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The primary aim of this paper is to study mappings J of rings that are
additive and that satisfy the conditions

(1) (a2)J = (aJ)2,        (abay = aJbJaJ.

Such mappings will be called Jordan homomorphisms. If the additive groups
admit the operator 1/2 in the sense that 2x = a has a unique solution (l/2)a
for every a, then conditions (1) are equivalent to the simpler condition

(2) (ab)J + (ba)J = aJV + bJaJ.

Mappings satisfying (2) were first considered by Ancochea [l], [2](J). The
modification to (1) is essentially due to Kaplansky [13]. Its purpose is to
obviate the necessity of imposing any restriction on the additive groups of
the rings under consideration.

If 21 is a ring, it is customary to define the Jordan ring Sly to be the system
obtained from 21 by replacing ordinary multiplication by Jordan multiplica-
tion {ab} =ab-\-ba. Then it is clear that J is an additive mapping of the ring
21 into a ring SB satisfying (2) if and only if J is a homomorphism of the Jordan
ring 21 j into the Jordan ring S8y. The replacement of (2) by (1) now suggests
the following modification in the definition of 2I3 : 21, is the system consisting
of the set 21, the addition +, the unary composition a—>a2, and the binary
composition a—>aba. More generally we are led to define a special Jordan ring
to be a subset of a ring that is a subgroup under + and that is closed under
the compositions a—>a2, a—>aba. In these terms the problem that we are con-
sidering is that of determining the homomorphisms of special Jordan rings 2Iy
into special Jordan rings 33,-. In a subsequent paper we hope to consider the
homomorphisms of the special Jordan rings of symmetric elements relative
to involutions in rings.

It is immediate that any (associative) homomorphism or anti-homo-
morphism of a ring 21 is a Jordan homomorphism. Also if /,-, i—l, 2, is a
Jordan homomorphism of 21 into 33,-, then the mapping a—>aJl-\-aJi of 21 into
S3i©532 is a Jordan homomorphism. We call this mapping the sum Ji + J2 of
Ji and J2. Our main results give sufficient conditions that Jordan homo-
morphisms be either homomorphisms or ànti-homomorphisms or sums of
homomorphisms and anti-homomorphisms. Thus we prove the following
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extension of a recent result of Hua [5]: Any Jordan homomorphism of an
arbitrary ring into an integral domain is either a homomorphism or an anti-
homomorphism.

One of the main results which we obtain is that if 31 is a matrix ring S)n,
«i£2, 3) an arbitrary ring with an identity, then any Jordan homomorphism
of 21 is the sum of a homomorphism and an anti-homomorphism. We also ex-
tend this result to an extensive class of rings which are locally matrix in the
sense that every finite subset can be embedded in a matrix subring 3)B,
«=;2. By a result of Litoff any simple ring with minimal one-sided
ideals is either a division ring or a locally matrix ring. It follows that our
theorem applies to these rings. The present method also yields a determina-
tion of the Jordan automorphisms of primitive rings with minimal ideals.
In this connection we have had to obtain information on the ideal structure of
the Jordan rings obtained from primitive rings with minimal ideals.

The second main method which we have developed for studying Jordan
homomorphisms is a Lie ring method. The starting point here is the observa-
tion that any Jordan homomorphism J satisfies the condition

(3) [WàY- [Wv]cj],
where as usual [xy] denotes xy — yx. An additive mapping satisfying this con-
dition is called a Lie triple system homomorphism. We have been led to de-
termine conditions that such mappings be Lie ring homomorphisms or anti-
homomorphisms. For these conditions together with the Jordan homo-
morphism condition give conditions that a Jordan homomorphism be an
associative homomorphism or anti-homomorphism. The conditions which we
obtain deal mainly with the ideal structure of the Lie rings determined by
the given rings. In order to apply our results to primitive rings, we have had
to investigate the Lie ring structure of rings of this type.

We note finally that our results are also applicable to the theory of deriva-
tions. Thus, they give conditions that a Jordan derivation of a ring, that is, an
additive mapping D of a ring into itself such that

(4) (a2)D = aaD + aDa,        (aba)D = aPba + abDa + abaD,

be an ordinary derivation.
1. Definitions and elementary properties. A special Jordan ring J is a

subset of an associative ring that is a subgroup under + and that contains a2
and aba for every a, b in $. A special Lie ring S is a subset of an associative
ring that is a subgroup under + and that contains [ab]=ab — ba for every
a, b in 2. A Lie triple system U is a subset of an associative ring that is a sub-
group under + and that contains [[a&]c] for every a, b, c in U.

We are primarily interested in this paper in special Jordan rings and
their homomorphisms. A mapping J of a special Jordan ring 3 into a special
Jordan ring S3 is a homomorphism if
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(5) (a + b)J = aJ + V,

(6) (a2)J = (ajy,        (aba-y = aJVaJ.

If 3 = 21 is a ring, then we shall also say that / is a Jordan homomorphism of
the associative ring 21.

If 3 is a subgroup of the additive group of a ring that admits the operator
1/2, then 3 is a special Jordan ring if and only if 3 is closed under the com-
position {ab} =ab+ba. For if 3 is a special Jordan ring, then certainly
{ab} —(a-\-b)2 — a2 — b2 is in 3- On the other hand, if 3 is closed under {ab}
then 3 contains a2 = (l/2){aa} and a3 = (1/2) {a2a}. Hence 3 contains

aba + bab = (a -f- b)3 — a3 — b3 — a2b — ba2 — b2a — ab2.

If we replace & by — b, we see that 7 contains —aba-{-bab. It follows that
7 contains bab. In a similar fashion we can see that an additive mapping of a
special Jordan ring 3 into a special Jordan ring 3^ that has no elements of
additive order 2 is a Jordan homomorphism if and only if (ab)J+(ba)J
= aJbJ+bJaJ.

An element u of a ring that can be obtained from a set of elements
fli, a2, ■ ■ ■ , a„ by performing the operations of addition, subtraction, a—>a2,
a—>aba will be called a Jordan polynomial in the a,. If the a,- belong to the
special Jordan ring 3, then so does u, and if J is a homomorphism of 3, then
J maps u into the element obtained from the a{ in the same manner as u is
obtained from the a¿. Important examples of Jordan polynomials are

ab + ba= (a + b)2 -a2- b2,

abc + cba = (a + c)b(a + c) — aba — cbc,

[[ab]c] = abc + cba — (bac + cab),

[ab]2 = a(bab) + (bab)a — ab2a — ba2b.

Also the powers of a are Jordan polynomials. For by definition a2 and a3 = aaa
are Jordan polynomials and if ar_1, r^3, is a Jordan polynomial, then so is
ar+1 = aar~la. Since [[aô]c] is a Jordan polynomial, we see that any special
Jordan ring is a Lie triple system. Also, it is now clear that if 7 is a Jordan
homomorphism, then (any=(aJ)n, [[ab]c]J =[[aJbJ]cJ], and ([a&]2)J'
= ¡V/y]2, that is, we have the following result.

Theorem 1. Any Jordan homomorphism preserves arbitrary powers, Lie
triple products, and squares of commutators.

Corollary 1. If [ab] =0 and the enveloping associative ring(2) of W has
no nonzero nilpotent elements in its center, then [aJV] =0.

Proof. [<z&]=0 implies [[a&]x]=0 for all x in 21. Hence [[aJo^]x/] = 0 so

(2) That is, the associative ring generated by the set W.
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that [a-V] is in the center of the enveloping ring of 2F. Moreover, [ao]2 = 0;
hence [aJbJ]2 = 0. Hence, [aJbJ]=0.

Corollary 2. If e is an idempotent and a is an element such that [ea] =0,
then (ea)J = eJaJ — aJeJ. If ea = ae = a, then eJaJ = aJeJ = aJ and if e and a are
orthogonal (ea = ae = 0), then so are eJ and aJ.

Proof. By Theorem 1, [eJaJ — aJeJ, e*f]=0. Hence eJaJ — eJaJeJ = eJaJeJ
— aJeJ. Left multiplication by e-7 gives eJaJ — eJaJeJ; right multiplication by eJ
gives aJeJ = eJaJeJ. Also eJaJeJ = (eae)J = (ea)J = (ae)J. Hence (ea)J = eJaJ = aJeJ.
The remaining statements are obvious consequences.

Corollary 3. If 21 has an identiy 1, then XJ is an identity for the enveloping
ring of 2F. If a is a unit, so is aJ.

Proof. The first statement is contained in Corollary 2. Now suppose that
ab = X= ba. Then ab2a — X and aJ(bJ)2aJ = XJ. Hence aJ is a unit.

We note next a fundamental identity for Jordan homomorphisms of
rings. This is the relation

(7) [(ab)J - aJ¥][(ab)J - bJaJ] = 0

which holds since

[(ab)J - aJ¥][(ab)J - ¥aJ] = (ab)J(ab)J - (aby¥aJ - aJbJ(ab)J + aJ(V)2aJ

= (ababY - ((ab)ba + ab(ab))J + aJ(VyaJ

= (abab — ab2a — abab + ab2a)J = 0.

Similarly we can verify that

[(ab)J - ¥aJ] [(abY - aJ¥] = 0,

[(abc)J - a'V^V^abcy - cJbJaJ] = 0,

[(abc)J - cJ¥aJ]V[(abc)J - aJVc>] = 0.

2. Jordan homomorphisms into integral domains. In this section we
prove a generalization of Hua's theorem [5] that a Jordan automorphism of
a division ring is either an automorphism or an anti-automorphism.

Theorem 2. If J is a Jordan homomorphism of a ring 2Í into an integral
domain $8, then J is either a homomorphism or an anti-homomorphism.

Proof. By the identity (7), for any a, b in 21 we have either (ab)J = aJbJ or
(ab)J = bJaJ. Our result is therefore an immediate consequence of the follow-
ing lemma which is due to Hua:

Lemma 1. Let 21 be an arbitrary distributive system (nonassociative ring)
and let J be an additive mapping of 21 into a second distributive system Sß such
that for every pair a, b in 21 either (ab)J = aJbJ or (ab)J = bJaJ. Then J is either a
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homomorphism or an anti-homomorphism.

Proof. If both (ab)J = aJbJ and (ab)J = bJaJ hold for all a and b, then J is
•both a homomorphism and an anti-homomorphism. Now suppose that a, b
is a pair for which (ab)J = aJ¥ j¿¥aJ. If ¿ is any other element, then (ad)J
= aJdJ. For otherwise (ad)J = dJaJ^aJdJ and these relations are incompatible
with

(aJ¥ + aJdJ,
(a(b + d)Y =  <

(¥aJ + dJaJ.

Similarly (cb)J = cJbJ for any c. Next let c and ¿ be elements such that (cd)J
= dJcJ^cJdJ. Then a similar argument shows that (ad)J = dJaJ and (cb)J
= ¥cJ hold. Now, if

((a + c)(b + d))J = (aJ + cJ)(¥ + dJ)

= aJ¥ -f- aJdJ + c>bJ + cJdJ,

then (cd)J=cJdJ contrary to assumption. Similarly

((a + c)(b + d)Y = (¥ + dJ)(aJ + ¥)

leads to the contradiction (ab)J = ¥aJ. Hence the condition (ab)J9i¥aJ and
(cd)J9icJdJ are incompatible.

The following examples show that we cannot assert that Jordan homo-
morphisms of integral domains or of fields are always homomorphisms or
anti-homomorphisms.

Example 1. Let 2I=i>[x, y] be the polynomial ring in two independent in-
determinates over a field $ of characteristic ?¿2. The elements xkyl, k, I
= 0, 1, 2, • • • , form a basis and we have the Jordan multiplication table

{xhyl, xmyn} = 2xk+my'+".

Let S =<£ [X, Y, Z] be the polynomial ring in the three elements X, Y, Z that
satisfy the relations

YX = XY + Z,        [XZ] = [YZ] = Z2 = 0.

Then
Y'Xk = XkYl + MXk-lYl-lZ,

and (1/2) {X* 7'} =XkY'+(kl/2)Xk~1Yl~iZ. By direct calculation one verifies
that

{(1/2){X"Y1}, (1/2){X«Y*}} = {xk+™Yl+n}.

Hence the linear mapping that sends xkyl into (1/2){X*F'} is a Jordan
homomorphism. Since ((1/2) {XkYl})((l/2){XmYn})9^(1/2) {Xk+mYl+n}, the
mapping is neither a homomorphism nor an anti-homomorphism.
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Example 2. Let 21 be a purely inseparable field of the form <3?(x, y) where
xp = !;, yv — n, and the elements xly>, i, j = 0, X, ■ ■ ■ , p — X, form a basis. Let
93 be the algebra over <ï> generated by X, Y, Z such that

YX = XY + Z,        [XZ] = [YZ] = Z2 = 0,
XP m I        Yp = V-

If p9i2 we can verify as in example 1 that the linear mapping which sends
xkyl into (1/2) {X*F'} is a Jordan homomorphism that is not a homo-
morphism.

3. Sums of Jordan homomorphisms. In this section we shall obtain some
general criteria that a Jordan homomorphism of a ring be a sum of a homo-
morphism and an anti-homomorphism. If J,- is a Jordan homomorphism of
21 into 93,, we have defined the sum /=/i + 72 to be the mapping a—>aJl-\-aj2
into 93i©932. If 21' is anti-isomorphic to 21 under the correspondence a—>a',
then the sum mapping a—>ä =a-r-a' of 21 into 21 ©21' will be called a sym-
metrized direct sum mapping of 21.

Now let / and K be any two Jordan homomorphisms. Then we shall say
that / is a cover of K (or J" covers K) if the correspondence aJ^>aK can be
extended to a homomorphism of the enveloping ring (5/ of the elements aJ
onto the enveloping ring Sx of the aK. Evidently if such an extension exists,
it is unique. The elements of (&j are polynomials with integral coefficients
in the elements aJ. It follows easily from this remark that J is a cover of K
if and only if any polynomial relation P(alt a2, ■ ■ ■ , aT) =0 implies the cor-
responding relation P(at, a2, ■ • • , ar)=0. Since P(äi, ä2, ■ ■ ■ , äT)
= P(äi, ä2, • • • , är)+P(a{, a2 , • ■ ■ , a/) for o¿ = ai+o/, as above,
P(ai, a2, ■ • • , (ir)=0 is equivalent to the two conditions

P(au a2, ■ ■ ■ , ar) = 0,        P(a{, ai, ■ ■ ■ , a/ ) = 0.

If Pi(ai, a2, • • • , ar) denotes the polynomial which is obtained from P by
reversing the order of the terms in each monomial, then the condition
P(a{, aí, ■ • ■ , ar') =0 is equivalent to Pi(ai, a2, ■ ■ • , ar)=0. Hence a
necessary and sufficient condition that K be covered by the symmetrized
direct sum mapping is that for any pair of relations

(8) P(ah a2, • • • , ar) = 0,        Pi(au a2, ■ ■ ■ , ar) = 0

in 21 we have the corresponding relation P(af, a2, • • • , af) = 0 in the image
ring.

Since the conditions that /cover K are of "finite character," we evidently
have the following result.

Theorem 3. Let 21 Z>e a ring, J and K Jordan homomorphisms. Assume that
every finite subset F of 21 is contained in a subring 2If such that the induced map-
ping J of 21F is a cover of the induced mapping K ; then J is a cover of K.
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It is clear that J = Ji-\-J2 covers 7i and J2 and that if K is a cover of 7i
and J2, then K is a cover of /i+/2. Also if J, covers Tí,- for ¿=1, 2, then
7i+72 covers 7fi+7i2. In particular, it is clear that the symmetrized direct
sum mapping covers any 7i+/2 where 7i is a homomorphism and J2 is an
anti-homomorphism. A partial converse of this result is given in the following
theorem.

Theorem 4. 7,e¿ 21 be a ring with the following properties: (1) The enveloping
ring of the elements d = a-\-a' in © = 2I©2I' is ©, (2) Every ideal in © has the
form Sti®St2 where Sti is an ideal in 21 and St2 is an ideal in 21'. Then any Jordan
homomorphism J that is covered by the symmetrized direct sum mapping is a
sum of a homomorphism and an anti-homomorphism.

Proof. Let U denote the homomorphism that maps ä into aJ. Since the
enveloping ring of the d is ©, U is a homomorphism of © onto the enveloping
ring (g of 2F. Evidently, @i = 2F and @2 = 2l'p are ideals in g. If St is the ker-
nel of U, then the inverse image of ©i is 21 + St while that of @2 is 21' + $. Since
$ = $i©$2 where StiQW. and St2QW, 2I + ÎÏ = 2l + $2, and W+St = W + Sti.
Hence the inverse image of ßiPiS2 is

(21 + St) r\ (2T + St) = (21 + St,) H (21' + Äi) = St.
Hence ©iP\S2 = 0 and (£ = Ëiffi(S2. Evidently the mapping a^>au is a homo-
morphism ¿i of 21Ç© and a-^>a'u = aJi is an anti-homomorphism. Since
aJ = du = au+a'u = aJi+aJ* and a/¿£g¿, J=Ji + J2.

The following two theorems give simple sufficient conditions that the
hypotheses of Theorem 4 hold.

Theorem 5. 7/ 21 ¿s a rwg swcä that the smallest ideal containing all the ele-
ments [ab] is 21, then the enveloping ring of the elements ä — a-\-a' in © = 21©2I'
is @.

Proof. Let @ be the enveloping ring of the d. Then © contains dh — ba
= [ab]. Also © contains [aô]c= [ab]c and c[ab] =c[ab] for any c in 21. In this
way we can see that © contains the ideal generated by the elements [ab].
Hence ©221. It follows also that ©221'. Hence © = ©.

Theorem 6. A sufficient condition that every ideal St in © = 2lffi2I' have the
form Sti®St2 where $i = 2in$ and $2 = 2l'nS is that for every uE% uEWWñ.
In particular, this holds if 21 has an identity.

Proof. Let k = ki+k2 belong to St where £i£2l and /k2£2T. Now ki
= ^aikibi where the a» and &,- are in 2Í. Hence ki =» ̂ aikbiESt. Thus kiESti.
Since 21' satisfies the same condition as 21, a similar argument shows that
k2ESt2. Hence t = $i + ÍÍ2. Since SîiC\St2 = ^.r\W = 0, St = Sti®St2.

4. Jordan homomorphisms of matrix rings and locally matrix rings. The
key result which we shall obtain in this section is that any Jordan homo-
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morphism of a finite matrix ring is a sum of a homomorphism and an anti-
homomorphism.

Let 11 be any ring that contains an identity 1 and a set of matrix units
¿a, i, i = l> 2, ■ ■ • , «, such that

n

eaeki = 8jkeu,        ¿_, e« = 1.
¿-i

Let 35 denote the subring of elements that commute with all the ea. Then it
is known (3) that every element of U can be written in one and only one way
in the form ^dyCy, where á.-yG®. Thus we may identify U with the ring
£)„ of »X« matrices with elements in 3). We recall also that a necessary and
sufficient condition that a ring with an identity be a matrix ring of the form
35„ is that it be decomposable as a direct sum of « (operator) isomorphic
right (left) ideals(4). It will be assumed throughout that raè2.

Let / denote an arbitrary Jordan homomorphism of U into a second ring.
For iy^j define e = e,» + e,j. Then e2 = e and, if ¿£3), we have [e, d]=0. By
Corollary 2 to Theorem 1, it follows that [e*, dJ] —0. Hence, [e{¡, dJ]
+ [e¿, dJ]=0. Similarly [e«, <F] =0, so that [e¿, dJ] —0 and dJ commutes with
each efj. Again, by Corollary 2 to Theorem 1, we have (deu)J=dJeft. Further-
more, if if*j, then (deij)J = (deijejj-T-ejjeijdy = dJsfJejj-\-ejjeldJ =dJ(e^ejj+ejJeij)
— dJef}. It follows that (]C^iJew)/ = S^«e«- We thus obtain the following
lemma.

Lemma 2. The elements dJ(d(E.T>) and e\¡ commute and ( ^dae^y = ^dfjefj.

We now construct(5) two orthogonal «X« systems of matrix units in the
enveloping ring (5 of IF. For arbitrary ir*j, define the elements

ÍQ-) f JJ. j,..   .   J J J\?) gij      eaeijCjj,        Hjj      eaejiejj.

Since eij = eneijejj-\-ejje^eu, we have

(10) ea = ga + ha.

Observe also that from the fact that J preserves squares and from Corollary
2 to Theorem 1 we have gijef} = efigij = gij, gije(t = ejjgij = 0, hijei = ejjhij = 0 and
eihu = hijejj = ha- Hence it follows from (10) that

gij = CjjÊy = e^Cjj,        hi, = ettejf = ejtejj.

Moreover, if i^j, j^k, k^l, then gijgki = 0. If tVj, j^k, and i^k, then
gijgjk = gi3eljefk = e{tgijejk = e{telefk. But, since eufiih ■= «/*«««■ 0, we have e¿e/* = 0.

C) [6, p. 57].
(4) The sufficiency is a consequence of Theorem 5, p. 58 of [6], The necessity is easy to

establish.
(6) Cf. [11, pp. 147-149].
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Therefore
j   j j        j j

gijgjk      e¿¿(e¿y6j-A -p ejicCii)

J, , /eayeijejk -\- e^teij)
j j

eaCik      gik.

Hence, for i^j, k^l, and i^l, gijgki = Ojkgu. Similarly hi,hki = 8jkhn. Now, for
each i, choose ît^î and define

ga = gaga,        hu = haha.

Note first that gu and hu are independent of the choice of j. In fact, if k^i
and k^j, then gikgki = gikgkjga = gijgji=gu- Similarly A« is independent of j.
The elements ga, ha are now defined for all i, j and satisfy gugki = àjkgii,
hijhki = ôjkhii for all i, j, k, I. Observe that, for i^j, e¿e^e« = g¿,- and e^e«
= ha- Addition of these equations leads to ejt = g,i+A¿¿. In other words, (10) also
holds for j = i. It remains to prove gijhki = Q. There is obviously no loss in
assuming i?¿j and k^l. We have gahki = e^ejJeiteik. If ky^j, then e#e¿ = 0 and
hence gi,hki = 0. Therefore, assume k=j. Then gijhji=gijhjihii = eJt}eJjje{}hii
= (eije¡jenYhii = 0. Similarly huga = 0. This completes the proof of the next
lemma.

Lemma 3. The elements ga and ha constitute two nXn systems of matrix
units in the enveloping ring (S of IF such that e¿ = gi,-+A,-y and gijhki = hkiga
= 0 for all i,j, k, I.

We are now in a position to prove the principal theorem of this section.

Theorem 7. Any Jordan homomorphism J of an nXn matrix ring U = 2)„,
n è 2, is the sum of a homomorphism and an anti-homomorphism^).

Proof. Let g,y, A,-,- be the matrix units given in the above lemma and de-
fine g=gu+ • • -+gnn, A = Aii+ • • • +¿»„. Since l=eJn+ • • • +e(n and
%"=£«+#«, it follows that l=g + A. Obviously g2 = g, h2 = h, and gh — hg = Q.
Furthermore, g and A are in the center of the enveloping ring (§ of IF. In fact,
it is evident from Lemma 2 that all the g,-y commute with the dJ, ¿GS), and
also ge{j = giieij+g3je{j = gij+gjjhji = gij. Similarly, eJvg = ga so that g commutes
with each e¿. In the same way it is shown that A commutes with each e¿. But
according to Lemma 2, (g is generated by elements of the form d1eJij, ¿£3);
therefore, g and A are in the center of @. It follows that (£ = (Sg©(SA, where
(Eg and @¿ are two-sided ideals in (§.

Define the mappings Ji and J2 of II into S by xJl = xJg and xJ' = xJh re-
spectively. Evidently 7 = /i + J2. Now let a, b be arbitrary elements of 3D.
Then for i^j

aben + baejj = (<ze<,- + ben)2.

(6) This result implies Theorem 5 of [ll] for the case 21 not a division algebra.
/
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Therefore

i i\J J ^ n, yJ    í J J _l yJ y    jyJ J , y j j j(ab) eu + (ba) e,-,- = (a e¿,- + b e,-,)   = a b ei¡eji + b a enfin.

Multiplying on the right by ga, we obtain (ab)Jgi¡ = aJbJgij. Similarly (ab)Jhi¡
= bJaJhi¡. If x= 2Laaeij and V= S^¿A'j are anv two elements of U, then

Jl ^->       J J¡ ^—V      J
x    = 2-, aagii,       J    = 2L, baga-

Therefore

(xy) ' = X (aikbkj) ga   = X) aikbicjgij = x'y1

and similarly (xy)j2=yJixJi. Since Ji and /2 are obviously additive, it follows
that Ji is a homomorphism and J2 is an anti-homomorphism of U.

Corollary. Let -2T denote the ring of all linear transformations on a linear
vector space X over a division ring 3), where the dimension of ï is at least two.
Then any Jordan homomorphism of % is the sum of a homomorphism and an
anti-homomorphism.

Proof. The proof consists in showing that 2! is a matrix ring for which we
have only to exhibit a system of matrix units in X. Let {ua\ denote a basis
for ï. If ï is finite-dimensional, the result is well known; therefore, we can
assume {ua} to be infinite. Separate the elements of {ua\ into two disjoint
sets {«i"}, {««'} of equal power and define £,-3G3: (i, j=X, 2) by u(k)Eij
= S*¿m"'. Evidently these Ey constitute a 2X2 system of matrix units in £.

The method of proof in this corollary can be used to show that the ring
of all bounded linear transformations in Hubert space is a two-rowed matrix
ring. We have only to take {«„) as a complete orthonormal system in the
Hubert space.

We shall now make use of the results of the preceding section to extend
our matrix theorem to the class of rings given in the following definition.

Definition. A ring 35 is called locally matrix if any finite subset of $5
can be embedded in a subring which is a matrix ring 3)„, w^2.

An example of a locally matrix ring is a ring 33 which possesses an infinite
set {eaß\ of matrix units such that for arbitrary x£33 there exists a finite
set of indices cti, ■ • ■ , <xk (depending on x) such that if e = e«iai+ • • •
+ ea„a„, then xe = ex = x. Another example of such a ring is an infinite direct
(Kronecker) product of finite matrix algebras. Also, as we shall show in the
next section, any simple ring which has minimal ideals is either locally matrix
or a division ring.

Theorem 8. .¡4«y Jordan homomorphism of a locally matrix ring is the sum
of a homomorphism and an anti-homomorphism.

Proof. By Theorems 3 and 7 any Jordan homomorphism of a locally
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matrix ring 33 is covered by the symmetrized direct sum mapping. We prove
next that 23 is the only ideal of this ring which contains all commutators. For
this purpose let x be any element of 33 and let 25„, «^2, be a matrix subring
containing x. Write x= ?AtSu where the e¿y are the matrix units in T>n and
Oj,-GS. If 3 is an ideal of 33 containing all of the commutators, then y contains
a,-ye<y = [aiidj, eyy] if ir*j, and 3 contains aae»— [o««*y, eyyjey,. Hence xG3
and 3 = 33. Observe next that x = exe where e =23e»- Thus the conditions of
Theorems 5 and 6 are satisfied. We can therefore apply the conclusions of
these theorems and Theorem 4 to obtain the present result.

5. Jordan homomorphisms of primitive rings with minimal ideals. We
recall that a ring 93 is defined to be primitive(7) if it contains a maximal right
ideal 9Î such that the quotient (9î:93) = (0). This is equivalent to the condi-
tion that 33 is isomorphic to an irreducible ring of endomorphisms. If 93 is
primitive and contains minimal ideals, then the structure of 33 can be de-
scribed more precisely as follows. One can associate with 33 a pair of dual
vector spaces X, X'. Here X is a left vector space over a division ring A, X' is
a right vector space over A, and there is defined a bilinear form (x, y'), x in
X, y' in X', which is nondegenerate in the sense that (z, y') =0 for all y' im-
plies z = 0, and (x, z') =0 for all x implies z' = 0. The ring 33 can be regarded
as a ring of linear transformations in X which have adjoints relative to (x, y').
Also 93 contains all transformations of the form

(11) X —> (X, «i )»i +  (X, ll2)v2 +   • •  •   +  (X, Ur)vr

where the «/ GX' and the z\GX. These elements are sums of elements of
rank one: x—>(x, u')v, u', v?¿Q. We shall find it convenient to denote the
mapping x—>(x, u')v by u'Xv. Then it is easy to see that the function
u'Xv is additive in u' and in v and that u'aXv = u'Xav for «GA. Also we have
the multiplication rule.

(12) (u[ X vi)(u2' X v2) = ul(vi, u») X v2.

The elements of the form (11) constitute a two-sided ideal g of 93 which is
contained in every nonzero two-sided ideal. The sub-ring % of 93 is a simple
ring with minimal ideals. Moreover, as has been shown by Dieudonné [4],
any simple ring with minimal ideals is of this type. The centralizer of $ in 93
is equal to the center of 93 which is a commutative integral domain. If the
dimension of X over A is infinite, then the center of % is necessarily zero. If a
is any nonzero element of 93, then there exists/GS such that/a/VO. In fact,
let v be an element of X such that va^O and choose w'GX' such that (va, u')
9*0. Then clearly (u'Xv)a(u'Xv)^Q.

Lemma 4. Let © and ©' be finite-dimensional subspaces of X and X' respec-
tively. Then these spaces can be embedded in finite-dimensional subspaces U and

C) Nearly all the definitions and results assumed in this section can be found in [8].
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U' respectively which are dual relative to the given bilinear form.

Proof. Let x{u • • • , x/ be a basis for ©' and choose elements xi, ■ • • , xr
GÏ such that (xi, Xj)=ô,j for i, j=l, ■ ■ ■ , r(s). Consider the subspace
U=©+[xi, • • • , xr] and observe that rgdim U. If r<dim tl, then there
exists xr+i5¿0£U such that (xr+i, x/) =0 for i=X, ■ ■ ■ , r. Evidently Xi, • • • ,
xr+i are linearly independent so that there exists ï,'+1GÏ' such that (xr+i,
x,'+1) = 1 and (x,-, xr'+1) =0 for i= X, ■ ■ ■ , r. Repeating this process, we finally
obtain a basis xu ■ ■ ■ , x, for U and elements x{, ■ ■ ■ , XjGÏ such that
(x,-, x'j ) = ôij for i, j = 1, • • • , s. The subspaces U and W =[x{, ■ • ■ , x's] ob-
viously satisfy the desired conditions.

We can now prove the following result which is due to Litoff (unpub-
lished).

Theorem 9.1f% is a simple ring with minimal ideals, then any finite sub-
set of % can be embedded in a subring of g which is isomorphic to An, where A is
the division ring associated with %.

Proof. Since any element of % is a sum of elements of rank one, it suf-
fices to take the finite set to be u{ Xvi, u{ Xv2, • ■ ■ , u¡„Xvm. Let ©'
= [u{, ■ • • , u'm] and ©= [vi, • • • , vm] and embed these subspaces re-
spectively in finite-dimensional dual subspaces U' and U. Choose bases
(xi, • • • , x„' ) and (xt, • • • , x„) for U' and U such that (x,-, x¡ ) = 8,7. Then
the elements e,y = x/ Xx,- are matrix units and the subring SDÎ of % consisting
of elements of the form sjelcttiX«<. a.-yGA, is a matrix ring isomorphic to
A„. Since ul = ^_x[\i and vk= ^2ßjXj, we have u¿ Xvk= 2^*/X<j«/X*yG9K.

This result implies that any simple ring with minimal ideals is either a
division ring or a locally matrix ring. Hence we have the following theorem.

Theorem 10. .4 rey Jordan homomorphism of a simple ring with minimal
ideals which is not a division ring is a sum of a homomorphism and an anti-
homomorphism.

Let 21 be any indecomposable ring which has the property that any Jordan
homomorphism of 21 is a sum of a homomorphism and an anti-homomorphism.
By indecomposability we mean that if 2I = 2Ii©2I2, where 2Ii and 2I2 are ideals
in 21, then either 2Ii = (0) or 2I2 = (0). Let / be a Jordan homomorphism of 21
onto itself. Then it follows directly that J is either a homomorphism or anti-
homomorphism. Thus we see that any Jordan homomorphism of an indecom-
posable locally matrix ring onto itself, and hence of any simple ring with
minimal ideals (Theorems 2, 10), is either a homomorphism or an anti-
homomorphism (9). We proceed to show that this property can be carried

(8)Cf. [7, Lemma l].
(') This contains the result recently announced by Hua [5] that any Jordan automorphism

of a simple ring which satisfies the descending chain condition is either an automorphism or an
an ti-au tomorph ism.
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over to general primitive rings with minimal ideals. This result is also a con-
sequence of a more general theorem which we shall obtain later (Theorem 21).
However, the present method is also of interest since it can be applied in
other cases.

Lemma 5. Le¿ 93 be a ring which contains a nonzero ideal $ such that the
following conditions hold: (i) the centralizer of $ is equal to the center (S o/93,
(ii) 6/^5 = (0)i (iü) no nonzero element o/(5 is a zero divisor. Let J be a Jordan
homomorphism of 33 onto itself which induces a homomorphism (anti-homo-
morphism) of % onto itself. Then J is a homomorphism (anti-homomorphism).

Proof. Let/, gG3 and a, &G93. Then (af)J-aJf =faJ-(fa)J, gJ((af)J
— aJfJ) = (gaf)J — gJaJfJ   and   (fJaJ — (fa)J)gJ =fJaJgJ — (fag)J.   Since    (gaf)J
— gJaJfJ z=fJaJgJ — (fagY, it follows that (af)J — aJfJ commutes with every gJ.
By (i), (af)J—aJfJ is in the center and, by (ii), (af)J = aJf. Since J is a Jordan
homomorphism, we have also that (fa)J—fJaJ. By an argument similar to
the foregoing, we can now prove that (ab)J — aJ¥ commutes with every fJ.
Hence (ab)J — aJ¥ is in 6. Since [(ab)J — aJ¥] [(ab)J — ¥aJ] =0, it follows
from (iii) that either (ab)J = aJ¥ or (ab)J — ¥aJ. Hence by Hua's lemma, J is
either a homomorphism or an anti-homomorphism in 33. Since % is not com-
mutative (by (i) and (ii)) and since J maps % homomorphically, J maps 93
homomorphically. A similar argument applies to the case in which J is an
anti-homomorphism.

In order to apply this result to primitive rings with minimal ideals, we
require some information concerning the ideal structure of the associated
special Jordan rings.

A subset 3 of a ring 21 is called a Jordan ideal in 21 provided (1) 3 is a
group under addition, (2) 3 contains {az\ =az-\-za for all aG2I and zG3, (3)
3 contains the elements z2, aza, zaz for all aG2I and zG3. If 3 admits the
operator 1/2, then (1) and (2) imply (3). This is a consequence of the re-
lations 2u2={uu} and 2uvu= {u{vu\ } — {vu2}. From the relations uvw
-\-wvu = (u-\-w)v(u-\-w) —uvu — wvw and uvw-\-wvu— {u{vw\ } — (uwv-\-vwu)
= {w{vu} } —(wuv-\-vuw), it follows that elements of the form uvw-\-wvu are
in 3 provided either u, v, or w is in 3. Under the above definition, the kernel
of a Jordan homomorphism of 21 is a Jordan ideal in 21 (10).

Theorem 11. Every Jordan ideal in a locally matrix ring is an ordinary
ideal.

Proof. Let 3 be a Jordan ideal in a locally matrix ring 21. We have only to
prove that az and za belong to 3 for all aE21 and zG3. Let ©„ (n ^ 2) denote
a matrix subring of 21 which contains the elements a, z and observe that 3P\S),,

(10) It is not known whether or not the homomorphic image of a special Jordan ring is a
special Jordan ring. This is an unsolved problem even for the case of finite-dimensional alge-
bras.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



492 N. JACOBSON AND C. E. RICKART [November

is a Jordan ideal in 33„• Thus it is sufficient to prove the theorem for the case
in which 21 is a matrix ring 35» (m2ï2).

Let {ea] be the matrix units in 35» and denote by A the collection of all
a £3) such thataej3-£3 for some i,j. Note that, if ae¿;£3, then ««,-/ = {aeu, eij\
for iy^j so that A consists of all a £3) such thatae,yG3 for some iy^j. We prove
that An is an ideal in 3)» and that A» = 3.

Let a be an arbitrary element of A and choose ijij such that a«,-/£3- For
every p we have aePj = ePi(aeij)ejj-\-ejj(aeij)ePi. Therefore aep]£3. Now con-
sider arbitrary p, q. If p = q=j, then we already have aep?£3. Hence assume
either py±j or qy*j. Then aepq = epp(aep¡)ejq-\-ejq(aePj)epp. Therefore aej,,£3 for
all p, q and consequently AnÇI 3. It also follows here that A is a group under ad-
dition. Furthermore let a£A, d£35 and choose iy^j such that ae,-,-£3. Since
adeij= {aeu, dej¡\ and ¿ae,-y= {den, cten), we have aá£A and ¿a£A. There-
fore A is an ideal in 3) so that A» is an ideal in 3)„. Next let a = zlctij e,y be an
arbitrary element of 3. Then ut»yCy"e*í(ey<ae/,-)Cíy so that a,ye¿y£3 for all i, j.
This implies a<y£A and hence a£A„. In other words 3ÇA„. Therefore 3=A„.

Now let 33 denote a primitive ring with minimal ideals and let § be the
minimal two-sided ideal contained in 33. We assume that 33 is not a division
ring, in which case % is a locally matrix ring.

Theorem 12. Every nonzero Jordan ideal in 33 contains %.

Proof. Let 3 be a nonzero Jordan ideal in 33 and set 3o = 3rAü:. Clearly 3o
is a Jordan ideal in %. Furthermore, if a is a nonzero element of 33, then there
exists an element of /£§ such that fafy^O. Since /a/£3o, it follows that
30^(0). By Theorem 11, 3o is an ideal in g so that 3o = rî, since % is simple.
In other words §Ç3.

Theorem 13. Any Jordan homomorphism of 33 onto itself which does not
map 5 into zero is either an isomorphism or anti-isomorphism.

Proof. Denote the Jordan homomorphism by J and observe that the
kernel of the homomorphism is a Jordan ideal in 33. By Theorem 12 the
kernel must either be zero or contain g, and the latter possibility is ruled
out since % is not mapped into zero. It follows that J is a Jordan isomorphism
of 33 onto itself. Furthermore $J is a nonzero Jordan ideal in 33 so that SiÇIS'7-
A similar argument using the inverse mapping J~l gives 8J£ct and hence
o:J = u:. Therefore / is a Jordan isomorphism of % onto itself. Since % is a
simple locally matrix ring, it follows from Theorem 8 and the remarks preced-
ing Lemma 5 that Jis either an isomorphism or anti-isomorphism of % onto %.
An application of Lemma 5 now completes the proof.

6. Lie triple system homomorphisms and Jordan homomorphisms. In
this section we develop a Lie ring method for the study of Jordan homo-
morphisms. If J is a Jordan homomorphism of a ring 21 into a ring 33 and is
at the same time a Lie homomorphism in the sense that [a¿>]J= [aJcV], then
2(aby=({ab) + [ab]y = ({aJbJ) + [aJ¥])=2aJbJ.  Hence if 33 has no ele-
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ments of additive order 2, then / is a homomorphism. Similarly if J is a
Jordan homomorphism and a Lie anti-homomorphism in the sense that
[a&]J= [&Jü/] and 93 has no elements of additive order 2, then J is an anti-
homomorphism. Now we know that any Jordan homomorphism is a Lie triple
system homomorphism, that is, [[aö]c]'/ = [[aJöJ]c/]. Hence, we raise the
question: Under what conditions is a Lie triple system homomorphism of a
ring either a Lie homomorphism or a Lie anti-homomorphism?

More generally let S be an arbitrary special Lie ring and let T be a Lie
triple system homomorphism of 2. The image 2T is a Lie triple system and
from this it follows easily that the enveloping Lie ring Wl of 2T is the totality
Sr+ [%T%T] of elements of the form aT+ YAtfcf], a, h, d in 8(u).

We now define Wl+ and Wl~ to be the sets of all finite sums of elements of
the form [a&]r—[aTer] and [afr]r— [oraT] respectively. Observe that Wl+
= (0) is necessary and sufficient for T to be a Lie homomorphism of 8 and
Wl~ = (0) is necessary and sufficient for T to be a Lie anti-homomorphism. We
prove now the following result.

Theorem 14. Wl+ and fflr are Lie ideals(12) in W and [Wl+, Sft-Jcg the
center of Wl.

Proof. It is obvious that Wl+ and Wl~ are additive groups. Furthermore,

[[ab]T - [aTbT], cT] =  [[ab]TcT] - [[aTbT]cT] =  [[ab]TcT] - [[ab]c]T.

Therefore Wl+ is a Lie ideal. Similarly Wl~ is a Lie ideal in Wl. Also,

[[[«*]T- [*&], [cd]T - [dTcT]]xT]

= [[[ob]'[cd]T]xT] - [[[ab}*[dr<?]]&]

- [[[aT¥][cd]T]xT] + [[[aTbT][dTcT]]xT]

= [[[<*][cd]]x]T - [[[ob][dc]]**?]

- [[[ab][cd]]TxT] - [[[aT¥][cTdT]]xT]

= [[[a&][c¿]]x]r - [[[ar4r][eI,drj]«r].

By the Jacobi identity, [[[aror][c^r]]xT] = [[aTbT] [[cTdT]xT]]+ [[[aTbT]
xT][cTdT]]=[[ab][[cd]x]T+[[[ab]x][cd]]T=[[[ab][cd]]x]T. Therefore it
follows that [SW+, 3«-]Ç(£.

Theorem 15. 7,e¿ T be a Lie triple system homomorphism of the special Lie
ring 2 and denote by Wl the enveloping Lie ring of %T and 6 ¿¿e center of Wl.
Assume (i) 5DÎ/S has no commutative Lie ideals and (ii) any two nonzero Lie
ideals in 5DÎ/S Aaz>e a nonzero intersection. Then T, when restricted to the Lie

(") Cf. [10, p. 155].
(12) An ideal in a special Lie ring is defined to be a subgroup of the additive group which is

closed under commutation with arbitrary elements of the Lie ring.
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ring [8, 8], is either a Lie homomorphism or anti-homomorphism.

Proof. Using the notation in Theorem 14, we set U = (9W++6)Pi(gfrc-+g)
and observe that [U, UJÇS. Therefore [U/S, U/6] = (0) and since U/S is a
Lie ideal in UDÎ/Ë it follows by condition (i) that U/S=(0). Hence U = E so
that ((9Dî++e)/e)Pi((9DÎ-+e)/e) = (0). By condition (ii) this implies either
SK+çe or arc-çs. u n«+ee, then

[[ao]rcr] - [[ab]c]T =  [[ab]T - [aTbT], cT] = 0

for all a, b, c. In particular, [[a&][cd]]T= [[a&]r[c¿]r]. In other words, Fis a
Lie homomorphism on [8, 8]. Similarly, if $DÎ_ÇË then F is a Lie anti-homo-
morphism on [8, 8].

Corollary. Let 8 be a simple Lie ring in which [8, 8] ** (0). Then any Lie
triple system homomorphism of 8 onto itself is either a Lie homomorphism or
anti-homomorphism.

Since a Jordan homormorphism of a ring is also a Lie triple system homo-
morphism, the above results apply to this case. Moreover, by exploiting the
special properties of a Jordan homomorphism we obtain the following
theorem.

Theorem 16. Let J be a Jordan homomorphism of a ring 21 into a ring 33
and denote by 9JÍ the enveloping Lie ring of 2F and Ê the center of 5DÎ. Assume (i)
SDÎ/Ë has no commutative Lie ideals, (ii) any two nonzero Lie ideals in ÏR/fë
have a nonzero intersection, (iii) no nonzero element of S is a zero divisor in 9JÎ
and (iv) 33 contains no elements of additive order two. Then J is either a homo-
morphism or anti-homomorphism.

Proof. As in the proof of Theorem 11 either ÏJÎ+Çg or SDî-çzg where W+
and W~ are defined as before with T = J. Furthermore,

[ab]J - [a'¥] = (ab)J - (ba)J - aJ¥ + ¥aJ

= (ab)J - (ba)J - 2aJ¥ + aJ¥ + ¥aJ

= 2[(ab)J - aJ¥].

Similarly [ab]J- [¥aJ]=2[(ab)J-¥aJ]. Hence, by relation (7) in §1,

([ab]J - [aJ¥])([ab]J - [¥aJ]) = 0.

It follows by condition (iii) that either [a, b]J= [aJ¥] or [aô]/= [¿W] for
all a, b. Therefore, by Lemma 1, / must be either a Lie homomorphism or
anti-homomorphism. The desired result now follows from the remarks at the
beginning of this section.

7. Further properties of Jordan homomorphisms. In Theorem 16 of the
preceding section we have obtained sufficient conditions under which a Jordan
homomorphism / of one ring 21 into a second ring 33 reduces to either a homo-
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morphism or anti-homomorphism. The proof was based on results obtained
for general Lie triple system homomorphisms. By exploiting from the outset
the fact that 7 is a Jordan homomorphism, we obtain in this section a theorem
similar to Theorem 16 but without any restriction on the additive order of
elements of 93. This is accomplished by considering in place of the envelop-
ing Lie ring of 2F another, in general larger, Lie ring.

Let 3 be any special Jordan ring and denote its enveloping Lie ring by Wl.
Consider the set 5Í of all finite sums of the form x+ Ej»2» where x, y<, z< are
elements of 3- It is obvious that WlQ'Sl and since 2yz= {yz} + [yz], we have
Wl=yi in case Wl admits the operator 1/2. From the obvious identities

(13) [x, yz] = (xyz + zyx) — (yz + zy)x,

(14) [xy, uv] = x(yuv + vuy) — (uvx + xvu)y

and the fact that expressions of the form xyz-\-zyx, yz-\-zy are Jordan poly-
nomials, it follows easily that '¡SI is a Lie ring. We shall call 9Í the extended
enveloping Lie ring of 3- The following example shows that 31 is, in general,
actually larger than Wl. Let 9Î be any noncommutative ring every element
of which has additive order two. Consider the symmetrized direct sum
9î©9î' and let 3 be the special Jordan subring of 3î©9î' consisting of all
elements of the form f — r-\-r'. Observe that xy — yx= [xy] is an element of 9Í
while every element of Wl has the form

ä + E M = a + E [*ft] + (• - E [biCi])'-
Hence if xy—yx were in Wl, then there would exist a, bit c¡ such that

a + E [bid] = [xy],       a — E [bid] = 0.
Adding these relations we obtain [xy] = 2a = 0. Therefore if [xy]?*0, then
xy — yx(£Wl.

We return now to the Jordan mapping J of 21 into 93 and denote by 9<i
the extended enveloping Lie ring of 2F. The identities (13), (14) become

(15) [aJ, frV] = (abc + cba)J - (be + cb)JaJ,
(16) [aJ¥, cJdJ] = aJ(bcd + dcb)J - (adc + cda)J¥.

Two successive applications of (15) lead to

[[aJ, ¥cJ]dJ] = (acbd + dbca — cbad — dabc)J

+ (abc + cba — acb — bca)JdJ,

and an application of (16) followed by two applications of (15) lead to

[[<F£)J, c'iPjx7] = (badcx + xcdab — debax — xabcd)J

+ (abed + deba — bade — cdab)JxJ.

Next define the sets 9t+ and 9Í- to consist of all finite sums of elements
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of  the  form   (ab)J — aJ¥  and   (ab)J—¥aJ respectively.   The  analogue  of
Theorem 14 holds for SSI+ and SSl~.

Theorem 17. SSl+ and 9Î- are Lie ideals in SSI and [Si4-, SSt~]Q<B, the center
of SSI.

Proof. It is obvious that SSl+ and SSl~ are additive groups. Furthermore, by
identity (15) above,

[(ab)J - aJ¥, cJ] = (cab)J - cJ(ab)J + (bac)J - (ôa)-V,

and, by identities (15) and (16),

[(ab)J - aJ¥, ¥dJ]

= (abed + dcaby - (cd + dc)J(ab)J - aJ(bcd + dcb)J + (ode + cda)J¥

= (abedy - aJ(bcd)J + (dcab)J - (dc)J(ab)J

+ (adeby - aJ(dcb)J - [(adcb)J - (adc)J¥]

+ (cdaby - (cd)J(ab)J - [(cdab)J - (cda)J¥].

It follows that 9l+ is a Lie ideal in 9Í and a similar proof shows that SSl~ is
also a Lie ideal in SSI.

We have
[[(ab)J - aJ¥, (cd)J - d'e^x1] = [[(ab)J, (cd)-1]^] + [[áV, (ab)^]

+ [[(cd)J, a'b^xJ] + [[aJ¥, dJcJ], xJ].

Each term on the right-hand side of (19) will be considered individually.
The first term can be written

(20) [[(a&y, (ccf)-']^] = (abedx — cdabx — xabed + xcdab)J.

After application of (17), the second and third terms become

[[cFc-7, (ao)-7]«/] = — (abedx + xdcab — cdabx — xabdc)J

— (abdc + cdab — abed — dcabyx3',
[[(cd)J, aJ¥], Xs] = (cdbax + xabed — bacdx — xcdab)J

+ (cdab + bacd — cdba — abcd)J x1.

By (18) the last term becomes

[[(Z-V, dJcJ], xJ] = (xdcab + bacdx — xabdc — cdbax)J

+ (abdc + cdba — dcab — bacdyxJ.

Substitution of (20)-(23) in (19) gives zero. Therefore [SSI+, SSl~]Q®.
A simple adaptation of the argument in the proof of Theorem 16 gives

the following theorem.

Theorem 18. Let J be a Jordan homomorphism of a ring 21 into a ring 33
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and denote by 9Î ¿¿e extended enveloping Lie ring of 2F and by © ¿¿e center of
yi. Assume (i) 9?/© contains no commutative Lie ideals, (ii) any two Lie ideals
iw3i/© have a nonzero intersection, and (iii) no nonzero element o/© is a zero
divisor in SSI- Then J is either a homomorphism or anti-homomorphism.

8. Lie structure of matrix rings. Application to primitive rings with
minimal ideals. In order to apply the results of the preceding two sections to
the case of primitive rings with minimal ideals, some information concerning
the ideal structure of the associated special Lie rings is needed. We con-
sider first a general matrix ring 35», where w2:2 and, in case n = 2, 235 = 3).

Theorem 19. 7e¿ 3 be any Lie ideal in 35B not contained in the center of 35«.
Then there exists a nonzero ideal A in the ring 35 such that [35», A„]C3.

Proof. Denote by A the collection of all a£35 such that ae,-y£3 for some
»J**/. We prove that A„ satisfies the desired conditions.

First let a be an arbitrary element of A and choose ij¿j such that ae,y£3.
We show that aepqE3 for all p9¿q. If n^3, choose k such that k?¿i and k^j.
Then

aepq =  [ei„[ePi[e,-i, ae,-,-]]]

and hence aepaG3. On the other hand, if m = 2, then 235=35 and there exists
w£35 such that 2w=l. Moreover

oten — [u>ejj[eji[aeij, en]]}

and hence «ey,£3. It follows that aej,3G3 for all p9¿q in this case as well.
We can now conclude that A is a group under addition. Moreover, for a£A
and ¿£35, doten = [dea, oten] and a¿e¿y = [ae,-y, ¿eyy] for Í9¿j. Therefore A is an
ideal in 35 and hence A» is an ideal in 35». We prove next that An9¿(0). Let
a = E^'Aj be an element of 3 not in the center of 35» and assume first that
a¿y = 0 for all ir^j. Then a— Ea«e«- Since a is not in the center of 35», there
exists ¿er„ ¿£35, such that [a, ders\ = (arra — da.t¡/)er>9¿§. If r?¿s it is im-
mediate that An9£(0). If r = s, choose ¿?¿r. Then [arT, ¿]^0 and

[[a, derr]ert] =  [otrr, d]ert

and again A»^ (0). Now assume thata;y;¿0 for some i9aj. If «¡g3, there exists
k such that k9¿i and k9éj. Thus [ey,[ey»[a, e«]]] =a<3«y* so that a,-y£A. If
n = 2, choose «£35 as before so that 2« = 1. Then

[coeyi[e,-f[ae,-,-]]] = oüye,-,-.

A» 7^(0) in this case as well.
In order to prove that [35», A»]Ç3, it will be sufficient to prove that

[den, ctePq}& for arbitrary i,j, p, q and ¿£35, a£A. Since aeM£3 for p9¿q,
we can assume p = q. Then [¿e.-y, aepp] = daèjpeiP — adôpiePj. If either i^p or
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jy^p, it is immediate that [den, aepp]£3. Hence assume i = p=j. Then

[ddj, aepp] =  [da]epp.
Since

and aepq(£3 for py^q, it follows that [da]eppÇi3. This completes the proof.
Observe that if the matrix ring 3)„ is simple, then every Lie ideal of 3)»,

not contained in the center of 3)n, must contain [3)„, 35»]. More generally, if
21 is a locally matrix ring such that every finite subset of 21 can be contained
in a simple matrix ring, then every Lie ideal of 21, not in the center of 21,
contains [21, 21].

In particular this is true if 21 is a simple ring with minimal ideals.
In the remainder of this section 33 will denote a primitive ring with

minimal ideals. The notations introduced in §5 will be used here. It will be
assumed throughout our discussion that dim 9t"Sï2 and, if dim 36 = 2, then A
is not of characteristic two.

Theorem 20. Every Lie ideal in 33 not contained in the center of 33 contains
[5, %]■

Proof. If ï is finite-dimensional, then 33 =$ and the desired result fol-
lows from Theorem 19. Therefore assume 3£ to be infinite-dimensional in
which case % has center zero. Let 3 be a Lie ideal in 33 not contained in the
center of 33 and set 3o = 3r>\o:. Since the centralizer of g in 33 is equal to the
center of 33, there exist elements/£g and a£3 such that [f, a] y±0. Evi-
dently [f, ö]£30u: so that 3o?^(0). Since g is simple and 3o is a nonzero Lie
ideal in g, it follows that [g, 5]Ç3oÇ3, by tne remark following the proof
of Theorem 19.

By virtue of Theorem 20 we can apply Theorem 18 to the case of primitive
rings. In what follows 33 will denote a primitive ring satisfying the conditions
imposed for Theorem 20.

Theorem 21. Let J be any Jordan homomorphism of a ring 21 into the ring 33.
If the extended enveloping Lie ring of 2F is equal to 33, then J is either a homo-
morphism or an anti-homomorphism.

Proof. We have only to prove that SSI = 33 satisfies conditions (i)-(iii) of
Theorem 18. Let 3 denote any nonzero Lie ideal in 33/©, where © is the
center of 33. The union of all cosets belonging to 3 is clearly a Lie ideal in 33 not
contained in ©. Therefore, by Theorem 20, [%, 3]C3 and hence ([$, ¡§]
+@)/©ÇÎ3. Since ([g-, 5]+©)/© is evidently a noncommutative ideal in
33/©, it follows that conditions (i) and (ii) are satisfied. Since © is contained
in A, condition (iii) is also satisfied.

Corollary. .4wy Jordan homomorphism of a ring 21 onto the primitive ring
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33 is either a homomorphism or an anti-homomorphism.

9. Some examples. In the preceding section we have solved the problem
of determining the Jordan homomorphisms of rings onto primitive rings with
minimal ideals. However, this does not give a complete solution of the prob-
lem of Jordan homomorphisms of primitive rings with minimal ideals. For
certain rings of this type the results of §4 give a complete solution. On the
other hand, as we proceed to show by examples, Jordan homomorphisms of
primitive rings may be more complicated than the sums of homomorphisms
and anti-homomorphisms.

We consider first the following rings which are not primitive.
Example 3. Let 21 and 33 be algebras with bases (e, f, g) and (e', /', g')

respectively and multiplication tables as follows:

e

f
g

f
e        e        e

iff
e

f

r

e'+f
e'

r
/'

Then e2 = e,f2=f, g2 = g, {ef\ =e+f, {eg} =e+g, {fg} =f+g and (/)2=V,
(f'y=f, (g')2 = g', {e'f'}=e'+f, \e'g'\=e'+g', {f'g'\ =f'+g'. Hence ae
+/3/+7g—>ae'+/3/'+7g' is a Jordan isomorphism which is neither an iso-
morphism nor an anti-isomorphism.

Example 4. Let ® be a subalgebra of a matrix algebra i>r which has a
Jordan homomorphism that is not a homomorphism or anti-homomorphism.
Thus we can take © to be a matrix algebra which is isomorphic to the 21 of
example 3. Let 21 be the algebra of infinite matrices of the form

(24)

where .4 £$>„,., « arbitrary, and G£®. Then 21 contains the matrices of the
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form (24) with G = 0 and the linear transformations corresponding to these
matrices have finite rank. It follows easily that 21 is a primitive ring with
minimal ideals. Also it is clear that the mapping which sends the matrix (24)
into G is a homomorphism. If we follow this mapping with a Jordan homo-
morphism of ® which is not a homomorphism or anti-homomorphism, then
we obtain a Jordan homomorphism of 21 which is neither a homomorphism
nor an anti-homomorphism.

10. Application to derivations. An additive mapping D of a ring 21 into
itself is called a derivation provided

(25) (ab)D = abD + aDb.

It is called a Jordan derivation provided

(26) (a2)D = aaD + aDa

and also

(27) (aba)D = aDba + abDa + abaD.

It follows from (26) that

(28) {ab}D = {abD\ + [aDb],

where {ab} =ab + ba. If no element of 21 is of additive order two, then it is
not difficult to show that (28) implies (26) and (27). It is obvious that every
derivation is a Jordan derivation. Our purpose here is to show that, for certain
rings 21, every Jordan derivation is actually a derivation.

Theorem 22. If 21 has an identity and if every Jordan homomorphism of 21 is
the sum of a homomorphism and an anti-homomorphism, then every Jordan
derivation in 21 is a derivation.

Proof. Define the mapping J of 21 by

(a   aD\
a->aJ = [ ).

\0    a )

Then J is a Jordan homomorphism of 21. Denote the enveloping ring of
W by ® and note that Ë has an identity since 21 has. By hypothesis, J is the
sum of a homomorphism and an anti-homomorphism. Hence there exists a
decomposition l=£i+£2 of the identity in 6 such that 7¿i, E2 are in the
center of ®, EiE¡ = bijEi, a—*aJEi is a homomorphism and a—*aJE2 is an
anti-homomorphism. If

/e¿    Ui\

E'-(o    ,)'
then it is clear that l=ei+e2, e,-ey = o,-ye¿, and ei, e2 are in the center of 21.
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Using the fact that a-+aJEi is a homomorphism, we obtain

/ab   (ab)D\ id   «A _ /a    aD\ /b    bD\ M   «A

\0      ab   / \0     ej ~ \0   a )\0   b ) \0     ej
(abei    abui + (abD + aDb)ei\

0 abei ) '

Therefore

abui + (ab)Dei = abui + (abD + aDb)eu

or

(29) (a6)ßei = (aöß + aDb)ei.

Similarly, since a—*aJE2 is an anti-homomorphism,

/ab   (ab)D\/ei   u2\ _ /b    bD\/a   aD\/e2   «A

\0      ab    ) \0     ej~\0b)\0a) \0     e2/
(èae2    ¿>aw2 + (baD + &Da)e2\

0 ¿>ae2 /

Therefore

(30) abe2 = bae2

and

(31) a&«2 + (ab)De2 = iaw2 + (&afl + bDa)e2.

Multiplying (31) on the right by e% and observing that, by (30), bau2e2
= abu2ei and (baD + bDa)e2 = (abD+aDb)e2, we obtain

(32) (ab)De2 = (abD + aDb)e2.

Addition of (29) and (32), with the fact that 1 =ei+e2, gives (ab)D = abD+aDb,
that is, D is a derivation.
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