
Joshua*: Uniform Access to Heterogeneous Knowledge Structures

Why Joshing is Better tlin Conniving or Phming

Steve Rowley, Howard Shrobe, Robert Cassels

Symbolics Cambridge Research Center

1 II Cambridge Center, Cambridge, MA 02142

Walter Hamscher

MIT Artificial Intelligence Laboratory

545 Technology Square, Cambridge, MA 02139

Howard Shrobe is also a Principal Research Scientist at the MIT Artificial Intelligence LaboratorY*

Abstract

This paper presents Joshua, a system which provides syntactically
uniform access to heterogeneously implemented knowledge bases.
Its power comes from the observation that there is a Protocol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof
Inference consisting of a small set of abstract actions, each of which
can be implemented in many ways. We use the object-oriented pro-
gramming facilities of Flavors to control the choice of implemen-
tation. A statement is an instance of a class identified with its predi-
cate. The steps of the protocol are implemented by methods in-
herited from the classes. Inheritance of protocol methods is a
compile-time operation, leading to very fine-grained control with lit-
tle run-time cost.

Joshua has two major advantages: First, a Joshua programmer can
easily change his program to use more efficient data structures
without changing the rule set or other knowledge-level structures.
We show how we thus sped up one application by a factor of 3.
Second, it is straightforward to build an interface which incorporates
an existing tool into Joshua, without modijjGng the tool. We show
how a different TMS, implemented for another system, was thus in-
terfaced to Joshua.

1.-r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuandary

Advances in computer science are often consolidated as program-
ming systems which raise the abstraction level and the vocabulary
for expressing solutions to new problems. We have seen little per-
manent consolidation of this form in AI.

We believe that there are four causes for the brief tenure of AI
programming systems:

1. Some are overly restrictive in their choices of paradigms, data
structures and representations.

2. Others provide little guidance in how to usefully employ the grab-
bag of tools in the system.

3. Virtually all erect a syntactic barrier between the AI system and its
surrounding procedural framework (e.g., Lisp).

4. Finally, it is very difficult to incorporate existing facilities which
were not coded within the framework.

These all result from the tension between the expressiveness of a
problem solving language and the flexibility and efficiency of its im-
plementation. Fully expressive languages, such as the Predicate Cal-
culus, are invaluable because they provide a uniform framework
within which one can capture all aspects of a problem’s solution.
Historically, the expressiveness of such languages has forced im-
plementators to employ uniform algorithms and data structures
capable of supporting their generality. As a consequence it has been
difficult to incorporate an external system which uses different data
representations, such as a relational database, without special pur-
pose kludgery. Furthermore, each such system requires different
kludgery. One of our goals is to provide a framework for incor-
porating such systems systematically.

In addition, many problem domains don’t require all the expressive
power of a general purpose language. In such cases, implementors
have been able to exploit the limited expressiveness of a domain to
build a highly efficient special purpose problem solving language.

Such a language cannot, in principle, support general problem solv-
ing, but where applicable it is highly desirable. A common example
of this is when we are dealing exclusively with triples of objects,
attributes and values. The popularity of frame-like languages is ac-
counted for by the fact they are very efficient in this limited domain,
even though they are incapable of dealing with full quantification. A
frame language can very efficiently reason about the properties of
Opus and birds in general, although it cannot even express a state-
ment like “everybody like something, but nobody doesn’t like OPUS”.

If all one wants to do is the former kind of reasoning, then a frame
language provides a reasonable tradeoff.

Another example is reasoning about physical artifacts where again
the full expressive power of PC is unnecessary. Indeed, it is much
more natural and much more efficient to build a representation which
emphasizes the objects and their connectivity, mirroring the topology
of the artifact in the topology of the data structures. The constraint
language of [Sussman and Steele] is an example of such a special-
ized language.

The second of our goals is to be able to exploit many of these
specialized techniques in a single system without closing ourselves
off from the use of a problem solving language of full expressive
power. In this paper we will illusa-ate this quandary and Joshua’s
solution to it using the task of building a trouble-shooter for the digi-
tal circuit shown in Figure 1; the trouble-shooter will be one very
similar to those in the literature (e.g. [Davis, et al.]), our goal is to
illustrate Joshua’s capabilities, not to discuss trouble-shooting. First
we will show how the default Joshua facilities can be used to solve
this problem, producing a solution of reasonable efficiency. Then
we will show how we can include a specialized constraint language
for this problem within the broader Joshua framework. This will
lead tot a dramatic improvement in performance, even though it will

leave unchanged all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the knowledge level structures of the original

solution.

A

F

-I

E l Applied: 2
M3 product Expected: 6

- Multiplicand

Figure 1: A Trouble Shooting’ Problem
Which fulodule’s Failure Accounts for The Conflicts?

*“And Joshua bmt Ai, and made it an heap forever, even a desolation unto this day.” -- Joshua 8% KJV

4% Al Architectures

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Joshua solves the problem using the abstraction power of the Lisp
programming environment. In particular, it relies on the object-
oriented facilities of Flavors, although the facilities of the emerging
Common Lisp object-oriented programming standard would serve as
well. The main features of Joshua are:

0 There is a Uniformly Accessible but Heterogeneous Data Base
of Statements. Two Lisp forms, ASK and TELL, provide the inter-

face to this database. ASK queries the data base, finding facts
which explicitly match the query as well as those implied by back-
ward chaining rules and other inferential capabilities. TELL inserts
a statement and computes its consequences by invoking forward
chaining rules and other inferential capabilities. ASK and TELL may
implement their behavior in any manner desired and the statements
may be represented using a variety of different data structures. The
contract of ASK and TELL is functional, not implementational.

e There is a Fine-Grained Protocol of Inference in which each dis-
tinct step of processing a statement is identified and made acces-
sible. This protocol is hierarchical as well as fine-grained. ASK,

TELL, rule compilation, rule triggering and truth maintenance are
all parts of this protocol as are their component steps. To use a
novel set of data structures, for example, one needs to change only
a few, small steps of the protocol.

8) Each step of the protocol is 8 Generic Function, i.e., an abstract
procedure whose concrete implementation is found by dispatching

on the data types of its arguments. The generic functions are im-
plemented using object-oriented programming techniques (in par-
ticular Flavors). Statements are regarded as instances. Predicates
are identified with the classes. The protocol steps are implemented

as methods.

@ There is a modular inheritance scheme which allows facilities
to be identified and reused. The classes corresonding to predi-
cates are the leaves of an inheritance lattice. A more abstract class
in this lattice is thought of as a model for implementing part or all
of the protocol, supplying Methods only for those few protocol

steps that it handles in a unique way. Inheritance of methods hap-
pen at compile time; there is no run-time cost.

Q There is a wellll-craned default implementation of each step of the

protocol provided in the system. However, the protocol is hierar-
chical, so modifications can be focused on lower level protocol
steps, preserving the gross structure. Most models continue to use
most of the default methods, thus satisfying the Principle of

Zncrementality that the effort required to effect a modification of

behavior should be proportional to the size of the changed be-
havior.

These features allow Joshua to incorporate outside tools easily and
use specialized representations where desirable. In the rest of this
paper we will illustrate these points. First, we will show a

straightforward Joshua implementation of a digital trouble-shooter
which is reasonably efficient. However, a solution using a constraint
language approach would greatly improve the efficiency. To see
how such a representation can be incorporated, we will present the
Protocol of Inference in some detail. Then we will show that to
incorporate this alternative implementation we will only have to
provide a few protocol methods. We will modify no knowledge-
level structures of our original implementation. Finally, we will
present a brief example of how Joshua can incorporate tools built
outside the Joshua framework.

Joshua’s syntax is uniform and statement-oriented; statements are
delimited by brackets and variables are indicated by a leading equiv-
alence sign. Free variables are, as usual, universally quantified. The
core of Joshua is provided by the two generic functions TELL and
ASK. TELL adds a statement to the data base of known facts and then
performs whatever antecedent inferences are possible. ASK takes
two arguments, the first of which is the query; the second argument,
called the continuation, is a function which is called in a binding
context created by unifying the query and matching statements. The
continuation is called once for each statement satisfying the query
whether this statement is explicitly present or is deduced. Many of
Joshua’s deductive capabilities are built using forward and
backward-chaining rules. A Truth Maintenance System provides the
ability to make and retract assumptions, to explain the reason for
believing any statement, or to find the set of statements supporting
any conclusion in the database.

Figure 2 shows how one would use Joshua to build a hardware
trouble-shooting system similar to those in [Davis et al.],
[Genesereth] or [deKleer & Williams]. A simulator for the circuit is
built by defining rules which describe adders, multipliers, and wires
and then by executing a Lisp procedure which TELLS what com-
ponents are present and how they are connected. A simulation is run
by providing initial values for the inputs of the circuit. A backward-
chaining rule captures the notion of a conflict, a point in the circuit at
which the predicted and observed values disagree. The trouble-
shooter’s goal is to find all modules in the circuit whose failure could
plausibly account for each conflict. This is done in the procedure
FIND-CANDIDATES which uses the TMS to find the intersection of the
sets of assumptions supporting each conflict.

(DEFRULE ADDER-FORWARD (:FORWARD :IMPORTANCE 1)

;; Compute adder output from inputs
IF [AND [TYPE-OF EA ADDER-BOX)

[STATUS-OF =A WORKING]

[VALUE-OF INPUT A =A =Vll

[VALUE-OF INPUT B =A =V211

THEN (TELL '[VALUE-OF OUTPUT SUM ,HA ,(+ =vI =v2)1))

(DEFRULE MULTIPLIER-INFERENCE (:FORWARD)

;; Compute multiplicand from product
.a and multiplier by dividing
;F (AND [TYPE-OF =M MULTIPLIER)

[STATUS-OF EM WORKING]

[VALUE-OF PRODUCT =M =VI]

[VALUE-OF MULTIPLIER =M =v211

THEN (UNLESS (= 0 =V2)

(TELL '[VALUE-OF MULTIPLICAND ,=M ,(/ =VI =v2)))))

DEFRULE DETECT-TERMINAL-CONFLICT (:BACKwARD)

;; Infer a conflict from difference of
;; observed and simulated values.
IF [AND [OBSERVED-VALUE-OF =TERMINAL =OBJECT sOBSERVED

[VALUE-OF ~TERMINAL SOB-CT Z~COMPUTED-VALUE)

(# =OBSERVED-VALUE =COMPUTED-VALUE) 1

THEN [CONFLICT-AT STERMINAL EOBJECT

aOBSERVED-VALUE =COMPUTED-VALUE])

lDEFUN FIND-CANDIDATES ()

.- find candidates that explain all the conflicts
&T ((SUPPORT-SETS NIL))

(ASK [CONFLICT-AT ZTERMINAL EOBJECT

EOBSERVED-VALUE =COMPUTED-VALUE]

#'(LAMBDA (CONFLICT)

;; for each conflict derived,
.a record its set of supporting assumptions
&JSH (SUPPORT CONFLICT :ASSUMPTION) SUPPORT-

(DEFRULE WIRE (:FORWARD :IMPORTANCE 2)

;; Compute value at one end of a wire from
;; the value at the other end

;: now take the intersection of all such sets
(APPLY #'INTERSECTION SUPPORT-SETS)))

IF [AND [WIRE ETERMINAL~ =OBJECT~ rTERMINAL2 =oBJEcT~I
[VALUE-OF ETERMINAL~ ZOBJECT~ EVALUE))

(DEFUN SETUP ()

THEN [VALUE-OF =TERMINAL2 mOBJECT2 =VALUE])
(TELL [TYPE-OF Ml MULTIPLIER])

(TELL [STATUS-OF MI WORKING) :JUSTIFICATION 'ASSUMPTION)

(DEFUN SIMULATE ()

(TELL [VALUE-OF A pl 31)
;&LL [WIRE OUTPUT PRODUCT Ml INPUT ADDEND All))

(TELL [VALUE-OF B PI 21)

. . .)

igure 2: Joshua Code for The Trouble Shooter

Rowley, Shrobe, Cassels, and Hamscher 49

Joshua provides well-crafted default implementations for all of its
standard facilities. Discrimination networks are used for data and
rule indexing. Forward chaining rules use a Rete network IForgy] to
merge the bindings from matching the separate trigger patterns.
There is a rule compiler that transforms the rule’s patterns and ac-
tions into Lisp code. Using these default facilities, we achieve a

rule-firing rate of about 120 rules/second while running the trouble-
shooting example on a Symbolics 3640. This is comparable with
other well-implemented tools.

3.1. The Probkm

Joshua maintains several internal meters, one of which indicates
that during the execution of the trouble-shooting procedure the Rete
Network’s efficiency was only 5%. This means that the system
wasted a lot of effort trying to trigger rules. One reason for this is
clear: The WIRE rule contains two trigger patterns, each of which
contains only variables. This means that the Rete network will try to
merge every WIRE statement with every VALUE-OF statement, failing
in most cases. There are several other mismatches between the
problem and the implementation structure. The uniform statement-
oriented syntax of Joshua is a reasonable means for expressing the

problem solving strategy. However, the statement-oriented indexing-
scheme needed to support this expressive generality provides a poor
implementation for our specific problem since it cannot exploit its
constraints.

A constraint language framework like that in [Davis & Shrobe]
which uses data structures mirroring the connectivity and topology of
the circuit would better exploit the limitations of our problem
domain. However, we want to avoid changing our rules or our
trouble-shooting procedures since these constitute the “knowledge
level” of the program. Finally, we want to avoid writing a large
amount of code simply to take advantage of an existing set of data
structures. The key to achieving all three of our goals simul-
taneously is Joshua’s Protocol of Inference.

4. The Protocol of inference

The structure of the Protocol is shown in Figure 3; each step of the
protocol corresponds to a generic function that dispatches on the type
of the statement being processed. We implement each statement as a
Instance of a class, where the class corresponds to the Predicate of
the statement. The classes are organized in an inheritance lattice
with each class providing some protocol methods and inheriting
others from more abstract classes. (In our current implementation,
the classes are flavors and the statements are flavor instances).

For example, the statement [VALUE-OF ADDEND Al lo] is an in-
StanCe of the VALUE-OF class; this class inherits from the class for
PREDICATION (all statements inherit from this class); in the default
implementation it also inherits from the DN-MODEL class which
provides discrimination-network data indexing. 7%e PREDICATION

class provides the gross structure of the ASK and TELL protocol steps
in its ASK and TELL methods. The DN-MODEL class provides a
specific kind of data indexing by supplying methods for the INSERT
and LOCATE-TRIGGER protocol steps which determine where data and
rules are stored.

‘Ihe generic function for each protocol step dispatches on the type
of a statement to determine, using the inheritance lattice, which
method to run. For example, the generic function for the TELL
protocol step when applied to the predication [VALUE-OF ADDEND Al
lo] executes the TELL method inherited from the PREDICATION class.
This TELL method calls several other generic functions, in particular
the one for the INSERT protocol step. ‘Ihis method is inherited from
the more specific DN-MODEL class. In the Flavors implementation
used by Joshua, inheritance is a compile-time operation which incurs
no run-time cost.

The Protocol has major steps for TELL, ASK, the
TRUTH-MAINTENANCE entry points, and RULE-COMPILATION; it has
minor steps corresponding to the details of how each of the major
actions is performed. For example, TELL is concerned with installing
new information. Its components are JUSTIFY, which is the interface
to the TMS, INSERT, which manages the actual data indexing, and
MAP-OVER-FORWARD-TRIGGERS which invokes forward-chaining
rules using the Rete network. This, in turn, relies on the
LOCATE-TRJGCER protocol step which manages the indexing of rules.

The advantage of exposing this structure is modularity: If one only
wants to modify how the data is indexed, one doesn’t have to
reimplement all the behavior of TELL. Instead one need only provide
a new INSERT method; the rest of the behavior can be inherited from
the defaults provided with the system. If one wants to modify how
rules are indexed, one only has to provide a LOCATE-TRIGGER
method. ‘I’he implementor should define these methods at a place in
the lattice of classes so that only the desired statements inherit the
new behavior. If, for example, there is a specialized indexing
scheme which works well for a restricted class of statements we can
easily make that set of statements take advantage of the technique,
while all other statements continue to use the more general tech-
niques provided as the system default.

The Protocol of Inference

Figure 4 shows an implementation technique for the trouble-
shooting example which is similar to those used for constraint-
languages. These structures can be thought of as a set of frames and
slots. The frames are used to represent objects, e.g. ADDER-~, and
classes of objects, e.g. ADDER. The slots are used to represent ter-
minals, e.g. the ADDEND of ADDER-l; the facets of the slot are used to
represent the value of the signal present at the terminal, the set of
other terminals wired to it an&the set of relevant rules.

l Telk installs new information.

o Justify: the interface to the TMS.
0 Insert: manages the actual data indexing.
l Map-Over-Forward-Triggers: finds and invokes rules.

l Locate-Trigger: manages the indexing to locate relevant rules.

e Ask retrieves known or implied data.

0 Fetch: manages the data indexing to find statements which might unify
with the query

* Map-Over-Backward-Triggers: finds and runs relevant rules.

0 Locate-Trigger: manages the indexing to locate relevant rules.

0 TMS Protocol: Manages Deductive Dependencies

l Justify: instaRs a new TMS justification

0 Notice-Truth-Value-Change: allows special processing when statements
change truth value.

l Retract: removes a justification.

= Rule Indexing Protocol

l Add-Forward-Trigger
l Remove-Forward-Trigger
* Add-Backward-Trigger
* Remove-Backward-Trigger

0 Trigger-Location: used by all four of the above.

0 Rule Customization Protocol

*Compile-Forward-Trigger: the hook to provide your own matcher for a
forward-chaining rule.

* Positions-Matcher-Can-Skip: informs the match compiler that the data
indexing scheme guarantees that certain positions of the statement al-
ready match the pattern, so that less match code can be generated.

* Compile-Backward-Trigger: same for backward-chaining rules.

0 Positions-Matcher-Can-Skip: as above.

0 CompileForward-Action: tailors the behavior of a statement in the THEN
part of a forward-chaining rule.

I
a Notice-Truth-Value-Change: as above. * Compile-Backward-Action: tailors the behavior of a statement in the IF part

0 Explain: prints an explanation of the reason for believing a statement. of a backward-chaining rule.

l Support: finds the set of facts or assumptions that a statement depends on.

Figure 4: The Protocol sf inference

50 Al Architectures

This representation exploits the object-oriented nature of the
problem in several ways: First, the topology of the data structures is
identical to that of the circuit; to find what other terminals are con-
nected to the ADDEND of ADDER-~ one only need fetch the WIRES
facet of the terminal. Second, facts are indexed locally. To find the
value of the signal at the ADDEND of ADDER-I, one need only find
ADDER-I and then find its ADDEND slot Third, rules are indexed
locally. To find a rule which is triggered by the statement
[VALUE-OF ADDEND Al 101, one only need find the Al frame, follows
its AKQ link to the class ADDER, and then find ADDER'S addend slot.
Thus, to add or retrieve information or to draw an inference one need
only follow a small number of pointers. ln particular, notice that
wires are represented by direct links between connected terminals,
instead of the troublesome WIRE rule shown in Figure 2. These data
structures can be implemented easily using a frame-like subsystem

provided with Joshua’.
However, let us imagine that we already have an implementation of

a constraint language and then consider what we would need to do to
make Joshua able to incorporate it. The trouble-shooting program
has two broad categories of statements: The first category consists
of TYPE-OF, and WIRE statements which describe the topology of the
circuit. The second category includes VALUE-OF and
OBSERVED-VALUE-OF statements which carry information about the
value (or inferred value) of signals in the circuit. CONFLICT-AT state-
ments also fall in the category, since they capture a discrepancy be-
tween the predicted and observed values.

The trouble-shooting program is primarily an antecedent reasoning
system, so our attention will be focused on what methods we need to
provide for the component steps of the TELL protocol. For the first
category of statements our strategy will be as follows: When we
TELL a TYPE-OF statement, e.g. [TYPE-OF AI ADDER], we will build a
frame representing Al that is an instance of the ADDER frame. This
frame has slots for each of Al’s terminals, and each of these has
several facets, one of which is the WIRES facet. When we TELL a
WIRE statement, e.g. lWIRE PRODUCT Ml ADDEND Al], we will add
pointers to the WIRES facet of both mentioned terminals so that the
PRODUCT of Ml points to the ADDEND of AI and vice versa. The
INSERT protocol method is the right level of the TELL protocol to
control this. Similarly, we only need to provide an INSERT method
for WIRE statements which updates the WIRES facet of the appropriate
slot. Also for each of these statement types we provide a FETCH
method (the step of the ASK protocol responsible for locating the
data) so that we can retrieve the data. Other than this, all processing
of these statements uses the provided facilities.

The second category of statements deals with signal values. Our
strategy for these is as follows: We will store VALUE-OF and
OBSERVED-VALUE-OF statements in the appropriate named
TERMINAL of the circuit; to do this we need only provide an INSERT
protocol method for VALUE-OF and OBSERVED-VALUE-OF statements.
Since the constraint-language provides a means for locating a named
terminal, we need only have our protocol method call this procedure.

1 FOP soace reasons. we won’t discuss the Joshua flavor-based frame svstem here

falue-of Addend Al 5) / 2

(Type-of Al Adder)

Addend Terminal

I

puts the value here

Figure 4: Constraint-Language Style of Implementation

In addition, we want to store our rules locally; for example, a rule
about adders with the pattern [VALUE-OF 5 ADDEND = Al = VJ, should
store its trigger in the FWRD-RULES facet of the ADDEND slot of the
ADDER frame. To do this we only need to provide a
LOCATE-TRIGGERS protocol method. The LOCATE-TRIGGERS
protocol method is used by the protocol steps for installing rules and
for fetching them; thus this one modification changes the complete
rule data indexing scheme for this type of statement.

.I. nin

These data structures can perform certain deductions far more ef-
ficiently that can our rules. Since the data structures exactly mirror
the topology of the wires in the circuit being modelled we should use
them to model the propagatation of signals along wires. To do this,
we only need to add a small amount of code to the INSERT method
for VALUE-OF and OBSERVED-VALUE-OF statements. This code ex-
amines the WIRES facet of the terminal mentioned in the statement
and then propagates the information to the connected terminals, by
TELLing a new statement describing the value at the connected ter-
minal. For example, suppose we TELL the system that the value of
the PRODUCT of Ml is 6, and this terminal is connected to the
ADDEND of Al. The INSERT protocol method for VALUEGF state-
ments, will then TELL the system that the value of the ADDEND of Al
is also 6. (The reason this doesn’t create an infinite loop is that part
of the contract for INSERT methods is that they must first check to see
if the data is already present; if so they must simply return the stored
data).

CGNFLICT-AT statements are also more efficiently deduced within
the model. A CONFLICT-AT statement should be deduced anvtime the _ -_-
VALUE and ‘OBSERVED-VALUE at a terminal disagree. To’ perform
this inference, we again add code to the INSERT protocol method for
each of these statements; this checks to see if we know both the
VALUE and OBSERVED-VALUE at this terminal. If so, and if they
disagree, then we TELL the appropriate CONFLICT-AT statement.

.a. strai

In summary, our system now has the following specialized be-
havior. When we make an assertion about the TYPE-OF an object, we
create a representation of this object and its electrical terminals. This
representation is situated in a taxonomic hierarchy below the node
representing its type. For example, (TELL HYPE-OF Al ADDER])
creates an object of type ADDER and names it Al. When we TELL
that a wire connects two terminals, we update facets of their cor-
responding TERMINALs so that they contain direct pointers to each
other. When we make a statement about the value ata terminal (e.g.,
[VALUE-OF ADDEND Al 21), we locate the terminal data structure by
first locating the object Al and then finding the terminal named
ADDEND. This terminal has direct pointers to all the other terminals
that are connected to it, so we just follow these pointers and update
the value at these other terminals as well. For each terminal that we
update, we find the rules which might trigger by looking in the
FWRD-RULES facet.

The whole system behaves like a constraint propagation system.
However, it is not just behaving like a constraint propagator, it is a
constraint propagation system embedded in the more general Joshua
framework. Incorporating this constraint propagator only required a
few small protocol methods, without reprogramming
“knowledge-level” structures such as our rules and trouble-shoot:;
procedures. Finally, although we’ve tailored this part of our system
to the style of reasoning found in constraint language, nothing we’ve
done prevents us from using more general purpose facilities in other
parts of our system.

We refer to the process we’ve gone through as mdeling. Like the
logician’s notion of modeling, it maps statements to the objects to
which they refer. The fact that each of these protocol steps can be
tailored for any class of statements has allowed us to easily imple-
ment the object-oriented data-indexing and rule retrieval scheme
shown in Figure 4. We have presented enough of the details to show

Rowley, Shrobe, Cassels, and Hamscher 51

the relative ease with which these facilities can be used. It is worth
noting that we did not change the way that Joshua manages all asser-
tions, only those which we felt needed special handling. other state-
ments are handled in the default manner. Given the constraint lan-
guage representation for circuits, we needed to write about six
protocol methods, each of them containing only a few lines of code.

The following table, comparing the default and modeled implemen-
tations, illustrates the power of this approach:

I Statistic 1 General 1 Specialized 1

Rules fired 37 5

Time 0.302 set 0.089 set

Rules/&c 122.54 56.15

Normalized2 Rules&c 122.54 415.51

1 Merging 1421774 (5%) 1 10126 (38%) 1

Several facts are worth noticing here. First’ the number of rule
executions went down by a factor of 7. This is because more of the
reasoning happens within the models, i.e., is performed by the spe-
cialized procedures. In particular, there is no longer a need for rules
to propagate information along the wires. Second, the program ran
over 3 times faster. Finally, the specialized implementation is much
more selective; far fewer attempts are made to merge assertions
through the Rete network and, of these, a much higher percentage
succeed.

6.1. Incorporating Other Existing Tools 9. References

So far we’ve seen an example of how the process of providing
specialized protocol steps can lead to dramatic improvements in ef-
ficiency. But this is not the only advantage. It is probably more
significant that modeling provides a simple means for incorporatine

an existing tool which was designed outside the Joshua context.
One brief example of this is the incorporation of an ATMS. The

default TMS in Joshua is similar to that in IMcAllester]. However,
one of us (Hamscher) had previously implemented an ATMS
[deKleer] for use in his research. Sometime later, when he decided
to use Joshua as the general framework for his project, he also
decided to continue to use his existing ATMS code. Interfacing this
code involved implementing about five protocol methods.

7. Comparison to other Approaches

The core problem addressed by Joshua has been studied widely in
AI. Much of the literature on Meta-Level reasoning, for example
[Russell has been motivated by the need to combine disparate sys-
tems into a coherent whole. Compared to Joshua, most of these sys-
tems pay a price at run-time for their flexibility since, at least in
principle, they must deduce how to do any deduction. The Krypton
ISrachman, et al.] system also has the goal of combining disparate
facilities, using a theorem-prover as the glue. Theory Resolution
[Stickel] provides the theoretical framework for this system. Also
[Nelson & Oppen] describes a means for combining disparate deci-
sion procedures into a larger, uniform decision procedure. Joshua
lacks the theoretical foundations of these systems. However, it
seems to provide a broader and more flexible framework which
provides stronger guidance for how to actually implement a
heterogeneous system.

Our system is quite similar to the Vimal Collection of Assertions

notion presented in [Komfeld], but differs in several ways. Joshua
provides more complete integration with Lisp as well as a set of high
performance techniques available as defaults. In addition, the
Protocol of Inference provides a structure and granularity of control
not present in Komfeld’s system.

Bra&man, R.J., Fikes, R.E., and Levesque, H.J., 1983. “Krypton: A
Functional Approach to Knowledge Representation,” IEEE Com-
puter, Vol 16. No. 10, October, 1983, pp. 67-73.

Davis, R. and Shrobe, H., 1983. “Representing Structure and Be-
havior of Digital Hardware” . Computer vol 16 number 10, Gc-
tober 1983.

Davis, R., Shrobe, H., Hamscher, W., Wieckert, K. Shirley, M. and
Polit, S., 1982. “Diagnosis Based on Descriptions of Structure and
Function” , AAAI-82 pp. 137-142, Pittsburgh, PA.

deKleer, J. and Williams, B., 1986. “Reasoning About Multiple
Faults” , AAAI-$6, pp. 132-139. Philadelphia, Pa.

deKleer, J., 1986. “An Assumption-Based Truth ‘Maintenance
System”, Artificial Intelligence 28:127-162.

Forgy, C. 1982. “RETE: A fast Algorithm for the many
pattern/many object pattern match problem.” Artificial
Intelligence 19: 17-38.

Genesereth, M.R., 1984. “The Use of Design Descriptions in
Automated Diagnosis” , Artificial Intelligence 24:41 l-436.

Komfeld, W.A., 1981. Concepts in Parallel Problem Solving.
Ph.D. Thesis, MIT Department of Electrical Engineering and Com-
puter Science. October 198 1.

McAllester, D.A., 1980. “An Outlook on Truth Maintenance” . MIT
Artificial Intelligence Laboratory Memo 551. MIT, Cambridge
Mass.

Nelson, G. and Oppen, D., 1978. “A Simplifier Based on Efficient
Decision Algorithms”, Conference Record of the Fifth ACM Sym-
posium on Principles of Programming Languages, Tucson,
Arizona, January 1978 pp. 141-150.

Russel, S., 1985. The Compleat Guide to MRS. Stanford
Knowledge Systems Laboratory Report No. KSL-85-12. Stanford
Knowledge Systems Laboratory, Stanford CA.

Stickel, M.E., 1983. “Theory Resolution: Building in Nonequational
Theories.” AA&83 Washington, D.C. August 1983.

Sussman, G.J. and Steele, G.L. Jr., 1980. “CONSTRAINTS: A Lan-
guage for expressing almost-hierarchical descriptions” Artificial
Intelligence 14: l-39.

8. Conclusions

AI has suffered from an inability to consolidate its gains in the
form of a programming system which is encompassing and which
allows the abstraction level of our problem solving systems to grow.
A key failure of previous systems has been their inability to provide
strong paradigmatic guidance without implementational handcuffs.
Joshua addresses these problems in several ways.

0 It removes syntactic barriers. Joshua’s deductive facilities and
Lisp are closely integrated and easily mixed.

@ Joshua is organized around a uniformly accessible heterogeneous
database, whose interface is the two generic functions ASK and
TELL. These provide the abstraction level necessary to allow state-
ments to be stored in whatever manner is most convenient and ef-
ficient. Special purpose inference procedures can be invoked at

this interface.
@ Joshua’s core routines are carefully structured into a Protocol of

Inference. This allows a Joshua programmer to use specialized

data structures and procedures without having to abandon the

general purpose framework. Specialized approaches can be

provided by supplying only a few simple methods.
0 The Protocol of Inference also facilitates the assimilation of exist-

ing facilities which enriches the Joshua environment.

Joshua, therefore, creates the possibility of an integrating facility
which can combine disparate AI techniques into a coherent total sys-
tem.

2This scales up the firing rate of the modeled version by 3715, since it d”s 37
rules’ worth of work in just 5 rule fiigs. The “hidden” rules are done tn the

representation.

52 Al Architectures

