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Abstract—We routinely encounter digital color images that
were previously compressed using the Joint Photographic Experts
Group (JPEG) standard. En route to the image’s current represen-
tation, the previous JPEG compression’s various settings—termed
its JPEG compression history (CH)—are often discarded after
the JPEG decompression step. Given a JPEG-decompressed
color image, this paper aims to estimate its lost JPEG CH. We
observe that the previous JPEG compression’s quantization step
introduces a lattice structure in the discrete cosine transform
(DCT) domain. This paper proposes two approaches that exploit
this structure to solve the JPEG Compression History Estimation
(CHEst) problem. First, we design a statistical dictionary-based
CHEst algorithm that tests the various CHs in a dictionary and
selects the maximum a posteriori estimate. Second, for cases where
the DCT coefficients closely conform to a 3-D parallelepiped
lattice, we design a blind lattice-based CHEst algorithm. The
blind algorithm exploits the fact that the JPEG CH is encoded
in the nearly orthogonal bases for the 3-D lattice and employs
novel lattice algorithms and recent results on nearly orthogonal
lattice bases to estimate the CH. Both algorithms provide robust
JPEG CHEst performance in practice. Simulations demonstrate
that JPEG CHEst can be useful in JPEG recompression; the
estimated CH allows us to recompress a JPEG-decompressed
image with minimal distortion (large signal-to-noise-ratio) and
simultaneously achieve a small file-size.

Index Terms—Color, compression, history, Joint Photographic
Experts Group (JPEG), lattice, quantization, recompression.

I. INTRODUCTION

ADIGITAL color image is a collection of pixels with
each pixel a three-dimensional (3-D) color vector. The

vector elements specify the pixel’s color with respect to a
chosen color space; for example, RGB, YCbCr, etc. [1], [2].
The Joint Photographic Experts Group (JPEG) is a commonly
used standard to compress digital color images [3]. JPEG
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compresses by quantizing the discrete cosine transform (DCT)
coefficients of the image’s three color planes; see Fig. 1 for
an overview. However, the various settings employed during
JPEG compression and decompression are not standardized
[3]. The following JPEG settings can be chosen by the user
or an imaging device:

1) the color space used to compress the image’s three color
planes independently;

2) the subsampling employed on each color plane during
compression and the complementary interpolation em-
ployed during decompression;

3) the quantization table used to compress each color plane.

We refer to these settings as the image’s JPEG compression
history (CH).

An image’s CH is often not directly available from its current
representation. For example, JPEG images are often imported
into Microsoft Powerpoint or Word documents using graphics
programs such as Microsoft Clip Gallery and then stored inter-
nally using a decompressed format. JPEG images are also rou-
tinely converted to lossless compression formats such as Win-
dows bitmap (BMP) format (say, to create a background image
for Windows or to feed a print driver) or Tagged Image File
Format (TIFF). In such cases, the JPEG compression settings
are discarded after decompression.

We aim to estimate the JPEG CH from a given JPEG-decom-
pressed color image. We refer to this problem as JPEG Com-
pression History Estimation (CHEst).

The CH, if available, can be used for a variety of applica-
tions. The file-size of a JPEG image is typically significantly
smaller than the file-size after the image’s conversion to BMP or
TIFF format. The JPEG CH enables us to effectively recompress
such converted BMP and TIFF images; JPEG-compressing the
image with previous JPEG settings yields significant file-size
reduction without introducing additional distortion. The JPEG
CH can also be used by “smart” print servers to reduce arti-
facts from received BMP images such as blocking and ringing
due to previous JPEG compression. To alleviate such artifacts
by adapting techniques described in [4] and [5], the print server
would need the image’s JPEG CH. An image’s JPEG CH can
also potentially be used as an authentication feature, for covert
messaging, or to uncover the compression settings used inside
digital cameras.

The CHEst problem is relatively unexplored. Fan and de
Queiroz proposed a statistical framework to perform CHEst for
gray-scale images [6]; for a gray-scale image, the CH comprises
only the quantization table employed during previous JPEG
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Fig. 1. Overview of JPEG compression and decompression.

operations. However, CHEst for color images remains unex-
plored. This paper proposes two new frameworks to perform
CHEst for color images.

First, we derive a statistical framework for CHEst. We ob-
serve that JPEG leaves its signature by quantizing the image’s
DCT coefficients and forcing them to conform to near-periodic
structures. We statistically characterize this near-periodicity for
a single color plane. The resulting framework can be exploited
to estimate a gray-scale image’s CH, namely, its quantization
table. We extend the statistical framework to color images and
design a dictionary-based CHEst approach. The dictionary con-
sists of typical color transformations, subsampling factors, and
interpolations. We adopt a maximum a posteriori (MAP) ap-
proach to estimate the color image’s CH from the dictionary

(1)

with denoting the probability and , , the estimated
compression color space, subsampling and associated interpo-
lation, and quantization tables, respectively.

Second, we consider the case when the transform from the
color space used to perform quantization to the image’s current
representation color space is affine and when no subsampling
is employed during JPEG compression. For such a case, we
develop a novel, blind, lattice-based CHEst algorithm. Such
a blind approach is required when an unknown proprietary
color transform is employed by JPEG. We demonstrate that
after JPEG decompression, such an image’s DCT coefficients
closely conform to a 3-D parallelepiped1 lattice structure de-
termined by the affine color transform. Formally, a lattice is a
set of integer linear combinations of a given set of vectors. The
minimal set of vectors whose integer linear combinations span
all lattice points is a lattice basis. We also demonstrate that the
JPEG CH information is encoded in the nearly orthogonal bases
that span the DCT lattices. Recently, [7] and [8] derived the
geometric conditions for a lattice basis to contain the shortest
nonzero lattice vector and the conditions to characterize such
bases’ uniqueness. Using these recent insights, and using novel
applications of existing lattice algorithms, we estimate the
color image’s CH, namely, the affine color transform and the
quantization tables.

The proposed CHEst algorithms demonstrate excellent per-
formance in practice. Further, we verify that CHEst allows us to
recompress an image with minimal distortion [large signal-to-
noise-ratio (SNR)] and simultaneously achieve a small file-size
(see Figs. 7 and 8).

1A solid with six faces, each of which is a parallelogram.

The rest of this paper is organized as follows. We first provide
a brief overview of color transforms and JPEG in Sections II and
III. We derive the statistical CHEst framework for gray-scale im-
ages in Section IV and extend this framework to design dictio-
nary-based CHEst for color images in Section V. In Section VI,
we describe the 3-D lattice structure of a JPEG-decompressed
image when JPEG uses an affine color transform and no subsam-
pling. Section VII overviews the properties of nearly orthogonal
lattice bases and some celebrated CHEst-relevant lattice prob-
lems. In Section VIII, we describe lattice-based CHEst and its
experimental performance. We demonstrate CHEst’s utility in
JPEG recompression in Section IX and conclude in Section X.

II. COLOR SPACES AND TRANSFORMS

Color perception is a sensation produced when light excites
the receptors in the human retina. Color can be described by
specifying the light’s spectral power distribution. Such a de-
scription is highly redundant because the human retina has only
three types of receptors that influence color perception.2 Conse-
quently, three numerical components are sufficient to describe a
color; this is termed the trichromatic theory [2].

Based on the trichromatic theory, digital color imaging
devices use three parameters to specify any color; the three
parameters can be viewed as a 3-D vector. The color space
is the reference coordinate system with respect to which the
3-D vector describes color [1], [2]. There exist many different
coordinate systems or color spaces according to which a color
can be specified. For example, the Commission Internationale
de L’Éclairage (CIE) defined the CIE color space to
specify all visible colors using positive , , and values
[1], [2]. Other examples include different varieties of RGB
(Red R, Green G, and Blue B) and YCbCr (luminance Y, and
chrominances Cb and Cr) color spaces. These color spaces
are related to each other and to reference color spaces such as
the CIE via linear or nonlinear color transformations.
For example, the popular Independent JPEG Group (IJG)
JPEG implementation [9] converts the digital color image’s
0–255-valued R, G, B components to 0–255-valued Y, Cb, Cr
components using the following transformation:

(2)

2A fourth type of receptor is also present in the retina, but it does not affect
color perception because it is effective only at extremely low light levels [2].
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Fig. 2. Examples of JPEG quantization tables for 8 � 8 DCT blocks.

The resulting YCbCr space is also referred to as the ITU.BT-601
YCbCr space [1]. The inverse color transformation from the
ITU.BT-601 YCbCr space to the RGB space is given by

(3)
The transforms in both (2) and (3) are affine. Henceforth,
we refer to the 3 3 matrix as the affine transform’s linear
component and the 3 1 shift as the affine transform’s additive
component.

Later in this paper, we will invoke a variety of color spaces
that are inter-related by affine or nonlinear transforms. We refer
the reader to [1] and [2] for additional information on color,
different color spaces, and transforms.

III. EFFECTS OF JPEG COMPRESSION AND DECOMPRESSION

In this section, we review the CHEst-relevant JPEG compres-
sion and decompression steps. We do not describe all JPEG op-
erations, but present a model that fully accounts for the effects of
JPEG compression and decompression on an image. The model
folds quantization and dequantization into one step, and ignores
all entropy coding steps because these do not affect the final
image. For further JPEG details, we refer the reader to [3].

Consider an observed color image represented in the hypothet-
ical color space (see Fig. 1); , , and denote the three
color planes. We refer to the space as the observation color
space. Assume that the image was previously JPEG-compressed
in the color space—termed the compression color space.

JPEG compression essentially performs the following opera-
tions independently on each color plane , , and in the

space.

1) Optionally downsample each color plane (for example,
retain alternate pixels to downsample by a factor of two);
this process is termed subsampling.

2) Split each color plane into nonoverlapping 8 8 blocks.
Take the two-dimensional (2-D) DCT of each block.

3) Quantize the coefficients at each DCT frequency to the
closest integer multiple of the quantization step-size cor-
responding to that frequency. For example, if denotes
an arbitrary DCT coefficient and the quantization step-
size for the corresponding DCT frequency, then the quan-
tized DCT coefficient is obtained by

round (4)

See Fig. 2 for examples of quantization tables; each entry
in the 8 8 quantization table is the quantization step-size
for an 8 8 image block’s corresponding DCT coeffi-
cient.

JPEG decompression performs the following operations.

1) Compute the inverse DCTs of the 8 8 blocks of quan-
tized coefficients.

2) Interpolate the downsampled color planes by repetition
followed by optional spatial smoothing with a low-pass
filter. The popular IJG JPEG implementation [9] uses a

impulse response filter to smooth in the
horizontal and vertical directions.

3) Transform the decompressed image to the desired color
space using the appropriate to transformation.

4) Round-off resulting pixel values to the nearest integer so
that they lie in the 0–255 range.3

Henceforth, we will refer to the zero frequency DCT coeffi-
cient as the dc coefficient and the remaining 63 DCT coefficients
as the ac coefficients.

IV. CHEST FOR GRAY-SCALE IMAGES

For gray-scale images, JPEG compression and decompres-
sion replicates the steps outlined in Section III for a single
color plane but without subsampling and interpolation. Hence,
the CHEst problem simplifies to estimating the quantization
tables employed during the previous JPEG compression. Due
to JPEG’s quantization operations, the JPEG-decompressed
gray-scale images’ DCT coefficient histograms exhibit a
near-periodic structure with the period determined by the quan-
tization step-size. In this section, to estimate the quantization
table, we derive a statistical framework that characterizes the
near-periodic structure.

A. Statistical Framework

An arbitrary DCT coefficient of a JPEG-decompressed
gray-scale image can be obtained by adding to the corre-
sponding quantized coefficient [see (4)] a round-off error
term

(5)

3In reality, round-offs occur also after the inverse DCT step. The model con-
solidates all the round-off operations into one step for the sake of simplicity.
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As described in [6], we can model using a truncated Gaussian
distribution

(6)

with the Gaussian’s variance, the truncated
Gaussian’s support, and the normalizing constant. For
example, and . Further, based on studies in [3],
[10], we can model the DCT coefficients using a zero-mean
Laplacian distribution

(7)

We have assumed that the parameter is known; in practice,
we estimate from the observed decompressed image for each
DCT frequency as described later in this section. From (7), we
have

(8)
and hence

(9)

Now, assuming that the round-off error is independent of
and , ’s distribution is obtained by convolving the distribu-
tions for and (see Fig. 3); that is

(10)

for

otherwise.
(11)

Let denote the set of the JPEG-decompressed image’s
th-frequency DCT coefficients; that is, comprises one co-

efficient from each 8 8 block. Given , we can obtain the
MAP estimate of the quantization step used on the th-fre-
quency coefficients during previous compression as

(12)

(13)

where the DCT coefficients are assumed to be independent, and
denotes the prior on .

B. Algorithm Steps

Using the statistical framework derived in the previous sec-
tion, we can estimate the 8 8 quantization table ,
with , enumerating the 64 DCT frequencies, using
the following steps.

Fig. 3. Histogram of quantized DCT coefficients. The DCT coefficients
from DCT frequency (4,4) of the gray-scale Lena image were subjected
to quantization with step-size q = 10 during JPEG compression and then
decompressed. Due to roundoff errors, the DCT coefficients are perturbed from
integer multiples of 10.

1) For each frequency , compute the set of the observed
decompressed image’s DCT coefficients.

2) Estimate the parameter from the observations as

with the number of coefficients in the set .
3) Assuming a uniform prior on , use (11) with suitable

parameters and to estimate

(14)

This algorithm is not entirely new; it is a refinement of
the technique proposed by Fan and de Queiroz in [6]. While
the core ideas remain the same, the final derived (11) differs
because of significant variations in the starting points for the
derivation and in the intermediate assumptions. Further, our
derivation explicitly accounts for all normalization constants,
thereby allowing us to extend the above approach to estimate
the CH of color images.

V. DICTIONARY-BASED CHEST FOR COLOR IMAGES

In this section, we build on the quantization step-size estima-
tion algorithm for gray-scale images from Section IV to perform
CHEst for color images.

A. Statistical Framework

For color images, in addition to quantization, JPEG per-
forms color transformation and subsampling along with the
complementary interpolation. We observe that the DCT coeffi-
cient histogram of each color plane exhibits the near-periodic
structure of Fig. 3 introduced by quantization only when the
image is transformed to the original compression color space
and all interpolation artifacts are removed. Hence, we can
obtain the MAP estimate of a color image’s CH as in (1) using
a simple extension of the statistical framework for gray-scale
images.

Let denote the set of th-frequency DCT coefficients
from the th-color plane, , 2, 3. Assume that is ob-
tained by first transforming the image from the to the color
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space representation, then undoing the interpolation , and fi-
nally taking the DCT of the color planes. Let denote the
set of all . Then

(15)

assuming that all the coefficients and the choices of
, , and are independent. In (15), the DCT coefficients’

conditional probability is computed using
(11), which is a metric for how well the image DCT coefficients
conform to a near-periodic structure. Hence, if , , and were
actually employed during the previous JPEG compression, then
the histogram of the th-frequency DCT coefficients would be
nearly periodic, and the associated would
be large. Consequently, the MAP estimate would be accurate.

B. Algorithm Steps

In general, the MAP estimation in (15) would require a search
over all and . For practical considerations, we constrain
the search to a dictionary comprising commonly employed
compression color spaces and interpolations. Dictionary-based
CHEst steps are as follows.

1) Choose a test color space and interpolation method
from the dictionary.

2) Transform the observed color image to the color space .
3) Undo the effects of the test interpolation . To undo

interpolation by simple repetition, simply downsample
the color plane. To undo interpolation by repetition and
smoothing, first deconvolve the smoothing using a simple
Tikhonov-regularized deconvolution filter [11] and then
downsample the color plane.

4) Employ the quantization table estimation step from Sec-
tion IV on each color plane.

5) Try all the and in the dictionary, and output the
and yielding the maximum conditional probability (15)
along with the associated quantization tables from Step 4.

Dictionary-based CHEst’s computational complexity is deter-
mined by the image size, the number of the test color spaces, and
the number of test subsamplings and interpolations in the dic-
tionary. In practice, a majority of the dictionary elements could
be easily and reliably eliminated using just a small part of the
image. The CH can then be estimated quickly by applying the
dictionary-based CHEst with the pruned dictionary on the entire
image.

C. Dictionary-Based CHEst Results

Dictionary-based CHEst precisely estimates a JPEG-decom-
pressed color image’s CH when the dictionary contains the ac-
tual color transform and interpolation. We demonstrate dictio-
nary-based CHEst’s performance using the 512 512 Lena

color image [12] and a specific JPEG CH choice. The algo-
rithm performed equally well on a wide variety of experiments
comprising different images and compression color spaces. The
Matlab scripts to recreate these results can be downloaded from
www.dsp.rice.edu/software.

We JPEG-compressed Lena in the 8-bit CIELab color space
using the sRGB to 8-bit CIELab color transformation [1] and
employed 2 2, 1 1, 1 1 subsampling; that is, the lumi-
nance color plane was not downsampled, while the chromi-
nance planes and were downsampled by a factor of 2 in the
horizontal and vertical directions. We employed quantization ta-
bles 1 from Fig. 2 for the plane and quantization table 2 from
Fig. 2 for the both the and planes. During decompression,
the and planes were interpolated by first upsampling using
repetition and then smoothing in the horizontal and vertical di-
rections using a impulse response filter. This de-
compressed image is the input to dictionary-based CHEst.

ToperformCHEst,we testedall color transformsfromadictio-
nary consisting of RGB to ITU.BT-601 YCbCr, Computer RGB to
ITU.BT-601 YCbCr, Studio RGB to ITU.BT-601 YCbCr, RGB to
Kodak PhotoYCC, sRGB to Linear RGB, sRGB to 8-bit CIELab,
and sRGB to CMY transforms [1]. For each transform, we consid-
ered subsampling factors 2 2, 1 1, 1 1 (with and without
smoothing during interpolation) and 1 1, 1 1, 1 1.

During the conditional probability computations (15), we as-
sumed that all color transforms and quantization step-sizes are
equally likely; that is, we set . When larger
subsampling factors and smoothing are employed, the DCT co-
efficients deviate further from their quantized values, resulting
in relatively lower conditional probabilities. To level this effect,
we need to adapt and the priors . To test if a color plane
was subsampled by a factor of 2 and then smoothed during in-
terpolation, we set the [see (11)] during the quanti-
zation table estimation step. To test if no smoothing was em-
ployed during interpolation, we set 0.75, and to test if no
subsampling was employed, we reduced the to 0.5. Further,
we set the prior 0.55 for the 2 2, 1 1, 1 1 with
smoothing, 0.35 for the 2 2, 1 1, 1 1 without
smoothing, and 0.1 for the 1 1, 1 1, 1 1 sub-
sampling. We set 6 in (11) during our experiments. These
settings worked well on all our experimental tests.

By comparing the conditional probabilities’ natural loga-
rithms (listed in Table I), we precisely identified that the sRGB
to 8-bit CIELab color transformation was employed with 2
2, 1 1, 1 1 subsampling during the previous compression,
and that smoothing was employed during the decompression;
the corresponding conditional probability value (enclosed by a

in Table I) is the largest.
Fig. 4 illustrates the algorithm’s quantization table estimates

(see Fig. 2 for the actual tables). Our quantization step-size esti-
mates were quite accurate, especially at the more important low
frequencies. Note that to estimate the quantization step-size, at
least one coefficient should be quantized to a nonzero value. For
many of the high frequencies, all coefficients were quantized
to zero because the actual quantization step-sizes (see Fig. 2)
were large. For such quantized-to-zero frequencies, our algo-
rithm typically returned the maximum quantization step size in-
cluded in our search range (100 in our case); they are marked by
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TABLE I
NATURAL LOGARITHMS OF CONDITIONAL PROBABILITIES (�10 ) FOR DICTIONARY-BASED CHEST EXPERIMENTS

Fig. 4. Dictionary-based CHEst algorithm’s quantization tables estimates for
the 8-bit CIELab’s L, a, and b color planes.

’s in Fig. 4. For some quantized-to-zero frequencies in the a
and b planes, our algorithm did not return the maximum quanti-
zation step-size because the a and b plane coefficients are more
noisy (compared to the L plane coefficients) due to the additional
deconvolution step (Step 3 in Section V-B). For example, our al-
gorithm estimated one of the a plane’s quantization step-sizes to
be 7, whereas the actual quantization step-size was 59. Note that
such errors, though seemingly large, have negligible impact on
applications such as recompression; any quantization step-size
estimate greater than 1 would reset most of the DCT coefficients
to zero (as desired) during recompression.

VI. BLIND CHEST AND LATTICES

The dictionary-based CHEst approach described in Section V
would fail if an unknown proprietary color space was used to
perform the JPEG compression. This motivates us to develop
a blind approach that does not rely on a fixed dictionary of
known color spaces. Blind lattice-based CHEst can handle cases
where the transform from the compression color space to the

current color space is affine and no subsampling is employed
during the previous JPEG compression. For such cases, Blind
CHEst aims to estimate the affine transform and quantization
tables employed during the previous JPEG compression from
the JPEG-decompressed image. The lattice geometry of a JPEG
decompressed image’s DCT coefficients holds the key to blind
JPEG CHEst.

A. Lattice Fundamentals

Lattices are central to a number of fields including coding
theory, number theory, and cryptography [13]–[16]. A lattice is
the set of all linear integer combinations of a finite set of vectors.
In , a lattice is defined as the set , with
a real matrix. Figs. 5(a) and (b) are both illustrations of
3-D lattices. The columns of are said to span the lattice . If
contains the minimal set of vectors spanning , then it is termed
a basis for . A lattice can have more than one basis. Any two
bases and for have the same number of vectors and are
related by , with an unimodular matrix—an integer
matrix with determinant equal to 1.

B. Ideal Lattice Structure of DCT Coefficients

In the absence of round-off noise, due to JPEG’s quantiza-
tion step, a JPEG-decompressed color image’s 3-D DCT vec-
tors conform to a regular parallelepiped lattice structure.

Consideranarbitrary8 8uncompressedcolor imageblock in
the color space that the DCT acts on during JPEG compression.
Let , , and denote the respective th-frequency
DCT coefficients of the , , and planes in the chosen 8
8 color image block. As described in Section III, JPEG quantizes
each plane’s DCT coefficients independently to

(16)
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Fig. 5. Lattice structures in a JPEG-decompressed color image. (a) In theG space, all 3-D DCT vectors from the same DCT frequency lie on a rectangular lattice’s
vertices. The 3-D vectors are denoted by small circles. (b) Assuming round-off errors are absent, in theF space, the 3-D DCT vectors lie on a parallelepiped lattice’s
vertices. (c) Round-off errors slightly perturb the F space 3-D DCT vectors from the parallelepiped lattice locations.

with , , and the respective quantization
step-sizes for the three color planes. Clearly, since

belongs to (the superscript denotes matrix transpose), the
vector lies on a 3-D lattice with basis

. Fig. 5(a) illustrates that the quantized 3-D DCT vector lies
on a 3-D lattice; it is a rectangular box lattice because ’s
columns are orthogonal to each other.

After quantization, assume that the image is subjected to an
affine color transform from the to the color space. Let
denote the affine transform’s linear component. Further assume
that no round-off is performed. Then, the transformed image’s
th-frequency 3-D DCT vectors can be expressed as

(17)

Thus, in the space representation, the th-frequency 3-D DCT
vectors lie on a lattice with basis . (The affine trans-
form’s additive component affects only the dc coefficients; it
shifts the dc coefficient lattice away from the origin.) Fig. 5(b)
illustrates the lattice geometry of the 3-D DCT vectors in the
space; the vectors lie on a parallelepiped lattice because ’s
columns are not orthogonal.

C. Round-Offs Perturb Ideal Lattice Geometry

In reality, a JPEG-decompressed image is always subjected to
round-off during the decompression (see Fig. 1 and Section III).
Hence, any 3-D DCT vector of the given JPEG-decompressed
image can be expressed as

(18)

with denoting the 3-D round-off noise vector. Based on (6),
we can statistically model as

(19)

Thus, from (18), the 3-D DCT vectors in the color space lie
approximately on a parallelepiped lattice [see Fig. 5(c)]. (The
dc coefficients lie approximately on a parallelepiped structure
that is shifted from the origin.)

D. Blind CHEst and Nearly Orthogonal Bases

A JPEG-decompressed image’s th-frequency 3-D
DCT vectors lie approximately on a lattice with basis .
A key step in blind CHEst is to estimate . However, since a
lattice can have multiple bases, we must exploit some additional
information about practical affine color transforms to resolve the
basis ambiguity.

Practical affine color transforms simply try to find a shifted
and approximately rotated reference coordinate system to
describe color. Consequently, the linear component (and
thereby, ) of all practical affine color transforms will be
“nearly orthogonal”. (To be precise, we will assume that
is weakly -orthogonal; see Section VII-C for the
definition.) Therefore, in addition to lattice algorithms, we will
also need to understand the properties of nearly orthogonal
lattice bases.

VII. LATTICES ALGORITHMS AND PROPERTIES OF

NEARLY ORTHOGONAL BASES

We briefly review some celebrated CHEst-relevant lattice
problems and some recent results on nearly orthogonal bases.

A. Lattice Reduction and the Lenstra–Lenstra–Lovasz (LLL)
Algorithm

A celebrated problem of interest to us is the lattice reduction
problem, which can be stated as follows. Given a set of vectors

’s that span a lattice , find an ordered set of basis vectors
for such that the basis vectors are nearly orthogonal, and the
shorter basis vectors appear first in the ordering [17]. Lattice re-
duction is clearly relevant because we also seek nearly orthog-
onal lattice bases in CHEst.

A major breakthrough in lattice theory was the discovery of a
polynomial time lattice reduction algorithm by Lenstra, Lenstra,
and Lovasz [13]; this algorithm is commonly referred to as the
LLL algorithm. The LLL algorithm can be intuitively under-
stood as an adaptation of Gram–Schmidt orthogonalization [18]
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that sequentially processes the vectors and maintains a basis
spanning the processed vectors. We will invoke LLL in Sec-
tion VIII to estimate a nearly orthogonal basis that spans the
DCT coefficient lattice.

B. Closest Vector Problem (CVP) and Shortest Vector
Problem (SVP)

The CVP and the SVP are two other famous NP-hard CHEst-
relevant lattice problems [14], [15], [19]. They are both closely
related to the lattice reduction problem. The CVP aims to find
the closest (in the Euclidean sense) lattice point to a given point.
For a comprehensive semitutorial paper on the CVP and algo-
rithms to solve it, we refer the reader to [14]. The SVP aims to
find the shortest nonzero lattice point. The 3-D DCT vectors lie
only approximately on a lattice (see Section VI-C). To estimate
a basis that approximately span these perturbed DCT vectors,
we will invoke CVP solutions in Section VIII-B1.

C. Properties of Nearly Orthogonal Lattice Basis Vectors

Recently, [7] and [8] quantified the “orthogonality” of a basis
in terms of the angle between its constituent vectors. An ordered
set of vectors is weakly -orthogonal if for any

, the angle between and the subspace spanned
by lies in the range ; that is

for all with (20)

For example, the ITU.BT-601 YCbCr to RGB transform’s [see
(3)] linear component is weakly -orthogonal with
radians.

Theorem 1: Any weakly -orthogonal,
basis contains every shortest nonzero lattice vector.

Theorem 1’s proof, which is provided in [7] and [8], follows
by induction.

The next theorem addresses the uniqueness of weakly
-orthogonal lattice basis in .

Theorem 2: Let and be
two weakly -orthogonal bases for a lattice in . Let

be a unimodular matrix such that . Then, the ’s
elements’ absolute values are upper-bounded by

(21)

See [8] for the proof and further details. Theorem 2 guarantees
that in , a weakly orthogonal basis with nearly equal length
vectors is related to every weakly orthogonal basis by a unimod-
ular matrix with small elements. For example, if is weakly

-orthogonal and its column lengths are within a factor
of 1.5 of each other, then the unimodular matrix elements re-
lating to another weakly -orthogonal basis are
either 0 or 1.

VIII. BLIND LATTICE-BASED CHEST FOR COLOR IMAGES

In Section VIII-A, we use ideas from Section VII to develop
a blind CHEst approach. Section VIII-B specifies the modifica-
tions required to robustify blind CHEst to round-off noise.

A. Lattice-Based CHEst in the Absence of Round-Off Noise

Lattice-based CHEst employs the following steps to solve the
blind CHEst problem. Each step’s detail is described in the sub-
sections that follow immediately.

1) Estimate weakly -orthogonal bases ’s for ac DCT
coefficient lattices ’s using LLL.

2) Estimate the color transform’s scaled linear component
from the estimated ’s.

3) Separate the ’s into and ’s.
4) Estimate the for the dc frequency and color trans-

form’s additive component.
We will assume that is weakly -orthogonal,

; see Section VI-D for this assumption’s motivation.4 We
have verified that all the affine color transforms in the literature
[1] satisfy this assumption.5

1) Estimating -Orthogonal Bases ’s Using LLL: In
the absence of round-offs, any th-frequency dc 3-D DCT
vector belongs to , which is spanned by a -orthog-
onal basis . We seek to estimate a weakly -orthogonal
basis from all the ’s. Given the ’s as in-
puts, LLL returns a reduced basis that spans all the ’s. (The
LLL-reduced basis is nonsingular when the input ’s span

; we will index these frequencies by .) The
LLL-reduced basis is not guaranteed to be weakly -orthog-
onal according to known worst-case bounds on LLL’s perfor-
mance.6 If the LLL-reduced basis is not -orthogonal, then
we would need to search for a unimodular matrix such that
is equal to an LLL-reduced basis times , and is -orthog-
onal. However, in our experience, this search has been unneces-
sary. The LLL output has always been weakly -orthogonal
for our lattices, which are “well-posed” in the sense that they
contain at least one weakly -orthogonal basis. Our experi-
ence conforms with common knowledge that the LLL perform
significantly better in practice than what is guaranteed theoreti-
cally [16], [17].

2) Estimating ’s: Since and are both bases for
, we have

(22)

for some unimodular matrix (not necessarily the identity ma-
trix). Hence, estimating the ’s from the ’s is equivalent
to decoding the respective ’s.

Thanks to the problem’s structure, all the ’s satisfy the fol-
lowing constraints.

4Actually, some column permutation of T is weakly (�=3) + �-orthogonal.
For brevity, we do not emphasize this minor issue.

5Theoretically, our approach can be modified to accommodate cases where
T is not weakly (�=3) + �-orthogonal. However, as the T ’s orthogonality de-
creases, that approach’s computational demands would increase and its stability
would deteriorate.

6For 2-D lattices, the LLL is guaranteed to return a weakly �=3-orthogonal
basis.
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1) is weakly -orthogonal. This follows from (22).
2) The columns of corresponding to ’s shortest

columns are the standard unit vectors times 1. This
follows from Theorem 1. Since both and are
weakly -orthogonal, they indeed contain the shortest
vectors in the .

3) The product is a positive diagonal matrix
for any . This follows from (22). Let

’s, be arbitrary unimodular matrices that
satisfy this property for every pair . It is
easy to show that if for some , then for
every . It follows that to correctly estimate
all the ’s, we just need to correctly estimate any one .
Further, multiple unimodular sequences can satisfy this
constraint only when the ’s are chosen carefully.7

4) All nonzero elements of are less than in magni-
tude. This follows from Theorem 2.

Theoretically, the above conditions are not sufficient to
uniquely determine the ’s. However, even with a small
number of nonsingular ’s, the above conditions become
so restrictive (particularly, constraint 3) that only the actual

’s satisfy all them simultaneously in practice. Hence, we just
need to search for a unimodular matrix sequence that satisfy
the above constraints.

The search focuses on estimating the correct unimodular ma-
trix for frequency . Let de-
note an arbitrary unimodular matrix that satisfies conditions 1, 2,
and 4 for frequency . From Theorem 2, the frequency contains
the least number of valid ’s (along with the correct ), which
makes the search for the correct easier. We sequentially test
each valid and verify if its choice allows us to find valid uni-
modular matrices ’s for every frequency . Note
that given , there exists at most one unimodular matrix such
that is positive diagonal; such a can be found
easily, if it exists. Since the unimodular matrix conditions are
extremely restrictive, in practice, we can safely assume that we
will be able to find valid ’s for all frequencies only if .
Further, if , then . Thus, we can quickly and re-
liably determine the desired sequence of ’s from the ’s.

3) Decomposing into and : Decomposing the
’s into and ’s is equivalent (apart from the sign) to

determining the norm of each column of because the ’s
are diagonal matrices. The signs of ’s column are chosen
such that its largest magnitude entry is positive. Let and

, , denote ’s and ’s th column
vectors respectively. Then

(23)

Since the ’s diagonal elements , all elements of the
set lie on the same one-di-
mensional (1-D) lattice. The length of the shortest vector in this
lattice is . Hence, we set ’s column norm to be the
length of the shortest nonzero vector in the 1-D lattice com-
prising the ’s.

7For example, this is possible if all theQ ’s areQ ’s scaled versions and the
actual U ’s are all identity matrices. Then, any sequence fU g with U = U ,
i 2 f2; . . . ; pg satisfies constraint 3. Note that to make fU g simultaneously
satisfy the other three constraints, Q must be chosen carefully.

4) Estimating the DC Quantization Step-Sizes and the Color
Transform’s Additive Component: The dc coefficients in the
observed space, after being transformed by the estimated ’s
inverse, is related to compression color space dc coefficients by
[see (3)]

DCT of additive component (24)

Since lies on a rectangular box lattice, lies
on a shifted rectangular box lattice. The dc quantization step-
size can be obtained by first subtracting an arbitrary reference
vector from all the vectors to nullify the shift and
then solving the SVP problem along each component.

We estimate the additive component by exploiting two con-
straints. First, the additive component should be such that the

[see (24)] lie on a lattice. Hence, at least some
should be zero. Second, all

DCT of additive component

should lie in the 0–255 range after transformation. Many addi-
tive component estimates could satisfy the above two criteria. In
such cases, we arbitrarily pick one of the solutions. Note that er-
rors in the additive component estimates do not significantly af-
fect applications such as recompression and enhancement since
these applications merely shift the dc coefficients in the com-
pression color space.

B. Robustification to Round-Off Noise

We now clarify the modifications required to combat
round-off noise.

1) Estimating -Orthogonal Bases ’s Using a Robusti-
fied LLL Algorithm: We desire to estimate a nearly orthogonal
basis such that all the 3-D DCT vectors ’s lie close to
the lattice spanned by [see (18)]. The conventional LLL is
unstable when the input vectors ’s contain noise. Hence to
estimate , we stabilize LLL in two ways.

First, we exploit the multiplicity of noisy lattice vector re-
alizations to reduce round-off noise propagation. We observe
multiple noisy realizations of the lattice vectors because even
reasonable-sized images contain many 8 8 pixel blocks. We
input the least noisy vectors first to LLL. To determine this input
order, we compute the histograms of all the th-frequency 3-D
DCT vectors, and sort the vectors in the descending order of his-
togram values.

Second, we incorporate a least-squares noise attenuation step
that exploits the round-off errors’ statistical distribution. Given a
lattice basis estimate , we assume that any vector lying within
a distance (chosen adaptively from the range [3.5, 5]) from its
closest point on the lattice spanned by is just a noisy realiza-
tion. We use the noisy realization to update the and obtain

. Let denote a matrix containing the ’s as its
columns. Let be such that each column of is the
closest point on the lattice spanned by to the corresponding
column of ; that is

(25)

Assuming that the distance from to the closest lattice point
is less than , we have using (19) that

(26)
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where denotes the squared Hilbert–Schmidt norm (the
square root of the sum of all the matrix elements’ squares). We
can update the basis estimate as

(27)

Equation (27) assumes that the round-off error norms stay less
than and, hence, ignores the distribution’s finite support. The
estimation (27) naturally leads to an iterative update where is
recomputed using (25) with . As desired, this iteration
is guaranteed to converge to a locally optimal that minimizes
the round-off error between the observations and the closest
points on the lattice spanned by .8

In summary, we fuse LLL with noise attenuation as follows.

1) Compute the histogram of the ac frequency vectors and
sort them in descending order of histogram values.

2) Include the first vector outside the radius as a lattice
basis vector. For each frequency , the is set
adaptively. Any vector within the sphere could potentially
be a noisy realization of the origin , and hence
should be ignored.

3) Compute the error vector between the next ac frequency
vector and the closest vector on the lattice (obtained by
solving a CVP) spanned by the current basis estimate. If
the error vector’s norm is greater than , then include the
currently chosen vector in the list of basis vectors, and
perform LLL on this set of basis vectors. If the error vector
norm is less or equal to , then update the basis vectors
using (27).

Combining the update step with LLL successfully curbs the
propagation and amplification of the round-off errors during
LLL’s arithmetic operations.

2) Estimating the ’s: In the absence of round-offs, there
exist ’s such that is exactly diagonal (see Sec-
tion VIII-A2). However, due to round-offs, can
only be diagonally dominant. We define the diagonality of a ma-
trix as the norm of the matrix’s diagonal elements divided by
the norm of all the matrix elements; the measure is equal to
one if and only if the matrix is exactly diagonal. We estimate
unimodular matrices ’s such that sum of the ’s
diagonality measures is maximized. We set ,
with and denoting ’s and ’s estimates respectively.

3) Estimating and ’s: The estimated ’s column
norms conform only approximately to a 1-D lattice spanned by
the corresponding column norm of the true . Similar to the
quantization step-size estimation described in Section IV, we es-
timate ’s column norms by solving a penalized least-squares
cost function, as shown by (28) at the bottom of the page)

8Convergence follows because both (25) and (27) monotonically reduce
kD � B I k .

The first term ensures that ’s column norms conform to a
1-D lattice spanned by , and the second term ensures that ’s
column norm is large. The controls the tradeoff between the
two terms. In practice, we set mean .
We can then estimate the quantization step-sizes for all the ac
frequencies as

4) Estimating the Additive Component and the DC Quanti-
zation Step-Sizes: Each entry of an arbitrary vector
is approximately equal to an integer multiple of the respective
dc quantization step-size plus a constant shift. Hence, the
histograms of the collection of ’s respective entries
look like shifted versions of Fig. 3. We note that the histogram’s
discrete Fourier transform (DFT) magnitude is immune to the
unknown constant shift. Further, the DFT’s peak frequency
captures the histogram’s “periodicity,” which is determined by
the quantization step-size. Hence, we estimate the quantization
step-size as the inverse of the nonzero frequency at which the
histogram’s DFT magnitude peaks. Subsequently, we estimate
the affine transform’s additive component as described in
Section VIII-A.

C. Lattice-Based CHEst Results

We demonstrate the performance on lattice-based CHEst on
the 512 512 Lena color image [12] that we JPEG-compressed
in the ITU.BT-601 YCbCr space [see (3)]. Lattice-based CHEst
performed equally well on a wide variety of other experiments
comprising different images and compression color spaces. The
luminance plane ’s DCT coefficients were quantized using
table 1 from Fig. 2 and the chrominance planes ’s and ’s
DCT coefficients were quantized using table 2 from Fig. 2. The

and planes were not subsampled during compression.
The image was then decompressed and then transformed to the

space. The algorithm operated in this space and
tried to estimate the affine transformation from ITU.BT-601
YCbCr to the current space [see (3)].

Lattice-based CHEst estimated that the affine transform from
the compression space ITU.BT-601 YCbCr to the observation
space was

(29)
Fig. 6 illustrates the algorithm’s quantization table estimates.
An indicates that the quantization step-size estimation was
not possible because all DCT coefficients were quantized to
zero. The estimated CH conforms well with the true compres-
sion settings; compare (3) to (29) and Fig. 2 to Fig. 6.

round round (28)
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Fig. 6. Quantization table estimates using lattice-based CHEst.

We now outline the results obtained by the algorithm’s various
intermediate steps. In the first step (see Step 1 in Section VIII-A),
robustified LLL (details in Section VIII-B1) estimated the lattice
bases for the ac frequencies (1,2) and (1,3), as

and

(30)

Clearly, the respective first columns of and , which
are the shortest columns, are indeed aligned with one of the
columns of the ITU.BT-601 YCbCr to transformation’s
linear component . However, ’s third column and

’s second and third column are not scaled versions of any
of ’s columns due to the addition of the first column.

In the second step (see Step 2 in Section VIII-A), we deduced
the unimodular matrices to be

and

(31)

Hence, the estimate for the ac frequencies (1,2)
and (1,3) is

and

(32)

Similarly, we computed the for all the ac frequencies.

In the third step (see Step 3 in Section VIII-A), we estimated
’s column norms using (28). This yielded all the ac frequency

quantization step-sizes illustrated in Fig. 6 and the (the
3 3 matrix) in (29).

In the fourth and final step (see Step 4 in Section VIII-A),
we used the dc frequency coefficients to estimate the additive
component as the 3 1 matrix in (29), and the dc quantization
step-sizes as shown in Fig. 6.

IX. JPEG RECOMPRESSION:
AN EXAMPLE APPLICATION OF CHEST

When a given TIFF or BMP image’s file-size needs to be re-
duced, the conventional approach is to naively employ JPEG
with an arbitrary choice of compression color space, subsam-
pling factor, and quantization table. For naive JPEG recompres-
sion, reasonable choices for the color transformations include

to ITU.BT-601 YCbCr, Computer RGB to ITU.BT-601
YCbCr, to Kodak PhotoYCC, and sRGB to 8-bit CIELab.
Some common subsampling factors are 2 2, 1 1, 1 1
and 1 1, 1 1, 1 1. The quantization tables are often set
by adjusting a so-called quality factor (QF), a reference number
between 1 to 100 used by the IJG JPEG implementation [9];
QF sets all the quantizer step-sizes to unity and thus
yields the best quality JPEG can possibly achieve. Any com-
bination of the above choices would yield a JPEG image file
with a certain file-size. Smaller file-sizes are typically accom-
panied by increased distortions in the recompressed image. In
this section, we demonstrate that using CHEst to recompress a
JPEG-decompressed color image offers significant benefits over
a naive recompression approach.

A. JPEG Recompression Using Dictionary-Based CHEst

To demonstrate the dictionary-based CHEst’s benefits in
JPEG recompression, consider the same test image described in
Section V-C—Lena color image previously JPEG-compressed
in the 8-bit CIELab color space with 2 2, 1 1, 1 1
subsampling using quantization table 1 and 2 from Fig. 2. As
described in Section V-C, dictionary-based CHEst accurately
estimates the test image’s CH.

To perform recompression using the dictionary-based CHEst
information, we first transformed the observed image into the
estimated compression color space using the sRGB to 8-bit
CIELab color transformation. Then, we deconvolved the effect
of the smoothing employed during previous decompression
on the and color planes. After performing 2 2, 1 1,
1 1 subsampling, using the IJG JPEG implementation [9],
we JPEG-compressed the 8-bit CIELab color planes with the
estimated quantization tables in Fig. 4 (setting the entries to
100). Our recompression yielded a JPEG image with file-size
32.31 kilobytes (kB) with an SNR of 22.58 dB. The SNR is
computed with respect to the original Lena image in the percep-
tually-uniform CIELab color space. We also visually inspected
the images to confirm that the SNR values were qualitatively
consistent with the image’s perceptual quality.

For comparison, we also recompressed the image using a va-
riety of naively chosen settings. We JPEG-compressed the test
BMP image using the to ITU.BT-601 YCbCr, Computer
RGB to ITU.BT-601 YCbCr, to Kodak PhotoYCC, and
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(a) 2�2; 1�1;1�1 subsampling (b) 1�1;1�1;1�1 subsampling

Fig. 7. JPEG recompression results for dictionary-based CHEst. The “}” marks the file-size SNR pair (32.31 kB, 22.58 dB) obtained using dictionary-based
CHEst results for JPEG recompression. Each curve in (a) illustrates the achieved file-size versus SNR tradeoff for naive recompression in the indicated color space
with 2�2, 1�1, 1�1 subsampling. Plot (b) illustrates the tradeoff when 1�1, 1�1, 1�1 subsampling is employed.

(a) 2�2;1�1;1�1 subsampling (b) 1�1;1�1;1�1 subsampling

Fig. 8. Recompression results for lattice-based CHEst. Recompression using lattice-based CHEst information yields a JPEG image whose file-size is 44.81 kB
and SNR is 24.03 dB; a “}” marks this file-size SNR pair. Similar to Fig. 7, the curves (a) and (b) illustrate the achieved file-size versus SNR tradeoff for naive
recompression in the indicated color space with 2�2, 1�1, 1�1 and 1�1, 1�1, 1�1 subsampling, respectively.

sRGB to 8-bit CIELab color transforms using 2 2, 1 1,
1 1, and also using 1 1, 1 1, 1 1 subsampling. For
each chosen color transform and subsampling, we varied the
quantization tables using the QF value and noted the resulting
JPEG image’s file-size (in kilobytes) and the incurred distortion
in SNR (in decibels in the CIELab space).

Figs.7(a)and(b) summarize the recompressionresults. Inboth
plots, the “ ” symbol marks the file-size SNR pair (32.31 kB,
22.58 dB) associated with the image recompressed using dictio-
nary-based CHEst results. Each curve in Fig. 7(a) illustrates the
achieved file-size versus SNR tradeoff for naive recompression
in the indicated color space with 2 2, 1 1, 1 1 subsam-
pling. The curves in Fig. 7(b) illustrate the tradeoff when 1 1,
1 1, 1 1 subsampling is employed. The naive recompression
curves demonstrate a “knee-point” trend—the SNR remains flat
for abroad file-size range,but decreases rapidly for small file-size
changes thereafter. (Arguments similar to those in [4] could be
used to explain the nonmonotonicity of the naive recompression

curves.) Both the plots confirm that exploiting the dictionary-
based CHEst enables us to strike a desirable file-size versus dis-
tortion tradeoff—we attain the nearly minimum file-size without
introducing significant additional distortion.

B. JPEG Recompression Using Lattice-Based CHEst

We demonstrate the lattice-based CHEst’s benefits in
JPEG recompression using the test image described in Sec-
tion VIII-C—Lena color image previously JPEG-compressed
in the ITU.BT-601 YCbCr color space with 1 1, 1 1, 1
1 subsampling using quantization tables 1 and 2 from Fig. 2.
As described in Section VIII-C, lattice-based CHEst accurately
estimates the test image’s CH.

To perform recompression using the lattice-based CHEst
results, we transformed the observed image to the estimated
compression space using the inverse of estimated ITU.BT-601
YCbCr to transformation in (29). We JPEG-compressed
the three planes using the estimated quantization tables in Fig. 2
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(setting the entries to 100) to obtain an image with file-size
44.81 kB and SNR 24.03 dB.
Figs. 8(a) and (b) compare the file-size SNR pair for lattice-

based CHEst recompression with file-size versus SNR curves
for naive JPEG recompression in different color spaces at dif-
ferent QFs for 2 2, 1 1, 1 1 and 1 1, 1 1, 1
1 subsampling. Fig. 8 verifies that lattice-based CHEst results
also enables us to strike a desirable file-size versus distortion
tradeoff during JPEG recompression.

X. CONCLUSION

This paper has addressed the JPEG CHEst problem for color
images and its potential applications. JPEG compression leaves
its signature on an image by quantizing the image’s DCT co-
efficients and forcing them to closely conform to near-periodic
structures. We have described two new approaches that exploit
these structures to solve the CHEst problem.

First, we formulated a statistical framework to characterize
and exploit the JPEG-induced near-periodic structures for
gray-scale and color images. Essentially, the statistical ap-
proach chooses from a dictionary the best CH model that
explains the regular structure of the observed image’s DCT
coefficients.

Second, for cases when JPEG employs affine color trans-
forms and no subsampling, we devised a blind CHEst scheme
that does not rely on a finite dictionary. In this case, the JPEG-
decompressed image’s DCT coefficients conform to 3-D lattice
structures. The JPEG CH information is encoded in the nearly
orthogonal bases that span the DCT lattices. By exploiting re-
cent insights on nearly orthogonal lattice bases and existing lat-
tice algorithms, we provided a novel blind lattice-based solution
to the CHEst problem.

JPEG CHEst offers significant benefits during the recompres-
sion of JPEG-decompressed color images compared to a naive
approach. We demonstrated that using the estimated CH during
JPEG recompression introduces minimal distortion (large SNR)
and simultaneously achieves a small file-size.

JPEG CHEst could also help us uncover proprietary compres-
sion settings used by imaging devices. It could contribute to ap-
plications such as covert message passing and image authenti-
cation. In summary, we envision that JPEG CHEst would enable
a variety of intriguing applications.
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