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1. The challenge

A gateway event [35] is a change to a system that leads to the possibility of huge increases in

kinds and levels of complexity. It opens up a whole new kind of phase space to the system’s

dynamics. Gateway events during evolution of life on earth include the appearance of eukaryotes

(organisms with a cell nucleus), an oxygen atmosphere, multi-cellular organisms and grass.

Gateway events during the development of mathematics include each invention of a new class of

numbers (negative, irrational, imaginary, . . .), and dropping Euclid’s parallel postulate.

A gateway event produces a profound and fundamental change to the system: Once

through the gateway, life is never the same again. We are currently poised on the threshold of

a significant gateway event in computation: That of breaking free from many of our current

“classical computational” assumptions. Our Grand Challenge for computer science is

to journey through the gateway event obtained by breaking our current classical
computational assumptions, and thereby develop a mature science of Non-Classical
Computation

2. Journeys versus goals

To travel hopefully is a better thing than to arrive.

– Robert Louis Stevenson, “El Dorado”, 1878.
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Many Grand Challenges are cast in terms of goals, of end points: “Achieving the goal, before

this decade is out, of landing a man on the moon and returning him safely to earth” [50],

mapping the human genome, proving whether P ¼ NP or not. We believe that a goal is not

the best metaphor to use for our particular Grand Challenge, however, and prefer that of a

journey.

The metaphor of a journey emphasises the importance of the entire process, rather than

emphasising the end point. In the 17th and 18th centuries it was traditional for

certain sections of “Polite Society” to go on “a Grand Tour of Europe”, spending several

years broadening their horizons: The experience of the entire journey was important.

And in the Journey of Life, death is certainly not the goal! Indeed, an open journey, passing

through gateway events, exploring new lands with ever expanding horizons, need not have

an end point.

A journey of a thousand miles begins with a single step.

– Lao Tzu, Tao Te Ching, Chapter 64, ,600 B.C.

Journeys and goals have rather different properties. A goal is a fixed target, and influences

the route taken to it. With an open journey of exploration, however, it is not possible to

predict what will happen: The purpose of the journey is discovery, and the discoveries along

the journey suggest new directions to take. One can suggest starting steps, and some

intermediate way points, but not the detailed progress, and certainly not the end result.

Thinking of the Non-Classical Computation Challenge in terms of a journey, or rather

several journeys, of exploration, we suggest some early way points that appear sensible to

aim for. But we emphasise that these are early points, that we spy today as we peer through

the gateway. As the community’s journey progresses, new way points will heave into view,

and we can alter our course to encounter these as appropriate.

The Road goes ever on and on.

– J. R. R. Tolkien, The Lord of the Rings, 1954.

3. Six classical paradigms to disbelieve before breakfast

Classical computing is an extraordinary success story. However, there is a growing

appreciation that it encompasses an extremely small subset of all computational possibilities.

In many avenues of life, we create unnecessary limitations. Perhaps the most invidious of

these are the implicit assumptions we make. We need to distinguish this has to be the case

from the merely this has always been the case. Discoveries may emerge when what was

considered an instance of the former is found to be an instance of the latter. For example,

dropping Euclid’s parallel postulate gave rise to the whole field of non-Euclidean geometry,

arguably paving the way for General Relativity. We wish to encourage similar revolts against

the assumptions of classical computing. So below we identify several paradigms that seem to

define classical computing, but that may not necessarily be true in all computing paradigms,

and we encourage the community to drop, invert, or otherwise perturb these paradigms in

whatever ways seem interesting. Our brochure of reality-based journeys is a start.

Many computational approaches seek inspiration in reality (mainly biology and physics),

or seek to exploit features of reality. These reality-based computing approaches hold great

promise. Often, nature does it better, or at the very least differently and interestingly.

Examining how the real world solves its computational problems provides inspirations for
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novel algorithms (such as genetic algorithms or artificial immune systems), for novel views

of what constitutes a computation (such as complex adaptive systems, and self-organising

networks) and for novel computational paradigms (such as quantum computing).

There is a gulf between the maturity of classical computing and that of the emerging non-

classical paradigms. For classical computing, intellectual investment over many years is

turning craft into science. To fully exploit emerging non-classical computational approaches

we must seek for them such rigour and engineering discipline as is possible. What that

science will look like is currently unclear, and the Grand Challenge encourages exploration.

Here we outline some assumptions of classical computation, and ways researchers in

different fields are challenging them. In later sections we discuss alternatives in more detail.

(Some of the categories arguably overlap.)

It ain’t necessarily so.

– George Gershwin, Porgy and Bess, 1934

3.1 The Turing paradigm

Classical physics: Information can be can be freely copied, information is local, states have

particular values. Rather, at the quantum level information cannot be cloned, entanglement

implies non-locality, and states may exist in superpositions.

Atomicity: Computation is discrete in time and space; there is a before state, an after state

and an operation that transforms the former into the latter. Rather, the underlying

implementation substrate realises intermediate physical states.

Infinite resources: Turing machines have infinite tape state, and zero power consumption.

Rather, resources are always constrained.

Substrate as implementation detail: The machine is logical, not physical. Rather, a

physical implementation of one form or another is always required, and the particular choice

has consequences.

Universality is a good thing: One size of digital computer, one size of algorithm, fits all

problems. Rather, a choice of implementation to match the problem, or hybrid solutions, can

give more effective results.

Closed and ergodic systems: The state space can be pre-determined. Rather, the progress

of the computation opens up new regions of state space in a contingent manner.

3.2 The von Neumann paradigm

Sequential program execution. Rather, parallel implementations already exist.

Fetch-execute-store model of program execution. Rather, other architectures already exist,

for example, neural nets, FPGAs.

The static program: the program stays put and the data comes to it. Rather, the data could

stay put and the processing rove over it.

3.3 The output paradigm

A program is a black box: It is an oracle abstracted away from any internal structure. Rather,

the trajectory taken by a computation can be as interesting, or more interesting, than the final

result.
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A program has a single well-defined output channel. Rather, we can choose to observe

other aspects of the physical system as it executes.

A program is a mathematical function: Logically equivalent systems are indistinguishable.

Rather, correlations of multiple outputs from different executions, or different systems, may

be of interest.

3.4 The algorithmic paradigm

A program maps the initial input to the final output, ignoring the external world while it

executes. Rather, many systems are ongoing adaptive processes, with inputs provided over

time, whose values depend on interaction with the open unpredictable environment; identical

inputs may provide different outputs, as the system learns and adapts to its history of

interactions; there is no prespecified endpoint.

Randomness is noise is bad: Most computer science is deterministic. Rather, nature-

inspired processes, in which randomness or chaos is essential, are known to work well.

The computer can be switched on and off: Computations are bounded in time, outside

which the computer does not need to be active. Rather, the computer may engage in a

continuous interactive dialogue, with users and other computers.

3.5 The refinement paradigm

Incremental transformational steps move a specification to an implementation that realises

that specification. Rather, there may be a discontinuity between specification and

implementation, for example, bio-inspired recognisers.

Binary is good: Answers are crisp yes/no, true/false, and provably correct. Rather,

probabilistic, approximate and fuzzy solutions can be just as useful, and more efficient.

A specification exists, either before the development and forms its basis, or at least after the

development. Rather, the specification may be an emergent and changing property of

the system, as the history of interaction with the environment grows.

Emergence is undesired, because the specification captures everything required, and the

refinement process is top-down. Rather, as systems grow more complex, this refinement

paradigm is infeasible, and emergent properties become an important means of engineering

desired behaviour.

3.6 The “computer as artefact” paradigm

Computation is performed by artefacts: Computation is not part of the real world. Rather, in

some cases, nature “just does it”, for example, optical Fourier transforms.

The hardware exists unchanged throughout the computation. Rather, new hardware can

appear as the computation proceeds, for example, by the addition of new resources. Also,

hardware can be “consumed”, for example, a chemical computer consuming its initial

reagents. In the extreme, nanites will construct the computer as part of the computation, and

disassemble it at the end.

The computer must be on to work. Rather, recent quantum computation results [47]

suggest that you do not even need to “run” the computer to get a result!
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Doubtless there are other classical paradigms that we accept almost without question.

They too can be fruitfully disbelieved.

4. The Real World: Breaking the Turing paradigm

4.1 Real World as its own computer

The universe does not need to calculate, it just does it. We can take the computational stance,

and view many physical, chemical and biological processes as if they were computations:

The Principle of Least Action “computes” the shortest path for light and bodies in free fall;

water “computes” its own level; evolution “computes” fitter organisms; DNA and

morphogenesis “computes” phenotypes; the immune system “computes” antigen

recognition.

This natural computation can be more effective than a digital simulation. Gravitational

stellar clusters do not “slow down” if more stars are added, despite the problem appearing to

us to be O(n 2). And as Feynman noted [31], the real world performs quantum mechanical

computations exponentially faster than can classical simulations.

4.2 Real World as our computer

Taking the computational stance, we may exploit the way the world works to perform

“computations” for us. We set up the situation so that the natural behaviour of the real world

gives the desired result.

There are various forms of real world sorting and searching, for example. Centrifuges

exploit differences in density to separate mixtures of substances, a form of gravitational

sorting. Vapours of a boiling mixture are richer in the components that have lower boiling

points (and the residual mixture is richer in those that have higher boiling points); distillation

exploits this to give a form of thermal sorting. Chromatography provides chemical means of

separation. Ferro-magnetic objects can be separated out from other junk by using industrial-

strength magnets. Optics can be exploited to determine Fourier transforms.

Maggots perform the “computation” of eating dead flesh: Historically, maggots were used

to clean wounds, that is, to perform their computation in a context to benefit us. More

recently, bacterial metabolisms have been altered to perform the “computation” of cleaning

up pollution.

Access control computations abound. Suitably constructed shape is used to calculate

whether the key inserted in a tumbler lock is the correct one. Physical interlocks are exploited

for safety and practical reasons across many industries: For example, it is impossible to insert

a nozzle from a leaded petrol pump into the fuel tank of a unleaded petrol car.

4.3 Real World as analogue computer

We may exploit the real world in more indirect ways. The “computations” of the “real world

as our computer” are very direct. Often we are concerned with more abstract questions.

Sometimes the physical world can be harnessed to provide results that we need: We may be
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able to set up the situation so that there is an analogy between the computation performed by

the real world, and the result we want.

There is an age-old mechanism for finding the longest stick of spaghetti in an unruly pile,

exploiting the physics of gravity and rigidity: We can use this to sort by setting up an analogy

between spaghetti strand length and the quantity of interest. Mercury and alcohol

thermometers use a physical means of computing temperature by fluid expansion: The

analogy is between the length of the fluid column and the temperature. Millikan’s calculation

of the charge on an electron exploits relationships between velocity of falling oil drops,

viscosity of air, the charge on those drops and the strength of surrounding electric fields.

Classical computing already exploits physics at the level of electron movements. But there

are other ways of exploiting nature.

Analogue computing itself exploits the properties of electrical circuits as analogues of

differential equations.

DNA computing [4] encodes problems and solution as sequences of bases (strands) and

seeks to exploit mechanisms such as strand splitting, recombination and reproduction to

perform calculations of interest. This can result in vast parallelism, of the order of 1020

strands.

Quantum computing [71] presents one of the most exciting developments for computer

science in recent times, breaking out of the classical Turing paradigm. As its name suggests,

it is based on quantum physics, and can perform computations that cannot be effectively

implemented on a classical Turing machine.† It exploits interference, many worlds,

entanglement and non-locality. Newer work still is further breaking out of the binary mind-

set, with multiple-valued “qudits”, and continuous variables. Research in quantum

computing is mushrooming, and it is apparent that we are not yet in position to fully exploit

the possibilities it offers. If only small quantum computers were to prove practical then uses

could still be found for simulating various quantum phenomena. However, if larger

computers prove possible we will find ourselves unprepared.

. Why are there so few distinct quantum algorithms? How can new ones be found?

. How do we discover new a quantum algorithms to solve a given problem? How do we use

existing algorithms to solve new problems? How can we find the best algorithms to use

given limited computational resources? More generally. . ..

. What would a discipline of quantum software engineering look like? (See later for

more detail.)

. How can quantum computers be harnessed most effectively as part of a hybrid

computational approach?

4.4 Real World as inspiration

Many important techniques in computer science have resulted from observing the real world.

Meta-heuristic search techniques have drawn inspiration from physics (simulated

annealing), evolution (genetic algorithms [36,68], genetic programming [7,53]), neurology

†Analogue (as in continuous) computing also breaks the Turing paradigm. But the real world is neither analogue
nor classically discrete; it is quantum. So analogue computing might be dismissed as of theoretical interest only.
However, the same dismissal might then be made of classically discrete (classical) computation! (The real world is
also relativistic, but that paradigm has not been embraced by computation theory, yet.)
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(artificial neural networks [11,52,67,83]), immunology (artificial immune systems [25]),

plant growth (L-systems [81]), social networks (ant colony optimisation [12]) and other

domains.

These have all proved remarkably successful, or look highly promising, yet the science

underpinning their use comes nowhere near matching the science of classical computing.

Given a raft of nature-inspired techniques we would like to get from problem to solution

efficiently and effectively, and we would like to reason about the performance of the resulting

systems. But this falls outside the classical refinement paradigm.

. What would a science of non-classical refinement look like? A science would allow us, for

example, to reason confidently about the behaviour of neural networks in critical

applications, to derive highly effective systems targeted at highly limited resources.

In the virtual worlds inside the computer, we are no longer constrained by the laws of

nature. Our simulations can go beyond the precise way the real world works. For example,

we can introduce novel evolutionary operators to our genetic algorithms, novel kinds of

neurons to our neural nets, and even, as we come to understand the embracing concepts,

novel kinds of complex adaptive systems themselves. The real world is our inspiration, not a

restriction.

. How can we use nature inspired computation to build “better than reality” systems? What

are the computational limits to what we can simulate?

. What is the best you can do given many components, each with highly restricted memory

and processing ability?

5. Massive parallelism: Breaking the von Neumann paradigm

Parallel processing (Cellular Automata [94], etc) and other non-classical architectures break

out of the sequential, von Neumann, paradigm. (The fact that the sequential paradigm is

named after von Neumann should not be taken to imply that von Neumann himself was an

advocate of purely sequential computation; indeed, he was also one of the early pioneers of

CAs [70].)

Under the classical paradigm assumptions, any parallel computation can be serialised, yet

parallelism has its advantages.

Real-time response to the environment. The environment evolves at its own speed, and a

single processor might not be able to keep pace. (Possibly the ultimate example of this will be

the use of vast numbers of nanotechnological assemblers (nanites) to build macroscopic

artefacts. A single nanite would take too long, by very many orders of magnitude.)

Better mapping of the computation to the problem structure. The real world is intrinsically

parallel, and serialisation of its interactions to map the computational structure can be hard.

Parallelism also permits colocation of each processor and the part of the environment with

which it interacts most. It then permits colocation of the software: Software agents can roam

around the distributed system looking for the data of interest, and meeting other agents in a

context-dependent manner.

And once the classical paradigm assumptions are challenged, we can see that serialisation

is not necessarily equivalent.
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Fault tolerance. Computation requires physical implementation, and that implementation

might fail. A parallel implementation can be engineered to continue working even though

some of its subset processors have failed. A sequential implementation has only the one

processor.

Interference/interaction between devices. Computation requires physical implementation,

and those implementations have extra-logical properties, such as power consumption, or

electromagnetic emissions, which may be interpreted as computations in their own right

(see later). These properties may interfere when the devices are running in parallel, leading to

effects not present in a serialised implementation. (Possibly the ultimate example of this is the

exponentially large state space provided by the superposed parallel qubits in a quantum

computer.)

The use of massive parallelism introduces new problems. The main one is the requirement

for decentralised control. It is just not possible to have a single centralised source exercising

precise control over vast numbers of heterogeneous devices (this is merely a covert attempt

to serialise the system). Part of this problem is tackled by the sister Grand Challenges in

Ubiquitous Systems, and part is addressed in the later section on open processes.

6. In the eye of the beholder: Breaking the output paradigm

The classical paradigm of program execution is that an abstract computation processes an input

to produce an output. This input–output mapping is a logical property of the computation, and is

all that is important: No intermediate states are of interest, the computation is independent of

physical realisation, and different instances of the computation yield precisely the same results.

Computation, however, is in the eye of the beholder. Algorithms are implemented by

physical devices; intermediate states exist, physical changes happen in the world,

different devices are distinguishable. Any information that can be observed in this

physical world may be used to enrich the perceived computation [19].

6.1 Logical trajectory observations

An executing algorithm follows a trajectory through the logical state space. (Caveat: This is a

classical argument: Intermediate quantum computational states may be in principle

unobservable.) Typically, this trajectory is not observed (except possibly during debugging).

This is shockingly wasteful: Such logical information can be a computational resource in its

own right. For example, during certain types of heuristic search the trajectory followed can

give more information about a sought solution than the final “result” of the search itself.

. How can logical observations made during execution be used to give useful information?

6.2 Physical trajectory observations

An executing algorithm is accompanied by physical changes to the world: For example, it

consumes trajectory-dependent power as it progresses, and can take trajectory-dependent

time to complete. Such physical resource consumption can be observed and exploited as a

computational resource, for example, to deduce features of the logical trajectory.

(For example, some recent attacks on smart cards have observed the power consumption

S. Stepney et al.12



profile and data-dependent timing of internal operations to deduce secret key information

[17].) Such physical observations provide a very powerful source of information, currently

exploited mainly by attackers, but available for more general computational use.

. What physical observations are feasible, and correlated with logical trajectories?

. What new uses can be found for such physical observations?

6.3 Differential observations

An executing algorithm is realised in a physical device. Physical devices have physical

characteristics that can change depending on environmental conditions such as temperature,

and that differ subtly across logically identical devices. (Indeed, much of the rationale for

digitisation is the removal of these differences.) So one can make observations not merely of

the output of a single execution, but of a set of outputs from a family of executions, of

multiple systems, of different but related systems. For example, if repeated executions of a

search each get 90% of elements of a sought solution correct then repeated executions might

be combined to give an overall solution.

. How can diversity of multiple computations be exploited?

. How should diversity be engineered? By repeated mutation of a source program?

By embracing technologically diverse solution paradigms?

6.4 Higher-order observations

These are observations not of the program execution itself, but of the execution of the

program used to design (the program used to design. . .) the program.

7. Open processes: Breaking the algorithmic paradigm

In the classical paradigm, the ultimate goal of a computation is reaching a fixed point: The

final output, the “result” of the computation, after which we may switch off the computer.

The majority of classical science is also based around the notion of fixed-point equilibrium

and ergodicity (ergodicity is the property that the system has well defined spatial and

temporal averages, because any state of the system will recur with non-zero probability).

Modern theories of physics consider systems that lack repetition and stability: They are far

from equilibrium and non-ergodic. Perhaps the most obvious non-ergodic, far from

equilibrium system is that of life itself, characterised by perpetual evolution (change). Most

human problems are also best described in such terms; since computation is ultimately in

service of such problems, the implications of non-ergodic, far from equilibrium physics must

be considered in relationship to computing’s future.

Consider the most basic of chaotic systems: The logistic process, parameterised by R.

xtþ1 ¼ Rxtð1 2 xtÞ

The behaviours of various logistic processes as a function of R are shown in figure 1, where

each point on the plot is a point on the attractor.

Journeys in non-classical computation I 13



For values of 1 , R , 3, these logistic processes have a fixed point attractor. For R ¼ 3

they have an attractor of period two. As we raise R, the attractor becomes period four, period

eight, etc. This period doubling continues as we raise R, and the values of R where each

doubling occurs get closer together. For R . 3.569945671. . . the logistic process’s attractor

goes through an infinite number of values (except for a few “islands” or order, of attractors

with multiples of odd periods). There is a phase transition from order (the region of period

doubling) to chaos (“random” behaviour). The phase transition point at R ¼ 3.569945671. . .

is the so-called edge of chaos [61].

Consider a discretised process whose underlying (continuous) dynamics are those of the

logistic equation. Imagine taking measurements from this process. Take very coarse

measurements: Say the process outputs 1 if x . 0.5, and 0 otherwise; and take samples of

length L bits. For a given L, construct an automaton that represents the process. So now the

logistic processes generated by various values of R are being interpreted as a variety of

automata: Logistic machines. It turns out that there is a clear phase transition (a peak in the

machine size versus the entropy of the bit sequence) as we move from the period doubling

region to the chaotic region [23].

At the phase transition, the machine size versus the length of the sequence L, expands

without bound. That is, at the edge of chaos, the logistic machine requires an infinite memory

machine for accurate representation. There is a leap in the level of intrinsic computation

going on in the logistic machine at the edge of chaos. (In terms of the Chomsky hierarchy, the

machine has gone from the level of regular grammars to the level of context-free grammars.)

At the edge of chaos, we can add new resources (computational or physical) to get results

that are neither redundant (as they are in the structured period doubling regime) nor random

(as in the chaotic regime). Within the classical paradigm, such conditions would be

anathema, indicating unceasing variety that never yields “the solution”. But in life-like

Figure 1. Points on the attractors of various logistic processes, versus the parameter R.
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systems, there is simultaneously sustained order, and useful innovation. In this setting,

emergence of the unforeseen is a desirable property, rather than disruptive noise.

Some computational approaches attempt to exploit the biological paradigm: Cellular

automata, evolutionary computation, recurrent networks (autocatalytic, neural, genomic,

immune system, ecological webs, . . .), social insect and agent-based systems, DNA-

computing, and nanite-systems that build themselves. However, in most of these cases,

the implementations of such systems have been locked into themselves, closed, unable

to take on new matter or information, thus unable to truly exploit emergence.

We should consider open systems, systems where new resources, and new kinds of

resources, can be added at any time, either by external agency, or by the actions of the

system itself. These new resources can provide gateway events, that fundamentally alter

the character of the system dynamics, by opening up new kinds of regions of phase

space, and so allowing new possibilities. Computational systems are beginning to open

themselves, to unceasing flows of information (if not so much to new matter). The

openness arises, for example, through human interactivity as a continuing dialogue

between user and machine [90], through unbounded networks, through robotic systems

with energy autonomy. As computers become ubiquitous, the importance of open

systems physics to understanding computation becomes critical. The solutions we expect

from people are ongoing processes, and this should be our expectation from

computers too.

8. A coherent revolutionary challenge, that also respects the past

Classical physics did not disappear when modern physics came along: Rather its restrictions

and domains of applicability were made explicit.

Similarly, the various forms of non-classical computation will not supersede classical

computation: They will augment and enrich it. And when a wide range of tools is available,

we can pick the best one, or the best combination, for each job. For example, it might be that

using a quantum algorithm to reduce a search space, and then a meta-heuristic search to

explore that, is more effective than using either algorithm alone.

We would like

to create a general flexible conceptual framework that allows effective and efficient
exploitation of hybrid approaches, including classical and non-classical components

The journey is the important thing. At various points in journey-space researches will

alight to mark their way, leaving behind diary entries to which they may return at a later date.

In common parlance these intermediate recordings may be regarded as “achievements”.

Opportunities are manifold. We expect journeys relevant to the sub-disciplines to be

articulated separately; several have already been prepared. These are given in the

second part of this paper: Journeys in Non-Classical Computation II: Initial journeys and

waypoints. Also relevant are the sister Ubiquitous Systems grand challenges.

It is important these separate journeys are not seen as independent explorations. Rather,

their results and insights should provide valuable groundwork for the overarching challenge

to produce a fully mature science of all forms of computation, that unifies the classical
and non-classical paradigms
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9. The Grand Challenge Criteria

The Grand Challenge Journey in Non-Classical Computation has been drawn up

in response to the UK Computing Research Council’s call. UKCRC posed several

criteria that a Grand Challenge should meet. Here we show how our Challenge meets these

criteria.

It arises from scientific curiosity about the foundation, the nature or the limits of a

scientific discipline. It arises from questioning the assumptions of the classical paradigms,

and aims at the creation of a new science.

It gives scope for engineering ambition to build something that has never been seen

before. It aims to build a new science; the engineering opportunities will follow.

It will be obvious how far and when the challenge has been met (or not). It will never be

met fully: It is an open journey, not a closed goal. The science will continue to mature, until

itself overtaken by the next paradigm shift.

It has enthusiastic support from (almost) the entire research community, even those who do

not participate and do not benefit from it. No. However, in the best tradition of paradigm

shifts, the change will occur.

An important scientific innovation rarely makes its way by gradually winning over and converting its

opponents: It rarely happens that Saul becomes Paul. What does happen is that the opponents gradually

die out, and that the growing generation is familiarised with the ideas from the beginning.

– Max Planck, Scientific Autobiography, 1949

It has international scope: Participation would increase the research profile of a nation.

This is a new fundamental area of computer science.

It is generally comprehensible, and captures the imagination of the general public, as well

as the esteem of scientists in other disciplines. Much popular literature already exists in

several of these areas, written by scientists in other disciplines (quantum computing,

complexity, nanotech, . . .), and so they and the general public are arguably already ahead of

the CS community!

It was formulated long ago, and still stands. Its seeds have been around for a long time, but

it has only recently become of obvious importance.

It promises to go beyond what is initially possible, and requires development of

understanding, techniques and tools unknown at the start of the project. The structure of the

Challenge mirrors the journey suggested by this criterion.

It calls for planned co-operation among identified research teams and communities. It is a

multi-disciplinary Challenge, with contributions needed from a range of research

specialities.

It encourages and benefits from competition among individuals and teams, with clear

criteria on who is winning, or who has won. There need not be a single “winner”. Diversity of

solutions should be encouraged to be applicable to a range of application domains. Winners

may emerge in particular application domains, as the strengths of the various techniques

become clear.

It decomposes into identified intermediate research goals, whose achievement brings

scientific or economic benefit, even if the project as a whole fails. There are several

components to the Challenge that can be explored in parallel.

It will lead to radical paradigm shift, breaking free from the dead hand of legacy.

Non-classical computing is a radical paradigm shift!
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It is not likely to be met simply from commercially motivated evolutionary advance.

Applications might be supported by industry, but it is unlikely that the development of the

underlying science would be.

10. Initial journeys and waypoints

We have collected several suggested journeys that could be brought under the umbrella of

Non-Classical Computation. It is assumed that these journeys would be conducted not in

isolation, but in the context of the overall challenge, informing it, and being informed by it.

The currently identified journeys are:

. Non-Classical Philosophy—Socially Sensitive Computing

. Non-Classical Physics—Quantum Software Engineering

. Non-Classical Refinement—Approximate Computation

. Computing in non-linear media—reaction-diffusion and excitable processors

. Artificial Immune Systems

. Non-Classical Interactivity—Open Dynamical Networks

. Non-Classical Architectures—Evolving Hardware

. Non-Classical Architectures—Molecular Nano-technology

. Non-von Architectures—Through the Concur-rency Gateway

These initial journeys are expanded on in the second part of this paper: Journeys in Non-

Classical Computation II: Initial journeys and waypoints.
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