��

�J���
I þ 1

2
i RefAB ��A�����

B

�
� 1

2
GI �J

�c ��
�J �c ��

I þ 1

4
RI �KJ �L

��I�J ��
�K�

�L

� 1

16
GI �JfABI ��

APL�
B �fCD �J

��CPR�
D þ 1

16
ðRefÞ�1ABðfACI ��I � �fAC �I

��
�IÞ�CðfBDJ

��J � �fBD �J
��

�JÞ�D þN ðAF
�Þ2:
(5.12)

This superconformal action contains the bosonic and fermionic parts of the auxiliary field A�, which are

A� ¼ i
1

2N
½N �Ið@� �X

�I � AA
�kA

�IÞ �N Ið@�XI � AA
�k

I
AÞ� ¼ i

1

2N
½N �I@� �X

�I �N I@�X
I� þ 1

N
AA
�P A;

AF
� � i

1

4N

� ffiffiffi
2

p
�c �ðN I�

I �N �I�
�IÞ þGI �J

��I���
�J þ 3

2
ðRefABÞ ��A�����B

�
: (5.13)

Rðe; bÞ is defined with the spin connection !�
abðe; bÞ, which is intermediate between the full connection !�

abðe; b; c Þ
and the torsionless one !�

abðeÞ:
!�

abðe; b; c Þ ¼ !�
abðe; bÞ þ 1

2c ��
½ac b� þ 1

4
�c a��c

b; !�
abðe; bÞ ¼ !�

abðeÞ þ 2e�
½aeb��b�;

!�
abðeÞ ¼ 2e�½a@½�e

b�
�� � e�½aeb��e�c@�e�

c:
(5.14)

Fermion terms are extracted from covariant derivatives D�, whose superconformal Uð1Þ connection involves only the
bosonic part A�. Thus, explicitly,

D�X
I ¼ @�X

I � b�X
I � AA

�kA
I � iA�X

I;

D̂��
I ¼ ð@� � 3

2b� þ 1
4!�

abðe; bÞ�ab þ 1
2iA�Þ�I � AA

�@JkA
I�J þ �I

JK�
KD�X

J;

D��
A ¼ ð@� � 3

2b� þ 1
4!�

abðe; bÞ�ab � 3
2iA���Þ�A � AC

��
BfBC

A:

(5.15)

We also defined in a similar way

R� � ����ð@� þ 1
2b� þ 1

4!�
abðe; bÞ�ab � 3

2iA���Þc �;

(5.16)

while D�c � contains also c torsion in the derivative. The
action (5.8) is invariant under the superconformal trans-
formations. We now will break those symmetries that are
not required for super-Poincaré supergravity: special con-
formal transformations, dilatations, and S supersymmetry.

B. Partial gauge fixing and modified Kähler geometry

First, we eliminate the special conformal transforma-
tions, by imposing the special conformal transformations
gauge choice:

b� ¼ 0: (5.17)

Next, we discuss the gauge choice for dilatations. The
dilatational gauge, D gauge, that has been chosen in the
past is [17]
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N ¼ � 3

�2
: (5.18)

This brings the Einstein-Hilbert term in its canonical form.
We further put � ¼ 1. To solve such a gauge condition, an
appropriate way [3] is to change variables from the basis
fXIg to a basis fy; z	g, where 	 ¼ 1; . . . ; n using

XI ¼ yZIðzÞ: (5.19)

We do not specify the (nþ 1) functions ZI of the base
space coordinates z	, so that we keep the freedom of
arbitrary coordinates on the base. The ZI must be non-
degenerate in the sense that the ðnþ 1Þ � ðnþ 1Þ matrix

ZI

@	Z
I

� �
(5.20)

should have rank nþ 1. There are many ways to choose
the ZI. One simple choice, labeling the I index from 0 to n,
can be

Z0 ¼ 1; Z	 ¼ z	: (5.21)

Then the gauge condition can be solved for the modulus of
y. Its phase is determined by a gauge condition for the R
symmetry. The homogeneity properties then determine that

N ¼ y �yZIðzÞGI �Jðz; �zÞ �Z �Jð�zÞ;
GI �Jðz; �zÞ ¼ @I@ �JN ðX; �XÞ ¼ N I �J:

(5.22)

The function that acts as the Kähler potential for this gauge
is

K ðz; �zÞ ¼ �3 ln½�1
3Z

IðzÞGI �Jðz; �zÞ �Z �Jð�zÞ�: (5.23)

This defines the Kähler metric

g	 �� ¼ @	@ ��Kðz; �zÞ: (5.24)

Note that there is an arbitrariness in the definition (5.19).
We may consider redefinitions

y0 ¼ yefðzÞ=3; Z0I ¼ ZIe�fðzÞ=3: (5.25)

These redefinitions lead to a different Kähler potential:

K 0ðz; �zÞ ¼ Kðz; �zÞ þ fðzÞ þ �fð�zÞ: (5.26)

Hence these can be identified with Kähler transformations
for the Kähler potentials defined by (5.23). In view of these
Kähler transformations, it is often useful to define Kähler-
covariant derivatives. The gauge field for the parameter
fðzÞ is then @	K, while for �fð�zÞ it is @ �	K. In both cases
these are the gauge fields because they transform with a
derivative on the parameters. We thus define

r	Z
I ¼ @	Z

I þ 1
3ð@	KÞZI; r �	Z

I ¼ @ �	Z
I ¼ 0;

r �	
�Z
�I ¼ @ �	

�Z
�I þ 1

3ð@ �	KÞZI; r	
�Z
�I ¼ @	 �Z

�I ¼ 0:

(5.27)

We now define weights of functions under Kähler trans-

formations. Any object that transforms like ZI in (5.25) is
defined to have weights ðwþ; w�Þ ¼ ð1; 0Þ. Hence, y has
weight ð�1; 0Þ.
The objects that appear in the superconformal formula-

tion do not transform under Kähler transformations. For
any quantity that in the superconformal variables is of the
form

V ðX; �XÞ ¼ ywþ �yw�Vðz; �zÞ; (5.28)

we define that V has weights ðwþ; w�Þ, and the Kähler-
covariant derivatives are

r	V ¼ ½@	 þ 1
3wþð@	KÞ�V;

�r �	V ¼ ½@ �	 þ 1
3w�ð@ �	KÞ�V:

(5.29)

Remark that � does not transform under Kähler trans-
formations, and thus has weights ð0; 0Þ. On the other

hand eK=3 has weights ð�1;�1Þ, and thus r	e
K=3 ¼ 0.

The gauge and Uð1Þ transformations on XI split in those
for y and z	 as follows:

�y ¼ yð13ArAðzÞ þ i�TÞ; �z	 ¼ Ak	AðzÞ; (5.30)

where 1
3 rAðzÞ can be considered as the component of the

Killing vectors in the direction of y.
Our new setup will assume the following gauge condi-

tions:

D gauge N ¼ �ðz; �zÞ; Uð1Þ gauge y ¼ �y;

(5.31)

with an arbitrary function�ðz; �zÞ. We keep the definition of
K as in (5.23), with the associated Kähler transformations
and covariant derivatives as in (5.27), and all the above
equations remain valid. Furthermore, all the results below
will then reduce to those of [3,5] when � ¼ �3.6

The value for y for the new gauge choice is

y ¼ �y ¼
ffiffiffiffiffiffiffiffiffiffi
��

3

s
exp

K
6
: (5.32)

However, in many equations we will keep the phase of y
arbitrary. The Uð1Þ gauge choice can be taken at any time.
The vanishing of the derivative of theD-gauge condition

with respect to z	 leads to

N Ir	Z
I ¼ 0; N I ¼ �yGI �J

�Z
�J: (5.33)

Note that this equation does not feel the presence of the
function �. With these equations one can write the matrix
identity

6Or � ¼ �3��2, where � is the gravitational coupling con-
stant that has often been set to 1. To restore � one also replaces
expK with �6 exp�2K, and thus also g	 �� with �2g	 ��, and c �
with �c �.
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�3 0
0 g	 ��

 !
¼ eK=3 ZI

r	Z
I

� �
GI �J

�Z
�J �r ��

�Z
�J

� 	
: (5.34)

Every matrix here is ðnþ 1Þ � ðnþ 1Þ, and should be
invertible.

This matrix identity is useful to translate quantities in
the XI basis to quantities in the fy; z	g basis. For example,
it implies that the inverse of GI �J is

GI �J ¼ eK=3ð�1
3Z

I �Z
�J þ g	

��r	Z
Ir ��

�Z
�JÞ: (5.35)

We assume that � is a (Yang-Mills) gauge-invariant
function. Hence the dilatation gauge condition is invariant.
However, the Uð1Þ gauge is not [see the transformations
(5.30)], and it is not invariant under Kähler transformations
(5.25) either. It is not invariant under supersymmetry ei-
ther, but we postpone this for when we have discussed a
new basis of the fermions. This implies that we cannot
forget the transformations with parameter �T , but should
relate it to the gauge transformations and Kähler trans-
formations (and later also to supersymmetry)

�T ¼ 1
6i

A½rA � �rA� þ 1
6i½fðzÞ � �fð �zÞ�: (5.36)

Taking this into account, and also the gauge invariance
of�, we find that the Kähler potentialK transforms under
gauge transformations as

�K ¼ A½rAðzÞ þ �rAð �zÞ�: (5.37)

The moment map P A defined in (5.5) depends on this
quantity rAðzÞ as

P A ¼ ð�1
3�ÞPA;

PA ¼ iðkA	@	K� rAÞ ¼ �iðkA �	@ �	K� �rAÞ:
(5.38)

Another convenient way to state this, is to write the Killing
vectors in the XI basis as

kIA ¼ y½k	Ar	Z
I þ 1

3iPAZ
I�: (5.39)

The bosonic part of the value of the auxiliary field A�

[see (5.13)] is

A � ¼ 1
6ið@�z	@	K� @� �z

�	@ �	KÞ � 1
3A�

APA

¼ 1
6ið@̂�z	@	K� @̂� �z

�	@ �	KÞ þ 1
6iA

A
�ðrA � �rAÞ:

(5.40)

Independent of the gauge conditions, one proves that the
kinetic terms of the scalars, L0 in (5.9), is

L0 ¼ � 1

4N
ð@�N Þð@�N Þ �N ð@̂�z	Þð@̂� �z ��Þ @

@z	

� @

@�z
��
ln½ZIðzÞGI �J

�Z
�Jð �zÞ�;

@̂�z
	 � @�z

	 � AA
�k

	
A:

(5.41)

After the gauge choice, this is thus

L0 ¼ � 1

4�
ð@��Þð@��Þ þ 1

3
g	 ���ð@̂�z	Þð@̂� �z ��Þ

¼ �

�
1

3
g	 �� � 1

2
L	L ��

�
ð@̂�z	Þð@̂� �z ��Þ

� 1

4
�½L	L�ð@̂�z	Þð@̂�z�Þ þ H:c:�; (5.42)

which is the same as (2.4), and where we introduced L for
ln� and

L	 ¼ @	 lnð��Þ; L �	 ¼ @ �	 lnð��Þ: (5.43)

For the superpotential, we define W ðXÞ ¼ y3WðzÞ.
Hence WðzÞ has Kähler weights ð3; 0Þ. This leads to

W IZ
I ¼ 3y2WðzÞ;

y�2W Ir	Z
I ¼ r	W � @	W þ ð@	KÞW:

(5.44)

The F term in the superpotential therefore reduces to
(taking only bosonic terms from the field equation of FI)

VF ¼ 1
9�

2eKð�3W �W þr	Wg	
��r ��

�WÞ: (5.45)

This agrees with what we already expected in (3.6).
Because of (5.38), also the D term has the same overall
�- dependence

VD ¼ 1

18
�2ðRefÞ�1ABPAPB: (5.46)

This agrees with what we found in (3.6).
We introduce now modified Kähler-covariant deriva-

tives, which take the presence of � into account. For an
object V that has weights ðwþ; w�Þ, we define
~r	V ¼ ½@	 þ 1

3wþð@	KÞ þ 1
2ðwþ þ w�ÞL	�V;

~�r �	V ¼ ½@ �	 þ 1
3w�ð@ �	KÞ þ 1

2ðwþ þ w�ÞL �	�V:
(5.47)

We can also define the covariant derivatives in space-time,
using

~r � ¼ ð@̂�z	Þ~r	 þ ð@̂� �z �	Þ~�r �	: (5.48)

One can evaluate these before or after gauge fixing of the
Uð1Þ symmetry. Before the latter is gauge fixed, we have to
add the covariantization of the latter. y then has weight
ð�1; 0Þ, so that we define

~r�y¼ ð@� � iA� � 1
3@̂�z

	@	Kþ 1
2@�L� 1

3A
A
�rAÞy¼ 0:

(5.49)

The calculation is modified after theUð1Þ gauge fixing, but
the result is still the same. TheUð1Þ transformation is gone,
but due to (5.36) and (5.30), the Kähler transformation of y
is [in agreement with its value in (5.32)]

y0 ¼ y exp½fðzÞ þ �fð �zÞ�=6: (5.50)

Thus y now has Kähler weights ðwþ; w�Þ ¼ ð� 1
2 ;� 1

2Þ,
leading again to
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~r�y ¼ ð@� � 1
6@̂�z

	@	K� 1
6@̂� �z

�	@ �	Kþ 1
2@�L

� 1
6A

A
�ðrA þ �rAÞÞy ¼ 0: (5.51)

We thus find that y is invariant under the new covariant
derivatives

~r 	y ¼ ~�r �	y ¼ 0: (5.52)

This will facilitate many calculations.
There are some differences between these modified co-

variant derivatives and the ordinary covariant derivatives
(5.27). Most important is that the antichiral modified co-
variant derivative does not vanish on ZI:

~�r �	Z
I ¼ 1

2Z
IL �	: (5.53)

The commutator of the covariant derivatives on scalar
functions still satisfies the rule

½~r	;
~�r ���Vðz; �zÞ ¼ 1

3ðw� � wþÞg	 ��Vðz; �zÞ: (5.54)

This leads also to an expression that we will need below:

~�r ��
~r	Z

I ¼ ZIð13g	 �� þ 1
2L	 ��Þ þ 1

2L ��
~r	Z

I: (5.55)

The matrix Eq. (5.34) gets modified:

� 1
2�L ��

1
2�L	 ~g	 ��

 !
¼ y �y

ZI

~r	Z
I

� �
GI �J �Z

�J ~�r ��
�Z
�J

� 	
;

(5.56)

where

~g 	 �� � �1
3�g	 �� þ 1

4�L	L ��: (5.57)

To obtain the second holomorphic derivative of ZI, one
can take a covariant derivative on the second line of (5.56)
to obtain

~r�
~r	Z

I ¼ �y�I
JK

~r	Z
J ~r�Z

K þ Lð	 ~r�ÞZI

þ ZIð12L	� � 1
4L	L�Þ; (5.58)

where

L	� ¼ r	L� ¼ @	L� � ��
	�L�: (5.59)

This can be used further to calculate the curvature of the

projective manifold. Indeed, acting with y �y~�r ��
�Z
�JGI �J

~�r �	 on

this equation, and using that on a vector quantity

½~�r �	;
~r��~r	Z

I ¼ 1
3g� �	

~r	Z
I þ R �	�	

� ~r�Z
I; (5.60)

we obtain after many cancellations of L-dependent terms

ð�1
3�Þ½R	 �	� �� � 2

3g �	ð	g�Þ ���
¼ ðy �yÞ2RI �IJ �J

~r	Z
I ~r�Z

J ~�r �	
�Z
�I ~�r ��

�Z
�J: (5.61)

Observe that the cancellations can be explained due to the
fact that the dilatational symmetry of the embedding mani-
fold implies that ZIRI �IJ �J ¼ 0.

C. The physical fermions

In order to define the physical bosons in the previous
section, we changed from the conformal basis fXIg to the
basis fy; z	g. We now make a similar change of basis from
the conformal fermions f�Ig to a new basis7 f
0; 
	g,
using

�I ¼ yð
0ZI þ 
	 ~r	Z
IÞ: (5.62)

Our aim is to have 
0 ¼ 0 as a gauge condition for the S
gauge transformations. We therefore choose

S gauge N I�
I ¼ 1

2�	

	; (5.63)

which is equivalent to 
0 ¼ 0. Hence the gauge-fixed

fermions are �I ¼ y
	 ~r	Z
I.

The covariant derivative of the physical fermion is

D�

	 ¼

�
@� þ 1

4
!�

abðeÞ�ab þ 3

2
iA�

�

	

� AA
�

@k	AðzÞ
@z�


� þ �	
��


�@̂�z
�: (5.64)

The covariant derivative on the conformal fermions (5.15)
can then be rewritten as

D̂��
I ¼ D�ðy
	 ~r	Z

IÞ þ y2�I
JK


	 ~r	Z
K ~r�Z

J@̂�z
�

¼ yðD�

	Þ~r	Z

I þ y
	ð@̂�z� ~r� þ @̂� �z
�� ~�r ��Þ~r	Z

I

þ y2�I
JK


	 ~r	Z
K ~r�Z

J@̂�z
�

¼ yðD�

	Þ~r	Z

I þ y
	@̂�z
�½Lð	 ~r�ÞZI

þ ZIð12L	� � 1
4L	L�Þ�

þ y
	@̂� �z
��½ZIð13g	 �� þ 1

2L	 ��Þ þ 1
2L ��

~r	Z
I�;
(5.65)

using (5.58) and (5.55). This can be inserted in the kinetic
fermion terms, L1=2 in (5.9). The contribution of the last

line of (5.65) can be complex conjugated such that this
leads to

7We again use the implicit chiral notation, i.e. PL

	 ¼ 
	 and

PR

�	 ¼ 
 �	.
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L1=2 ¼ �1
2
~g	 �� �


�� 6D
	 þ 1
2� �
	��


��@̂�z
�

� ½�1
3g� ��L	 þ 1

4L	�L �� � 1
4L	L� ��� þ H:c:

(5.66)

Now we consider the fermion mass terms, Lm in (5.11).
We rewrite them as

Lm ¼ 1
2m3=2

�c �PR�
��c � � 1

2m	� �
	
� �m	A �

	�A

� 1
2mAB

��APL�
B þ H:c:; (5.67)

where the (complex) gravitino mass parameter can be
easily recognized as

m3=2 ¼ W ¼ y3W ¼ ð�1
3�Þ3=2eK=2W: (5.68)

For the mass terms of the chiral fermions, we have

m	�

	
� ¼ rIW J

��I�J: (5.69)

We first observe that in (5.44) we can insert as well the

modified covariant derivatives ~r due to the homogeneity
conditions. Then we take a further covariant derivative
using again (5.58), which gives

~r�
~r	W ¼ y�1rJW I

~r�Z
J ~r	Z

I

þ y�2W IðLð	 ~r�ÞZI þ 1
2L	�Z

I � 1
4L	L�Z

IÞ:
(5.70)

Therefore,

m	� ¼ y2rIW J
~r�Z

J ~r	Z
I

¼ y3 ~r�
~r	W � yW IðLð	 ~r�ÞZI þ 1

2L	�Z
I

� 1
4L	L�Z

IÞ
¼ y3½~r�

~r	W � Lð	 ~r�ÞW � 3Wð12L	� � 1
4L	L�Þ�

¼ ð�1
3�Þ3=2eK=2½r�r	W þ 2Lð	r�ÞW�: (5.71)

For the mass terms involving �, we first need an equation
for the derivative of fAB:

fAB	 ¼ r	fAB ¼ yfABI
~r	Z

I ¼ yfABIr	Z
I: (5.72)

A further derivative on this equation is relevant for the 4-
fermion terms. Using (5.58) and the homogeneity of degree
zero of fAB so that fABIZ

I ¼ 0, we obtain

r�fAB	 ¼ ~r�fAB	

¼ y2rJfABI
~r	Z

I ~r�Z
J þ Lð	@�ÞfAB: (5.73)

For the �� mass term we use the expression for GI �J in
(5.35), the same homogeneity equation of fAB, (5.44) and
(5.72), to translate

mAB ¼ �1
2G

I �J �W �JfABI

¼ �1
2ð�1

3�Þ1=2eK=2fAB	g
	 �� �r ��

�W: (5.74)

The conformal expression of the �
 mass term gives

m	A ¼ i
ffiffiffi
2

p ½@IP A � 1
4fABIðRefÞ�1BCPC�y~r	Z

I: (5.75)

We first calculate

@	P A ¼ y~r	Z
I@IP A þ �y~r	

�Z
�I@ �IP A

¼ y~r	Z
I@IP A þ 1

2L	P A; (5.76)

due to (5.53) and the homogeneity equation X
�I@ �IP A ¼

P A. Using (5.38) this gives

y~r	Z
I@IP A ¼ �1

3�@	PA � 1
6PA@	�: (5.77)

Using also again (5.72), we obtain

m	A ¼ �1
3i

ffiffiffi
2

p
�½ð@	 þ 1

2L	ÞPA � 1
4fAB	ðRefÞ�1BCPC�:

(5.78)

For Ld in (5.11) we need only one new calculation:

GI �JD�
�X
�Jy~r	Z

I ¼ y �yGI �Jð@̂�z� ~r� þ @̂� �z
�� ~�r ��Þ �Z �J ~r	Z

I

¼ 1
4�L	L�@̂�z

� þ ~g	 ��@̂� �z
��: (5.79)

To calculate the 4-fermion terms, we need the fermionic
part of the auxiliary field A�. Its conformal expression was

given in (5.13), which can be evaluated as

AF
� ¼ i

4
ffiffiffi
2

p �c �ðL	

	 � L �	


�	Þ þ i

4�
~g	 �� �
	��


��

þ 3i

8�
ðRefABÞ ��A�����B: (5.80)

One term in the square of this expression is the 
4 term,
which combines (after a Fierz transformation) with the
curvature term in L4f , where (5.61) is now convenient.
The result is given in the beginning of the paper, in Sec. II.
Here we still give the 4-fermion term:
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L4f ¼ 1

96
�½ð �c ���c �Þð �c ���c � þ 2 �c ���c �Þ � 4ð �c �� � c Þð �c �� � c Þ�

þ
�
� 1

4
ffiffiffi
2

p fAB	 �c � �
	 ��APL�
B þ 1

8
�
	
� ��APL�

B½r�fAB	 � L	fAB�� þ H:c:

�

þ 1

16
e�1"���� �c ���c �

�
1

2
i RefAB ��A�����

B þ ~g	 �� �

����


	

�
þ 1

6
�g	 ��

�c �

�� �c �
	

� 1

32
� �c �ð
	L	 þ 
 �	L �	Þ �c �ð
�L� þ 


��L ��Þ �
9

64�
½ðRefABÞ ��A�����B�2

þ 3

16
g	

����1fAB	 ��APL�
B �fCD ��

��CPR�
D þ 1

16
ðRefÞ�1ABðfAC	 �
	 � �fAC �	 �
 �	Þ�CðfBD� �
� � �fBD �� �


��Þ

� �D

�
� 1

4
g	 �� þ 3

16
L	L ��

�
ðRefABÞ �
	�A �


���B � 1

8
ffiffiffi
2

p
�
g	 �� �
	��


�� þ 3

2
ðRefABÞ ��A�����B

�

� �c �ðL�

� � L ��


��Þ � 1

12
�

�
R	 ��� �� �

1

2
�2g	 ��g� �� �

1

4
L	L ��g� �� þ

3

32
L	L�L ��L ��

�
�
	
� �
 ��


��: (5.81)

VI. CONCLUSIONS

The main goal of our paper was to derive a complete
formulation of N ¼ 1, d ¼ 4 supergravity in a generic
Jordan frame. We found that, in general, this formulation
is very nontrivial. It involves modified Kähler geometry (in
the sense specified in our treatment), and it gives rise to
many new complicated terms in the supergravity
Lagrangian.

However, we identified a subclass of theories where the
resulting formulation is remarkably simple. This subclass
includes the recently proposed model of Einhorn and Jones
[8], which was introduced as an N ¼ 1 supergravity real-
ization of the Higgs field inflation [2]. We found that the
inflationary regime in this model is unstable.

Hopefully, however, the general formalism developed in
our paper may allow one to find new realistic inflationary
models in supergravity. As a starting approach, one can
simply study in the Jordan frame several classes of infla-
tionary models in supergravity, which were found a long
time ago in the Einstein frame. As shown by the example of
the Higgs inflation, sometimes it is helpful to identify and
study various physical features of the cosmological models
by switching from one frame to another.
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APPENDIX: STABILITY WITH RESPECT TO THE
ANGLE �

As we found in Secs. IVC and IVD, the inflationary
trajectory with s ¼ 0 (4.30) of the Einhorn-Jones model [8]
is unstable with respect to a rapid generation of the s field.
Other scalar fields may also have nontrivial dynamical
properties. If after a modification of this model one can
find a way to stabilize the s field, one would then need to
study the cosmological behavior of all other fields. As an
example, in this Appendix we will analyze the behavior of
the angle �, ignoring the issue of the s field instability.
For h2 	 1 [consistent with (4.30)], the Einstein frame

potential VE of the fields h and � reads

VEðh; �Þ ¼ 2h4�2sin22�þ ðg2 þ g02Þh4cos22�
2ð2þ h2
 sin2�Þ2 : (A1)

The first term in the numerator originates from the F term,
the second term from the D term.
During inflation, in the slow-roll regime at h2
 
 1 [see

(4.30)], the potential with respect to � is minimized by the
condition of D flatness, corresponding to � ¼ �=4. In this
regime,

VEðh; � ¼ �=4Þ ¼ h4�2

ð2þ h2
Þ2 �
�2


2
: (A2)

One could contemplate the possibility of an additional
slow-roll regime with respect to the slow variation of �
[8]. However, the stabilization of � during inflation is very
firm. Indeed, when we take into account that the nonca-
nonical kinetic terms in the angular direction near the
minimum are proportional to 1


 , we find that the effective

mass squared of the fluctuations of the field � is given by
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m2
� � h2½�4�2 þ ðg2 þ g02Þð2þ h2
Þ�

ð2þ h2
Þ2 : (A3)

During inflation, in the limit 
h2 
 1,

m2
� ¼ g2 þ g02



; (A4)

and the slow-roll parameter � with respect to the field �
thus reads

�� � m2
�

V
� 


g2 þ g02

�2
: (A5)

This means that for 
ðg2 þ g02Þ 
 �2, one has �� 
 1.

Thus, there is no slow-roll regime with respect to the
change of � during inflation, because the mass squared
of perturbations of the angle � is much greater than H2.
Therefore, during inflation the field � rapidly approaches
�=4 and stays there.

However, the angle�may play an interesting dynamical
role at the end of inflation. Our calculations show that the
potential vanishes at h ¼ 0 for all �; see Fig. 2. However,
in our investigation we did not take into account sponta-
neous symmetry breaking in the SM, as well as soft terms
leading to supersymmetry breaking, which are important at
an energy scale much smaller than the energy scale rele-
vant for inflation. Clearly, the low-energy scale dynamics
of the field � will depend on the above-mentioned effects
that we ignored, but also on the value of the field � at the
end of inflation.

One could expect that until the low-energy effects be-
come important, the field � remains equal to �=4.
However, this is not always the case. Indeed, (A3) yields
that when 
h2 becomes smaller than Oð1Þ and inflation

ends, the mass squared of the field � becomes

m2
� � h2

�
��2 þ g2 þ g02

2

�
; (A6)

thus affecting the slow-roll parameter �� as follows [recall

Eq. (A5)]:

�� � 


�

h2

�
�1þ g2 þ g02

2�2

��
: (A7)

Note that typically j��j � 
 
 1, and that when 
h2

becomes smaller than Oð1Þ inflation ends. Therefore, for
g2, g02 > 2�2, the D term continues to dominate the dy-
namics of the field � even at the end of inflation, ��

remains large and positive, and � continues to be captured
at its original value� ¼ �=4; see Fig. 3. Oscillations of the
inflaton field h near the minimum of its potential may lead
to perturbative [18,19] as well as nonperturbative [20,21]
decay of this field, which can be very efficient because the
coupling constants of the corresponding interactions are
rather large. A detailed discussion of reheating in the
original (nonsupersymmetric) version of this scenario can
be found in the second and third references of [2].
The situation is more complicated in the opposite case

g2, g02 < 2�2, in which the field moving along the trajec-
tory � ¼ �=4 experiences strong tachyonic instability at
the end of inflation, which leads to spontaneous symmetry
breaking; see Fig. 3. This effect, which is called ‘‘tachyonic
preheating’’ [22,23], is similar to the waterfall regime in
the hybrid inflation scenario [24].
The physical meaning of ‘‘tachyonic preheating’’ within

the framework under consideration can be understood as
follows. As mentioned, the inflationary regime ends when

FIG. 2 (color online). During inflation at large h the angular
variable � is stabilized at � ¼ �=4, corresponding to h1 ¼ h2.
For g2, g02 
 �2, this stabilization is preserved even after the
end of inflation.

FIG. 3 (color online). During inflation at large h the angular
variable � is stabilized at � ¼ �=4, corresponding to h1 ¼ h2.
For g2, g02 	 �2, at the end of inflation the curvature of the
potential in the � direction becomes large and negative, much
greater than the curvature in the inflaton direction. This leads to
tachyonic instability, generation of large fluctuations of the field
�, and spontaneous symmetry breaking.
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h2 becomesOð1Þ. At that time, the parameter �h describ-
ing the slow-roll in the h direction becomes Oð1Þ, which
means that the effective mass squared of the field h be-
comesOðH�1Þ. Therefore the field h reaches the minimum
of the potential at h ¼ 0 within the time �t ¼ OðH�1Þ
from the end of inflation. This last, postinflationary, part of
the field evolution is shown in Fig. 4.

During that time, quantum fluctuations of the field �
start growing, ��� em�t, and they rapidly reach the min-
ima of the potential in the � direction, which correspond to
the two valleys in Fig. 4, at � � 0 and at � � �=2.
Spontaneous symmetry breaking occurs within the time

m�1
� , which is shorter than H�1 by the factor Oð��1=2Þ �

10�2. In other words, this process occurs almost instantly,
on the cosmological time scale. When this happens, the
universe becomes divided into domains with the field �
taking values in one of the two valleys in Fig. 4. These
domains, of initial size m�1

� , will be separated from each

other by domain walls corresponding to the ridge of the
potential at� ¼ �=4. Then the field hwill continue rolling
down to smaller values of h, following the two valleys of
the potential. A detailed evolution of the field distribution
can be studied by the methods developed in [22,23].
In order to find out which of the two regimes (g2, g02 >

2�2 versus g2, g02 < 2�2) occurs in the realistic versions of
this scenario, one should perform an investigation of the
running of the coupling constants from their present day
values to the end of inflation, similar to the investigation
performed in [2]. However, prior to such an investigation,
one should find a solution to the main problem of this
scenario, which is the tachyonic instability with respect
to the field s found in Sec. IV.
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