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Abstract

We present a novel Joint Online Tracking and Segmen-

tation (JOTS) algorithm which integrates the multi-part

tracking and segmentation into a unified energy optimiza-

tion framework to handle the video segmentation task. The

multi-part segmentation is posed as a pixel-level label as-

signment task with regularization according to the esti-

mated part models, and tracking is formulated as estimat-

ing the part models based on the pixel labels, which in

turn is used to refine the model. The multi-part tracking

and segmentation are carried out iteratively to minimize the

proposed objective function by a RANSAC-style approach.

Extensive experiments on the SegTrack and SegTrack v2

databases demonstrate that the proposed algorithm per-

forms favorably against the state-of-the-art methods.

1. Introduction

Recent advances in video segmentation aim to extract

target objects from the background with accurate bound-

aries using mainly offline approaches [24, 13, 21, 16, 26,

19, 27, 20]. Despite much demonstrated success, existing

methods are less effective for applications that entail on-

line processing. Examples abound, including video surveil-

lance, action recognition and human-computer interaction,

to name a few. Recently, some online video segmentation

methods are proposed, e.g., [7] and SPT [18]. The global

object appearance modeling without strong local constraints

in [7] and the target-independent proposals generation step

in SPT [18] may cause inaccurate segmentation results, es-

pecially in the scene with complex background or large mo-

tions.

Image segmentation aims to partition pixels based on

certain characteristics (e.g., color, intensity, or texture) in

the spatial domain, while tracking intends to partition pixels

based on the consistence properties in the temporal domain.

Clearly each task facilitates the other especially for online
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video segmentation, and both modules should be consid-

ered in the same framework. Thus, in this work, we pro-

pose a Joint Online Tracking and Segmentation (JOTS) al-

gorithm, which formulates the video segmentation task as

the online multi-part tracking and segmentation in a uni-

fied energy function. The online multi-part tracking pro-

vides effective sequential motion and structure constraints

for segmentation, while the multi-part segmentation gener-

ates accurate local appearance and location information to

facilitate tracking. The tracking and segmentation stages

are optimized iteratively by a RANSAC-style approach to

validate the results generated by each module for accurate

performance. The main steps of the proposed algorithm are

shown in Figure 1. As an example in Figure 1(c), the tar-

get multi-part model learned in the first two iterations fail to

fit the current pixels well (center locations of some models

are not located at the centroids of the pixels with the same

label). As the multi-part models fit pixels better through

tracking, the labeling error decreases. Meanwhile, more ac-

curate multi-part tracking is achieved as the labeling error

decreases.

The contributions of this work are summarized as fol-

lows. First, a novel joint online tracking and segmentation

algorithm is proposed for online video segmentation, where

the multi-part tracking and segmentation are integrated in a

unified energy objective function to achieve better perfor-

mance. Second, the minimization of the proposed energy

function is effectively solved by a RANSAC-style approach

with the α-expansion algorithm. Third, extensive experi-

ments on two benchmark datasets, i.e., SegTrack and Seg-

Track v2, against the state-of-the-art methods are carried

out to demonstrate the effectiveness of our method.

2. Related Work and Problem Context

Segmentation. Video segmentation has attracted much at-

tention due to its importance in vision problems. Numerous

algorithms have been proposed to address this problem us-

ing both past and future frames of an image sequence with

batch processing [24, 13, 21, 16, 26, 19, 27, 20]. While



Figure 1. Main steps (upper part) and corresponding example (lower part) of the proposed JOTS algorithm. (a) Initial multi-part model

construction. The yellow and green circles represent the center locations of the target and background parts respectively. (b) Spectral

matching for generating approximate target location. The green line represents the correspondence between the predicted coarse target

location and the center location in the previous frame, and the other lines denote some matches of target parts. (c) An example showing the

iterative optimization process. The parts of a target object are denoted with different colors. (d) Final segmentation result where the target

boundary is delineated by red pixels.

these methods generate promising results, they are not ap-

plicable to online vision tasks such as video surveillance,

action recognition, and human-computer interaction.

In [7], an integrated probabilistic model for online video

segmentation is proposed, which combines dynamics of im-

plicit shapes, topological shape constraints, adaptive ap-

pearance model, and layered flow. As only pixel-level in-

formation without local constraints is used to distinguish

between the foreground and background classes, it is likely

to include false positives especially for videos with cluttered

backgrounds. Li et al. [18] propose an unsupervised video

segmentation approach by associating a pool of object pro-

posals in consecutive frames. However, target-independent

proposals may render inaccurate segmentation results.

Tracking. Several tracking-by-segmentation methods [9,

12, 11, 28] have been developed in the literature. In [9],

a level-set formulation is presented to accurately extract

object boundaries for tracking. Godec et al. [12] ex-

tend the Hough forest classifier to the online setting and

integrate voting-based detection and GrabCut segmenta-

tion [23] methods for tracking. In [11], Duffner and Gar-

cia propose a fast adaptive method based on Hough trans-

form with pixel-based descriptors and segmentations (simi-

lar to [2]) to handle non-rigid deformation for object track-

ing. Zhong et al. [28] integrate segmentation with tracking

to alleviate the drifting problem based on structured label-

ing information using partial least squares regression anal-

ysis. The aforementioned methods focus on using segmen-

tation techniques to help tracking rather than extracting tar-

gets from the background accurately.

In addition to tracking-by-segmentation methods, part-

based tracking approaches [22, 25, 6, 15] have been pro-

posed in recent years. However, these methods mainly gen-

erate regions based on certain image properties, rather than

focus on objects of interest and thus the boundaries are less

accurate (i.e., some regions contain both foreground and

background pixels). One approach is to segment each frame

into superpixels and use a conditional random field algo-

rithm to separate foreground and background regions [22].

The tracking process is based on matching of color distribu-

tions for both classes. Wang et al. [25] propose a discrimi-

native appearance model based on superpixels in which the

probabilities of superpixels belonging to the foreground are

used to separate the target from the background. In [6],

Cai et al. design a dynamic graph based method to account

for non-rigid motion. Hong et al. [15] present a hierarchi-

cal appearance representation model for tracking based on

a graphical model that exploits shared information across

multiple quantization levels including pixels, superpixels,

and bounding boxes. The above-mentioned methods fo-

cus on tracking non-rigid moving targets with the help of

segmentation. As coarse mid-level segmentation based on

superpixels is used rather than fine details from low-level

pixels, the generated object boundaries are less accurate.

Recently, a tracking method based on temporal correla-

tion of superpixels [8] is developed. In contrast, the pro-

posed JOTS algorithm focuses on accurately segmenting

target objects from the background on the pixel level.

3. Problem Formulation

Given simple user annotation followed by the interac-

tive segmentation method [14] in the first frame, we first

segment a target object from the background, and then use

the SLIC algorithm [1] to generate the initial hypothesized

models, as depicted in Figure 1(a) (see also Section 5.3).



Let M = {M1, . . . ,Mk} be the k parts of a target object

with the label set {l1, . . . , lk}, where Mi = (Ai,Pi,Θi)
is the i-th model, Ai is the HSV histogram of the model,

Pi is the center location of the model, and Θi is the lo-

cation set of the pixels belonging to the model. We also

construct a model M′ = {M′
1, . . . ,M

′
n} to describe the

pixels from the complex background with label l0 as out-

liers, where n is the number of parts in the background

model, and M′
i = (A′

i,P
′
i,Θ

′
i) is the i-th part, A′

i is the

corresponding HSV histogram, P ′
i is the respective center

location, and Θ′
i is the location set of the pixels belonging

to the model.

Different from previous works, which segment a target

object based on the given target model (e.g., appearance or

location models), the video segmentation task in this work

is formulated by multi-part tracking and segmentation in

a unified framework. That is, we optimize the pixel la-

bels f and the target multi-part model M simultaneously.

For each pixel p in the image, we assign it with a label

fp ∈ {l0} ∪ {l1, . . . , lk} indicating which part it belongs

to (i.e., multi-part segmentation) rather than merely iden-

tify it as the foreground or background in previous methods,

and optimize the target multi-part model M in the current

frame (i.e., multi-part tracking) simultaneously. After ob-

taining the label assignment of each pixel, the video seg-

mentation task for each frame is naturally completed.

To reduce the computational complexity, we only assign

the labels to the pixels near the predicted target location

at the current frame, which is determined by the previous

multi-part model M. The video segmentation problem is

formulated as follows:

{M∗, f ∗} = argmin
M,f

E (M, f |M), (1)

where E (M, f |M) is obtained from the segmentation

stage that integrates both multi-part tracking and segmen-

tation into a unified energy function. M
∗ and f ∗ are the

multi-part model and the pixel labeling result in the cur-

rent frame, respectively. To solve (1), we first obtain the

predicted target location using the dynamic structure graph

matching method [6]. Specifically, we first use the SLIC al-

gorithm [1] to generate multiple candidate parts in the cur-

rent frame, and use the spectral matching technique [17]

to find the matches between the parts in the previous target

model and the candidate parts, as shown in Figure 1(b). The

coarsely estimated target location is computed based on the

votes of the matched parts. Finally, we set the bounding

box centered at the coarsely estimated target location with

η larger (empirically set as 1.8) than the target size in the

previous frame as the segmentation region.

In the segmentation region, the optimal labels f ∗ for

each pixel and the optimal multi-part model M
∗ in the

current frame are obtained by minimization the energy

E (M, f |M). A RANSAC-style method is proposed to

obtain the solution in two steps: 1. the pixel labels are as-

signed with the current estimated multi-part model by the

α-expansion algorithm [4]; 2. the target parts are tracked

according to the pixel appearance likelihood and motion

consistency with the current labeling. These two steps are

iterated until reaching the minimal energy of the objec-

tive function such that the multi-part tracking facilitates the

multi-part segmentation, and vice versa. After the iterative

optimization, we update the multi-part model based on the

optimal labeling and output the final segmentation result

(See Figure 1(d)). The proposed optimization process is

described in the following section.

4. Joint Online Tracking and Segmentation

We compute the solution {M∗, f ∗} by minimizing

E (M, f |M) in (1). For the clarity of presentation, we

omit M in the following equations. The objective energy

E (M, f ) includes both multi-part tracking and segmenta-

tion information with a regularization term, that is

{M∗, f ∗} = argmin
M,f

E (M, f ) = argmin
M,f

{
D(f ,M)

+
∑

(p,q)∈N
Vp,q(fp, fq) + H (f ,M)

}
, (2)

where D(f ,M) is the data term based on the current label-

ing f and multi-part model M, Vp,q(fp, fq) is the smooth

term describing the interactions between neighboring pix-

els, and H (f ,M) is the regularization term of D(f ,M)
to avoid overfitting [3, 10] by enforcing constraints of the

models in pixel labeling.

4.1. Data Term

The spatio-temporal continuity of two aspects, i.e., target

appearance and location, provides effective information for

the online video segmentation task. If the pixel p is labeled

as li, we expect that the pixel has small energy of belonging

to the part model Mi in both aspects. The data term in (2)

is defined as

D(f ,M) =
∑

p∈S
Dp(li,Mi)

=
∑

p∈S

(
α1 · Φa(ρp;Ai) + α2 · Φl(ℓp;Pi)

)
, (3)

where Dp(li,Mi) is the data energy of the pixel p labeled

as li, S is the pixel set in the segmentation region, α1, α2 are

weight parameters, Φa(ρp;Ai), and Φl(ℓp;Pi) are the en-

ergy terms based on appearance and location, respectively.

In this formulation, Φa(ρp;Ai) is the appearance energy in-

duced by the appearance likelihood of a pixel p belonging

to the model Mi, which is computed as the bin value of the

pixel in the HSV histogram Ai. In addition, Φl(ℓp;Pi) is

the location energy induced by the location likelihood of a

pixel p based on the displacement from the center location



Pi, computed by the product of two single Gaussian models

in the vertical and horizontal.

Similarly, the data energy of a pixel belonging to the

background (i.e., outlier) is described by appearance as well

as location, and defined by the minimal energy of all back-

ground sub-models, i.e., Dp(fp,M
′) = minj Dp(fp,M

′
j).

4.2. Smooth Term

Intuitively, if the two adjacent pixels have similar appear-

ance, the same label is assigned to them with small energy.

On the other hand, the motions of targets from background

are usually distinct, especially at the object boundaries (i.e.,

motion discontinuity). These appearance and motion cues

provide effective information to distinguish the target ob-

jects and background pixels. Based on these factors, the

smooth term Vp,q(fp, fq) in (2) is defined as

Vp,q(fp, fq) = I(fp 6= fq) ·
(
α3 ·∆c(p, q) +α4 ·∆f (p, q)

)
,

(4)
where I(·) returns 1 if its argument is true, and 0 otherwise,

and ∆c(p, q) and ∆f (p, q) are the Euclidean distance be-

tween the two adjacent pixels p and q in the RGB color

space and optical flow field [5] respectively. In the above

formulation, α3, α4 are the weight parameters.

4.3. Regularization Term

To avoid the overfitting problem [10, 3], we regularize

the data term. The regularization term in (2) consists of

three factors: 1. Area: it encourages all the used models

with the similar size; 2. Profile: it penalizes the incomplete

and irregular models in pixel labeling; 3. Complexity: it

penalizes the number of models used in pixel labeling.

H (f ,M) =

k∑

i=1

I
(
∃p : fp = li

)
·
(
α5 · Ha(f ,Mi)

+ α6 · Hp(f ,Mi) + α7 · Hc(f ,Mi)
)
, (5)

where I(·) returns 1 if its argument is true, and 0 otherwise,

Ha(f ,Mi), Hp(f ,Mi) and Hc(f ,Mi) are the area, pro-

file, and complexity regularization terms of the part model

Mi respectively. In this formulation, α5, α6, and α7 are the

corresponding weights. For all the background sub-models,

we set H (f ,M′
i) = 0, where i = 1, · · · , n. These regular-

ization terms are described as follows.

Area. The model with large area does not handle large ob-

ject deformation well. On the other hand, the model with

small area is susceptive to background noise. Hence, we

define the area regularization term as

Ha(f ,Mi) =
∣∣∣|Θi| −

1

k

k∑

j=1

|Θj |
∣∣∣, (6)

where |Θj | represents the number of pixels in Mj .

Profile. As some target parts may be occluded when large

deformation occurs, the object extent and center location

may not be estimated accurately. To encourage the new

models and suppress the inaccurate ones, we define the pro-

file regularization term as

Hp(f ,Mi) = ∆p(Pi, Ci) · Ω
(
∀p ∈ Bi,∆p(ℓp, Ci)

)
, (7)

where Pi and Ci are the center location of the part model

Mi and the region constructed by the pixels labeled as li,

respectively. ∆p(·, ·) is the Euclidean distance function to

calculate the distance between two points in the 2D image

plane. In addition, ℓp is the location of pixel p, and Bi is the

boundary pixel set of the region constructed by the pixels

labeled as li. Ω(·) is the variance function to calculate the

distance variance of the boundary pixels.

Complexity. The constant complexity regularization term

is used to penalize labeling results with large number of tar-

get models, i.e., Hc(f ,Mi) = 1.

5. Energy Minimization

The energy minimization problem in (2) is challenging

as the objective function involves two sets of variables. We

optimize f and M alternatively in spirit similar to [10, 3]

with multi-part tracking and multi-part segmentation.

An initial multi-part model M[0] is obtained from the

optimal models in the previous frame. Clearly incorrect

models may be contained in M
[0]. In the multi-part seg-

mentation stage, pixel labels f [0] are computed by the α-

expansion algorithm with the regularization term and a

small set of reliable models in M
[0] are selected. In the

multi-part tracking stage, the selected models are improved

by re-estimating the HSV histogram and location models

with the energy function (9). Next, we add some hypoth-

esized part models based on the current labeling to ex-

pand the multi-part model M[1]. These two stages are re-

peated to generate a series of labelings f [0], f [1], f [2], · · ·
and multi-part model set M[0],M[1],M[2], · · · until the

energy in (2) is no longer reduced (See Figure 1(c)). Thus

the energy is minimized to obtain the optimal labeling f ∗

and multi-part model M∗.

The energy function E (M, f ) is non-negative with a

natural lower bound of 0. Meanwhile, the energy is non-

increasing over the iterations to ensure the convergence of

this optimization process. We present some examples in

Figure 2 to show how the energy is iteratively reduced.

Meanwhile, as the overall energy is decreased, the corre-

sponding intersection-over-union overlap score of the JOTS

algorithm increases, which demonstrates the effectiveness

of our energy minimization method. The multi-part track-

ing and segmentation modules are described next.



Figure 2. Left to right: energy curves and segmentation results

based on the intersection-over-union overlap metric in the iterative

optimization process of several sample frames in the Monkey and

Girl sequences. Different frames are described by different colors.

The red square on each curve represents the end of each iterative

process.

5.1. MultiPart Segmentation

To segment multiple target parts from the background,

we assign a pixel p in the segmentation region with multiple

labels {l0, l1, . . . , lk} rather than simply classify it as the

foreground or background in previous methods. The pixel

labeling problem is formulated as an energy minimization

of the pairwise Markov random field,

f∗ = argmin
f

D(f ,M)+
∑

(p,q)∈N
Vp,q(fp, fq)+H (f ,M),

(8)
where D(f ,M) is the data term based on the labeling f and

multi-part model M, Vp,q(fp, fq) is the smooth term de-

scribing interactions between neighboring pixels, N is the

4-neighborhood relations between pixels in S . The opti-

mization problem can be solved by the α-expansion algo-

rithm [4] with graph cut effectively since the energy func-

tion remains sub-modular.

5.2. MultiPart Tracking

Once the pixel labeling f in the segmentation region

are computed, we re-estimate the multi-part model M =
{M1, . . . ,Mk} by minimizing the energy E (M, f ).
Given the current pixel labels f , the smooth term in (2) is

fixed and the multi-part tracking problem is formulated as

M
∗ = argmin

M

D(f ,M) + H (f ,M), (9)

It is challenging to solve (9) since the regularization term

is difficult to minimize with respect to the multi-part model

M. Similar to [3], we disregard the regularization term at

first and focus on minimizing the first term of (9) using the

Maximum Likelihood Estimation (MLE) method to obtain

the optimal models M∗. That is, for the i-th selected model

Mi in labeling f , we estimate the HSV histogram Âi, the

center location P̂i, and the pixel location set Θ̂i based on

the current observed pixels labeled as li. Then, if the over-

all energy of (2) is reduced, we use the estimated model

(Âi, P̂i, Θ̂i) to replace Mi; otherwise, the part model Mi

is retained.

This optimization scheme is motivated by two factors:

1. the simplified minimization (dropping the regulariza-

tion term) is effectively solved by the maximum likeli-

hood estimation method while keeping the overall energy

non-increasing; 2. the simplification of the minimization

should have insignificant effect on the complete energy

minimization scheme. That is, if the current solution is

near the good minima, the gradient of the regularization

term ∂
∂M

H (f ,M) will be small since the solution already

obeys the constraints discussed in Section 4.3. Otherwise, a

large gradient ∂
∂M

H (f ,M) indicates that there exists an-

other model which is more plausible to the constraints. The

model will be picked up by the following step to refine hy-

pothesized models (described in next section). Thus, we

defer the difficult aspects of energy minimization to the sub-

sequent multi-part segmentation optimization stage.

5.3. Expanding Hypothesized Part Model

Generating the initial hypothesized model. In the first

frame, multiple parts are generated in the initial target area

by the SLIC algorithm [1]. If the overlap ratio between a

generated part and the user annotated target region is larger

than a threshold θ1 (e.g., 0.5 in this work), we add it to

generate the initial part models and otherwise consider it as

part of the background.

Refining hypothesized models. To obtain a better part

model from existing ones for segmentation, we use two cri-

teria to merge and split regions: 1. Only the neighboring

small regions with similar appearance are randomly chosen

to generate new models. A region is considered small if the

number of pixels is less than the average number of pixels of

the current multi-part model. 2. A labeled region with area

larger than twice of the average area of the current used part

models is split into multiple ones by the SLIC algorithm.

6. Experiments

We evaluate the proposed algorithm on two video seg-

mentation benchmark databases, namely the SegTrack [24]

and SegTrack v2 [18] databases. As discussed in [18], the

pixel errors on objects of different size vary considerably.

In addition, the pixel error metric is sensitive to the manu-

ally annotation errors. For fair and comprehensive compar-

isons, the results on the average pixel error per frame are

reported in the original SegTrack database and the results



Figure 3. Segmentation results of the JOTS algorithm in 3 se-

quences from the SegTrack and SegTrack v2 databases. The es-

timated parts of each frame are presented. Different part models

are described by different colors.

on the intersection-over-union overlap metric are reported

on the SegTrack v2 database.

Quantitative evaluations against several state-of-the-art

methods [16, 13, 27, 18, 24, 12, 7, 25, 6] are presented in

Table 1 and Table 2. The top two performing methods are

shown in red and blue, respectively. Some segmentation

results are presented in Figure 3.

6.1. Implementation Details

In each experiment, the initial hypothesized model is

generated with the simple user annotation followed by the

segmentation method [14] and the SLIC algorithm [1] for

our method (See Figure 1(a)). All experiments are carried

out on a machine with a 2.9 GHz Intel i7 processor and

16 GB memory. The run time complexity of the proposed

JOTS algorithm depends on the size of the target object. For

example, implemented in MATLAB without code optimiza-

tion, it takes about 20 seconds per frame to segment the tar-

get in the Monkeydog-Monkey sequence containing images

of 320× 240 pixels. The source code of the proposed JOTS

algorithm will be made publicly available.

For each sequence, the number of superpixels for the

SLIC algorithm [1] in initialization is set according to the

size of the target. Empirically, the JOTS algorithm performs

well when each part model for both target and background

contains about 50 to 200 pixels. All the other parameters in

the JOTS algorithm are fixed in all experiments. We use 6
bins for each channel of the HSV histogram to describe a

target object. For the preset weight parameters, we take the

following default values: α1 = 2.0, α2 = 1.2; α3 = 3.0,

α4 = 3.0; α5 = 20, α6 = 20, α7 = 10. It takes 2 to 8
iterations to solve (8) (See also Figure 2).

6.2. Databases

SegTrack database. The SegTrack database [24] consists

of 6 challenging videos (Birdfall, Cheetah, Girl, Monkey-

dog, Parachute, and Penguin) with pixel-level human anno-

tated segmentation results for the primary foreground ob-

jects. It includes multiple interacting objects (Cheetah and

Penguin), abrupt motion (Monkeydog and Birdfall), com-

plex deformation (Girl and Monkeydog), and appearance

change (Parachute).

SegTrack v2 database. This database is an extension of

the SegTrack database with more annotated objects and 8
new video sequences are included: Bird of Paradise, BMX,

Drift, Hummingbird, Monkey, Frog, Worm, and Solider.

There are 14 sequences with 24 objects over 947 annotated

frames in this database including different challenging fac-

tors for video segmentation, including multiple interacting

objects (Cheetah, Drift, and Penguin), appearance change

(Bird of Paradise and Drift), occlusion (Cheetah, BMX, and

Drift), and complex deformation (BMX-Person, Humming-

bird, Frog, Solider, Monkey, and Worm).

6.3. Quantitative Comparison

Table 1 shows the quantitative results of the proposed

algorithm and state-of-the-art video segmentation meth-

ods [16, 27, 18, 24, 12, 7, 25, 6]. Overall, the pro-

posed JOTS algorithm performs favorably against most on-

line and offline methods on the SegTrack database using

the pixel error metric. In addition, Table 2 shows that

the JOTS algorithm performs well against the other meth-

ods [18, 16, 13, 12, 25, 6] on the SegTrack v2 database1

using the intersection-over-union overlap metric. Detailed

analysis and discussions on the quantitative evaluation are

presented next.

Multiple interacting objects. The targets in the Penguin

and Cheetah sequences have similar appearance to neigh-

boring objects. For the offline methods SPT+CSI [18]

and [16, 13, 27, 24], all the available object proposals in

both the past and future frames are used for segmentation.

Inevitably, inaccurate object proposals and wrong associ-

ation in these methods easily result in larger segmentation

errors, especially in the cases where the correct target is sur-

rounded by multiple adjacent/interacting objects with sim-

ilar appearance, as shown in Table 2. The same problem

also exists for the online method SPT [18] that relies on the

object proposals. In contrast, the JOTS algorithm performs

well in these sequences. This can be attributed to that the

JOTS algorithm exploits the temporal consistence of both

target parts and their neighboring background, which helps

distinguish these regions when they are similar.

Abrupt motion. The targets in the Birdfall and Monkeydog-

Monkey sequences exhibit fast and abrupt motion. The

Gaussian location model in the JOTS algorithm may not

1We cannot obtain the source code or binary executable to produce the

results of online method [7] in the SegTrack v2 database. Thus, only the

available results in the SegTrack database of [7] are reported.



Table 1. Average pixel error per frame in the SegTrack database. In

the table, − indicates that the result is not reported in the sequence.

The results with ∗ indicates exclusion of the Penguin sequence.

Same as [27], the average score is the mean pixel error per frame.

Sequences [16] [27] SPT+CSI [18] [24] [12] SPT [18] [7] [25] [6] JOTS

Supervised × × × √ √ × √ √ √ √
Online × × × × √ √ √ √ √ √
Birdfall 288 155 242 252 466 188 265 1204 481 163

Cheetah 905 633 1156 1142 1431 983 570 2765 2825 806

Girl 1785 1488 1564 1304 6338 1573 841 10505 7790 1904

Monkeydog 521 365 483 563 809 558 289 2466 5361 342

Parachute 201 220 328 235 1028 339 310 2369 3105 275

Penguin 136285 - 5116 1705 6239 5026 456 9078 11669 571

Average 23949 452∗ 1391 785 2297 1374 400 4156 5282 535

be able to handle large displacement from the center lo-

cation of the target in the previous frame. In such cases,

the coarse center location of the target is predicted by the

spectral matching method before segmentation (See Fig-

ure 1(b)), which enables the JOTS algorithm to handle the

abrupt motion challenge. In contrast, the method [7] tracks

the target only by the optical flow, which makes it fail to

handle the large displacement of the target in conservative

frames, and may be easily affected by the background noise

in complex scenes, e.g., the object in the Birdfall sequence.

Complex deformation. It is challenging to segment the

non-rigid objects in the Girl, Monkeydog-Monkey, Hum-

mingbird, Frog, Worm, Solider, Monkey and BMX-Person

sequences due to large deformation. Notwithstanding that

these sequences contain complex object deformations or

cluttered background challenges, the part-based represen-

tation in JOTS algorithm is able to handle such cases ef-

fectively. It is worth mentioning that the online superpixel-

based tracking methods, e.g., [25] and [6], do not perform

well in these sequences against the JOTS algorithm (See

Table 1 and Table 2). The superpixels are generated in-

dependently in each frame by these methods. Thus, some

of the superpixels contain both foreground and background

pixels, and the segmentation results are less accurate. In

addition, the HT method [12] also does not perform well

mainly due to the pixel-based representation without effec-

tive local constraints in segmentation (i.e., pixels from the

foreground and background are easily confused based only

on the global appearance information). With the combina-

tion of pixel-level segmentation and part-level tracking in

a unified iterative optimization formulation, both represen-

tations facilitate each other for accurate segmentation and

tracking results in our method.

Appearance change. The large appearance change chal-

lenge happens in the Parachute, Bird of Paradise and Drift

sequences. The proposed JOTS algorithm performs well

against the other video segmentation methods [13, 18, 16]

in these sequences (See Table 2). The algorithm [13] di-

rectly aggregates superpixels from both the foreground and

background without considering the target object specifi-

cally, and thus the segmentation results are less accurate. In

Table 2. Intersection-over-union overlap metric of the segmenta-

tion of each algorithm in the SegTrack v2 database. In the table,

− indicates that the method fails to complete the segmentation task

in the sequence, and ∗ indicates exclusion of the failed sequences.

Sequence/Object SPT+CSI [18] [16] [13] SPT [18] [12] [25] [6] JOTS

Supervised × × × × √ √ √ √
Online × × × √ √ √ √ √

Girl 89.2 87.7 31.9 89.1 53.6 52.4 62.0 84.6

Birdfall 62.5 49.0 57.4 62.0 56.0 32.5 36.4 78.7

Parachute 93.4 96.3 69.1 93.2 85.6 69.9 59.3 94.4

Cheetah-Deer 37.3 44.5 18.8 40.1 46.1 33.1 38.7 66.1

Cheetah-Cheetah 40.9 11.7 24.4 41.3 47.4 14.0 19.7 35.3

Monkeydog-Monkey 71.3 74.3 68.3 58.8 61.0 22.1 25.7 82.2

Monkeydog-Dog 18.9 4.9 18.8 17.4 18.9 10.2 3.83 21.1

Penguin-#1 51.5 12.6 72.0 51.4 54.5 20.8 40.1 94.2

Penguin-#2 76.5 11.3 80.7 73.2 67.0 20.8 37.9 91.8

Penguin-#3 75.2 11.3 75.2 69.6 7.59 10.3 31.2 91.9

Penguin-#4 57.8 7.7 80.6 57.6 54.3 13.0 30.2 90.3

Penguin-#5 66.7 4.2 62.7 63.4 29.6 18.9 10.7 76.3

Penguin-#6 50.2 8.5 75.5 48.6 2.09 32.3 35.0 88.7

Drift-#1 74.8 63.7 55.2 73.8 62.6 43.5 57.2 67.3

Drift-#2 60.6 30.1 27.2 58.4 21.8 11.6 13.8 63.7

Hummingbird-#1 54.4 46.3 13.7 45.4 11.8 28.8 25.1 58.3

Hummingbird-#2 72.3 74.0 25.2 65.2 - 45.9 44.2 50.7

Frog 72.3 0 67.1 65.8 14.5 45.2 38.8 56.3

Worm 82.8 84.4 34.7 75.6 36.8 27.4 44.3 79.3

Soldier 83.8 66.6 66.5 83.0 70.7 43.0 54.2 81.1

Monkey 84.8 79.0 61.9 84.1 73.1 61.7 58.7 86.0

Bird of Paradise 94.0 92.2 86.8 88.2 5.10 44.3 46.5 93.0

BMX-Person 85.4 87.4 39.2 75.1 2.04 27.9 36.0 88.9

BMX-Bike 24.9 38.6 32.5 24.6 - 6.04 3.86 5.70

Mean per object 65.9 45.3 51.8 62.7 40.1∗ 30.7 35.6 71.8

Mean per sequence 71.2 57.3 50.8 68.0 41.0∗ 37.0 40.4 72.2

contrast, the JOTS algorithm integrates target parts state es-

timation (from multi-part tracking) and pixel labeling (from

multi-part segmentation) in a unified energy minimization

formulation, such that more accurate segmentation results

can be generated in the RANSAC-style iterative optimiza-

tion process (See Figure 2). The online method SPT [18]

and offline methods SPT+CSI [18] and [16] deal with the

appearance changes of the target by refining and associat-

ing the object proposals in consecutive frames. In contrast,

the JOTS algorithm performs well in handling appearance

changes of targets online by selecting good part models in

the optimization process (as discussed in Section 5.3).

Occlusion. As presented in Table 2, the proposed JOTS

algorithm performs well when target objects are occluded

(e.g., in the Cheetah, Drift and Penguin sequences), which

can be explained by the RANSAC-style optimization ap-

proach for selecting a small set of reliable target models to

generate more accurate results (as discussed in Section 5).

However, when a target object undergoes heavy occlusion

in the very first frame of the BMX-Bike sequence, the unsu-

pervised methods SPT [18], SPT+CSI [18] and [16, 13] per-

form well against our method. Since the occluded parts are

contained in the object proposals, all these methods are able

to associate the unoccluded and occluded parts of the target

in the BMX-Bike sequence to achieve better performance.

However, our method considers only the spatio-temporal

consistence between consecutive frames to segment objects

online. Thus, it is difficult for the proposed JOTS algorithm



Figure 4. Sensitive analysis of the part model size in the SegTrack

database based on the intersection-over-union overlap metric. The

region between two red dashed lines is the suggested value range

for the number of initial superpixels.

to recognize the separate occluded parts since the informa-

tion of them is not available in the first frame. Overall,

our method performs well in both databases when occlu-

sion challenge happens.

6.4. Discussion

Sensitive analysis of the part model size. We study the in-

fluence of the number of initial superpixels in the proposed

JOTS algorithm, which resolves the size of initial part mod-

els. As presented in Figure 4, the JOTS algorithm is rel-

atively robust to the small perturbations of the number of

initial superpixels. Specifically, we notice that the perfor-

mance of the JOTS algorithm improves to reach a stable

state as the number of superpixels increases for rigid tar-

get objects, e.g., the Parachute, Penguin, and Birdfall se-

quences. While for non-rigid objects, e.g., the Cheetah-

Deer, Girl, and Monkeydog-Monkey sequences, the JOTS

algorithm achieves relative better results only in the region

between two red dashed lines. Obviously, the geometric

structure of the rigid targets are relative stable. Thus, when

the number of superpixels is larger than a certain value, the

JOTS algorithm can obtain enough local information of the

target to produce desirable results. Meanwhile, for the non-

rigid target objects, their geometric structure changes dra-

matically, which weakens the discriminative power of the

location aspect of part model. Thus, if the number of super-

pixels is too small, the part models are less discriminative

to output satisfactory results. On the other hand, if it is too

large, the part models will be small and will be removed as

the noise during the target motion, which also results in bad

performance.

Effectiveness of the regularization term. To demonstrate

the effectiveness of the regularization term in the proposed

JOTS algorithm, we compare it with two baselines meth-

ods, i.e., “JOTS-com” and “w/o regularization” on the Seg-

Track database using the intersection-over-union overlap

metric. The “JOTS-com” method uses only the Complex-

ity regularization term in the regularization term (5), i.e.,

hf (M) =
∑k

i=1 I(∃p : fp = li) ·
(
α7 · h

3
f (Mi)

)
, and the

Figure 5. Comparisons of the JOTS algorithm and its four baseline

methods of the sequences in the SegTrack database based on the

intersection-over-union overlap metric.

“w/o regularization” approach does not use the regulariza-

tion term in the energy objective (2), i.e., hf (M) = 0. As

shown in Figure 5, the JOTS algorithm performs better than

both baseline methods in all sequences, which demonstrates

the effectiveness of the well designing regularization term.

The regularization term in (6) not only considers the con-

straints of the number of models (i.e., the Complexity reg-

ularization term) to remove some useless models, but also

the constraints of the size and regularity of the models (i.e.,

the Area and Profile regularization terms) to improve the

performance (as discussed in Section 4.3).

Integration of multi-part tracking and segmentation. To

demonstrate the effectiveness of the integration of multi-

part tracking and segmentation in a unified objective func-

tion, we construct two baseline methods, i.e., “w/o itera-

tions” and “w/o refinement”. The “w/o iterations” method

indicates that multi-part tracking and segmentation are not

optimized iteratively, and the “w/o refinement” approach in-

dicates that the model refinement step (See Section 5.3) is

not included in the iterative process. Figure 5 shows that

the JOTS algorithm outperforms both baseline methods in

all sequences. Without the iterative process, the multi-part

tracking and segmentation modules fail to help each other,

and thus the results are less accurate. Without refining hy-

pothesized models, multiple good models can not be added,

which reduces the accuracy of the results.

7. Conclusion

In this paper, a joint online tracking and segmentation

algorithm based on multi-part models is proposed for on-

line video segmentation. Both multi-part segmentation as

pixel labeling and tracking as part models estimation pro-

cess are integrated in a unified energy minimization formu-

lation, which is effectively solved by a RANSAC-style ap-

proach with the α-expansion algorithm. Furthermore, mul-

tiple constraints are integrated to regularize the pixel label-

ing and part models estimation. Extensive experimental re-

sults on two benchmark databases demonstrate the effec-

tiveness of the proposed algorithm against the state-of-the-

art methods for video segmentation.
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