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ABSTRACT requirements, the threshold voltage is also scaled proportionately to

provide sufficient current drive and reduce the propagation delay. As
A software energy estimation methodology is presented that avoigige threshold voltage is lowered, the subthreshold leakage current
explicit characterization of instruction energy consumption and preéyecomes increasingly dominant. We also outline a methodology to
dicts energy consumption to within 3% accuracy for a set of bencleparate the leakage current from the switching current. The leakage

mark programs evaluated on the StrongARM SA-1100 and Hitacliurrent model has less than 6% error for the entire working range of
SH-4 microprocessors. The tool, JouleTrack, is available as an onlifige StrongARM.

resource and has various estimation levels. It also isolates the switch-

ing and leakage components of the energy consumption.
2. INSTRUCTION ENERGY PROFILING
Keywords

The experimental setup consisted of the Brutus SA-1100 Design Veri-
fication Platform which is essentially the StrongARM SA-1100 micro-
processor connected to a PC using a serial link. It can operate from 59
MHz to 206 MHz, with a corresponding core supply voltage of 0.8 V
1. INTRODUCTION to 1.5 V. The power supply to the StrongARM core was provided
externally through a variable voltage sourcemeter with the I/O pads
Estimation of software energy consumption is becoming crucial ifunning at a fixed supply voltage. The ARM Project Manager (APM)
embedded applications. Instruction level power estimation tools haygs used to debug, compile and execute software on the StrongARM.
been proposed to computed the energy consumption of a given saffurrent measurements were performed using the sourcemeter built
ware [1][2][3]. The basic idea is to run each instruction or shortinto the variable power supply. The instruction and data caches were
sequences of instruction is a loop and measure the current/power c@abled before the programs were executed. To measure the current
sumption. Their primary drawback, however, is that these tools rely QRat is drawn by a subroutine, the subroutine was placed inside a loop

exhaustive characterization of the energy consumption of the entigth multiple iterations till a stable value of current was measured.
ISA (Instruction Set Architecture) and inter-instruction effects. The

estimation model is compute intensive, requiring a complete trace
analysis of the program’s instructions and is therefore slow. Our exper- o025
iments on the StrongARM, SA-1100 [4] and Hitachi SH-4 [5] micro-
processors (two very popular low power embedded processor) shov

that the variation in the current consumption is quite small. A lot of 0.2 1
overheads are common across instructions and as a result the overi _
current consumption of a program is a weak function of the actual <
instruction stream and to a first order depends only on the operating E 0.15- 1
frequency and voltage. Second order variations do exist but were mee 5
sured to be less than 7% for a set of benchmark programs. Therefore, o
complete instruction level trace analysis is unnecessary and a simpl £ °ir
cycle accurate simulation can be used. We propose a simple fast tecl £
nique to estimate software energy and estimate second order varic
tions. Initial experiments indicate an accuracy within 3% of actual 09| 1
measurements.
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With increasing trends towards low power design, supply voltages are 0
constantly being lowered as an effective way to reduce power con-
sumption. However, to satisfy the ever demanding performanceFigure 1. Strong SA-1100 instruction set current consumption
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0.229A while the other instructions consume about 0.170A. The totd, SOFTWARE ENERGY PROFILING

variation in current consumption is 0.072A which is 38% of the overall

average current consumption. Figure 2 shows the core current cog- :

sumption for the Hitachi SH-4 processor running at 2.0V core powg?'l First Order Model

supply. The average instruction current is 0.29A, with a variation ofvhile the instruction level current consumption has a variation of
0.11A, which once again is 38% of the average. about 38%, the variation of the current consumption in programs is
much less. Figure 4 shows the current consumption of 6 different
benchmark programs at different supply voltage and frequency levels
in the StrongARM. The maximum current variation is less than 8%.
This implies that to a first order current consumption of a piece of code
is independent of the code and depends only on the operating voltage
and frequency of the processor. The first order software energy estima-
tion model is then simply

Etot = Vadlo(Vaa )AL 1)
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whereVyq is the supply voltage ardit is the program execution time.
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Figure 2. Hitachi SH-4 instruction set current consumption
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The current variation within an instruction (as a function of addressing

modes and data) is even smaller. Figure 3 shows the current consum|  o.0s-
tion of 3 different instructions as a function of various addressing
modes and data. In general, we observed that to a first order ths o
instruction current consumptions are independent of the addressin ~ #¥¢
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3.2 Second Order Model

While the current variation across programs is quite small in the Stron-
gARM, it might be significant in datapath dominated processors. For
example, the current consumption of the multiply instruction in DSPs
will be far greater than the current consumption of other instructions.
In such cases a simple model like Equation 1 will have significant
error. The following second order model is proposed.

Current (A)

0165 1 LetC, (kO [0, K —1]) denote the&K energy differentiated instruction

016k i classes in a processor. Energy differentiated instruction classes are par-

titions of the instruction set such that the average current consumption

of any a class is significantly different from that of another class and

015 the current variation within a class is small. Class partitions can also
Instruction Modes be done on the basis of different cycles, e.g. instruction, data access

etc. Letc, denote the fraction of total cycles in a given program that

can be attribute to instructions/cycles in the cla3g i.e.

ch = 1.The proposed second order current consumption equation

Based on the previous discussion, it is reasonable to conclude that the

Figure 3. Current variations within instructions

common overheads (such as caches, decode logic etc.) in contempo- K-1
rary microprocessors are large and overshadow any instruction specific [(Vgg T) = 15(Vge ) z W, C %)
variations. Therefore, estimating software energy consumption with an k=0

elaborate instruction trace and inter-instruction analysis is overkill.



wherew are a set of weights. L&V represent the vectonf, wy, ..,  operating point. Internal cycles and sequential memory access domi-
Wk.1]- Let P, (nO [0, N -1] ) represent a set df benchmark pro- nated programs will have a lower than average current consumption..
grams,C,, denote the cycle fractions vector for progrdipi.e.

n n n . .
[Cy:Cy - Ck_1 ] @andly, denote its average current consumption. TagLE 1 : WEIGHTING FACTORS FOR K = 4 ON THE STRONGARM
Based on Equation 2, we can express the current véétothe fol-
lowing form. Class Weight Value
I = 14(Vyg F)ICW 3 -
oVaar ) ® Instruction W, 2.1739
wherel is the average curreniyf |4, ..., I\.4] for the N programsCis Sequential memory access W, 0.0311
anNxK matrix with C,, as then'™ row. The weights can be solved for Non-sequential memory access  wj 1.2366
in an least mean square sense using the pseudo-inverse Internal cycles Wy 0.8289
_ 1 T 1T
W = W_f-(c C) C'I 4
oVaa ) The current prediction error with a second order model can be reduced

HQ less than 2%. The advantage is that this accuracy comes for free. No
elaborate instruction level profiling is required. Such cycle counts as
the ones shown in Table 1 are easily obtained using simulators/debug-
gers available with standard processors. Figure 6 shows the overall
improvement of current prediction accuracy on 66 test points. It can be
seen that the current prediction is better in every case (the maximum
error of 4.7% using a first order model is reduced to 2.3%). The effec-

If the instruction classes are a valid energy differentiated partition, t
weighting vectoW will reflect the energy differentiation. The maxi-
mum current prediction error will also go down considerably.

Sial ] . I ;

j;“‘ tiveness of the current weighting scheme will become more pro-
gij 1 nounced in processors having a wider variation in average current
il 7 :

S i consumption.
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frequency of the StrongARM SA-1100 -3
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On the StrongARM SA-1100, we partitioned the cycles into 4 classes - 10 20 30 40 50 60 70
(i) Instruction, (ii) Sequential memory access (accesses which are Programs

related to previous ones) (iii) Non sequential accesses and (iv) Internal
cycles. Current measurements were done for 6 benchmark programs
running at all possible frequency and voltage combinations. The
weighting vector is shown in Table 1. The average current drawn at
each operating frequency of the StrongARM is shown in Figure 5. Td. LEAKAGE ENERGY MODELLING
StrongARM operates at 11 discrete frequency levels. The minimum

operating voltage required is also shown and is almost linear with freg 1 Principle

quency. In fact the normalized operating voltage and frequency are ) ] ) )
related as The power consumption of a subroutine executing on a microproces-

sor can be macroscopically represented as

Figure 6. First and second order model prediction errors

Vg = 0.66f +0.33 (5)

2
_ ~ Piot = Pyvnt Pstat = C Vgq T+ Vg4l (6)
whereVyq andf are the normalized to their respective maximum val- ot dyn” " stat Lhad dd’leak
ues. whereP,; is the total power which is the sum of the static and

o ) dynamic component<, is the total average capacitance being
The weighting factors can be interpreted as follows. For pProgramgyitched by the executing program, per clock cycle, tisthe oper-

where instruction cycles and non-sequential memory accesses doRQjiq frequency (assuming that there are no static bias currents in the
nate the current consumption is higher than the average current at tHﬁEroprocessor core) [6]. Let us assume that a subroutine takes

time to execute. This implies that the energy consumed by a single
execution of the subroutine is



ing voltage, while the leakage charge should increase linearly with the
execution time. Figure 8 shows the measured charge flow as a function

whereC,y, is the total capacitance switched by executing subroutin@' € operating frequency for a 1024 point FFT. The amount of charge
Clearly, if the execution time of the subroutine is changed (by chand/®" IS SImply the product of the execution time and current drawn. As
ing the clock frequency), the total switched capacitafg, remains expect_ed, the total chgrg(_a consumptlc_)n decrea_ses _almost linearly with
the same. Essentially, the integrated circuit goes through the same %B£"ating frequency (i.e. increases with execution time) and the slope
of transitions except that they occur at a slower rate. Therefore, if Wl € €urve, at a given voltage, directly gives the leakage current at
execute the same subroutine at different frequencies, but at the sal& Voltage.

voltage, and measure the energy consumption we should observe a e dotted lines are the linear fits to the experimental data in the mini-
ear increase with the execution time with the slope being proportiong{ym mean-square error sense. At this point it is worthwhile to men-

B _ 2
Eiot = Protdt = CiotVaa * Vadliealdt Q)

to the amount of leakage. tion that the term “leakage current” has been used in an approximate
) sense. Truly speaking, what we are measuring is the total static current
4.2 Observations in the processor, which is the sum of leakage and bias currents. How-

Th brouti h f " the decimation-in-time F ever, in the SA-1100 core, the bias currents are small and most of the
€ subroutine chosen for execution was the decimation-in-ime tic currents can be attributed to leakage. This assertion is further

Fourier Transform (FFT) algorithm because it is a very standard, come :
. . . - . . . upported by the fact that the static current we measure has an expo-
putationally intensive, Digital Signal Processing (DSP) operation. Thﬁ bp y P

. . ential behavior as shown in the next section.
microprocessor, therefore, runs at maximum ‘horsepower’. The execu-

tion time for anN = 1024 point FFT on the StrongARM is a few tenths

of a second and scales & NlogN) . To obtain accurate execution g ‘
time and stable current readings, the FFT routine was run a few hun- ey
dred times for each observation. A total of eighty different data points S Toov
corresponding to different supply voltages between 0.8 V and 1.5V
and operating frequencies between 59 MHz and 206 MHz were com-

piled.
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Figure 8. FFT charge consumption
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From the BSIM2 MOS transistor model [7], the sub-threshold current
in a MOSFET is given by

Vg—Vs—Viqo—Y'VstnV \Y
(GSTHOYSnDS)D _Yos

n'vy Vi
09 206 | = Ae —-e 8
Voltage (V) Frequency (MHz) sub é;l B (8)
Figure 7. FFT energy consumption where
, : Lo ' 2 .18
Figure 7 illustrates the implications of Equation 7. When the operat- A= uOCOX-L—e—f—fVT e 9
eff

ing frequency is fixed and the supply voltage is scaled, the energy

scales almost quadratically. On the other hand, when the supply voiindV is the thermal voltage/ryg is the zero bias threshold voltage,
age is fixed and the frequency is varied the energy consumptiop s the linearized body effect coefficient, is the Drain Induced
decreases linearly with frequency (i.e. increases linearly with the exgarrier Lowering (DIBL) coefficient an¥g, VgandVpgare the usual
cution time) as predicted by Equation 7. Not all frequency, voltaggate, source and drain-source voltages respectively. The important
combinations are possible. For example the maximum frequency pbint to observe is that the subthreshold leakage current scales expo-
the StrongARM is 206 MHz and it requires a minimum operating voltnentially with the drain-source voltage.

ageof 1.4 V. ) )
The leakage current at different operating voltages was measured as

We can measure the leakage current from the slope of the energy chiscribed earlier, and is plotted in Figure 9. The overall microproces-
acteristics, for constant voltage operation. One way to look at theor leakage current scales exponentially with the supply voltage.
energy consumption is to measure the amount of charge that flogaised on these measurements the following model for the overall
across a given potential. The charge attributed to the switched capagiakage current is proposed for the microprocessor core,

tance should be independent of the execution time, for a given operat-



(10)

wherelg = 1.196 mA anch = 21.26 for the StrongARM SA-1100.
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Figure 9. Leakage current variation
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4.3 Explanation of exponential behavior bb
The exponential dependence of the leakage current on the supply volt- V) Measured Model (%)
age can be attri_butt_’:\d to the DIBL gffect. Consider the stack Qf NMOS 150 20.41 20.10 150
devices shown in Figure 10. Equation 8 suggests that for a single tran- 120 16.35 16.65 184
sistor, the leakage current should scale exponentially WitkrV pp ' : ' —
because of the DIBL effect. However since the rafjg;/ V1 is larger 128 gés ﬁjg :;74
than 2, the term inside the brackets of Equation 8 is almost 1. It has : . : :
been shown in [8] that this approximation is also true for a stack of two 1.10 9.39 9.47 -0.87
transistors. With three or more transistors, the rafig / V1 for at 1.00 7.96 7.85 1.40
least the lowest transistor becomes comparable to or even less than 1| 0.90 6.39 6.53 -1.70

16

Therefore, the leakage current of a MOS network can be expressed as
a function of a single MOS transistor (by accounting for the signal
probabilities at various nodes and using the result of Equation 11). If
the number of stacked devices is more than three, the leakage current
contribution from that portion of the circuit is negligible. If there are
three transistors stacked such that two of them are ‘OFF’ and one is
‘ON’ then the leakage analysis is the same as the stack of two ‘OFF’
transistors. For parallel transistors, the leakage current is simply the
sum of individual transistor leakages. A similar argument holds for
PMOS devices. Since, the leakage current of a single MOS transistor
scales exponentially witNpp, using the above arguments, we can
conclude that the total microprocessor leakage current also scales
exponentially with the supply voltage.

4.4 Separation of current components

Table 2 compares the measured leakage current with the values pre-
dicted by Equation 5. The maximum percentage error measured was
less than 6% over the entire operating voltage range of the Stron-

gARM which suggests a fairly robust model.

TABLE 2 : LEAKAGE CURRENT MEASUREMENTS

Therefore, the term inside the bracket of Equation 8 cannot be

neglected for such cases. Th? leakage current progressively decregges, j o the leakage model described by Equation 10, the static and
as the number of trans_lstors in the stack |ncrease_s and for a Stackd%amic components of the microprocessor current consumption can
more than three transistors the leakage current is small and can t?@separated The standby current of the StrongARM in the “idle”
neglected. It has further been shown in [8] that the ratio of the leakagg, o at 1.5 V is about 40 mA. This is not just the leakage current but

currents for the three cases shown in Figure 10 can be written as
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Figure 10. Effect of transistor stacking

(11)

also has the switching current due to the circuits that are still being
clocked. On the other hand, this technique neatly separates the pure
leakage component (assuming negligible static currents) from all other
switching currents.

5. RESULTS

The estimation techniques described in the previous sections were
implemented in a web-based tool called JouleTrack. The tool is avail-
able at http://dry-martini.mit.edu/JouleTrack. The broad approach in
the tool is summarized in Figure 11. The user uploads his C source
code. The webserver uses Common Gateway Interface (CGI) scripts to
create a temporary workarea for the user. His programs are compiled
and linked with any standard C libraries. The user also specifies any
command line arguments that the program might need along with a
target operating frequency. Compiler optimization options are also
available. The user can choose the current prediction model. Compile/
link time errors are reported back by the CGlI to the user. If no errors
exist the program is executed on an ARM simulator which produces
the program outputs (which the user can view), assembly listing



(which can also be viewed) as well as run-time statistics like execution ACKNOWLEDGMENTS
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and switching energy components is also discussed. The proposed
leakage current model has less than 6% error. The techniques have
been implemented in an web-based software energy estimation tool
called JouleTrack.



