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Understanding the microscopic structure and macroscopic properties of condensed

matter from a molecular perspective is important for both traditional and modern

chemical engineering. A cornerstone of such understanding is provided by statistical

mechanics, which bridges the gap between molecular events and the structural and

physiochemical properties of macro- and mesoscopic systems. With ever-increasing

computer power, molecular simulations and ab initio quantum mechanics are promising

to provide a nearly exact route to accomplishing the full potential of statistical mechanics.

However, in light of their versatility for solving problems involving multiple length and

timescales that are yet unreachable by direct simulations, phenomenological and semiem-

pirical methods remain relevant for chemical engineering applications in the foreseeable

future. Classical density functional theory offers a compromise: on the one hand, it is able

to retain the theoretical rigor of statistical mechanics and, on the other hand, similar to

a phenomenological method, it demands only modest computational cost for modeling the

properties of uniform and inhomogeneous systems. Recent advances are summarized of

classical density functional theory with emphasis on applications to quantitative modeling

of the phase and interfacial behavior of condensed fluids and soft materials, including

colloids, polymer solutions, nanocomposites, liquid crystals, and biological systems.

Attention is also given to some potential applications of density functional theory to

material fabrications and biomolecular engineering. © 2005 American Institute of Chemical

Engineers AIChE J, 52: 1169–1193, 2006

Keywords: statistical mechanics, complex fluids, thermodynamics/statistical, surface

chemistry/physics

Introduction

The goal of statistical mechanics is to interpret and predict

the properties of macroscopic systems on the basis of their

microscopic constituents.1,2 It provides the bedrock for under-

standing numerous natural phenomena and for design and

optimization of chemical processes. The importance of statis-

tical mechanics in chemical engineering has been recognized

for many years.3-5 One prominent example, primarily from the

1960s and 1970s, is the development and application of equa-

tions of state and local-composition models, attained by inge-

nious combinations of basic concepts from statistical mechan-

ics (in particular, van der Waals equation of state and

Boltzmann’s distribution law) with extensive experimental da-

ta.6,7 These semiempirical methods have been widely used in

phase- and chemical-equilibrium calculations that are essential

in chemical engineering practice. Another well-known exam-

ple constitutes the applications of statistical-mechanical models

to gas adsorption and hydrate formation.8,9

Although the van der Waals equation of state and Boltz-

mann’s distribution law have played a pivotal role in many

classical molecular-thermodynamic models, in recent years, a
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number of more sophisticated statistical-mechanical methods

have also been used, driven by diverse special applications

related to fluid-phase equilibria, polymeric materials, colloids,

and interfacial engineering. These more rigorous theoretical

methods are based on molecular simulations,10,11 liquid-state

theories,12,13 polymer self-consistent field theory,14-16 and clas-

sical density functional theory.17,18 For example, powerful

field-theoretical methods have been developed for predicting

the mesoscopic structures of polymeric systems;14 general

equations of state have been established for fluid-phase equi-

librium calculations involving virtually any system of practical

interest.19,20 With the rapid increase of computer power, mo-

lecular simulation and ab initio quantum mechanics promise to

offer a universal approach to the realization of the full potential

of statistical mechanics.21 However, simulation cannot replace

all analytical methods in the near future, not only because

significant progress has yet to be made for modeling multiple

time- and length-scale problems that cannot be described by

current simulation methods but, more important, interpretation

of simulation data, much like experimental results, often re-

quires analytical tools to attain a good understanding of the

underlying physics. Analytical methods are by and large much

more efficient than direct simulations for predicting the molec-

ular constituents of a system with “tailored” properties, a

reverse problem that is of much interest in practical applica-

tions including drug design, gene mutation, and materials syn-

thesis.

Classical density functional theory (DFT) provides a com-

promise between conventional semiempirical methods and mo-

lecular simulations.18,22-24 On the one hand, DFT is able to

retain the microscopic details of a macroscopic system at a

computational cost significantly lower than that used in simu-

lation methods. On the other hand, DFT is more rigorous than

conventional phenomenological theories. It is applicable to

both uniform and confined systems within a self-consistent

theoretical framework. Although the practical value of DFT for

modeling interfacial properties was recognized soon after the

methodology was first introduced to classical systems in

1976,25 its broader applications for studying equilibrium and

kinetics of phase transitions, self-assembly, properties of poly-

meric materials, thin films, and a variety of biological systems

emerged only recently. Meanwhile, much progress has been

made in recent years in the development of more efficient

numerical algorithms and in the formulation of more realistic

free-energy functionals to account for the thermodynamic non-

ideality attributed to various intermolecular forces.

The purpose of this article is to review, along with illustra-

tive examples, recent progress of classical DFT in modeling the

phase and interfacial properties of fluids and soft materials.

Following a brief introduction to the basic concepts and new

developments toward a unified free-energy functional reflect-

ing various components of intermolecular forces, the main text

is concerned with applications of DFT to (1) surface tension

and interfacial behavior, (2) adsorption of gas and materials

characterization, (3) wetting transitions, (4) solvation, (5)

freezing and melting transitions, (6) phase behavior of liquid

crystals, (7) properties of polymeric materials and composites,

and (8) molecular self-assembly. This article concludes with a

brief discussion of some possible future applications of DFT to

fabrication of novel materials, environmental protection, and

biomolecular engineering.

No attempt has been made to cover all aspects of classical

DFT in the recent literature. Therefore, significant publications

may have been omitted. The contents discussed here are illus-

trative rather than exhaustive. Topics of interest to chemical

engineers that are not discussed because of the page limitation

include transport in ion channels,26,27 properties of biomacro-

molecular molecules in a “crowded” environment,28 kinetics of

nucleation,29 and nonequilibrium phase transitions.30-32 A re-

view of these topics would show that DFT is useful not only for

solving equilibrium problems but also for modeling kinetics

and transport phenomena at the molecular level.

Classical Density Functional Theory (DFT)

Basic concepts

Classical DFT stems from a mathematical theorem stating

that in an open system specified by temperature T, total volume

V, and chemical potentials of all constituent molecules �i, the

underlying external potential for each chemical species, de-

noted by �i(R), is uniquely determined by the equilibrium

density profiles or by the spatial distribution of molecules

�i(R).33 A corollary of this theorem is that for a classical

system, the Helmholtz energy can be expressed as a unique

functional* of the density profiles of the constituent molecules,

independent of the external potential. This Helmholtz energy

functional, designated as F[�i(R)], is often referred to as the

intrinsic Helmholtz energy, meaning that it is an inherent

property of the system and is independent of the external

potential. The mathematical foundation of DFT, in the lan-

guage of quantum mechanics, was first established by Hohen-

berg and Kohn33 in a seminal article published in 1964 con-

cerning the ground-state properties of an electron gas. It was

later generalized to nonzero temperatures by Mermin.34 Indeed,

from a mathematical perspective, classical DFT closely resem-

bles electronic DFT (unfortunately both have the same acro-

nym) except that in the former case, the density functional

applies to the structure of atoms or coarse-grained elements of

a polymeric molecule, whereas the latter applies to electrons.

Fueled with a pragmatic computational scheme proposed by

Kohn and Sham,35 electronic DFT has evolved into a powerful

approach in computational chemistry.

Although in a classical sense, the position of an electron or

atom can be specified by a conventional three-dimensional

vector r, a vector of higher dimensionality is necessary to

describe the spatial configuration of a polyatomic molecule

with m atoms (see Figure 1). A molecular density profile �i(R)

is thus defined as the ensemble average of instantaneous mo-

lecular densities

�i�R� � ��
Ni

�(r1, r2, . . . , rmi
)� (1)

where the multidimensional vector R � (r1, r2, . . . , rm) de-

notes the positions of all atomic particles; Ni stands for the

number of molecules of species i; and � represents a multidi-

mensional Dirac-delta function, which is infinite when m atoms

* A functional is a function whose input variable is also a function. For instance,
in a simple atomic fluid the Helmholtz energy functional F[�(r)] maps a density
function �(r) to a real number for the Helmholtz energy.
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of the polyatomic molecule are placed at R � (r1, r2, . . . , rmi
)

and zero otherwise. The angle brackets in Eq. 1 stand for the

ensemble average. Because the multidimensional vector R

defines not only the position but also the configuration or

spatial arrangement of a multiatomic molecule, the molecular

density profile �i(R) entails information on both the micro-

scopic structure and on the average configuration of molecules.

For convenience, the multidimensional molecular density

�i(R) is often expressed in terms of the atomic densities �i,j(r),

that is, the density profiles of the consisting atomic particles,

�i, j�r� �� dR��r � rj��i�R� (2)

where the subscript j stands for an atom and the subscript i for

a molecule. If concern is restricted to atomic fluids such as

argon, the molecular density is simply a function of a normal

three-dimensional vector standing for the position of an atom.

Even though, in a uniform atomic fluid, the spatial average of

the atomic density �(r) becomes identical to the bulk density

�av, the local density �(r) can be infinitely large when the atoms

are localized such as in an idealized crystalline solid. For

example, in a one-component hard-sphere system at the close-

packed limit, the average reduced density is �av�
3 � �2,

where � denotes the hard-sphere diameter. In this case, the hard

spheres are arranged onto a face-centered cubic lattice and the

local density is infinite at the lattice sites and zero otherwise.

The second law of thermodynamics requires that, for an open

system, the grand potential � must be minimized at equilib-

rium. The grand potential is also a functional of the molecular

density �i(R), defined as

���i�R�� � F��i�R�� � �
i

� dR�i�R���i�R� � �i� (3)

Minimization of the grand potential functional yields a varia-

tional equation

�F��i�R��/��i�R� � �i�R� � �i � 0 (4)

Given an expression for the intrinsic Helmholtz energy func-

tional F[�i(R)], Eq. 4 can be solved to obtain the equilibrium

density profiles. From these density profiles, both structural and

thermodynamic properties of the system can be calculated by

following the standard statistical–mechanical relations.2 The

detail formalism of DFT can be found in textbooks and previ-

ous reviews.17,18

DFT is useful not only for inhomogeneous systems that are

subject to an external field but also for uniform systems such as

conventional bulk vapor and liquid phases, and for anisotropic

fluids such as liquid crystals. Although the average local den-

sity of a uniform fluid is the same everywhere, near an arbitrary

tagged molecule the average local density is inhomogeneous.

Indeed, as shown in Figure 2, this local average density is

closely related to the structure of a fluid or to the radial

distribution function. It has been demonstrated that DFT can be

used to derive various liquid-state theories including the Orn-

stern–Zernike equation and its closures such as that using

hypernetted chain (HNC) theory.22

Landmarks of classical DFT

Apart from the aforementioned mathematical theorem, vari-

ational approaches were used in statistical mechanics long

before the advent of classical DFT. As early as 1893, van der

Waals developed a successful molecular theory for represent-

ing the structure and surface tension of a vapor–liquid inter-

face. Van der Waals’ theory is based on a gradient expansion

of the Helmholtz energy functional with respect to a conjec-

tured interfacial density profile36

F � � dr����r�� � 	 � dr�	��r��2 (5)

Figure 1. Definitions of the average molecular density �av,

average local atomic density �(r), and average

local molecular density �(R) in a system consist-

ing of N polyatomic molecules in volume V.

The instantaneous density of an atom i at position r is spec-
ified by a three-dimensional Dirac-� function �(r 
 ri). Sim-
ilarly, the instantaneous density of a molecule i with m atoms
is specified by a 3m-dimensional Dirac-� function �(R 
 Ri),
where R � (r1, r2, . . . , rm) is a 3m-dimensional vector. The
angle brackets stand for ensemble averages. As illustrated, a
Dirac-� function �(x 
 x0) is everywhere zero except that at
a specific position (x0), it is infinite. The Dirac-� function
satisfies the normalization condition � dx�(x 
 x0) � 1.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 2. DFT is applicable to both uniform and inhomo-

geneous systems.

Even in a uniform fluid such as liquid argon, the average local
density near an arbitrarily tagged molecule is inhomogeneous.
The ratio of the local density �(r) and the average density �av

defines a radial distribution function, an important quantity for
describing the microscopic structure. A similar concept can be
applied to polyatomic systems to define intra- and intermo-
lecular correlation functions.278,279 [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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where �(�) is the Helmholtz energy density of the correspond-

ing uniform fluid with a molecular number density �, and 	 is

a constant related to the Boltzmann constant kB and the direct

correlation function c(r, �� )** at an average density �� � (�L �
�V)/2 of the coexisting vapor and liquid phases

	 �
kBT

12 � drr2c�r, ��� (6)

Regrettably, van der Waals’ important work was not widely

recognized until it was reinvented first by Landau and Lifshitz

in 1935, to describe the boundary of two magnetic domains;

and later by Mitsui and Furuichi in 1953, for studying the

interface between two ferroelectric structures; and most nota-

bly by Cahn and Hilliard in 1958, to represent the structure and

surface tension of vapor–liquid as well as liquid–liquid inter-

faces.37 The later versions of van der Waals’ square-gradient

theory remain useful in many aspects of modern physics and

engineering applications, particularly for understanding the

interfacial properties of fluids.

Another prominent variational approach in statistical me-

chanics was introduced by Onsager in 1949 for modeling the

isotropic–nematic transition of lyotropic liquid crystals.†38 For

a system consisting of nonspherical rigid particles, the molec-

ular density profile �(R) can be expressed in terms of the center

of mass r and orientation angle 
 of liquid-crystal molecules,

that is, �(R) � �(r, 
). Based on the lowest-order expansion of

the Helmholtz energy functional in terms of the anisotropic

density profile, Onsager derived

F � � drd
��r, 
��ln ��r, 
� � 1�

�
kBT

2 � dr1d
1 � dr2d
2��r1, 
1���r2, 
2� f�r1 � r2, 
1, 
1�

(7)

where f � e
�u 
 1 is the Mayer function, � � 1/(kBT), and u

stands for the pair potential between the anisotropic molecules.

The first term on the right-hand side of Eq. 7 represents the

Helmholtz energy functional of noninteracting (ideal) rigid

particles, and the second term represents the contribution aris-

ing from the intermolecular interactions, obtained from the

virial expansion of the Helmholtz energy functional truncated

at the second-order level. Onsager’s theory forms a foundation

for later theoretical developments and remains popular for

understanding the structure and interfacial behavior of liquid

crystals.39 Conceptually, it is essentially the same as the virial

expansion for the equation of state of a nonideal gas.

The first application of DFT as a general methodology to

classical systems was introduced by Ebner, Saam, and Stroud

in 1976 for modeling the interfacial properties of a Lennard–

Jones (LJ) fluid.25 Similar to van der Waals’ square-gradient

theory, the intrinsic Helmholtz energy functional was derived

from a partial summation of the gradient expansion

F � � dr����r�� �
kBT

4 � dr1dr2c

��r1 � r2�; ������r1� � ��r2��
2 (8)

where c(r, �� ) stands for the direct correlation function of a

uniform bulk fluid with a density �� � [�(r1) � �(r2)]/2. It was

demonstrated that Eq. 8 provides a good description of the

vapor–liquid surface tensions and the interfacial density pro-

files of argon over a wide range of temperatures. Aside from its

theoretical implications, the most significant part of this work

is the prediction of a first-order prewetting transition of unsat-

urated argon gas at the surface of solid carbon dioxide. Al-

though a similar prewetting transition was independently pre-

dicted by Cahn following van der Waals’ square-gradient

theory,40 the novel phase behavior stood for more than a decade

without experimental support and provoked much heated con-

troversy. Experimental verification of the prewetting transition

was first reported about 15 years later by Rutledge and Taborek

for adsorption of helium on cesium at extremely low temper-

atures.41

Excess Helmholtz energy functional

Whereas the mathematical framework of DFT is formally

exact, a precise expression of the intrinsic Helmholtz energy as

a functional of the molecular density profiles is unknown for

most systems of practical interest.†† Formulation of the Helm-

holtz energy functional is a task essentially equivalent to enu-

meration of the statistical partition function for the particular

system under investigation. A viable approach, practiced in

classical thermodynamics for more than 100 years, is to divide

the Helmholtz energy into an ideal part and an excess part. The

ideal part represents the contribution of an ideal gas where all

nonbonded interactions are turned off; the excess part accounts

for interactions leading to the thermodynamic nonideality.

For an ideal-gas system that is free of nonbonded interac-

tions, the Helmholtz energy functional is known exactly:

Fid � �
i

kBT � dR�i�R��ln �i�R� � 1�

� �
i

� dR�i�R�Vi�R� (9)

where Vi(R) stands for the bond potential of a molecule i with

all its segments connected in a configuration R. Because of the

multidimensional integrals on the right-hand side of Eq. 9, it is

not simple by any means to evaluate the ideal Helmholtz

energy functional analytically. Nevertheless, it is in a closed

form and the thermodynamic properties of this ideal system can

** Mathematically, a direct correlation function is defined as a second functional
derivative of an excess Helmholtz energy functional with respect to density profiles.
As discussed later, the excess Helmholtz energy functional is the Helmholtz energy
functional of the system under consideration minus that of an ideal-gas system at the
same temperature and density profiles.

† Although the definitions of lyotropic and thermotropic liquid crystals vary from
text to text, in this article, the former refers to an athermal system, such as hard rods
or ellipsoids, and the latter is a system in which the thermodynamic properties depend
on both concentration and temperature. †† One notable exception is hard rods and hard-rod mixtures in one dimension.
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be easily calculated using a modern computer, even for systems

containing molecules of arbitrary topology. The bond potential

that appeared in Eq. 9 may include contributions resulting from

bond stretching, angle bending, and torsional terms.42

The excess part of the Helmholtz energy functional, desig-

nated as Fex, is unknown for most systems of practical interest.

However, it can be approximately formulated by following

rigorous mathematical analysis and, more important, by phys-

ical insights for the specific system under consideration. Be-

cause Fex arises from the nonbonded interactions between

atomic segments, we may make a variational ansatz that the

excess Helmholtz energy can be expressed as a functional

depending only on the atomic density profiles, that is,

Fex��i�R�� � Fex��i,1�r�, �i,2�r�, . . . , �i,mi
�r�� (10)

Equation 10 is formally exact as long as Fex[�i,1(r), �i,2(r), . . . ,

�i,mi
(r)] includes the multibody correlations of atomic seg-

ments arising from bond connectivity. In other words,

Fex[�i,1(r), �i,2(r), . . . , �i,mi
(r)] should be different from that

for an atomic system (where all chemical bonds are removed)

even when they have the same density profiles. It is important

to notice that the bonding potential does not enter directly into

the formulation of Fex[�i,1(r), �i,2(r), . . . , �i,mi
(r)].

Because the nonbonded interatomic forces are convention-

ally expressed in terms of short-range repulsion, van der Waals

attraction, electrostatic forces, electron donor–acceptor inter-

actions, and so on, each component of the intermolecular

potential makes a distinct (but not necessarily independent)

contribution to Fex[�i,1(r), �i,2(r), . . . , �i,mi
(r)]. In principle,

one may derive a unified expression describing all components

of the intermolecular forces (bonded and nonbonded) from

quantum mechanics. In that case, an accurate expression for the

excess Helmholtz energy functional would allow us to develop

a unified DFT applicable to all molecular systems. Although

the same argument can be used for molecular simulations, the

advantages of DFT are clear: DFT focuses on the direct con-

nection between free energy and molecular structure (density

profiles) rather than on the overwhelming data generated by the

trajectories of all constituent particles in molecular simulation.

A microscopic state of a many-body system entails 6N degrees

of freedom (where N is the number of spherical particles in the

system), whereas the density of a spherical object is a simple

function that depends solely on the three-dimensional vector r.

Therefore use of DFT provides deeper insights into the under-

lying physics of natural phenomena and, more important, re-

duces the computational demands.

Elements of nonideality

Short-range Repulsion. In statistical mechanics, the short-

range repulsion between two atomic particles (atoms or coarse-

grained elements of a polymer) is often represented by the

hard-sphere model, which assumes that each particle has a

physical volume prohibiting an overlap with other particles.

This excluded-volume effect plays a central role in determining

the structure and thermodynamic properties of condensed ma-

terials. It has been long recognized that, with an analytical

theory for hard spheres, the thermodynamic nonideality arising

from other components of the intermolecular forces can be

included by perturbation expansions of the Helmholtz energy

functional with respect to either the density profile or the

intermolecular potential.43

The structure and thermodynamic properties of a bulk hard-

sphere fluid can be accurately described by various analytical

theories, that is, the scaled-particle theory,44 Percus–Yevick

equation,45 and Boublik–Mansoori–Carnahan–Starling–Leland

(BMCSL) equation of state.46,47 Over the past two decades,

numerous versions of DFT have been published for represent-

ing the structure and thermodynamic properties of inhomoge-

neous hard spheres (see Evans22 and Cuesta et al.48 for the

literature before 1992 and for the developments made over the

past decade, respectively). Among them, the fundamental mea-

sure theory (FMT), first proposed by Rosenfeld,49 bears a

number of special features. First, this geometry-based DFT is

built on firm physical and mathematical foundations rather than

on empirical approximations. Unlike alternative versions of

DFT for hard spheres that apply weighted density approxima-

tions, FMT does not require the bulk properties of hard spheres

as input; instead, it can be reduced to a theory of bulk fluids as

an output. Theoretically, FMT provides an exact dimensional

crossover, that is, it is equally applicable to bulk systems (3D),

hard spheres confined between surfaces (2D), in a cylindrical

pore (1D), and in a cavity (0D). It is a self-consistent theory

directly applicable to one component and polydisperse mix-

tures, fluid and solid phases, and systems consisting of non-

spherical particles including liquid crystals.50 From a practical

perspective, it performs well at all densities, particularly at high

densities where alternative methods are inappropriate.

A number of modifications of FMT have been proposed

since it was first published in 1989.48 Because the accuracy of

FMT is similar to that of the scaled-particle theory or Percus–

Yevick theory for bulk hard spheres,51 its numerical perfor-

mance can be further improved by using the quasi-exact

BMCSL equation of state for bulk hard-sphere fluids.52,53 Ac-

cording to this version of FMT, the excess Helmholtz energy

functional can be expressed in terms of four scalar and two

vector-weighted densities, as introduced by Rosenfeld,49

Fhs
ex � kBT � dr�
n0ln(1 � n3) �

n1n2 � nV1nV2

1 � n3

�
1

36� �n3ln(1 � n3) �
n3

2

(1 � n3)
2� (n2

3 � 3n2nV2nV2)

n3
3 	 (11)

where {n
} stand for the weight functions that are related to the

geometry of a spherical particle, that is, the center of mass,

surface area, and volume. For a uniform fluid, the vector-

weighted densities disappear and Eq. 11 reduces to the excess

Helmholtz energy from the BMCSL equation of state. Al-

though the modified FMT preserves most advantages of the

original theory, it improves the numerical performance, partic-

ularly for highly asymmetric hard-sphere systems.

Van der Waals Attraction. In addition to short-range re-

pulsion, van der Waals’ attraction is another essential compo-

nent of nonbonded interatomic interactions. Most versions of

DFT take a mean-field approach to account for the contribution

of van der Waals forces to the excess Helmholtz energy func-

tional. Although results from the mean-field approximation

may capture some essential features arising from the attractive

forces, they are at most semiquantitative, as one may anticipate
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from the van der Waals equation of state. A first step toward an

improvement is by a quadratic density expansion of the excess

Helmholtz energy functional relative to that for a uniform

fluid:54

Fatt
ex � Fatt

ex ��i
0� � �

i

�i
att � dr
�i�r�

�
kBT

2
�
i, j

�� drdr�cij
att��r � r���
�i�r�
�j�r�� (12)

where Fatt
ex (�i

0) is the attractive part of the excess Helmholtz

energy of the reference bulk fluid and �i
0 is the average density

of an atomic component i. This “semiquadratic” approach

requires the excess chemical potential �att
ex and the direct cor-

relation function cij
att(r) of a uniform atomic fluid as input. For

that purpose, the analytical correlation functions derived from

the first-order mean-spherical approximation (FMSA) are par-

ticularly useful.55-60 It has been demonstrated that, at least for

relatively simple models such as Lennard–Jones systems and

coarse-grained models of polymers, excellent agreement be-

tween theory and simulation results can be attained.61 Because

the analytical expressions of both the excess chemical poten-

tials and direct correlation functions are readily available from

FMSA, the numerical implementation and computational cost

of the quadratic approximation are very comparable to those

for a mean-field approach.

Weak Association. Another important component in a con-

ventional force field is the formation of chemical or hydrogen

bonds as in associating fluids. For fluid-phase equilibrium

calculations, the thermodynamic perturbation theory62,63 has

been successfully used to develop the statistical associating

fluid theory (SAFT), a generic equation of state for associating

fluids and also for polymers.64 By incorporation of basic con-

cepts from DFT, various extensions of SAFT have been ap-

plied to inhomogeneous associating fluids near a hard wall, in

slit pores, and at vapor–liquid or liquid–liquid interfaces.65-73 A

relatively simple version of the excess Helmholtz energy func-

tional was recently derived by introducing the scalar- and

vector-weighted densities of FMT into the SAFT equation of

state:

Fass
ex � kBT �

i, A

� drn0�i�ln Xi
� A� � Xi

� A�/2 � 1/2� (13)

where the subscript i stands for the atomic species i with the

association site A. The inhomogeneous factor �i is related to

Rosenfeld’s weighted densities by

�i � 1 � nV2,i � nV2,i/n2,i
2 (14)

and Xi
( A) is the local fraction of i not bonded at an associating

site A. It has been demonstrated that Eqs. 13 and 14 provide a

quantitative description of chemical bonding for inhomoge-

neous associating fluids including waterlike molecules.68

Electrostatics. For systems with Coulomb interactions, a

common DFT approach uses a quadratic density expansion of

the Helmholtz energy functional with respect to that of a bulk

fluid or a suitably chosen, position-dependent reference flu-

id.74-78 Similar to Eq. 12, the direct correlation functions in this

“semiquadratic” expansion are obtained from an integral-equa-

tion theory, mostly from the analytical solutions of the mean-

spherical approximation (MSA).79 Unlike various mean-field

theories derived from the Poisson–Boltzmann (PB) equation,

the quadratic approximation is often sufficient to capture a

number of counterintuitive electrostatic phenomena observed

in solutions containing multivalent ions such as charge inver-

sion of macroions and attraction between like charges.80,81 The

limitation of the PB equation arises from its neglect of the size

of small ions and the correlation of charge distributions.

Correlations Attributed to Chain Connectivity. Applica-

tion of classical DFT to polymeric systems was first discussed

by Chandler, McCoy, and Singer (CMS) in 1986.82 The past

few years have witnessed enormous growth in this area.83-88

Early versions of polymer DFT were heavily influenced by the

self-consistent field theory and by Landau expansions for the

selection of the reference system or for the formulation of the

free-energy functional. These influences remain evident in dif-

ferent versions of dynamic DFT.14,30 Most recent applications

of DFT, however, adopt segment-level intermolecular forces

following either the CMS theory or the generalized thermody-

namic perturbation theory.89 The former is based on a quadratic

density expansion of the Helmholtz energy functional with

respect to that for a system of ideal chains, much like the

methods used for simple or charged fluids.90-92 This approach

requires as input the direct correlation functions from the

polymer integral-equation theory (that is, PRISM93) and the

intramolecular correlation functions from a single-chain Monte

Carlo simulation. Similar to the hypernetted-chain approxima-

tion for simple fluids, CMS theory is unable to describe phase

transitions such as liquid–vapor coexistence. The generalized

thermodynamic perturbation theory was initially introduced by

Kierlik and Rosinburg,89 who built on earlier work by Wood-

ward.94,95 In this approach, the Helmholtz energy functional

includes an exact formalism for the ideal chains that retains the

details of bond connectivity and an excess part accounting for

the contributions from all nonbonded inter- and intramolecular

interactions. The excess Helmholtz energy functional is ex-

pressed in terms of a weighted-density approximation for short-

range forces and a first-order perturbation theory for chain

correlations.61,96,97 For systems containing only homopoly-

mers, the contribution of chain connectivity to the excess

Helmholtz energy functional is

Fch
ex � kBT �

i

� dr�1 � mi�n0,i�r��iln yii�n
�r�� (15)

where yii stands for the contact value of the local cavity

correlation function‡ of a uniform atomic fluid and n
 repre-

sents the weighted densities as used in Eq. 11. Equation 15 can

be readily generalized for applications to block and hetero

copolymers.98-100 In comparison with more traditional ap-

proaches for representing the structures and thermodynamic

properties of polymeric systems, including the polymer integral

‡ A cavity correlation function is defined as y(r) � g(r)exp[�u(r)].
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equation theory and polymer self-consistent field theory, the

polymer DFT has the advantage of versatility for polymeric

systems with complex intermolecular interactions.

Research over the past three decades has generated numer-

ous versions of DFT but it is fair to say that at this stage, none

of them is universally applicable to arbitrary molecular sys-

tems. The wide diversity of different versions of classical DFT

reflects not only the variety and complexity of natural phenom-

ena induced by rich molecular architecture and nonbonded

interactions, but also the generality of the basic idea of DFT

and its applicability to a broad range of problems. For practical

applications, the selection of a particular version of DFT is

influenced by several factors, including not only by its numer-

ical performance in terms of both accuracy and computing

efficiency, but also by the underlying physical models, by the

problems of interest and, very often, by personal taste. The

approximate expressions for the excess Helmholtz energy func-

tional discussed here allow us to address quantitatively most

nonbonded interactions in a complex fluid. However, signifi-

cant efforts are still required for the development of more

accurate density functionals accounting for more realistic in-

termolecular forces. Although the mathematical framework of

DFT is exact, its successful application critically depends on

judicious choice of an appropriate Helmholtz energy functional

suitable for the system under investigation.

Surface Tension and Interfacial Properties

Interfacial properties of fluids are essential for industrial

operations involving thin liquid films, emulsions, foams, dis-

persions, adsorption-based separations, and heterogeneous

chemical reactions.101-104 Traditional phenomenological meth-

ods for modeling interfacial properties provide little insight

into the microscopic properties of an interface that exhibits

inhomogeneity within only a few molecular layers. Detection

of the microscopic structure at such a small-length scale defies

even the most powerful experimental tools presently available.

As a result, much recent progress toward understanding inter-

facial phenomena relies on molecular modeling.

As discussed earlier, the usefulness of DFT for modeling

interfacial properties has been long recognized. Once an inter-

facial density profile is derived from minimization of the grand

potential, the surface energy or interfacial tension can be cal-

culated from

� �
1

A �
� � �
i

� drr � 	�(r)�i(r)� (16)

where A stands for surface area, 
� � � 
 �b is the deviation

of the grand potential from that corresponding to the bulk fluid,

and �i(r) is the external potential. Equation 16 can be used for

an interface between two coexisting phases (such as vapor–

liquid and liquid–liquid interfaces) as well as for that between

a fluid and a solid substrate. In the former case, there is no

external potential and in the latter case the external potential

corresponds to the interaction between a molecule and the

substrate. Although the interfacial tension calculated from Eq.

16 can be directly tested with experimental data, the density

profiles derived from DFT provide insights into the microscopic

structure of the interface not available from experiments.

Because DFT is applicable to both bulk and interfacial

systems, it offers a self-consistent approach to describe bulk

and interfacial properties using a single molecular framework.

Such self-consistency is highly valuable at least from a prac-

tical perspective because, although bulk properties, including

the phase diagram, are often readily accessible by simple

experiment, measurement of interfacial properties is often a

much more difficult task.

Vapor–liquid interface

With proper boundary conditions for the coexisting bulk

phases, even relatively simple expressions for the Helmholtz

energy functional, including van der Waals’ original work or

those based on the local density approximations (LDAs) or

mean-field approximations, are often sufficient to describe

semiquantitatively the vapor–liquid interfacial tensions. How-

ever, a more sophisticated version of DFT is required to rep-

resent the bulk and interfacial properties within a self-consis-

tent theoretical framework. To illustrate, Figure 3 presents the

vapor–liquid coexistence curves, vapor pressures, surface ten-

sions, and interfacial density profiles of four common solvents

calculated from DFT.105 In these calculations, the Helmholtz

energy functional contains an ideal-gas term, the modified

fundamental measure theory for short-range repulsion, a qua-

dratic approximation for van der Waals attractions (Eq. 12),

and the thermodynamic perturbation theory for association and

chain correlation. The good agreement between theory and

experiments near the critical point of the bulk phase diagram is

Figure 3. Vapor–liquid coexistence curves (A), satura-

tion pressures (B), and surface tensions (C) for

four common fluids from experiment (symbols)

and from DFT (lines).105

In (A) and (B), the dashed lines show theoretical results
without corrections from the renormalization-group (RG) the-
ory for the long-range correlations near the critical point. (D)
shows the density profiles at the vapor–liquid interface of
methanol.
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achieved by application of the renormalization group theory.106

Despite some discrepancy between theory and experiment for

the densities of liquid water and methanol resulting from the

simplicity of the molecular model, DFT is able to correlate the

bulk and interfacial properties at all temperatures in a self-

consistent manner. The theoretical description of surface prop-

erties is much more demanding than that for bulk properties

because it is necessary to consider the spatial inhomogeneity.

For this reason, conventional phenomenological models often

require additional interface-specific parameters.

A similar DFT can be used to predict the vapor–liquid

interfacial properties of polymeric,107,108 ionic,109-111 and sur-

factant systems.112 For example, Figure 4 shows the tempera-

ture dependency of the surface tension of polydimethylsiloxane

(PDMS) calculated from a generalized first-order perturbation

theory.107 Agreement of the theory with experiment is excellent

for both monodisperse polymers as well as for blends over a

wide range of temperature. Although similar performance

might be achieved based on a conventional phenomenological

theory such as the square-gradient theory,113 in contrast to

DFT, a phenomenological model requires an analytic equation

of state for bulk fluids and a few parameters to account for

interfacial inhomogeneity. Moreover, the square-gradient the-

ory is unable to capture the nonmonotonic density profiles

across the vapor–liquid interface near the triple point or the

surface segregation effects arising from branching, segment

size, and isotopic substitutions.

As observed in experiments, DFT predicts that, at a given

temperature, the vapor–liquid surface tension of a polymeric

fluid declines with the chain length or the polymer molecular

weight (Figure 5). Numerical results from DFT also suggest

that at the vapor–liquid interface of a mixture containing deu-

terated and protonated polymers of the same length, the deu-

terated component always partitions preferentially to the inter-

face, but when the protonated chains are much shorter than

those of the deuterated chains, the protonated chains are en-

riched at the interface. These predictions are in good agreement

with neutron reflectivity and second-ion mass spectrometry

experiments.107 In addition, DFT captures the accumulation of

branched chains at the vapor–liquid surface in a mixture of

linear and branched polymers with the same number of repeat-

ing units. For the effect of segment-size disparity on surface

segregation, DFT correctly predicts a strong surface enhance-

ment of the chains with the larger segment. The predictions of

DFT for the vapor–liquid interfacial tensions of ionic fluids and

ionic melts are also in good agreement with simulation and

experimental results.110

Liquid–liquid interface

Demixing of a liquid mixture may occur at both high and

low temperatures. For a binary liquid mixture consisting of

nonpolar molecules of similar size, demixing occurs only be-

low an upper critical solution temperature (UCST). However,

the situation is much more complicated if the molecules of twoFigure 4. Surface tension of polydimethylsiloxane (PDMS)

from DFT (lines) and from experiment (symbols).

(A) The effect of temperature on surface tension for two
monodisperse fractions of PDMS with molecular weights
32,000 and 770 Daltons, respectively. (B) The surface tension
of a PDMS blend vs. the weight fraction of the low molecular
weight polymer. The experimental data are from Dee and
Sauer113 and the lines are calculated by Kierlik et al.107

Figure 5. (A) Reduced surface tension vs. the degree of

polymerization predicted by DFT;107 (B) sur-

face tension of PDMS vs. number-averaged

molecular weight Wn.

In (A) m is the number of repeating units in each molecule
represented by a tangent chain of Lennard–Jones (LJ) spheres,
� and � are the LJ parameters, and T* � kBT/�.
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liquids exhibit large size disparity (such as polymer solutions)

or form hydrogen bonds. In that case, the mixture may become

immiscible at both low and high temperatures, giving either

closed-loop–type or hourglass-type phase diagrams.

DFT has been used to examine the liquid–liquid interfacial

behavior of nonpolar,114 hydrogen-bonding,115,116 and polymer

liquid mixtures.108,117 In general, a weighted-density approxi-

mation is required to reproduce the oscillatory density profiles

and a minimum overall density across a liquid–liquid interface.

For liquids exhibiting closed-loop immiscibility, it has been

shown that the interfacial tension exhibits a maximum at the

temperature corresponding to the widest immiscibility gap or

equivalently, when the compositions of the coexisting liquids

have minimum similarity.115 The immiscibility loop diminishes

either by increasing the association between different compo-

nents or by reducing the overall density. DFT also predicts

demixing of two polymers induced by a difference in chain

length and segment diameter.108,118 The size-induced demixing

phase transition is most likely to occur at high pressures. Upon

approaching the critical point, the numerical results from DFT

indicate that the interfacial tension vanishes as the cube of the

density difference between the coexisting phases (as implied by

a typical mean-field argument).

For a polymer in a good solvent, the effective interaction

between the centers of mass of two polymer chains can be

approximately represented by a spherically symmetric Gauss-

ian model.119 Within this drastically simplified framework, it

has been shown that, by using a mean-field expression of the

Helmholtz energy functional (random-phase approximation),

the density profiles across the coexisting homopolymer/star-

polymer mixtures may exhibit pronounced oscillations on both

sides of the interface.120 It was also demonstrated that the

crossover from monotonic to damped oscillatory decay in the

free interface density profile is determined by the Fisher–

Widom line, that is, the line in the bulk phase diagram at which

the asymptotic decay of the radial distribution functions crosses

over from monotonic to damped oscillatory.121

Isotropic–nematic interface

The structure of a planar interface between coexisting

nematic and isotropic phases of a liquid crystal is distinguished

from that between two isotropic fluids as a result of the exis-

tence of long-range orientational ordering. In this case, the

surface energy or interfacial tension may vary with the direc-

tion of molecular ordering. Onsager’s theory represents a sim-

ple version of DFT for anisotropic fluids and liquid crystals. At

the nematic–isotropic interface, the normal pressure is constant

and equal to 
�/V (negative of the grand potential density) in

both bulk phases at coexistence. However, the transverse pres-

sure PT is anisotropic and varies with the interfacial density

profile. According to Onsager’s theory, PT is given by

PT� z�/kBT � �� z� �
1

2 � dr12 � d
1 � d
2f�r12, 
1, 
2�

��
0

1

d���z � �z12, 
1��� z � �1 � ��z12, 
2� (17)

where r12 � r1 
 r2 is the vector connecting the positions of

two molecules at r1 and r2, and z is the perpendicular distance

from the interface, z12 � z2 
 z1, and � is a coupling parameter.

Figure 6 shows the prediction of Onsager’s theory for the

difference between normal and transverse pressures in a hard-

ellipsoid model of liquid crystals. When the liquid-crystal

director in the nematic phase is parallel to the interface, there

is a large tension on the nematic side of the interface and a

small compressive region on the isotropic side. By contrast, for

perpendicular alignment, the tension is on the isotropic side.122

The variations of the transverse pressure, interface tensions,

and density profiles with the liquid-crystal director predicted by

Onsager’s theory are in good agreement with Monte Carlo

simulations.

Effect of surfactants

A conventional approach for interpreting the effect of sur-

factants on interfacial properties is by measuring the interfacial

tension as a function of bulk concentration. The equilibrium

adsorption isotherm is then correlated with a phenomenological

equation that typically ignores the configuration of surfactant

molecules at the interface.123 By contrast, a theoretical ap-

proach based on DFT accounts for both the surface enrichment

and configuration of surfactant molecules at the interface.

A new DFT method for describing the effect of surfactants

on surface tension and adsorption isotherms has recently been

proposed by Stoyanov and coworkers.124 In this method, the

excess surface Helmholtz energy functional consists of a local

density approximation for the chain elastic energy of surfactant

molecules and the surface osmotic pressure124

Fex � � dz�Ksz
2� � �1 � 2��kBT�2/ 2vsolv� (18)

Figure 6. Difference between the normal and transverse

pressures across a nematic–isotropic inter-

face (dashed–dotted line) predicted by Onsag-

er’s theory.122

The liquid-crystal molecules are represented by hard ellip-
soids with aspect ratio A/B � 15, where A and B stand for the
symmetry axis and the transverse axis of the ellipsoid, respec-
tively. The solid curve applies when the liquid-crystal mole-
cules are aligned parallel to the interface, whereas the dashed
line applies when the liquid-crystal molecules are aligned
perpendicular to the interface. [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]
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where Ks is the elastic constant of the chain molecule, �

represents the local volume fraction of the surfactant, � is the

Flory parameter, and vsolv is the solvent molecular volume.

Based on Eq. 18, Stoyanov et al. showed that the surface

pressure, defined as the difference between the interfacial ten-

sions without and with surfactant molecules, � � �p 
 �,

follows the scaling relation124

�2/5 

2kBT

5
3/5 ln c (19)

where 
 � [(18/25)w2Ks(mv0)5]1/3 and w � (1 
 2�)kBT/vsolv;

m and v0 are the number of segments and the segment volume

of the surfactant molecule, respectively; and c is the surfactant

molar concentration. Figure 7A shows the surface pressure as

a function of the bulk surfactant concentration derived from

Eq. 19. The agreement of theory with experiment is truly

remarkable, bearing in mind the simplicity of the theoretical

model. Figure 7B shows the predicted surface area per surfac-

tant molecule as a function of surfactant concentration. The

theoretical predictions are again in good agreement with ex-

perimental data from small-angle neutron scattering (SANS)

and ellipsometry measurements.

Capillary waves

The vapor–liquid and liquid–liquid interfaces are presumed

planar in all the above discussions. However, in general, both

interfacial density profiles and surface tension depend not only

on the intermolecular forces but also on the capillary waves of

the interface. Using an effective interface Hamiltonian derived

from DFT and a Gaussian approximation for distortion of the

planar density profile, Mecke and Dietrich125 predicted that the

surface tension first declines with surface-wave vector q, at-

tains a minimum, and then grows as q2 for large q. In other

words, a negative correction must be applied to the surface

tension if the interface shows a large curvature. Because of the

reduction in surface tension, the interface deformation becomes

more likely at small-length scales. This prediction contradicts

results from a conventional capillary-wave model but has been

confirmed by experimental results from X-ray surface scatter-

ing.126 In most cases, the capillary wave has a more significant

influence on the density profiles than on the surface tension.

Gas Adsorption and Materials Characterization

Gas adsorption is a broad subject relevant to numerous

industrial applications ranging from natural gas recovery, fuel

storage, and CO2 sequestration to sensors for chemical warfare

agents and to the treatment of lung diseases.127 As proposed by

the IUPAC Commission on Colloid and Surface Chemistry, the

equilibrium behavior of gas adsorption at a solid substrate can

be classified into six basic types depending on the strength of

gas–substrate interactions and on the pore size. Figure 8 sche-

matically shows adsorption isotherms according to the IUPAC

classification.128 Type I is typical for gas adsorption in micro-

porous materials such as activated carbon and zeolites with

pore size � 2 nm. Types II and III correspond to adsorption in

macroporous or on nonporous materials with strong and weak

fluid–surface attractions, respectively. Types IV and V are

typical for mesoporous materials (with pore size between 2 and

50 nm) with strong and weak surface attractions; both exhibit

a hysteresis loop in adsorption and desorption. Type VI applies

to systems with strong surface–gas interactions and when the

temperature is near the triple point of the adsorbate.

Classical DFT provides a state-of-the-art technique for mod-

eling gas adsorption at the molecular level. It enables calcula-

tions not only of adsorption isotherms but also of the detailed

inhomogeneous density profiles of gas molecules and of sur-

face phase transitions.129,130 Unlike conventional semiempirical

theories such as Langmuir, Brunauer–Emmett–Teller (BET),

and Kelvin equations, and numerous variations and extensions

Figure 7. (A) A new scaling relation between the surface

pressure (�) and the bulk concentration of n-

dodecyl pentaoxyethylene glycol ether (C12E5)

at the air–water interface; (B) surface area per

C12E5 molecule vs. bulk concentration of the

surfactant from SANS/ellipsometry measure-

ments (points) and from DFT (lines) (repro-

duced from Stoyanov et al.124).

In (A) Y � �2/5 
 �0
2/5, where subscript “0” denotes an

arbitrary reference point, c stands for molar concentration
(M).

Figure 8. IUPAC classifications of gas adsorption iso-

therms.

Here P0 stands for the gas saturation pressure. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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of these classical methods, DFT is able to describe quantita-

tively all six types of adsorption isotherm within a unified

framework. For example, Balbuena and Gubbins131 investi-

gated adsorption of an argon-like fluid in a graphite-like slit

pore using a nonlocal density functional theory (NLDFT).

Their model system consists of Lennard–Jones molecules ad-

sorbed in a single slit pore where the wall potential is specified

by Steele’s 10-4-3 potential

�s� z� � �w�2

5
��w

z
� 10

� ��w

z
� 4

�
�w

4

3
( z � 0.61
)3� (20)

where the parameters �w, �w, and 
 are related to the properties

of the solid substrate. The excess Helmholtz energy functional

includes a hard-sphere term proposed by Tarazona132 and an

attractive term represented by the mean-field approximation

Fex���r�� � Fhs
ex���r�� �

1

2 �� dr1dr2uatt�r1 � r2���r1���r2�

(21)

Balbuena and Gubbins131 studied the variation of adsorption

behavior as a function of surface energy and pore width. They

found that NLDFT is able to reproduce all six types of adsorp-

tion isotherms according to the IUPAC classification. More

recently, Neimark and coworkers133 also demonstrated that, as

reproduced in Figure 9, DFT properly bridges the gap between

molecular simulations and phenomenological equations,

thereby providing a description of capillary condensation/evap-

oration at all length scales.

Application of DFT for gas adsorption is not limited to

nanostructured materials such as zeolites, MCM-41, or alu-

minophosphates where the microscopic structure can be deter-

mined by X-ray or neutron diffraction.134 In recent years, DFT

has also been used for characterization of amorphous materials

such as activated carbons, oxides, or silica gels where we lack

definite knowledge of the pore structure.135

The mean-field approximation for representing the van der

Waals attractions between gas molecules becomes inadequate

when the surfaces are weakly attractive. As an improvement, a

number of more sophisticated versions of DFT have been

proposed in the past few years.136-138 To illustrate, Figure 10

shows density profiles for a Lennard–Jones fluid near a hard

wall and in an attractive slit pore calculated from Monte Carlo

simulations and from two different versions of DFT.54 Al-

though the mean-field theory is excellent for adsorption in the

attractive slit pore, its performance near a hard wall is inferior

to that of a non-mean-field version that takes appropriate ac-

count of correlation effects.

In addition to adsorption and capillary condensation of sim-

ple fluids, DFT is useful for describing liquid–liquid demixing

under confinement. For simple binary mixtures of nonpolar

liquids in a slit-like pore, classical DFT predicts that, in gen-

eral, the confinement and the wall attraction depress the UCST

and the region of immiscibility.117 If the confining surface

preferentially attracts one component in the binary mixture, the

confinement leads to a shift of the coexistence curve toward the

phase that is rich in the preferred component.139 Similar cal-

culations have been reported for binary mixtures of associating

liquids that exhibit closed-loop immiscibility.116 For polymer

mixtures, a DFT calculation indicates that, when the confining

surface is attractive, confinement in slit-like pores leads to a

two-step demixing transition.140 The first step of demixing

occurs within a few layers adjacent to the attractive surface and

the second step occurs in the entire pore. The multistep demix-

ing transitions of confined Gaussian-core fluids are strikingly

similar to the condensation and layer transitions of associating

fluids and water in attractive micropores.141,142 The effects of

confinement on liquid–liquid separations revealed by DFT

Figure 9. DFT bridges scales from molecular simulations to classical thermodynamics for modeling gas adsorption.

(a) Pressures of capillary condensation and desorption of argon at 87.3 K in a cylindrical pore predicted by NLDFT, by gauge-cell Monte Carlo
simulation, and by phenomenological Derjaguin–Broekhoff–de Boer (DBdB) theory. (b) Relative saturation pressures for the adsorption
(ADS) and desorption (DES) of N2 at 77 K in MCM-41 and SBA-15 nanoporous materials predicted by DFT and by the Kelvin–Cohan
equation. The points are experimental data.133 [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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provide useful insights for applications in oil recovery, lubri-

cation, coating technology, and pollution control.139

Wetting Transitions

Wetting refers to the disappearance of the contact angle of

three coexisting phases, such as a liquid droplet setting on a

solid substrate surrounded by a saturated vapor phase. The

phenomenon is pertinent to the spreading of paint on a wall,

spraying of an insecticide on leaves, extrusion of textile fibers

from a liquid solution, lubrication of gears, aircraft deicing, and

crude oil recovery from porous sandstones. The literature on

wetting phenomena is vast; a number of excellent reviews have

been published on both experiment and theory.143,144 Below we

review only some salient features of wetting behavior in the

context of recent work based on DFT.

A simple fluid near a planar wall

Most theoretical work on wetting phenomena has been fo-

cused on a simple model system consisting of a vapor phase

(saturated or unsaturated) in direct contact with a smooth

planar solid. Because of the surface attraction, a thin layer of a

liquid-like film is formed at the solid substrate even when the

vapor phase is unsaturated. As shown in Figure 11, at a given

temperature the film thickness increases monotonically with

the vapor pressure and reaches a finite value below the wetting

temperature Tw, but diverges otherwise. Below Tw, a bulk

liquid partially wets the surface. In this case, the contact angle

is related to the vapor–liquid, vapor–solid, and liquid–solid

interfacial tensions according to Young’s equation. Above Tw,

the saturated liquid completely wets the surface and the contact

angle becomes zero. At certain conditions, a thin–thick film

transition may occur below the saturation pressure. This phe-

nomenon is known as prewetting. The prewetting transition has

its own critical point referred to as the surface critical temper-

ature TS
C. Above TS

C, there is no coexistence of the thin and

thick films. Depending on the strength of the surface-fluid

potential, the surface critical temperature can be either below

or above the bulk critical point.

In analogy to bulk phase transitions, a wetting transition can

be first or second order, depending on whether the film thick-

ness diverges discontinuously or continuously as the tempera-

ture increases.‡‡ In some special cases, the second-order wet-

ting transition may be preceded by a first-order, microscopic-

to-mesoscopic film transition known as pseudopartial

wetting145 or frustrated complete wetting.146 Figure 12 shows

three wetting scenarios. The boundary between first-order and

second-order wetting transitions is shown in terms of the sur-

face energy when the attraction between the substrate and fluid

is short range.

Prewetting transition was first predicted by Ebner and

Samm147 using a gradient expansion of the Helmholtz energy

functional and by Cahn40 using van der Waals’ square-gradient

theory. The adsorption isotherm shows a discontinuity at the

condition of a prewetting transition, where a thin liquid film

coexists with a thick liquid film at the same temperature and at

a pressure below the saturation. The density profiles of both the

thin and thick films satisfy the variational equation (Eq. 4) and

they yield the same grand potential. Similar prewetting transi-

tions were discovered later in the binary liquid mixture meth-

anol and cyclohexane in contact with the coexisting vapor

phase.148 Because of the drastic approximations used in the

early theories, the existence of the first-order prewetting tran-

sition resulted in controversy that stimulated a number of

‡‡ At the wetting transition, the liquid always coexists with a saturated vapor. By
contrast, prewetting occurs at a pressure below the saturation.

Figure 10. Density profiles of a Lennard–Jones fluid (A)

near a hard wall and (B) in an attractive slit

pore.

The points are results from Monte Carlo simulation; the
solid and dashed lines are predictions of DFT using the
direct correlation function and the mean-field approxima-
tion, respectively.54

Figure 11. Film thickness vs. vapor pressure at different

temperatures.

Here Tw � wetting temperature, TC � bulk critical temper-
ature, and TS

C � surface critical temperature. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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simulation works.22 Quantitative agreement between DFT and

Monte Carlo simulations can be seen in recent theoretical

investigations of prewetting transitions.149

Cahn’s theory has been extended to ionic fluids150 and to

systems with long-range substrate–fluid interactions where

frustrated complete wetting may occur.151 Nakanishi and Fish-

er152 demonstrated that it is able to capture most features of

prewetting and wetting transitions if the surface attraction is

short range. Regrettably, Cahn’s theory is mostly qualitative; it

provides only an appropriate connection between surface be-

havior and molecular properties of the solid and the coexisting

fluid. With the advent of more sophisticated versions of clas-

sical DFT, the coarse-grained theory has gradually fallen out of

fashion. DFT is useful especially for investigating wetting

transitions of complex fluids including polymeric systems. In

addition to first-order and second-order wetting transitions and

prewetting, DFT is able to capture the dependency of wetting

behavior on the details of substrate–fluid interactions and the

sequential wetting behavior at some subtle conditions of the

long-range solid–fluid interactions.153-155 Figure 13 schemati-

cally shows a phase diagram of wetting transitions in terms of

the surface energy according to a simple mean-field approxi-

mation of the Helmholtz energy functional for a nonpolar fluid

in contact with an attractive solid.156,157 As observed in exper-

iments, second-order wetting is most likely when the fluid–

surface interaction is short range and only moderately attrac-

tive. In addition, DFT predicts complete wetting and

nonwetting zones at strongly and weakly attractive surfaces,

respectively.

Wetting of polymeric fluids

Qualitatively, the wetting behavior of a polymeric fluid

resembles that for atomic systems.158,159 Essentially the same

theories (such as Cahn’s theory or classical DFT) can be used

to describe prewetting and various forms of wetting transitions

in polymeric systems.144,160,161 For example, DFT has been

applied to predicting the wetting behavior of a polymer melt on

a surface tethered with polymer chains of the same kind.144

This system is relevant to dielectric coating, adhesion, lubri-

cation, and biocompatibility. As shown in Figure 14, the poly-

mer DFT predicts a first-order wetting of the polymer melt at

an attractive surface with low grafting densities, similar to that

on a bare surface. For neutral or weakly attractive surfaces,

however, the wetting transition is second order at intermediate

grafting densities and becomes first order again at high surface

grafting densities. The theory predicts a frustrated complete

wetting on a repulsive surface resembling that for a simple fluid

reported recently.162 These predictions have subsequently been

observed in experiments.163,164 In addition, Muller and Mac-

Dowell studied the influence of an oxide layer on the wetting

behavior of polystyrene on top of a silicon surface. This system

represents a frequently used experimental situation for studying

Figure 12. (A) For a solid in contact with a saturated

vapor (that is, at vapor–liquid coexistence), a

thin liquid film is formed at the solid surface

and its thickness diverges smoothly or dis-

continuously as the temperature approaches

the wetting point (Tw): (B) variation of the con-

tact angle � near the wetting temperature: (I,

II, and III stand for first-order, second-order,

and sequence of wetting transitions, respec-

tively); (C) when the fluid–solid interaction is

short range, the first-order and the second-

order wetting-transition lines join at the tri-

critical point (TCP) where the prewetting crit-

ical temperature (TCpw) terminates.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 13. Effect of surface-fluid potential on wetting

transitions predicted by DFT.156

In the drying zone, the contact angle is always nonzero,
whereas in the wetting zone, the liquid completely wets the
surface at all temperatures. Between the drying and wetting
zones, the wetting transition can be either first or second
order. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

Figure 14. Wetting behavior of a polymer on a polymer-

tethered surface predicted by DFT.280

The solid lines denote first-order wetting transitions; the
horizontal line marks second-order wetting transitions; and
the broken curve denotes transitions between a microscopic
thin film and a mesoscopic thick film. The line giving
transitions between a thin and a thick film terminates at a
critical end point (CEP) and at a critical point (CP). The
second-order and first-order wetting transitions at high graft-
ing densities are separated by a tricritical point (TCP).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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wetting and dewetting phenomena in polymeric systems. At the

silicon surface with a thin oxide coating layer, DFT predicts

that the surface free energy is everywhere positive relative to

that of the bare surface or when the surface is in direct contact

with the bulk liquid. In this case, the polymer partially wets the

surface. When the surface is coated with a thick layer of oxide,

on the other hand, a polymer film of finite thickness is stable,

corresponding to the state of frustrated complete wetting. Be-

low the frustrated complete wetting temperature, the meso-

scopic film ruptures into small droplets. Prediction of “nano-

dewetting” is in good agreement with experiment.165

Effect of curvature on wetting

DFT has also been applied to investigating the influence of

substrate curvature on wetting transitions.166-168 Unlike the

planar case, complete wetting does not occur on a spherical

particle where the thickness of the wetting layer grows only as

the logarithm of the particle radius.169 DFT predicts that at a

spherical substrate, the contact angle declines with curvature,

whereas the opposite holds for the wetting temperature.170

Solvation and Surface Forces

In the development of modern solution theories, one key

challenge is to understand the microscopic structure of solvent

molecules near a solute (that is, solvation) and the solvent-

mediated forces. There has been a vast literature concerning

solvation and solvation forces. The following discussion is

limited to a few cases relevant to recent applications of DFT to

colloidal systems.

Solvation at different length scales

The presence of a solute in a liquid solvent introduces a local

distribution of solvent molecules that is affected not only by

solute–solvent interactions but also by the size of the solute.

Although the effect of the solute–solvent interaction energy on

solvation is well documented, the size effect is much more

subtle, as first indicated by Stillinger more than 30 years ago.171

By separately considering the slow and fast-varying compo-

nents of the local inhomogeneity using respectively the van der

Waals’ square-gradient theory and Gaussian approximation (or

quadratic density expansion), Lum et al.172 demonstrated that

the solvation of small apolar groups in water is different from

that of large hydrophobic groups. In the former, hydrogen

bonding of water is hindered yet persists near the solute. In the

latter, hydrogen bonding is depleted, leading to drying of

extended apolar surfaces and to long-range hydrophobic attrac-

tion.

Accumulation of solvent molecules near a small solute, and

depletion of solvent molecules near a larger solute has also

been observed in simple fluids as represented by the hard-

sphere or Lennard–Jones (LJ) potential.54,173 Figure 15 shows

the distributions of LJ molecules in a stable liquid around an

isolated hard-sphere solute of different sizes.174 Even in the

absence of solute–solvent attractions, solvent molecules may

accumulate around a solute whose size is comparable to that of

the solvent. The oscillatory local density distribution resembles

the radial distribution function of the pure solvent (Figure 15).

In this case, the solvation force is short range and mainly

repulsive. With increasing solute size, however, the oscillatory

density profile rapidly fades away and a vapor-like layer is

developed near the solute surface. The thickness of the vapor-

like layer grows with solute size, leading to a long-range

attraction.175,176

With an appropriate formulation of the excess Helmholtz

energy functional, agreement between DFT and molecular sim-

ulation is nearly perfect.174 Results from DFT calculations also

suggest that the depletion-induced surface attraction is substan-

tially stronger than that expected from conventional Hamaker

or Lifshitz theories.175 In addition, DFT predicts that, in good

agreement with molecular simulations but contrary to the stan-

dard Hamaker theory, in a fluid medium the attraction between

two hard surfaces increases with temperature when the pressure

is fixed, but at a fixed temperature, it falls as the pressure

rises.175 Because the van der Waals attraction between solute

and solvent molecules is ubiquitous, even a weak solute–

solvent attraction may lead to a large reduction of the vapor-

like depletion layer. Nevertheless, the incipient presence of

drying should play an important role in hydrophobic phenom-

ena at large-length scales.172,177

Electric double layer

The solvation of a charged particle in an electrolyte solution

results in the accumulation of counterions and the depletion of

co-ions. The charged surface, along with the neutralizing coun-

terions, is called the electric double layer (EDL), which is of

central importance in surface chemistry and colloid science.

Although conventional wisdom suggests that the colloidal

charges are only partially screened by the surrounding counte-

rions, recent experiments and molecular simulations indicate

that the overall charge of a macro-ion plus that of its surround-

ing counterions may have a sign opposite to its bare

charge.178,179 In contradiction to classical Derjaguin–Landau–

Verwey–Overbeek (DLVO) theory, the electrostatic interaction

between similarly charged colloidal particles can be attractive

Figure 15. Density profiles �(r) of a Lennard–Jones (LJ)

fluid around an isolated hard sphere of differ-

ent sizes.54

Here �b is the bulk density of the LJ fluid and S stands for
the size ratio, that is, the diameter of the hard sphere divided
by �. The symbols are simulation data,281 and the solid and
dashed lines are predictions of DFT. For clarity, the density
profiles for S � 1, 2, and 3 have been shifted upward by 2.4,
1.6, and 0.8 units, respectively. [Color figure can be viewed
in the online issue, which is available at www.interscience.
wiley.com.]
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in the presence of multivalent counterions.180 These nonintui-

tive electrostatic phenomena arise from the correlation of

small-ion distributions and from the size effect that are ne-

glected in classical electrostatic theories.

Electrostatic interactions are important for a number of tech-

nological applications including fabrication of composite ma-

terials,181 intelligent sensors,182 and gene delivery.183 Figure 16

illustrates two complex structures formed by charge inversion

and subsequent attraction between similar charges. Each lipid

bilayer adsorbs an excess amount of oppositely charged DNA

molecules leading to the charge inversion, which allows the

assembly of additional lipid layers. In other words, two lipid

layers of the same charge exhibit strong attraction (as shown in

the well-organized layer-by-layer structure) in the presence of

oppositely charged DNA molecules. The attraction between

similar charges is also evident from the formation of DNA

toroid in the presence of multivalent counterions. Because the

DLVO theory ignores the molecular characteristics of small

ions, it is apparently insufficient to explain DNA condensation

or the formation of DNA–lipid complexes. A good understand-

ing of these mesoscopic structures would be helpful for con-

trolling the structure of assemblies of biomacromolecules for

medical applications including more efficient machinery for

gene delivery.

Charge inversion and attraction between similar charges can

be captured using relatively simple models of colloids where

both colloidal particles and salt ions are represented by spher-

ical charged particles and the solvent is a continuum dielectric

medium. Even though this primitive model is much oversim-

plified, it retains the essential physics of the nonintuitive elec-

trostatic phenomena that cannot be described by conventional

mean-field theories including the Poisson-Boltzmann (PB)

equation. A simplified model may provide useful insights into

often complicated realistic systems. By explicitly accounting

for the size effect and for the correlation of charge distributions

that are ignored by the PB equation, DFT is able to represent

both charge inversion and attraction between like charges.81,184

To illustrate, Figure 17 shows that, at sufficiently high surface-

charge density, the overall charge of a macro ion and its

surrounding counterions near the surface may become opposite

to the bare charge of the macroion. Results from DFT also

reveal that, in contrast to the predictions from the PB equation,

the zeta potential of a colloidal particle strongly depends on the

valence of counterions and may not vary monotonically with

the charge density. Recently, DFT has also been applied to

investigating the structural and thermodynamic properties of

multicomponent mixtures mimicking a crowded cellular envi-

ronment.74 In the context of a primitive model where macro-

molecules are represented by neutral or charged particles and

water by a continuous medium, it has been demonstrated that

DFT is able to quantitatively account for both the excluded-

volume effects and the long-range electrostatic interactions.

Polymer-mediated solvation forces

Dispersions of colloidal particles in polymeric systems have

been the focus of sustained experimental and theoretical efforts

stemming from their close relevance to colloidal stability and

composite materials. However, comprehensive understanding

of solvation and interactions between colloidal particles in

polymeric systems remains a theoretical challenge. Even at the

molecular level, such systems involve multiple length scales

arising from the solvent molecules, the polymer segments, the

entire polymer chain, and the colloidal particles. Subtle inter-

play of the particle size, the polymer chain length, the particle–

segment interactions, the polymer concentration, and the solu-

tion conditions makes the distribution of polymer chains

around each particle extremely intricate, thereby leading to

delicate colloidal forces and phase behavior. In particular, near

the critical point of the solvent phase transition or near the

thin–thick film transition at the surface of each colloidal par-

ticle, extremely attractive and long-range colloidal forces have

been identified.185-187

Classical DFT offers a generic approach for quantitative

description of solvation and colloidal forces in polymer solu-

tions and melts. In comparison to a number of conventional

theories, DFT has the advantage of taking into account the

multiple length scales associated with the polymer–colloid

systems within a theoretically consistent framework.188,189 DFT

Figure 16. Understanding nonintuitive electrostatic phe-

nomena such as charge inversion and attrac-

tion between similar charges could lead to

more efficient strategies for gene therapy.

(A) Lipid–DNA complex where the lipid molecules are
arranged in a lamellar stack of nearly flat bilayers, with the
DNA intercalated between each pair of bilayers.183 The
DNA molecules are represented by rods with the black lines
denoting a helical structure; the light and dark spheres
represent the head groups of the neutral and cationic lipid
molecules, respectively; and the hydrophobic layer consists
of lipid tails. (B) A micrograph of a �DNA toroid.282 [Color
figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 17. Accumulated charge P(r) around an isolated

macroion in a 2:2 electrolyte solution at T �

300 K.81

The concentration of the electrolyte is 1.25 M and the
diameter of small ions � � 0.4 nm. The macroion has radius
1.0 nm and total charge 
20. r is the distance from the
center of the macroion. The symbols are MC data; the
dashed and solid curves represent results from the Poisson–
Boltzmann theory and DFT, respectively.81
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is applicable to dilute and semidilute polymer solutions as well

as to polymer melts, polymers of essentially arbitrary architec-

ture, and adsorbing or nonadsorbing polymers.190

The distribution of polymers near a colloidal particle and

polymer-mediated colloidal forces are significantly influenced

by the particle–polymer interaction energy and by the size

ratio.191 In the absence of strong particle–polymer attraction,

polymers in a good solvent are depleted from the surface of a

large particle on the length scale comparable to the polymer

radius of gyration. In this case, the colloidal force is predom-

inantly attractive, as predicted qualitatively by the Asakura–

Oosawa theory. The entropy-induced attractive potential in-

creases with polymer concentration. When the polymer

concentration is beyond a certain limit, however, the self-

exclusion of polymer segments diminishes the depletion zone

near the colloidal surface. Competition of surface depletion

with excluded-volume effects induces a repulsive barrier in the

solvation potential before the colloidal particles fall into deep

attraction near contact.192 Such repulsion could lead to resta-

bilization of a polymer-flocculated colloidal dispersion that

cannot be captured by Asakura–Oosawa theory.96

Upon addition of strong attraction between colloidal parti-

cles and polymer segments, the depletion layer disappears and

accumulation of polymer chains near the particle surface leads

to a colloidal repulsion. By contrast, more attraction between

polymer segments upon changing solvent quality or tempera-

ture leads to stronger surface depletion and consequent colloi-

dal aggregation. When the colloidal particle is significantly

smaller than the polymer radius of gyration, the distribution of

polymer segments near the particle surface is determined by the

segment–particle interactions and by the polymer intramolec-

ular correlations. For polymers in a good solvent, recent neu-

tron-scattering experiments suggest that the excluded-volume

effects between the polymer segments and the colloidal parti-

cles may cause the polymer chains to shrink or collapse sig-

nificantly.193 As revealed by Monte Carlo simulations,194,195 the

reduction of polymer size can be explained by polymer wrap-

ping around the colloidal particle. In this case, the potential of

mean force between colloidal particles is also attractive. How-

ever, this attraction is not introduced by the depletion of

polymer chains but probably arises from the excluded-volume

effect of polymer segments and the intrachain correlations. The

cause of attraction is reflected in the range of colloidal forces

that are normally much smaller than the polymer size. At a low

polymer concentration, the polymer-mediated potential is very

weak (�0.05kBT) but is relatively long-range. Beyond the

polymer overlap concentration, the segment-excluded volume

becomes more significant and the short-range attraction is

considerably enhanced.196 For small colloids dissolved in a

solution of nonadsorbing polymers, recent Monte Carlo simu-

lation also indicates the colloidal force may exhibit long-range

oscillation persisting over several multiples of the polymer

radius of gyration.197 Although a full capture of all the details

of polymer-mediated colloidal forces represents a significant

theoretical challenge, application of DFT to polymer–colloid

mixtures is certainly very promising.

It has been long recognized that attachment of highly soluble

polymers onto a colloid/solid surface offers an efficient means

to minimize often undesirable, nonspecific surface adsorption

in a solution and to stabilize colloidal particles.198,199 The

equilibrium properties and surface forces of tethered polymers

(brushes) have been subjected to extensive investigations by

experiments, simulations, and a number of theories, including

DFT.200-203 Recent interest has been shifted to studying the

effect of polymer architecture, especially branched, star, or

multiblock copolymers on surface protection.190 For example,

at fixed surface grafting density, highly branched hydrophilic

copolymers minimize protein adsorption more efficiently than

traditional linear polymers such as polyethylene glycol.204 As

shown in Figure 18, polymers with multiple anchoring sites

may introduce a cooperative effect in terms of both grafting

efficiency and solvation forces.100 Applications of DFT to more

complicated polymeric systems will help to narrow the gap

between fundamental research and practical applications of soft

matter.

Freezing and Melting Transitions

Classical DFT has been widely recognized as one of the

most efficient methods for theoretical study of freezing and

melting transitions in simple fluids as well as in colloidal

dispersions. Despite indisputable success, early application of

DFT in this field was for a while regarded as “utilitarian or a

chemical engineer’s prescription.”22 The main reason is a lack

of theoretical justifications for various early versions of

weighted density approximations (WDAs) that map the free-

energy functional of an anisotropic solid to that of a homoge-

nous fluid. The situation is quite different after the invention of

the fundamental measure theory, which has a firm theoretical

basis and is naturally applicable to fluids as well as to solids.205

Different from conventional equations of state that entail dif-

ferent models for coexisting phases, DFT directly expresses the

thermodynamic potentials of a system, fluid or solid only, in

terms only of one-body density profiles. DFT is able to de-

scribe freezing and melting transitions within a unified theo-

retical framework.

In DFT calculations, the anisotropic solid density is usually

specified a priori as a sum of the Gaussian distributions cen-

tered on the Bravais lattice sites of the solid phase

Figure 18. Surface force Fs between two parallel plates

mediated by copolymers with multiple an-

choring sites.100

Here � stands for segment size, H* � H/� is the reduced
surface separation, �* � �/kBT is the reduced surface en-
ergy, A is the surface area, and �b is the bulk volume
fraction of the polymer. The copolymer consists of blocks of
20 nonsticky segments for each surface anchoring site.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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where the inverse width of the Gaussian parameter 
 provides

a measure of the density localization in the crystal and {Li}

represnts the real-space lattice vectors. With different methods

for the paramerization of the solid density, DFT has been

successfully applied to representing fluid–solid and solid–solid

transitions in hard spheres,206-209 simple liquids,210,211 anisotro-

pic fluids,212-214 and various models of colloidal dispersions.215-

221 DFT is useful not only for freezing/melting transitions of

one-component systems but also for mixtures where exotic

fluid–solid and solid–solid transitions have been identi-

fied.222-224 Application of DFT to a fluid–solid interface (with

explicit consideration of solid inhomogeneity) is able to cap-

ture the partially periodic microscopic structure and the orien-

tation variation of the interfacial tension.225,226 More recently,

DFT has been used to explore structure formation in colloids

under an external field.227-229 The periodic potential-induced

freezing and reentrant melting of colloidal particles at a surface

predicted by DFT are all in good agreement with experi-

ment.230,231

Phase Behavior of Liquid Crystals

Liquid crystals are characterized by orientational anisotropy

on a macroscopic scale arising from partial ordering of non-

spherical molecules. The equilibrium density profile in a liquid

crystal depends on both the distribution of the center of mass

and the orientation of constituent molecules. The system is in

an isotropic state if the density is independent of both position

and orientation. As shown in Figure 19, a nematic state is

obtained if the density depends on orientation but not on

position; a smectic state is obtained if the density is ordered in

both position and orientation. Other liquid-crystal states are

also possible in confined systems or in those consisting of more

complicated liquid-crystal molecules.

Lyotropic liquid crystals

Because the thermodynamic functions of a liquid crystal

phase can be naturally expressed in terms of the angle-depen-

dent density profiles, the usefulness of DFT for predicting the

phase behavior of liquid crystals has long been recognized. As

discussed earlier, Onsager’s theory for the isotropic–nematic

phase transition in hard rods is based on the second-virial

expansion of the excess Helmholtz energy functional.38,232,233 It

is exact for infinitely long hard rods but becomes inadequate

for systems containing molecules with a small aspect ratio and

for those phase transitions that include various smectic phases.

The Parson–Lee functional provides an improvement of On-

sager’s theory by taking into account the excluded-volume

effect using an effective hard-sphere model.233-236 Likewise,

the Maier–Saupe theory and its extensions to include intermo-

lecular attractions can be understood as an extension of van der

Waals mean-field theory for uniform fluids to systems with

orientation-dependent intermolecular attractions.237

Classical theories of liquid crystals are useful for describing

isotropic-to-nematic transitions but are often insufficient to

represent those phase transitions that concern both original and

positional ordering as encountered various smectic phases.

Toward that end, several versions of DFT have been proposed

recently.238,239 Using a nonlocal density functional for the free

energy of effective hard spheres in the Parson–Lee model,

Somoza and Tarazona240 predicted first- and second-order

phase transitions among nematic, smectic-A, and smectic-C

phases in hard spherocylinders. Figure 19 schematically shows

the phase behavior of hard cylinders. It has been demonstrated

that the Somoza–Tarazona theory is also applicable to inho-

mogeneous spherocylinders and their mixtures.241-244 Applica-

tion of Rosenfeld’s fundamental measure theory to binary

hard-platelet fluids reveals that the bulk phase diagram includes

an isotropic phase, one or two nematic phases of different

composition, and a columnar phase.245

Gay–Berne model

Liquid crystals are often divided into two basic classifica-

tions: thermotropic and lyotropic. The phase transitions of

lyotropic liquid crystals mainly depend on concentration,

whereas those of thermotropic liquid crystals depend on both

temperature and concentration. Whereas hard spherocylinders

and platelets provide a good representation of lyotropic liquid

crystals, they are not useful for thermotropic liquid crystals

because the attractions between these particles are not in-

cluded. Much theoretical work on the phase transitions of

thermotropic liquid crystals is based on the Gay–Berne mod-

el.246-248 The interaction potential between two axially asym-

metric molecules is

u�r, 
1, 
2� � 4��r̂, 
1, 
2� � �� �0

r � �(r̂, 
1, 
2) � �0
�12

� � �0

r � �(r, 
1, 
2) � �0
�6	 (23)

Equation 23 can be understood as an extension of the Lennard–

Jones potential. The vector r � r2 
 r1 separates the centers of

mass of two molecules with orientations 
1 and 
2; r̂ � r/� r �
is a unit vector, and �(r̂, 
1, 
2) and �(r̂, 
1, 
2) are angle-

dependent energy and length functions, respectively.247 Be-

cause the Gay–Berne potential includes anisotropic repulsive

and attractive components, it provides a benchmark model for

Figure 19. Phase diagram for a system containing hard

cylinders according to DFT.240

Cylinder shown on the righthand side defines the diameter D
and length L of a liquid-crystal molecule. Inserts show
alignment of liquid-crystal molecules. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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thermotropic liquid crystals that form a large variety of par-

tially ordered phases.

As schematically shown in Figure 20, a simple version of

DFT, derived from the virial expansion of the excess Helm-

holtz energy functional, is capable of describing uniform iso-

tropic vapor and liquid phases, nematic phases, and layered

smectic phases of the Gay–Berne model within a single theo-

retical framework.246 The phase diagram includes isotropic-to-

nematic and nematic-to-columnar phase transitions when the

aspect ratio is small and the nematic phase disappears beyond

a critical aspect ratio.247 Although the transitions among vapor,

isotropic liquid, and crystalline solid resemble those corre-

sponding to simple fluids, several ordered structures appear

between isotropic liquid and solid phases. In addition to

nematic and smectic phases, the phase diagram of the Gay–

Berne model includes a columnar phase where disk-like mol-

ecules assemble into columns with a two-dimensional spatial

periodicity.

The numerical details for the application of DFT to liquid

crystals are necessarily more complicated than those for simple

fluids because of the higher dimensional integrations. Fortu-

nately, the computational cost becomes of less concern com-

pared to that of Onsager’s era when a numerical solution could

be obtained only by polynomial expansions. Whereas bulk

phase behavior of liquid crystals has been the major focus of

most DFT calculations reported in the literature, DFT is

equally applicable to phase transitions of liquid crystals at

inhomogeneous conditions.249 More reports for such conditions

are expected in the near future.250,251

Structured Soft Materials and Composites

Synthesis of materials with precisely controlled microstruc-

ture has been a hallmark of modern materials science. An

outstanding example is the use of block copolymers that have

been tailored for applications ranging from the exotic to such

everyday materials as removable adhesive pads and the soles of

running shoes. Unlike conventional crystalline materials that

exhibit order at the atomic or molecular levels, structure or-

dering in block copolymer systems is mostly induced by mi-

croscopic phase segregation of chemically distinct segments

that are covalently linked together. Such microscopic phase

separations have been successfully described by the polymer

self-consistent field theory.252

Classical DFT shares a number of similarities with the

polymer self-consistent field theory except that, as in molecular

simulations, DFT follows the chemical topology of polymeric

molecules and specific intermolecular interactions. DFT is able

not only to reproduce the morphologies of block copolymer

thin films predicted by self-consistent field calculations but also

to resolve the segmental detailed packing structures near the

interface.253,254 In addition to segmental/level details, DFT has

the advantage of explicitly accounting for the compressibility

and local segmental packing effects that are missed in a typical

self-consistent field theory.

In recent years, block copolymers have been used as useful

templates for fabrication of nanostructured materials.255-257

Nanoparticle–copolymer hybrids combine the unique mag-

netic, electronic, catalytic, and spectroscopic features of semi-

conductor or metallic colloids with the flexibility, solubility,

and processibility of polymers, promising for development of

the next-generation catalysts, membranes, and optoelectrical

devices. Controlled synthesis of such materials for tailored

applications requires good understanding of how copolymer

chemical structures, molecular weight, and composition, and

the characteristics of nanoparticles influence microscopic mor-

phology and phase behavior. Toward that end, the self-consis-

tent field theory has been extended to polymer and nanoparticle

mixtures by including DFT to account for the excluded-volume

effect of nanoparticles.258,259 According to the hybrid theory,

the total Helmholtz energy functional for a system containing

AB block copolymers and neutral nanoparticles is given by

F �
N

2V � dr �
i�j

�i�r��j�r��ij �
1

V � dr �
i

�i�r�wi�r�

� �1 � �P�ln�V�1 � �P�/Qd� � �P/
 ln�V�P/
QP�

� 1/V � dr�P�r��hs��� P�r�� (24)

where N is the degree of polymerization of the block copoly-

mer, V is the total volume, �i(r) represents a local volume

fraction with subscript i denoting a segment A or B or a

nanoparticle. The first two terms on the right-hand side of Eq.

24 account for the two-body mean-field attractive energy and

the free energy arising from the self-consistent field, respec-

tively; the next two terms stand for the free energy of a single

copolymer molecule (d) and a nanoparticle (P), respectively,

where Q stands for the single-molecule (particle) partition

function. The parameter 
 denotes the particle-to-diblock vol-

ume ratio. Finally, the last term in Eq. 24 comes from the

excluded-volume effect of nanoparticles, represented by the

DFT of Tarazona.132 This hybrid theory is able to capture a rich

variety of mesostructures in particle–block copolymer mix-

tures, thereby enabling the fabrication of novel composite

architectures by design.260 Compared to molecular simulations,

the hybrid DFT approach bears important advantages of nu-

merical efficiency because of its simplicity. It provides useful

insights for controlling the structures of block–copolymer–

particle composites. Although application of the local incom-

pressibility condition to a continuous model is questionable,

this drawback can be overcome by taking into account the

Figure 20. Liquid crystals in the Gay–Berne model pre-

dicted by DFT.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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characteristics of both nanoparticles and block copolymers

within a truly self-consistent DFT.

Molecular Self-Assembly

Amphiphilic molecules (such as surfactants) may self-orga-

nize into a variety of intriguing ordered structures in a solution.

The self-assembly processes have been of prime scientific

interest for decades. Applications include formation of vesicles

or liposomes as carriers of therapeutic agents and as simplified

models for biological membranes.204

Early research in the self-assembly of amphiphilic molecules

has been heavily influenced by a phenomenological theory first

proposed by Tanford for the formation of spherical micelles.261

This seminal work was later extended by Nagarajan and Ruck-

enstein,262 Israelachvili,263 Blankschtein,264 and others to more

sophisticated models of self-assembly for representing the for-

mations of micelles, bilayers, vesicles, and microemulsions.

These phenomenological theories have proved useful as rules

of thumb for experimental design of many amphiphilic systems

including those containing lipid molecules and block copoly-

mers.

Classical DFT has also been used to study structure ordering

in amphiphilic systems for a number of years.265-270 The basic

idea is that the organized microscopic structures satisfy a local

minimum of the grand potential energy, which can be de-

scribed in terms of the density-functional formulism. Based on

coarse-grained models of amphiphilic molecules, DFT is able

to represent not only the conditions required for micellization

but also the microscopic structures of spherical micelles, ves-

icles, and bilayer membranes made of either one-component or

multicomponent amphiphiles. In addition, DFT has also been

used to study the organization of amphiphilic molecules at

liquid–vapor and liquid–solid interfaces. Whereas early appli-

cations of DFT emphasized the qualitative “global” phase

diagram of amphiphilic systems and the microscopic origin of

membrane elastic constants, DFT is also applicable to more

realistic models of amphiphiles including mixed ionic surfac-

tants and lipid bilayers.271,272 To illustrate, Figure 21 shows a

phase diagram for a coarse-grained model of lipid solutions

predicted by DFT.272 The curves denote various coexistence

lines among lipid-rich and solvent-rich macrophases, and bi-

layers and lamellar microphases. Although only planar sym-

metry is considered, the DFT captures compressibility and

packing effects of flexible lipid molecules in a solvent and is

naturally applicable to both micro- and macrophases.

Summary and Outlook

As a generic method in statistical mechanics, classical den-

sity functional theory (DFT) offers a powerful alternative to a

variety of conventional theoretical methods and molecular sim-

ulations for linking microscopic properties of chemical systems

to the structural and thermodynamic properties. The practical

value of DFT is reflected not only by its generality but also by

its versatility for solving problems that may not be attained by

conventional theories. This review gives some specific exam-

ples where DFT is more informative compared to conventional

methods. There is no need to apply DFT to problems where

conventional theories are sufficient, as in typical vapor–liquid

or liquid–liquid phase-equilibrium calculations that can be

satisfactorily achieved by using classical equations of state or

local-composition models. However, we cannot expect these

conventional theories to be applicable to interfacial properties

and to phase transitions that occur in a confined geometry or

that concern structure formation as in solubilization of copol-

ymers in a liquid or in supercritical carbon dioxide.273 The

usefulness of many phenomenological theories has been well

established and they remain valuable as long as the underlying

approximations can be adequately justified for a specific prob-

lem.

Future applications of DFT depend on continuing progress

toward more faithful representation of density functionals re-

flecting molecular-level interactions and, more important,

clever implementation methods such as the curvature expan-

sions of local density profiles.274 Further, more efficient nu-

merical algorithms are required to solve multidimensional den-

sity profiles. Although much current work in the literature

concerns relatively simple models with emphasis on the per-

formance of various versions of density functionals for repre-

senting the qualitative or semiquantitative physiochemical

properties in the bulk or under confinement, we anticipate that,

once more realistic intermolecular force fields and reliable

expressions of the excess Helmholtz energy functionals are

established, DFT will be useful for more complex systems, in

particular for those related to material fabrication, environmen-

tal protection, and biomolecular engineering. Important ad-

vances are already emerging in applications of DFT to crystal

nucleation and growth,29 aerosol formation,275 structures of

copolymers and composites,99,260 transport processes through

ion channels,27 protein folding and aggregation in “crowded”

environment,28 polymers for surface protection and antifoul-

ing,201 and self-assembly of lipid bilayers.272,276,277 Future ap-

plications of DFT will be most promising by integrating fun-

damental understandings from theoretical calculations with

engineering practices for development of environmentally

friendly chemical and biological processes and products.

DFT is useful not only for describing equilibrium phenom-

ena as discussed in this review. Extension of DFT to nonequi-

Figure 21. Phase diagram of lipid bilayers predicted by

DFT.272

As shown above, the lipid molecules are represented by
freely joined spherical beads and solvent molecules by Len-
nard–Jones spheres. The tail–solvent and tail–head interac-
tions are purely repulsive, whereas the solvent-head inter-
actions are attractive. xs is the number fraction of solvent
beads, that is, the number of solvent molecules divided by
the total number of solvent and lipid beads. � is the Len-
nard–Jones energy parameter for the pair interaction be-
tween lipid heads or solvent molecules. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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librium systems and kinetics/dynamics of microscopic pro-

cesses is now also well advanced. However, similar to classical

thermodynamics, DFT provides only a methodology. Whereas

the mathematical framework is exact, its successful implemen-

tation depends first on realistic molecular models and, more

important, on reliable expressions of the excess Helmholtz

energy functional. For most systems of interest for materials

and biological applications, we have neither truly accurate

molecular models nor exact Helmholtz energy functionals.

Fortunately, chemical engineers have long recognized that, for

practical applications, a theoretical model need not be exact.

For broad chemical engineering applications, we also recog-

nize the value of simple models that contain the essential

physics of natural phenomena, and semiempirical quantitative

models that provide reliable correlation of physiochemical

properties. Toward that end, DFT provides a useful methodol-

ogy.
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