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Josephson-based Threshold Detector for Lévy-Distributed Current Fluctuations
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We propose a threshold detector for Lévy-distributed fluctuations based on a Josephson junction. The

Lévy-noise current added to a linearly ramped bias current results in clear changes in the distribution of

switching currents out of the zero-voltage state of the junction. We observe that the analysis of the cumula-

tive distribution function of the switching currents supplies information on both the characteristics’ shape

parameter α of the Lévy statistics. Moreover, we discuss a theoretical model, which allows characteris-

tic features of the Lévy fluctuations to be extracted from a measured distribution of switching currents.

In view of these results, this system can effectively find an application as a detector for a Lévy signal

embedded in a noisy background.

DOI: 10.1103/PhysRevApplied.11.044078

I. INTRODUCTION

A current-biased Josephson junction (JJ) represents a

natural threshold detector for current fluctuations, inas-

much as it is a metastable system operating on an acti-

vation mechanism. In fact, the behavior of a JJ can be

depicted as a particle, representing the superconducting

phase difference ϕ across the JJ, in a cosine “washboard”

potential with friction [1,2], see Fig. 1(a). In this pic-

ture, the slope of the washboard potential is given by

the injected current, and the dynamics of the phase is

described by the resistively and capacitively shunted junc-

tion (RCSJ) model. The equivalent particle remains near

a washboard minimum (correspondingly, the JJ is in the

so-called zero-voltage metastable state) until the direct

bias current exceeds a critical value, or a fluctuation sets

the phase ϕ in motion along the potential. In fact, a cur-

rent fluctuation instantaneously tilts the potential, so that a

*claudio.guarcello@nano.cnr.it

noise-induced escape from a minimum can occurs. In cor-

respondence of the escape a voltage develops, as the volt-

age is related to the velocity of the phase particle. Shortly,

if a JJ is set in the fundamental zero-voltage state, the noise

can cause a passage from this zero-voltage state to the finite

voltage “running” state. The statistics of these passages can

be exploited to reveal the features of the noise.

In this work, we address the issue of the characterization

of specific kinds of non-Gaussian fluctuations, namely, the

α-stable Lévy noise, through the switching-current distri-

bution of a JJ. These stochastic processes drive the virtual

particle, namely, the phase ϕ in the Josephson context, over

a very long distance in a single displacement, namely, a

flight. To visualize the effects produced by a Lévy-noise

source on the JJ’s behavior, in Fig. 1(b) we show several

ϕ trajectories, obtained in the noise-driven case and in the

absence of bias current, that are characterized by abrupt

fluctuations.

Results on the dynamics of systems driven by Lévy

flights have been recently reviewed in Refs. [3] and [4].
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FIG. 1. (a) The phase particle in a potential minimum of the

tilted washboard potential U. The barrier height, �U, and the

distance between the minimum and maximum of the potential,

�x, are also shown. (b) ϕ trajectories in the noise-driven case

when the Lévy stochastic term dominates. (c) Simplified equiv-

alent circuit diagram for the resistively and capacitively shunted

junction model. The linearly ramped bias current, Ib(t), and the

noise current, In(t), of the JJ are included in the diagram.

Lévy flights well describe transport phenomena in differ-

ent condensed-matter contexts and practical applications.

For instance, in graphene the presence of Lévy-distributed

fluctuations has been recently discussed [5,6]. Specifi-

cally, graphene stripe with anisotropically distributed on-

site impurities shows Lévy-flight transport in the stripe

direction [6], and it has also been proposed that the

particular electron-electron interaction of the graphene

electronics can produce a Lévy-flight distribution as a

response to a laser source [5]. Moreover, it has been spec-

ulated that the anomalous premature switches affecting the

switching currents in graphene-based JJs, that are likely to

be unrelated to thermal fluctuations [7], could be ascribed

to Lévy-distributed phenomena, see Ref. [8] where the

nonsinusoidal potential appropriated for graphene JJs [9–

11] has been investigated. Consequently, the response of

any graphene-based device could be intrinsically affected

by Lévy-distributed fluctuations.

Still dealing with material issues, also photolumines-

cence experiments in moderately doped n-InP samples

reveal anomalous Lévy-type distribution [12–17]. This

phenomenon could have a large impact on the design of

a number of optoelectronic devices such as multicolored

light-emitting diodes, optothyristors, photovoltaic devices

with high efficiency, or semiconductor scintillator for radi-

ation detection [16]. Moreover, Lévy processes emerge

also in the electron transport [18] and optical properties

[19–23] of semiconducting nanocrystals’ quantum dots.

Looking instead at thermal properties of materials, it

has been shown that the quasiballistic heat conduction in

semiconductor alloys is governed by Lévy superdiffusion

[24–27]. The Lévy engineering of heat can also impact

thermal conductivity and may offer ideas towards thermal-

conductivity reduction for thermoelectric applications.

On a more applicative side, Lévy noise often appears

in telecommunications and networks [28–30]. In fact, in

some communication channels, noise exhibits impulsive,

Lévy-type, as well as Gaussian, characteristics. The source

of impulsive noise may be either natural or manmade, it

may include atmospheric noise or ambient noise, and it

might come from relay contacts, electromagnetic devices,

electronic apparatus, or transportation systems, switching

transients, and accidental hits in telephone lines [29]. The

demand to recognize these disturbances led to several pro-

posals for models and detection schemes in this framework

[31–34].

Finally, concerning a purely engineering issue, Lévy

fluctuations have been also used to describe vibration data

in industrial bearings [35–37] and in wind-turbine rotation

parts [38]. In fact, when a rolling element bearing runs

in fault condition, the observed vibration signal from the

bearing is a non-Gaussian signal with impulsive behav-

ior [39,40]. A detection tool for these signals provides a

direction for rotating machine fault diagnosis.

The cases discussed so far demonstrate the importance

of a reliable tool capable of detecting fluctuations dis-

tributed according to Lévy statistics. We demonstrate that

a noise detector based on JJs is suitable for studying this

type of fluctuation.

Nowadays, following the seminal suggestions of

Refs. [41–43], several experimental setups of Josephson-

based noise detectors have been realized [44–58]. A

scheme to detect the Poissonian character of the charge

injection in an underdamped JJ, based on the analysis of

the third-order moment of the electrical noise, was pro-

posed in Ref. [42] and a scheme to detect the fourth-order

moment of the noise has been analyzed in Ref. [43]. A

threshold detector based on an array of overdamped JJs

for the direct measurement of the full counting statistics,

through rare over-the-barrier jumps induced by current

fluctuations, was suggested in Ref. [41]. Alternatively, in

the Coulomb-blockade regime, the sensitivity of the JJ

conductance to the non-Gaussian character of the applied

noise was demonstrated [59,60]. Most proposals make use

of the information content of higher moments, beyond

the variance, of the electric noise, mainly to discuss the

Poissonian character of the current fluctuations. However,

the deviations from the Gaussian behavior are typically

small and experimental measurements of third and fourth

moments are actually demanding and error prone with

respect to measurements of dc-transport properties. More-

over, a Lévy-flight distribution exhibits power-law tails

and, consequently, second and higher moments diverge.

This feature eventually poses a relevant complication in

relating Lévy-flight models to experimental data, since the
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latter, due to the infinite variance of the noise source, can

suffer limitless-intensity fluctuations. A JJ-based threshold

detector could circumvent this difficulty, since the switch-

ing occurs as the phase particle passes a potential barrier,

regardless of the intensity of fluctuations. The distribu-

tion of the current values in correspondence to which a

switch occurs, i.e., the switching currents isw, catches the

information content we are interested in. Therefore, the

investigation of JJ switching currents could pave the way

for the direct experimental investigation of an α-stable

Lévy-noise signal or the Lévy component of an unknown

noise signal.

In this work, we address the problem of the experimen-

tal estimation of the parameters of the Lévy-noise source in

the context of Josephson-based detectors. Accordingly, we

first describe the physical phenomenon behind the prob-

lem, namely, how the Lévy-noise affects the switching

towards the resistive state of a JJ biased by a slowly,

linearly increasing electric current. Then, we study an

effective way to deduce the information we are interested

in from available experimentally data, namely, the cumu-

lative distribution functions (CDFs) of the switching cur-

rents. Therefore, we propose to employ a well-established

device, namely, a Josephson junction, in the context of

the Lévy-noise detection. We also argue that the CDF of

the switching currents is a convenient quantity for such

a detection. Finally, the theoretical simulations that we

perform are supported by analytical estimates.

The paper is organized as follows. In Sec. II, the the-

oretical background used to describe the phase evolution

of a short JJ is discussed. Moreover, both the statistical

properties of the Lévy noise and the power-law asymptotic

behavior of the mean escape time are briefly reviewed. In

Sec. III, the theoretical results are shown and analyzed.

We give also an analytical estimate of the distributions of

switching currents in the presence of a Lévy-noise source.

In Sec. IV, conclusions are drawn.

II. MODEL

A typical setup for a Josephson-based noise readout

[44,46,52] consists of a JJ on which two superimposed

currents, Ib(t) and In(t), are flowing [see Fig. 1(c)]. Specif-

ically, Ib(t) is the deterministic bias current drawn from

a parallel source and In(t) is the stochastic current. We

neglect escapes guided by macroscopic quantum tunneling

[61] to consider exclusively processes activated by thermal

as well as non-Gaussian fluctuations.

A measurement consists in slowly and linearly ramping

the bias current in a time tmax, so that Ib(tmax) = Ic (Ic is the

critical current of the JJ), and to record the value at which

a switch occurs. In this readout scheme, the noise influ-

ence is considered in the limit of adiabatic bias regime,

where the change of the slope of the potential induced by

the bias current is slow enough to keep the phase particle in

the metastable well until the noise pushes out the particle.

Finally, after the time tmax, a “reset” is performed driv-

ing the bias current down to zero. In this work, sequences

of 104 ramps of maximum duration tmax = 107ω−1
p are

applied to the junction, where ωp =
√

2eIc/(�C) and C

are the plasma frequency and the capacitance of the JJ,

respectively. Finally, a distribution of switching currents

is obtained.

The phase dynamics is obtained numerically solving the

RCSJ model equation [1]

(

�0

2π

)2

C
d2ϕ

dt2
+

(

�0

2π

)2
1

R

dϕ

dt
+

d

dϕ
U =

(

�0

2π

)

In, (1)

where �0 = h/(2e) ≃ 2.067 × 10−15 Wb is the flux quan-

tum and R is the normal resistance of the JJ. Here, U is the

washboard potential [see Fig. 1(a)]

U = U0 [1 − cos(ϕ) − ibϕ] , (2)

where U0 = (�0/2π) Ic. The average slope of the potential

U is given by the normalized ramped bias current, ib(t) =
Ib(t)/Ic = vbt, where vb = t−1

max is the ramp speed. The

resulting activation energy barrier �U = 2
[
√

1 − i2b −

ib arcsin(ib)
]

confines the phase ϕ in a potential minimum.

Equation (1) can be recast for convenience in a compact

form

m
d2ϕ

dt2
+ mη

dϕ

dt
+ U0

d

dϕ
u = U0in, (3)

where m = (�0/2π)2 C is the effective junction mass,

the friction is governed by the parameter η = 1/(RC),

u = U/U0, and in = In/Ic is the stochastic term. In these

units, ωp =
√

U0/m. Thermal noise is assumed to be neg-

ligible with respect to the Lévy noise, that is, the JJ is

cooled to temperatures where the Johnson-Nyquist contri-

bution can be neglected. In all simulations we assume the

damping η = 0.1ωp , the ramp speed vb = 10−7ωp , and the

Lévy-noise intensity D = 5 × 10−7.

To model the Lévy-noise sources, we use the algorithm

proposed by Weron [62] for the implementation of the

Chambers method [63]. The notation Sα(σ , β, λ) is used

for the Lévy distributions [64–69], where α ∈ (0, 2] is the

stability index, β ∈ [−1, 1] is called asymmetry parame-

ter, and σ > 0 and λ are a scale and a location parameter,

respectively. The stability index characterizes the asymp-

totic long-tail power law for the distribution, which for

α < 2 is of the |x|−(1+α) type, while for α = 2 is the Gaus-

sian distribution. We consider exclusively symmetric (i.e.,

with β = 0), bell-shaped, standard (i.e., with σ = 1 and

λ = 0), stable distributions Sα(1, 0, 0), with α ∈ (0, 2).

Lévy escape. Escapes over a barrier in the presence

of Lévy noise have been thoroughly investigated for the

044078-3



CLAUDIO GUARCELLO et al. PHYS. REV. APPLIED 11, 044078 (2019)

overdamped case [3,70–72]. If both the distance between

neighbor minimum and maximum of a metastable poten-

tial and the height of the potential barrier [see Fig. 1(a)]

are unitary (�x = 1 and �U = 1, respectively), the power-

law asymptotic behavior of the mean escape time τ for the

Lévy statistics reads [73,74]

τ (α, D) =
Cα

Dµα
, (4)

where both the power-law exponent µα and the coefficient

Cα depend on α. For arbitrary spatial and energy scale, by

rescaling time, energy, and space in the overdamped case

of Eq. (3) [73], Eq. (4) is replaced by

τ (α, D) =
(

η1−µα�x2−2µα+αµα

41−µα�U1−µα 2αµα

)

Cα

Dµα
. (5)

The scaling exponent µα and the coefficient Cα are

supposed to have a universal behavior for over-

damped systems, in particular µα ≃ 1 + 0.0401 (α − 1) +
0.105 (α − 1)2 [73]. Then, by assuming µα ≃ 1 in the

prefactor, Eq. (5) becomes [3,73,74]

τ (α, D) =
(

�x

2

)α
Cα

Dµα
. (6)

The physical interpretation of the previous assumption is

that in the presence of Lévy flights the mean escape time

is independent on the barrier height �U and only depends

upon the distance �x. The above equation is analogous to

the Kramers rate for Gaussian noise [75]. The escape rate

τ is inversely proportional through the coefficient Cα [see

Eq. (6)] to the noise parameters D.

Eqs. (4), (5), and (6) are obtained and strictly valid only

in the overdamped regime, i.e., η/ωp ≫ 1. We speculate

that the formula still holds for the moderately under-

damped case, i.e., for 0.1 ≤ η/ωp ≤ 1.

III. RESULTS

The switching currents isw, are the experimental evi-

dence of the escape processes in JJs. A collection of

escapes can be characterized by a probability distribution

function (PDF) of switching currents, as shown in Fig. 2(a)

for three peculiar cases, α = 0.1, 1.0, 1.9. For the lowest α

value, i.e., α = 0.1, the PDF resembles an exponential dis-

tribution. For α = 1, i.e., the Cauchy-Lorentz distribution,

the PDF is roughly flat. Finally, for α → 2, the distribution

approaches the PDF of a Gaussian noise. The most evident

distinction between Lévy and Gaussian cases lies in the

low-current behavior of the PDFs: in the former case, the

switching probability is sizable, while in the latter case it

is vanishingly small [76].

The effect of the parameter α is further elucidated in the

CDFs, namely, the probability that isw takes a value less

(a)

(b)

FIG. 2. (a) Probability distribution function of the switching

currents isw for three cases of Lévy fluctuations: α = 0.1 (left-

most peaked data), α = 1 (flat data), and α = 1.9 (rightmost

peaked data). (b) Cumulative distribution function of isw for α

values in the range 0.1 ÷ 1.9. Parameters of the simulations are

D = 5 × 10−7, vb = 10−7ωp , and η = 0.1ωp .

than or equal to the bias current ib, shown in Fig. 2(b).

Here, we note that each CDF at a given value of ib
decreases with α. Therefore, the CDFs are suitable for the

estimation of α [69]. To model the CDFs of the switch-

ing currents, we exploit Eq. (6) to describe the escape rates

over a barrier. The average escape times estimated by Eq.

(6) allow the switching currents to be connected with the

properties of the Lévy noise. The CDF of isw as a function

of ib for a specific initial value of the bias ramp, i0, reads

CDF(ib|i0) = 1 − Prob [isw > ib|i0] . (7)

Recalling that the distribution of the escape times is expo-

nential with rate 1/τ(ib) also for Lévy-flight noise [74], the

same logic of the seminal paper [76] leads to the expression

P(ib|i0) = N
1

vb

1

τ(ib)
exp

[

−
1

vb

∫ ib

i0

1

τ(i)
di

]

(8)
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for the PDF associated to Eq. (7) as a function of the

average escape time τ(ib). Here, N is an appropriated

normalization constant. Eq. (8) makes the dependence of

the switching-current distribution P(ib|i0) on the average

escape time, τ(ib), which is related to the noise features,

evident. For the thermal noise, Kramers’ formula entails

that the escapes across the barrier depend on the barrier

height. For Lévy noise, with the same widely employed

approximations behind Eq. (6), τ(ib) turns out to be inde-

pendent of the barrier height �U, and becomes only a

function of �x, which in turn via Eq. (2) depends on ib
through the relation �x = π − 2 arcsin ib. The expression

of τ(α, D), Eq. (6), inserted in Eq. (8) gives for the Lévy

statistics (at the first order in ib)

P(ib|i0) ∝ exp

[

−
(

2

π

)α
ibDµα

Cαvb

]

. (9)

Since the above equation contains the explicit expres-

sion for the argument of the exponential, it is a further

step forward with respect to the results of Ref. [8]. This

breakthrough paves the way towards the applications of a

Josephson junction as a Lévy-noise detector.
Notably, the solution of Eq. (8) can be analytically

computed and expressed in a compact form by using the
nonlinear function Fα defined as

Fα(ib) = 2α

{

cosh−1 (ib)

2 [π − 2 arcsin (ib)]
α {Eα

[

cosh−1 (ib)
]

− Eα

[

− cosh−1 (ib)
]

} +
iπ1−α

4

[

Eα

(

−
iπ

2

)

− Eα

(

iπ

2

)]

}

,

(10)

where Eα is the exponential integral with α argument [77].

Then, the PDF can be written as

P(ib|i0) = N
dFα

dib
exp

{

−
Dµα

Cαvb

[Fα(ib) − Fα(i0)]

}

,

(11)

where the normalizing factor N reads

N =
(

1 − exp

{

−
Dµα

Cαvb

[Fα(1) − Fα(i0)]

})−1

. (12)

The corresponding CDF is

CDF(ib|i0) = N

(

1 − exp

{

−
Dµα

Cαvb

[Fα(ib) − Fα(i0)]

})

.

(13)

This is the main result of this work, that is to connect the

properties of Lévy flights with the accessible quantity of

the switching-current distribution. It is important to recall

the main approximations underlying Eq. (13): it has been

assumed that the result obtained for an overdamped sys-

tem, see Eq. (6), still holds for moderately underdamped

systems, and that Eq. (8) can be applied to a slowly varying

process ruled by the Lévy escape time, see Eq. (6).

We perform extensive numerical simulations to check

the validity of the results, given by Eqs. (6) and (13). In

the main panel of Fig. 3, we show the marginal CDF,

i.e., restricted to the maximum bias value ib = 0.6, for

α = 0.1 ÷ 1.1, D = 5 × 10−7, vb = 10−7ωp , and µα = 1.

The choice of these values for α and ib arises from practical

considerations, since Eqs. (6) and (13) are more accurate

for low bias currents and low α values, respectively. For

these values the Lévy-flight jump features dominate, while

in the opposite limits, ib ≃ 1 and α ≃ 2, the Gaussian char-

acteristics set in. Accordingly, in the considered range of

values, the effects of the Gaussian noise’s contribution can

be safely ignored. The numerical curves obtained by fitting

of Eq. (13) are also reported for comparison in the main

panel of Fig. 3. The agreement between the computational

results and the theoretical analysis, see Eq. (13), is quite

accurate for α < 1. For α � 1 the statistics of the switches

becomes undistinguishable from the uniform distribution

(the bisector in Fig. 3). Thus, the model we propose can be

used to determine the value of α from switching-current

measurements (as the other parameters are known), but it

proves to be especially valuable in the region α < 1.

In the inset of Fig. 3, we show with red circles the esti-

mate of the coefficient Cα obtained by numerical fitting of

Eq. (13) of the marginal CDFs shown in the main panel.

The estimates of the values of Cα � 1 significantly devi-

ate from both the numerical estimates given in Ref. [74]

and the analytical estimate obtained in Ref. [73]. How-

ever, these differences can be ascribed to the following: (i)

an overdamped rather than underdamped dynamics; (ii) a

fixed rather than a slowly varying potential barrier; (iii) a

cubic rather than a cosine potential.

The numerical simulations required to design the detec-

tor proposed in this work are realistic, even if they take

a long time, on standard processors available nowadays,

with respect to a real experimental realization. However,

it is possible to keep the simulations requirements at bay

and still reproduce realistic values of the parameters. To

estimate the simulation time, one can set the bias ramp

time tmax = 107ω−1
p ≈ 0.01 ms (if one takes the plasma

frequency ωp of the order of 1 THz). This time guar-

antees an adiabatic evolution, even if it is definitively

shorter than the realization time of a real experimental

switching-current measurement, cf., Ref. [7]. To build a

distribution of switching currents, we perform a sequence

of 104 numerical realizations. Thus, the total simulation

time for a single distribution is still feasible, although very

long. Nevertheless, stochastic simulations can be exten-

sively parallelized [78] taking advantage of fast and low-

cost general-purpose graphic process units. The estimation
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of the minimum number of realizations required to detect

the presence of a Lévy-noise component can be done

through a Kolmogorov-Smirnov (KS) test (see Ref. [8]).

We choose the KS test, because it is the optimal detection

technique to discriminate between two different CDFs, in

our case between Lévy flights and Gaussian-noise-induced

switches. It can be shown that with a number of 103 trials it

is possible to achieve a p value below 1% [8]. Furthermore,

it can be shown that the higher the noise level, the lower

the number of data necessary to confirm the presence of the

Lévy-noise component. To estimate the measurement time

to obtain a single distribution of the switching currents,

one can start from the observation that typical experimen-

tal measurements of switching-current distributions consist

of about Nexp � 104 [7] repetitions in few minutes. It is

therefore safe to conclude that a reasonable p value can be

achieved with a realistic experimental setup in a quite short

realization time.

A word of caution is necessary here, since the point of

the feasibility is indeed delicate and we need to stress the

limitations of our proposal. The device works in a lim-

ited band, which for a JJ is roughly comprised between

FIG. 3. Marginal, i.e., obtained for ib ≤ 0.6, Lévy-noise-

induced CDFs of isw computed by numerical solution of Eq. (3)

(solid lines) for α = 0.1 ÷ 1.1, D = 5 × 10−7, vb = 10−7ωp , and

η = 0.1ωp . The theoretical curves obtained by numerical fitting

of Eq. (13) are also reported for comparison (full circles). In the

inset, we show the estimate of the coefficient Cα based on the

numerical fitting of Eq. (13) of the marginal CDFs displayed

in the main panel (red circles). For comparison, we show also

the numerical estimates given in Ref. [74] (black triangles) and

the analytical estimate of Ref. [73], namely, Ŵ(1 − α) cos(πα/2)

(solid line).

100 MHz and 100 GHz. The lower limit, i.e., 100 MHz,

is intrinsically given by the current ramp frequency, as the

triangular wave that drives the JJ should be chosen, even

if the faster electronic is available, to guarantee that it is

slower than a microsecond, as for instance in Ref. [7]. This

limit is also instrumental in the usual assumption of an adi-

abatic process, which ensures that the system reaches the

equilibrium at the current bias. The upper frequency limit,

i.e., 100 GHz, is given by the typical JJ response time. In

fact, ωJ is typically below 1 THz. Although the circuitry

in this part of the spectrum is not trivial, in this bandwidth

faithful channels are available, since it is possible to couple

an on-chip source, or also, even if it is more complicated, to

device means to send the off-chip signal to the JJ, possibly

through a transducer and a low-noise channel. The faith-

ful transmission of the off-chip noise to the JJ is beyond

the scope of this paper. However, one could imagine feed-

ing the JJ through an on-chip antenna (which hence resides

at cryogenic temperature) that receives the signal to be

analyzed. This technique, or similar ones, could thermally

decouple the signal generator from the detector. To sum-

marize, the proposed method assumes that the Lévy-noise

“signal” power is at least comparable with, or larger than,

the Gaussian noise eventually captured by the circuitry.

IV. CONCLUSIONS

We investigate the switching-current distributions

(SCDs) in conventional Josephson junctions in the pres-

ence of a Lévy-noise source. Lévy-distributed fluctuations

are characterized by scale-free jumps or Lévy flights.

Consequently, we expect the SCDs to exhibit a peculiar

behavior markedly different from the Gaussian-noise case.

The aim is to detect the characteristics of the Lévy noise

from the SCDs. The proposed method allows the features

of Lévy noise to be deduced from the estimated CDFs of

switching currents in a realistic measurement time. More-

over, the corresponding numerical simulations are viable in

a reasonable time. Specifically, depending on the value of

the stability distribution index, α, we numerically find that

(i) for 0 < α < 1, the SCDs are peaked at zero bias cur-

rent; (ii) for α ≃ 1, the SCD is roughly flat; (iii) finally, for

1 < α < 2, the SCDs are peaked at high bias currents (sim-

ilar to the usual Gaussian-noise-induced peak) and slowly

decrease at low bias currents. A peculiar behavior can be

observed also in the CDF curves, that at a given value

of ib decrease with increasing α. Moreover, the CDFs are

convex for α < 1, and concave for α > 1 (the case α = 1

corresponds to a linear CDF).

Our results are relevant for three reasons. First, the ana-

lytic estimate, see Eq. (13), of the shape of the switching

currents under a Lévy-noise source was not previously

obtained and it is not a trivial exercise, for it calls for

physical approximations. Second, the numerical approach

shows that the approximation is good enough (in a certain

044078-6
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range of parameters). Third, the achievements of the work

pave the way towards the application of Josephson junc-

tions to characterize Lévy-noise sources. Thus, the issue of

concrete experimental estimates of the characteristic Lévy

parameters is a further, not yet explored, extension of the

potentialities of Josephson-based noise detectors.

A theoretical good estimate of the SCDs can be retrieved

on the basis of the Fulton adiabatic approach [76] and

assuming that the average escape time for the Lévy guided

overdamped case can be extended to moderately damped

systems. These theoretical findings are confirmed by the

abovementioned numerical observations. Moreover, the

theoretical approach recovers a previous result [8], where

a phenomenological linear approximation has been applied

[see Eq. (9)]. Finally, we achieve, from the SCDs through

the theoretical model [see Eqs. (11) and (13)], the estimate

of the universal (i.e., barrier-height-independent) noise

coefficient Cα and then, if the other parameters are known,

the value of the stability index α.

Notably, we observe that the proposed method is quite

robust in recognizing the Lévy component in a noisy back-

ground, for instance, thermal. In fact, the probability of a

particle to overcome a barrier when subject to Lévy noise is

independent of the barrier height. This is remarkably differ-

ent from the Gaussian-noise case, where the probability to

overcome the barrier depends exponentially on the barrier

energy. Also, if both Lévy and Gaussian (thermal) com-

ponents contribute to the overall noise level, they do not

interfere, because they produce switching at different bias

levels: (i) the Lévy noise in the lower part of the distribu-

tion at low bias currents; (ii) the Gaussian noise, when the

energy barrier becomes comparable to the noise energy, for

high bias currents close to the critical value.

Finally, the Josephson-based method that we propose

offers an evident advantage when the unknown noise is

characterized by fat tails, i.e., by a finite probability of a

fluctuation with infinitely large intensity. This type of noise

usually poses a serious difficulty to the experimentalist, for

it requires extremely long times to reconstruct the behavior

at large values. Thus, determining the value of the parame-

ter α demands long experiments (or simulations) to explore

extreme values. In contrast, sweeping the bias is very effec-

tive, because the bias increase lowers the trapping energy

barrier, and therefore in a given predetermined ramp time

(namely, the time it takes the linearly ramped bias current

to reach the critical current) the energy barrier vanishes

and a switching event is definitively recorded also for a

vanishing noise intensity.
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