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Josephson physics mediated by the Mott insulating phase

Smitha Vishveshwara1 and Courtney Lannert2
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2Wellesley College, Wellesley, Massachusetts 02481, USA
�Received 7 May 2008; revised manuscript received 21 August 2008; published 14 November 2008�

We investigate the static and dynamic properties of bosonic lattice systems in which condensed and Mott
insulating phases coexist due to the presence of a spatially varying potential. We formulate a description of
these inhomogeneous systems and calculate the bulk energy at and near equilibrium. We derive the explicit
form of the Josephson coupling between disjoint superfluid regions separated by Mott insulating regions. We
obtain detailed estimates for the case of alternating superfluid and Mott insulating spherical shells in a radially
symmetric parabolically confined cold atom system.

DOI: 10.1103/PhysRevA.78.053620 PACS number�s�: 03.75.Lm, 67.85.De, 64.75.Gh

I. INTRODUCTION

An important and generic situation which arises in inho-
mogeneous quantum many-body systems is that of compet-
ing states of matter coexisting in spatially separated regions.
Diverse systems such as the quantum Hall system, metal-
insulator compounds, high Tc superconductors, and more re-
cently, cold atomic gases, display conducting regions embed-
ded within insulating regions. Crucial to understanding
thermodynamic and transport features of such systems is the
manner in which conducting regions couple to one another
through the insulating regions �1�. Classic examples of Jo-
sephson coupling in superconductors and cold atoms rely on
an externally imposed potential barrier between condensed
regions �2,3�. Here, on the other hand, germane to the in-
stances mentioned above, we explore systems of bosons in
which condensed �superfluid� regions exhibit Josephson
physics mediated by Mott-insulating regions of the same
bosons. This physics should be particularly applicable to
granular superconductors and high Tc materials where Coo-
per pairs can be treated as the bosonic degrees of freedom
�4�, and trapped cold atoms in optical lattices where the at-
oms are bosons �5�. Through an explicit description of these
phases in terms of microscopic parameters, we are able to go
beyond phenomenological treatments for obtaining transport
coefficients in these systems �1�.

Toward understanding this physics of coexisting quantum
phases, we study a system of interacting bosons on a lattice
in the presence of a smooth potential V�r� which varies on
length scales much larger than the lattice spacing a. Within a
local density approximation, the potential can be regarded as
a shift in the local chemical potential �̃�r�=�−V�r�, where
� is the global chemical potential determined by the total
number of bosons in the system, N. In the situations of in-
terest, shown in Fig. 1, the potential V�r� breaks the system
into phase-separated domains of Mott insulator �wherein in-
teractions pin the number of bosons per site� and of con-
densed bosons �having an associated order parameter and
number fluctuation on each site�. Potentially relevant to su-
perconductors in the condensed matter setting, Fig. 1�a� rep-
resents a system having a long length-scale disorder potential
with very slight variations resulting in Mott-insulator regions
of a fixed number neighboring condensate regions which are

in the immediate vicinity of the Mott insulator in the Mott-
superfluid phase diagram. Figure 1�b� represents an optical
lattice scenario �5� in which a spherically symmetric trapping
potential breaks the system into Mott-insulating shells inter-
spersed by condensates. In what follows, we derive the equi-
librium properties of the domains, bulk energy costs for
small deviations from equilibrium, dynamics of the con-
densed regions, the Josephson coupling between condensed
regions mediated by a Mott-insulating interface, and detailed
estimates for the situation illustrated in Fig. 1�b�.

II. MODEL

The system at hand can be modeled by the Bose-Hubbard
Hamiltonian, describing bosons whose tunneling between
neighboring lattice sites has strength J and whose on-site
repulsive interaction is U:

HBH = − J�
�ij�

bi
†bj + �

i
�U

2
n̂i�n̂i − 1� − �̃in̂i	 . �1�

Here, �ij� denotes a summation over nearest-neighbor sites,
bi

† and bi denote bosonic creation and annhilation operators,
respectively, on the site i and �̃i
 �̃�ri�.

As seen in the phase diagram of Fig. 1, coexisting Mott
and superfluid regions can only be realized in the small-
tunneling limit. For small J /U, each superfluid region is en-
ergetically near two Mott insulating phases, whose occupa-
tions we label as n0 and n0+1, as shown in Fig. 2. To
describe each superfluid region in the coexisting system, we
employ a pseudospin formulation of the Bose-Hubbard
model �6–9� which truncates the Hilbert space on each site to
these two occupation numbers. As we discuss later, this for-
mulation can be generalized to include more number states if
necessary, but here, for simplicity and because it can be eas-
ily realized in cold-atom systems, we assume that J /U is
sufficiently small to justify the truncation. The resulting two-
state Hilbert space can then be mapped to a spin-1 /2 basis on
each site, i, with the identifications �n0+1�i↔ �↑ �i and
�n0�i↔ �↓ �i, where �↑ �i and �↓ �i are eigenstates of the spin
operator si

z with eigenvalues �1 /2, and bi
†=�n0+1si

+ �bi

=�n0+1si
−�. The number operator n̂i=bi

†bi is related to the z
component of the spin operator: n̂i=n0+1 /2+si

z. With this
mapping, the Hamiltonian takes the form

PHYSICAL REVIEW A 78, 053620 �2008�

1050-2947/2008/78�5�/053620�6� ©2008 The American Physical Society053620-1

http://dx.doi.org/10.1103/PhysRevA.78.053620


H = − J�n0 + 1��
�ij�

�si
xsj

x + si
ysj

y� + �
i

�Un0 − �̃i�si
z. �2�

At the mean-field level, to which we confine ourselves in this
work, pseudospins on each site can be thought of as experi-
encing an effective local “magnetic” field whose x-y compo-
nent is determined by the surrounding spins and whose z
component is determined by the local chemical potential. In
the ground state, the spin on each site is aligned with this
field,

Bi
0 = zJ�n0 + 1��2f i

x,2f i
y,cos �i� , �3�

cos �i 

�̃i − Un0

zJ�n0 + 1�
�4�

�here z is the coordination number of the lattice�, the fields fi
denote expectation values of spin operators �e.g., f i

z= �si
z��,

and we have assumed fi f j for nearest neighbors. The equi-
librium z component of the pseudospin has the value f i0

z

= �1 /2�cos �i; the Mott phases correspond to complete polar-
ization of the pseudospin along the z direction, i.e., f i0

z

= �1 /2, corresponding to �n̂i�=n0+1 or n0, respectively.
Within the mean-field approximation and to first order in
zJ /U, we can thus identify the Mott-superfluid boundaries
shown in Fig. 1 as occurring at the critical values of the
external potential

� − V�r�
c � = Un0 � zJ�n0 + 1� , �5�

where � and � refer to the boundary at the Mott n0+1 and
n0 phases, respectively.

In the condensed phase, a local order parameter can be
defined as �= �b†�=�n0+1f+ for 0� fz�1 /2 and �= �b�
=�n0+1f− for −1 /2� fz�0, corresponding to condensates
of particles and holes, respectively. To first order in J /U and
in the continuum limit, the equilibrium order parameter pro-
file �as a function of �̃=�−V�r�� follows from the normal-
ization of the spins: f0

�=�1− f0
z2 /2. Ignoring the energy cost

of variations of f0
� from site to site �the Thomas-Fermi ap-

proximation�, the order parameter is found to be

��r� =�z2J2�n0 + 1�2 − ��̃ − n0U�2

4z2J2�n0 + 1�
. �6�

This is of the same form as the Thomas-Fermi order param-
eter for a free �no lattice� condensate in an external potential
Vext with interaction strength g: �TF=���−Vext� /g �3�. One
can thus identify the “effective” confining potential for the
superfluid between two Mott regions in the optical lattice
system: ��−Vext�ef f = ��̃−n0U�2 / �zJ�n0+1��.

The boson density in the condensed phase is found from
�n̂�= �n0+1 /2�+ fz and in equilibrium in the Thomas-Fermi
approximation is given by

�n̂� = �n0 + 1/2� +
�̃ − n0U

2zJ�n0 + 1�
, �7�

which smoothly interpolates between densities of n0+1 at rc
+

and n0 at rc
−.

The model above gives a description of each superfluid
region in the inhomogeneous system, along with its two
nearby Mott phases, valid for small J /U. Equipped with this
description, we turn to the coupling of two spatially sepa-
rated superfluid regions in the system and the resulting Jo-
sephson physics. In what follows, we find that the transfer of
	N particles between two superfluid regions having a relative
phase 
� is described by the usual Josephson Hamiltonian

H�	N,
��  EB�	N� + EJ�1 − cos�
��� . �8�

We derive explicit formulas for the relevant energy scales for
the exchange of particles, namely, the bulk energy change EB
due to out-of-equilbrium transfer of bosons and the Joseph-
son energy EJ, which measures the strength of tunneling be-
tween the two superfluid regions. We pinpoint the differences
and similarities between Josephson physics in the “self-
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FIG. 1. Top: The perturbative zero temperature phases of the
Bose-Hubbard model; the dotted line cuts through the phases that
could coexist for a fixed small value of zJ /U. Below: Schematic �a�
slowly varying random potential and �b� harmonic confining poten-
tial, and subsequent Mott-superfluid domains.
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FIG. 2. Schematic Bose-Hubbard phase diagram showing the
superfluid region between the n0 and n0+1 Mott regions, which is
well-described at small J /U by truncating the Hilbert space on each
site to occupations n0 and n0+1.
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organized” Mott-superfluid system and in conventional
systems.

III. BULK ENERGY

As derived here, for mesoscopic superfluid regions, the
energy cost for deviations from equilibrium is found to be
non-negligible. Within the Thomas-Fermi approximation,
which suffices to derive the form of EB, the Hamiltonian, Eq.
�2�, can be expressed in terms of fz�r�:

EB�N� =� 1

a3 �zJ�n0 + 1��fz2 − 1� + �n0U − �̃�fz�dr ,

N =� �n̂�dr =� �n0 +
1

2
+ fz	dr , �9�

where, assuming that variations in the density are over length
scales greater than the lattice spacing, a continuum approxi-
mation has been made. We see that, in the Thomas-Fermi
description, the Mott and superfluid regions decouple from
each other and have separate contributions to the bulk en-
ergy, EB�N�=EB

Mott�NM�+EB
sf�NS�, where NM and NS are the

total number of particles in the Mott and superfluid phases,
respectively. These are obtained by integrating the boson
density, �n̂�, over the appropriate region and thus it is clear
that N=NS+NM.

We seek the change in the bulk energy when the number
of particles in the superfluid region changes. Therefore we
consider a situation in which the superfluid region slightly
shrinks from its equilibrium configuration by transferring a
small number of particles 	N to the Mott region: NS→NS
−	N and NM →NM +	N. We find that the bulk energy takes
the form

EB  EB
Mott�NM0� + EB

sf�NS0� +
1

2
�� �2EB

Mott

�NM
2 �

0

+� �2EB
sf

�NS
2 �

0
�

�	N�2, �10�

where the subscript “0” denotes equilibrium. The energy
scale associated with the transfer of particles to the super-
fluid region, EC �often called the “capacitive energy” in ref-
erence to Josephson physics in mesoscopic superconductors�,
is defined by EB�	N�=EC�	N�2 /2 and from Eq. �10� is found
to be

EC = � �2EB
Mott

�NM
2 �

0

+ � �2EB
sf

�NS
2 �

0

. �11�

The formulas in the previous section provide the equilibrium
configuration f0

z�r�, including the locations of the boundaries
of the superfluid and insulating regions. For a given external
potential V�r�, Eqs. �9�–�11� therefore allow one to calculate
the energy EC. In Sec. V, below, we give an explicit formula
for EC in the case of spherical shells.

We remark that the deviation from equilibrium described
here differs both from that of mesoscopic superconductors
and that of two externally trapped superfluids that couple
when brought near each other. Specifically, in the latter

cases, transfer of particles is between two condensed regions
and thus the contribution to the system’s bulk energy that is
linear in 	N only vanishes when the energy change of the
two coupled condensed regions is combined �10�. In the
superfluid-Mott coexisting system, the transfer of particles is
a local one between one superfluid region and the surround-
ing Mott phase, whose boundary is determined by the exter-
nal potential and the ratio J /U and is in this sense self-
organized. The coexisting system thus obeys an equilibrium
condition between the Mott and superfluid regions:
��EB

Mott /�NM�0= ��EB
sf /�NS�0 that is not present in the more

familiar examples.

IV. DYNAMICS AND JOSEPHSON ENERGY

To describe the tunneling of particles from one superfluid
region to another, we must understand the dynamics of par-
ticle transfer in the Mott-superfluid system. We proceed as
follows: first, we consider the equations of motion for a su-
perfluid region and its neighboring Mott regions in the pseu-
dospin approximation, which allows us to identify the conti-
nuity equation in the inhomogeneous system and the
corresponding current density of bosons. Next, we derive
expressions for the equilibrium order parameter and its decay
in the neighboring insulating regions. Finally, we consider
two superfluid regions separated by a single Mott region and
derive the Josephson equation governing the transfer of par-
ticles between the two.

Concentrating on a single superfluid region in the pseu-
dospin approximation, the “spins� obey Heisenberg equa-
tions of motion. Furthermore, in the mean-field approxima-
tion, they obey Bloch equations, �tfi= fiBi. To properly
capture the Josephson coupling between superfluid regions,
we must go beyond the Thomas-Fermi approximation and
account for the energy of spatial variations between neigh-
boring spin operators: � jf j zf+a2�2f. The resulting equa-
tions of motion for the local order parameter can be used to
derive, for instance, the collective modes within each super-
fluid region �9�. The equation of motion for the z component
of the pseudospin, on the other hand, can be written in the
form of a continuity equation, �t�n�+� ·J=0. This allows us
to identify

J = iJa2�� � �* − �* � �� �12�

as the supercurrent density of bosons.
To calculate the Josephson coupling between spatially

separated superfluid regions, we first need an accurate de-
scription of the order parameter in each region. Equation �6�
gives such a description deep in the superfluid region, where
the Thomas-Fermi approximation is valid. Near the Mott re-
gions, however, this approximation clearly breaks down, and
the abrupt transition between Mott and superfluid is replaced
with a smooth decay of the order parameter as we move into
the Mott region. From the Bloch equations for the pseu-
dospin, we find that close to a Mott-superfluid interface, the
order parameter respects the equation �for fz�0, i.e., the
boundary with the n0-Mott region�
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i�t�  − J�n0 + 1�a2�2� + �Un0 − �̃ − zJ�n0 + 1���

+ 2Jz���2� . �13�

�A similar equation is respected close to the n0+1-Mott
boundary where fz�0.� This equation governs the decay of
the order parameter beyond the Thomas-Fermi boundary of
the Mott region. We remark that while Eq. �13� is identical to
a Gross-Pitaevskii equation for a superfluid order parameter
�3�, this analogy breaks down well within the condensed re-
gion. In particular, as seen above in Eqs. �6� and �7�, the
Mott-superfluid system does not have a density of bosons
directly proportional to the square of the order parameter.

While the two-component pseudospin description suffices
at the Mott-superfluid boundary, and is in fact ideally suited
to connect the magnitude of the order parameter at the
boundary to its value in the bulk of the superfluid, it does not
capture the physics deep in the Mott region between super-
fluid regions. Specifically, deep in any n0-Mott region, it is
clear that the states nearby in energy have occupation num-
bers n0+1 and n0−1, thus requiring at least a spin-1 pseu-
dospin description �8�. The relevant equations of motion for
this case are easily calculated by going beyond the two-
component truncation and employing a perturbative mean-
field analysis �11�. As detailed in Ref. �11�, one finds to
lowest nonvanishing order in �:

i���t�  − �r�
2� + �� ,

� =
1

a3� 1

zJ
−

n0 + 1

Un0 − �̃
−

n0

�̃ − U�n0 − 1�	 , �14�

where ��=a−3 ��
�� and �r= a−1

z2J
. At the mean-field level, the

Mott-superfluid boundary is captured by the relationship �
=0, which can be used to generate the Mott lobes of the
Bose-Hubbard phase diagram shown in Fig. 1. We remark
that this result, being perturbative in the tunneling, breaks
down well within the superfluid where the difference in en-
ergies for occupation numbers n0 and n0+1, for instance,
becomes much smaller than J. In this region, we return to the
original spin-1 /2 pseudospin model, which provides the cor-
rect description of the system. We note that the equations of
motion obtained by the perturbative approach deep in the
Mott region, as required, coincide with Eq. �13� close to the
superfluid boundary �where terms of order ���3 can be ig-
nored�.

Thus we have a complete mean-field description of the
order parameter for the superfluid region between n0 and
n0+1 regions and have shown how to extend this description
deep into the neighboring Mott regions. We are now pre-
pared to consider the coupling of two superfluid regions
through an intervening Mott region. Each superfluid region
can be described by a pseudospin model with an appropriate
choice of n0, giving the order parameters in the two regions,
�Aei�A and �Bei�B, where �A/B are real. The total order pa-
rameter of the two-superfluid region is thus �=�Aei�A

+�Bei�B.
The continuity equations in each region can be combined

to give the continuity equation across the two superfluid re-
gions:

�t��n�A − �n�B� + � · J = 0, �15�

where J is given by Eq. �12� with the � above. Plugging �
in, we find that J has the Josephson form

J = 2Ja2��B � �A − �A � �B�sin�
�� , �16�

where the relative phase between the superfluids is given by

�=�A−�B. The Josephson energy is defined by
�t�	NA→B�=−EJ sin��A−�B�, where when particles are trans-
ferred from the A region to the B region, 	NA=−	NB
=	NA→B. EJ can be explicitly calculated by integrating Eq.
�15� over an appropriate surface enclosing one of the super-
fluid regions and using Eq. �16�. One finds, as expected, that
EJ is proportional to the overlap of the order parameters �A
and �B in the region separating the two superfluids.

In the two situations depicted in Fig. 1, this Josephson
coupling �a� behaves as a weak link bridging the two super-
fluid domains along the line of closest approach or �b� has a
radially symmetric form connecting two concentric super-
fluid shells, and its evaluation can be reduced to a one-
dimensional problem along the appropriate direction. In fact,
the equilibrium configuration given by Eq. �14� has a direct
correspondence with the Ginzburg-Landau form for super-
conductors �2� and with the Gross-Pitaevksii �GP� form for a
superfluid �3� trapped in a potential, given in this case by
��r�. Hence we can use standard techniques for calculating
the Josephson coupling for a one-dimensional system �10,12�
and by employing the WKB approximation for the superfluid
order parameters in the Mott region, we find

EJ  AJ exp�− �
C

�Q�r��dr�	 , �17�

where Q�r��=z2Ja��r��. The contour C can be evaluated
using the method of steepest descent and is the least-action
path linking the two superfluids through the Mott-insulating
barrier. Its end points correspond to the two turning points at
the Mott-superfluid interface for A and B at which the func-
tion � vanishes. The constant AJ depends on the precise
forms of �A and �B. As in the case of condensates in free
space �12�, AJ can be obtained by using a linearized potential
approximation and matching the boundary condition im-
posed at the Mott-superfluid interface by Eq. �13�.

From Eq. �17�, a lower bound can be placed on the expo-
nential dependence of the Josephson coupling by setting � to
its maximum value of 1 / �zJa3� along the entire path C to
obtain a value of exp�−�z�AB /a�, where �AB is the path
length. Strikingly, to first order, the Josephson coupling is
dominated in an exponential manner only by the path length
between superfluid regions which in turn is determined by
the potential landscape. We remark that for the Bose-
Hubbard system, Eq. �17� represents an explicit derivation of
the transport coefficient postulated in Ref. �1� on phenom-
enological grounds.

V. MOTT-CONDENSATE SHELLS

To demonstrate the above formalism and to obtain esti-
mates of the bulk and Josephson energies for an already-
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realized experimental system �5�, we now consider N=106

ultracold 87Rb atoms in a three-dimensional optical lattice of
spacing a=0.43 �m �corresponding to a laser wavelength
�=2a�, hopping parameter J=h120 Hz, and on-site repul-
sion U=h104 Hz confined by a harmonic trap V�r�=br2

with b=h24 Hz /�m2. This system has an inner Mott core
with two atoms per site surrounded by a superfluid shell
�SFA�, a Mott shell with n=1 atom per site �1-Mott�, and
finally an outer superfluid shell �SFB�; the Josephson cou-
pling between the SFA and SFB shells is mediated through
the 1-Mott shell. Equation �5� can be solved to yield the
boundaries of all the shells in the system. We label the
boundary of SFA �SFB� with the n-Mott region by rA �rB�.

To calculate the capacitive energy, EC, one considers a
transfer of a small number of particles from SFA to SFB,
which leads to a change in the location of the regions’ bound-
aries. Then, Eqs. �9�–�11� can be used to find the capacitive
energy. Linearizing the external potential in each superfluid
region �which is valid at small J /U since the shells are thin�
we obtain the following expression for the capacitive energy
for thin shell systems where the coupling is through the
n-Mott region:

EC =
�ba2�3/2

6��U

� 1

�2n + 1�2��/U − n
+

1

�2n − 1�2��/U − �n − 1�
	 .

�18�

For the parameters detailed above, we find that ECh5
10−3 Hz.

The Josephson energy can be calculated using Eq. �16�
after solving for the order parameter solutions near their re-
spective boundaries using Eq. �13�. Because Eq. �13� is iden-
tical to the GP equation for a Bose-Einstein condensate in an
external trap, the solutions are as described in Ref. �12�. One
finds that each order parameter decays near its Mott bound-
ary with a characteristic decay length,

dA = �3 J�n + 1�a2/qA, �19�

dB = �3 Jna2/qB, �20�

respectively, where qA/B= �dV /dr�rA/B
is the slope of the

external potential at the boundary of each superfluid shell
�rA/B�. In terms of these quantities, the constant in Eq. �17� is
found to be

AJ = ��JA2/z��n�n + 1��rArBa�/�dAdB�3/2, �21�

where A0.397 �12�. After a numerical integration of the
exponent in Eq. �16�, for the system parameters detailed
above we find EJAJe

−28h210−8 Hz.
From the energies above, we can predict that the thin shell

system has Josephson oscillations in the strongly quantum
regime �EJ�EC �10�� and that the Josephson plasmon fre-
quency �JP=�EJEC�10−4 Hz is quite small. This suggests
that the system will be very slow �on the order of hours� to

transfer particles between the two shells and that a phase
difference initially present between the superfluids will re-
main for the duration of most current experiments. Whether
the two shells have established a common phase can be as-
certained via interference experiments �13�.

VI. CONCLUDING REMARKS

In the Josephson effect, a difference in the complex phase
of the macroscopic quantum wave function of two nearby
superfluid regions leads to the exchange of particles between
the regions. Previous examples of this effect have involved
superfluids that are separated by vacuum or by a foreign
material. Here, we have considered the physics of a phase-
separated system where regions of condensed bosons are
coupled through Mott-insulating regions of the same bosons.
Such systems can arise whenever bosons described by the
Bose-Hubbard model are subject to an external confining
potential and the tunneling strength is sufficiently small. In
cold atom systems, such inhomogeneities are generic, owing
to the presence of the confining trap. Our analysis is likely to
also be relevant to granular and high-Tc systems where su-
perconductivity exists in the presence of mesoscopic inho-
mogeneities.

We have provided a description of the spatial profile of
the coexistent Mott-superfluid system, including the decay of
the condensate order parameter into the Mott phase. We have
derived explicit equations for the two energy scales, EJ and
EC, governing Josephson oscillations in these systems and
have arrived at estimates for their values in the case of
trapped ultracold bosons in an optical lattice. A complete
description of such coexistent Mott insulating and superfluid
phases in inhomogeneous systems will need to go beyond
mean-field treatments and will likely need to include effects
of finite temperature and of dissipation, for instance, due to
quasiparticle excitations. We hope that our initial discussion
here generates interest in pursuing these avenues.

Our analyses of the spherically symmetric optical lattice
geometry suggest that the Josephson coupling between su-
perfluid shells in typical three-dimensional traps will be van-
ishingly small when J /U is small. Our results confirm that
the shells will be essentially independent of each other and
this should have consequences for the dynamics of the sys-
tem as J /U is changed �14�. These results are particularly
important to proposals where bosons in the Mott state act as
units of quantum information and where having minimal
number fluctuation is essential; our analyses can be used to
show the extent to which the proximity to a superfluid phase
can influence the fidelity of the Mott state.

With regards to actually observing Josephson physics me-
diated via the Mott insulator, our analyses provide expres-
sions from which the conditions for significant Josephson
coupling can be deduced. Because the Josephson energy is
exponentially dependent on the distance between the coupled
superfluid regions, it should be possible to obtain a signifi-
cantly larger Josephson coupling in the case of a random �or
pseudorandom� external potential yielding the geometry il-
lustrated in Fig. 1�a�, where the distance between superfluid
regions could be more easily tuned. Furthermore, a
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knowledge of the spatial profile in disordered coexistent con-
densed matter systems where Josephson physics is known to
be significant, when combined with our analyses, ought to
provide realistic estimates of the Josephson coupling which
has thus far been treated as a phenomenological parameter.
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