
JPEG Quality Transcoding using Neural Networks

Trained with a Perceptual Error Measure

John Lazzaro and John Wawrzynek
CS Division, UC Berkeley
Berkeley, CA 94720-1776

lazzaro@cs.berkeley.edu, johnw@cs.berkeley.edu

Abstract

A JPEG Quality Transcoder (JQT) converts a JPEG image file
that was encoded with low image quality to a larger JPEG image
file with reduced visual artifacts, without access to the original un-
compressed image. In this paper, we describe technology for JQT
design that takes a pattern recognition approach to the problem,
using a database of images to train statistical models of the artifacts
introduced through JPEG compression. In the training procedure
for these models, we use a model of human visual perception as
an error measure. Our current prototype system removes 32.2% of
the artifacts introduced by moderate compression, as measured on
an independent test image database using a perceptual metric; this
improvement results in an average PSNR reduction of 0.634 dB.

1. INTRODUCTION

JPEG is a lossy compression algorithm for digital images (Wallace, 1992). An image
file format that uses JPEG compression, JFIF, has become the standard image file
format for the World Wide Web and for digital cameras. The JPEG encoding
algorithm gives users direct control over the compression process, supporting trade-
offs between image quality and degree of compression. Higher compression ratios
may result in undesirable visual artifacts in the decoded image.

Given a JPEG-encoded image that was compressed to a small size at the expense
of visual quality, how can we reduce visual artifacts in the decoded image? A
substantial body of literature addresses this question (Wu and Gersho, 1992; Jarske
et al, 1994; Ahumada and Horng, 1994; Minami and Zakhor, 1995; Yang et al,
1995; O’Rourke and Stevenson, 1995). In these references, artifact reduction is
undertaken as part of a JPEG decoder.

1

In this paper, we consider image artifact reduction as part of a different application:
a JPEG Quality Transcoder (JQT). A JQT converts a JPEG image file that was
encoded with low image quality to a larger JPEG image file with reduced visual
artifacts, without access to the original uncompressed image. A JQT should perform
only the lossless part of the JPEG decoding algorithm, followed by signal processing
on the partially decompressed representation, followed by lossless JPEG encoding
to produce the transcoded image. A JQT provides a simple way to improve image
quality in situations where modifying the JPEG encoding or decoding operations is
not possible. Applications of a JQT include enhancing the quality of JPEG images
accessed from an Internet proxy server, reducing artifacts of video streamed from
a motion-JPEG server, and improving the “number of stored photos” vs. “image
quality” tradeoff of digital cameras.

In contrast to most previous work in artifact reduction, we take a pattern recognition
approach, using a database of images to train statistical models of artifacts. In the
training procedure for these models, we use a model of human visual perception as
an error measure.

The paper is organized as follows. In Section 2, we review the JPEG compres-
sion system. Section 3 introduces the general architecture of the JQT. Section 4
describes the human visual system error measure. Section 5 explains the detailed
architecture of our statistical artifact models. Section 6 details the training of the
models. Section 7 and 8 shows data from a JQT using these models. Section 9
offers suggestions for further research.

2. JPEG AND JFIF

This section reviews JPEG compression and the JFIF file format (Wallace, 1992).
Cathode ray tube (CRT) color computer display hardware has a natural color rep-
resentation, RGB, consisting of 3 numbers that code the linear excitation intensity
of red (R), green (G), and blue (B) phosphors at each pixel. High-quality display
hardware uses an 8 bit value to encode each color plane (R, G, and B) for a 24-bit
pixel encoding. Note that in practice, a nonlinear RGB encoding is often used with
JPEG to improve performance. In this paper, however, we use linear RGB image
coding throughout.

The JPEG algorithm compresses each color plane of an image independently. Since
cross-plane correlations cannot be captured in such a scheme, color representations
with low correlation between planes are a good match to JPEG. The RGB coding
has relatively high correlation between planes. A color scheme with lower cross-
plane correlation, Y CbCr, is the color code for the JFIF file format. The Y CbCr

code includes the luminance plane Y , which codes a monochrome version of the
image in 8 bits. The 8-bit Cb and Cr planes code chrominance information. A
linear transformation converts between RGB and Y CbCr coding.

In addition to lower cross-plane correlation, the Y CbCr color code has another
advantage for image compression. The human visual system is less sensitive to
high spatial frequency energy in the chrominance planes of an image, relative to
the luminance plane. To exploit this phenomenon, the JFIF file encoding process
begins by subsampling the Cb and Cr planes of a Y CbCr image by a factor of two
in both horizontal and vertical dimensions. This subsampling yields an immediate

2

compression of nearly 60% with little degradation in image quality.

After color transformation to Y CbCr and chrominance subsampling, JFIF file en-
coding continues by applying the JPEG encoding algorithm to each plane separately.
This encoding begins by dividing the image plane into a grid of non-overlapping
blocks of 8 by 8 pixels; each block is coded independently. Encoding begins by
taking the two dimensional Discrete Cosine Transform (DCT) on each pixel block
P , yielding an 8 by 8 block of coefficients K, defined as

k(u, v) =
C(u)C(v)

4

7∑

x=0

7∑

y=0

p(x, y) cos((2x + 1)u(π/16)) cos(2y + 1)v(π/16)), (1)

where u = 0, . . . , 7 and v = 0, . . . , 7. The term C(i) = 1/
√

2 if i = 0, C(i) =
1 elsewise. In this equation, p(x, y) is the value at position (x, y) in the pixel
block P , and k(u, v) is the value for frequency (u, v) in the coefficient block K.
Coefficient k(0, 0) codes the DC energy in the block; other coefficients k(u, v) are
AC coefficients, coding spatial frequency energy. 11-bit k(u, v) values are needed to
accurately code 8-bit p(x, y) values.

Most of the energy in real-world images lies in the lower spatial frequency coef-
ficients. In addition, the sensitivity limits of the human visual system vary with
spatial frequency. Careful quantization of k(u, v) values can exploit these two phe-
nomena, yielding a considerable reduction in the bitsize of a coefficient block while
maintaining good image quality. Coefficient quantization is the sole lossy step in
the JPEG encoding algorithm. Each coefficient k(u, v) is divided by the quantiza-
tion divisor q(u, v); the dividend is rounded to the nearest integer, yielding scaled
quantized coefficients. In baseline JPEG encoding, each plane of an image uses a
single matrix Q of q(u, v) values to quantize all blocks in the plane.

The JPEG encoding process concludes by lossless compression of the scaled quan-
tized coefficients, yielding a bit-packed JFIF file that contains coefficient information
for each block of each plane, and the quantization matrix for each plane.

JFIF file decoding begins with lossless decompression of the coefficient blocks and
quantization matrices for each plane. For each coefficient block, each scaled quan-
tized coefficient is multiplied by the appropriate quantization divisor q(u, v), pro-

ducing the quantized coefficient k̂(u, v). The pixel block is then reconstructed from
the quantized coefficient block, via the Inverse DCT:

p̂(x, y) =
1

4

7∑

u=0

7∑

v=0

C(u)C(v)k̂(u, v) cos((2x + 1)u(π/16)) cos(2y + 1)v(π/16)). (2)

In this way, a complete image for each color plane is reconstructed block by block.
Replication of the subsampled Cb and Cr planes, and conversion from Y CbCr to
RGB, complete the decoding process.

3. A JPEG QUALITY TRANSCODER (JQT)

Using the definitions of the last section, we now review artifact reduction algorithms
for JPEG compression. If the reconstructed image is perceptually different from the
original image, visual artifacts have been introduced during coefficient quantization.
Published methods for artifact reduction as part of the JPEG decoding process use
a combination of these methods to improve image quality:

3

• Linear or nonlinear image processing on the reconstructed image, to lessen the
visual impact of artifacts (Minami and Zakhor, 1995; Jarske et al, 1994).

• Replacing the decoding algorithm as described in Equation 2, with an iterative
(Yang et al, 1995; O’Rourke and Stevenson, 1995) or codebook (Wu and Gersho,
1992) approach.

• Pre-processing the quantized coefficients before proceeding to JPEG decoding as
defined in Equation 2 (Ahumada and Horng, 1994; Minami and Zakhor, 1995).

The final method is the preferred approach for implementing artifact reduction in a
JPEG Quality Transcoder; the first two methods would require the large overhead
of decoding and re-encoding the image.

Previous work in pre-processing quantized coefficients for artifact reduction (Mi-
nami and Zakhor, 1995; Ahumada and Horng, 1994) uses the tools of iterative
optimization. In these papers, metrics are developed that measure the severity of
a class of JPEG artifacts. These metrics are then used in an iterative optimization
algorithm to calculate coefficient values that minimize image artifacts.

In this paper, we pursue a different approach for pre-processing quantized coeffi-
cients for artifact reduction. The approach rests on the assumption that the infor-
mation lost during quantization of coefficient k(u, v) in color plane C of block (i,j)

of an image, expressed as kC
ij(u, v) − k̂C

ij(u, v), can be accurately estimated from
other information in the compressed image.

We use multi-layer perceptrons to estimate kC
ij(u, v)− k̂C

ij(u, v). These networks are
convolutional in input structure: the same network is used for each (i,j) block in
an image, and inputs to the network are selected from the coefficient blocks of all
three color planes in the neighborhood of block (i,j). Quantization divisor matrices
are also used in the estimation process.

We use a total of 64 neural networks, each specialized in architecture (number of
hidden units, selection of inputs, etc.) for a particular spatial frequency (u, v).
Each network has three outputs, one for each color plane. We detail the network
architecture and training procedure in Sections 5 and 6. A key part of the training
procedure is the computation of the error, as perceived by a human observer, be-
tween corresponding color pixels in an original image and a reconstructed image. In
the next section of the paper, we review the literature of perceptual visual measures,
and present the perceptual error measure.

4. A PERCEPTUAL ERROR METRIC

In this section, we describe a pointwise perceptual metric, computed on a pixel
(Y, Cb, Cr) in an original image and the corresponding pixel (Ŷ , Ĉb, Ĉr) in a recon-
structed image. In Appendix 2, we present the exact formulation of the metric.

Our goal is to develop a metric that is a good predictor for human sensitivity to
the types of color imaging errors introduced in JPEG encoding. A recent paper
(Fuhrmann et al, 1995) also addresses this issue, in the context of monochrome
imaging (Y plane only). The (Fuhrmann et al, 1995) paper describes a set of psy-
chophysical experiments that measures the threshold and suprathreshold sensitivity
of subjects to JPEG-induced errors. The data from these experiments are compared
with the predictions of a large collection of image metrics. While mean-squared er-

4

ror (defined as |Y − Ŷ |2) is shown not to be a good predictor of human performance,
distortion contrast (defined as |Y − Ŷ |/(Y + Ŷ + C)) is highly predictive.

We cannot use distortion contrast directly as our training metric, as our task in-
volves the measurement of error in color images. A good extension of monochrome
contrast that has a firm basis in color science is the cone contrast metric (Cole et
al, 1993). This metric is computed in the LMS color coordinate space. As the RGB
color space is the coordinate system derived from the spectral sensitivity functions
of CRT screen phosphors, the LMS color space is the coordinate system derived
from the spectral sensitivity of photopigments of the long-wavelength sensitive (L),
medium-wavelength sensitive (M) and short-wavelength sensitive (S) cones in the
human retina.

A simple linear transformation, shown in Appendix 1, converts (Y, Cb, Cr) and
(Ŷ , Ĉb, Ĉr) pixel values to (L, M, S) and (L̂, M̂ , Ŝ). To compute the cone contrast
vector (∆L/L,∆M/M, ∆S/S) from the original pixel and reconstructed pixel LMS
values, we use the equations:

∆L/L =
L − L̂

L + Lo

∆M/M =
M − M̂

M + Mo

∆S/S =
S − Ŝ

S + So

.

The constants Lo, Mo, and Co model a limitation of CRT displays: a pixel position
that is programmed to produce the color black actually emits a dim grey color
(Macintyre and Cowan, 1992). The constants Lo, Mo, and Co represent this grey in
LMS space.

Cone contrast space has an interesting psychophysical property (Cole et al, 1993)
revealed by the experiment of briefly flashing a slightly off-white color (L̂, M̂ , Ŝ)
on the white background (L, M, S) and measuring the detection threshold of the
off-white color, for many different off-white shades. The detection threshold can
be shown to be the result of three independent mechanisms, and each mecha-
nism can be expressed as a linear weighting of the cone contrast representation
(∆L/L,∆M/M, ∆S/S). These mechanisms correspond to the familiar opponent
channels of Red-Green (RG), Blue-Yellow (BY), and Black-White (BW). In our
metric, we compute these three opponent channel values from the cone contrast
vector. The BW channel is qualitatively similar to the distortion contrast metric in
(Fuhrmann et al, 1995). The other two channels (RG and BY) code chrominance
information in a contrast framework.

The opponent coding is a suitable representation for incorporating the effects of
visual masking into our metric. Visual masking is the phenomena of errors being less
noticeable around an image edge, and more noticeable around the smooth parts of
an image. In our metric, we only model masking in the luminance plane. We weight
the BW output by an activity function A(x, y), that is unity for pixel positions in
the smooth regions of original image and less than unity for pixel positions near
an edge (Kim et al, 1996). The activity function can be computed once for each

5

pixel of each image in the database, and reused to calculate the error of different
reconstructions of a pixels.

To complete our metric, we sum the weighted absolute values of the opponent chan-
nel outputs, yielding the final error function E(Y, Cb, Cr; Ŷ , Ĉb, Ĉr). The weights
correspond to the relative detection sensitivities of the underlying mechanisms, as
measured in the (Cole et al, 1993) study. Our use of the absolute values of the oppo-
nent channel outputs, rather than the square of these outputs, reflects the assumed
independence of these mechanisms.

The metric presented in (van der Branden Lambrecht and Farrell, 1996) shares
several details with our work, including opponent channels and a masking model.
Major differences include our use of cone contrast space to compute the opponent
channels and our formulation of the model to be efficient in a neural-network training
loop. A more detailed human visual system model has been successfully applied to
JPEG image coding in (Westen et al., 1996).

5. NETWORK ARCHITECTURE

We use the perceptual metric described in the last section to train statistical models
of the information lost during JPEG encoding. In this section, we describe these
models in detail.

Our system has 64 neural networks, each dedicated to modeling the information loss
for a coefficient frequency (u, v). Figure 1 shows a typical network. The network
has three outputs, OY (u, v), OCr (u, v), OCb(u, v), that predict a normalized esti-

mate of kC
ij(u, v)− k̂C

ij(u, v) for the three color planes for block position (i,j). These
output neurons, as well as all hidden units, use the hyperbolic tangent function as
the sigmoidal nonlinearity (output range, -1 to +1). In our current implementa-
tion, network weights are stored as floating-point values, and network outputs are
computed using floating-point math.

The network outputs OY (u, v), OCr (u, v), OCb(u, v) predict the information lost
during JPEG encoding. We use these outputs to compute coefficient values k̃C(u, v)
with reduced artifacts, using the equation:

k̃C(u, v) = k̂C(u, v) + 0.5qC(u, v)OC . (3)

This approach ensures that only plausible predictions are made by the system.
Recall that during JPEG encoding, each DCT coefficient k(u, v) is divided by the
quantization divisor q(u, v) and rounded to the nearest integer. During decoding,

integer multiplication by q(u, v) produces the quantized coefficient k̂(u, v). Note

that this k̂(u, v) could have been produced by k(u, v) values in the range of k̂(u, v)±
0.5q(u, v). Equation 3 only produces k̃C(u, v) values in this range.

In this paper, we model the information loss produced by a single set of quantization
divisors: the quantization divisor tables recommended in Section K.1 of CCITT Rec
T.81 Standards Document that defines JPEG. This restriction simplifies the artifact
reduction system by eliminating the need to include quantization divisor inputs into
the neural networks. These quantization divisors, which we refer to as Qs in this
document, produce good compression ratios with moderate visual artifacts, and
have been adopted by many popular applications.

6

The output neurons in Figure 1 receive inputs from a pool of hidden-layer units.
Each hidden-layer unit receives a set of coefficient inputs, selected from the coeffi-
cient blocks of one color plane in the neighborhood of block (i,j). We replicate the
chrominance coefficient blocks to match the sampling pitch of the luminance block,
to simplify the network input architecture. Each coefficient input is divided by its
variance, as computed on the training set. Each hidden-layer and output unit has
a bias input, not shown in Figure 1.

In Figure 1, the chosen inputs are drawn in black on the coefficient block grids.
The receptive fields are drawn to be correct for coefficient 8 (u = 1, v = 2) as
labeled in Figure 2b – note that the receptive fields all include this coefficient. We
hand-crafted these receptive fields, guided by pilot training experiments.

Y(u,v) Cb(u,v) Cr(u,v)

Cr

Cb

Y

Figure 1. A typical neural network for modeling information loss of coefficient
(u, v). Outputs marked C(u, v) (and notated OC(u, v) in the main text) predict
a normalized estimate of kC

ij
(u, v) − k̂C

ij
(u, v), and receive input from all 12 hidden

units. Hidden units specialize on a block edge for a single color plane. See caption
for Figure 2 for explanation of notation used to graphically denote hidden unit
receptive fields. The network as drawn corresponds to architecture B in Figure 2.

7

The following ideas underly the good performance of these receptive fields:

• A brute-force receptive field pattern would simply include all 64 coefficients for the
center coefficient block and the four neighboring blocks, for a total of 320 coefficients.
Experiments using these types of receptive fields yielded poor results: most inputs
were irrelevant for constructing a useful feature for the task, and the presence of
these useless inputs confused the learning process. It was necessary to pre-select
a small subset of inputs from the universe of 320, that carried information for a
certain class of features.

• A natural way to divide hidden-unit space is to let hidden units specialize in
artifacts occurring on one edge of the center coefficient block. These hidden units
would only receive inputs from the center block and one adjacent block, paring
the original universe of 320 potential inputs down to 128 inputs. Note that all the
receptive fields shown in Figure 1 have this characteristic.

A B C D

3 1 3

313

3 1 3

313

0 1 5 6 14152728
2
3

4 7
8

9
10

11
12

13

20
21
3536484957586263

16
17

18
19
22

23
24

25
2629
30

31
32

33
3437

38
39

40
41

42
43

44
45

46
4750

51
52

53
54

55
5659

60
61

u

v

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

(b)(a)

Figure 2. (a) Table showing networks architectures (A – D) used in the system.
Column entries note the number of hidden units of each receptive field type in the
network. Receptive field drawings show the five adjacent coefficient blocks for a
single color plane – (i, j), (i ± 1, j) and (i, j ± 1) – drawn as a cross, with the selected
inputs drawn in black. The receptive fields are drawn for coefficient 8 (u = 1, v = 2)
as labeled in Figure 2b. (b) The zig-zag coefficient numbering convention.

8

• Experiments using these specialized hidden-units suggested that hidden-units spe-
cializing in horizontal artifacts (i.e. the left and right edges of the block) can combine
information over the full range of horizontal spatial frequency coefficients, but have
difficulty combining information over vertical spatial frequencies. A bar-shaped re-
ceptive field exploits this observation. We found that for a horizontally-specialized
hidden unit for coefficient (u, v) a horizontal bar centered on v produced the best
results. The receptive fields in Figure 1 show this pattern.

We used four different variants of the general architecture shown in Figure 1 in our
work. Two variants differ in the number of copies of each of the 12 hidden units.
We found that lower-frequency coefficients needed 3 copies of each hidden unit to
best model the visual artifacts; conversely, higher-frequency coefficients sometimes
worked best with a single copy of each hidden unit. These variants correspond to
A and B in Figure 2a.

The other two variants are used only for coefficients (0, u "= 0) and (v "= 0,0).
These coefficients only have energy in one spatial frequency axis (horizontal or
vertical). For some of these coefficients, the presence of hidden units specialized for
the opposite spatial frequency axis results in degraded performance. For use with
these coefficients, we use neural networks with only hidden units that specialize
in the preferred axis; three copies of each hidden unit are used in these networks.
These variants correspond to C and D in Figure 2a.

6. NETWORK TRAINING

We use backpropagation (Rumelhart et al, 1986) to train the networks. We train
each of the 64 neural networks independently. Intuitively, one would expect simul-
taneous training of all 64 networks to produce better performance. However, in
pilot experiments with using simultaneous training, we were not able to achieve
good results. In this section, we describe the independent training method we use,
and offer reasons for why we believe it works well in this application.

To train the neural network for coefficient (u, v) we proceed on a per-block basis.
We begin by JPEG encoding the three planes of a pixel block in an original image;
subsampled pixel blocks are used to encode Cb and Cr planes. We then compute
the neural network outputs OY (u, v), OCr(u, v), OCb(u, v) for coefficient (u, v).

Next, we compute a reconstructed pixel p̃(x, y) in this block, under the assumption
that only coefficient (u, v) has been quantized. This reconstruction can be computed
efficiently using the equation

p̃C(x, y) = pC(x, y) + Wxyuv(k̂C(u, v) − kC(u, v) + 0.5qC(u, v)OC(u, v)), (4)

where Wxyuv is the appropriate DCT coefficient for the pixel (x,y) and the coefficient
(u,v). Note that due to chrominance subsampling, the p̃Cb(x, y) and p̃Cr(x, y) values
are on a coarser (x, y) grid than the p̃Y (x, y). Pixel replication of the chrominance
planes is necessary to produce registered Y CrCb pixel values for the perceptual error
calculation.

We measure the perceptual error of this reconstructed pixel, and update the weights
of the neural network for coefficient (u, v) based on the error value. We repeat
this “reconstruct, measure, update” loop for each of the 64 pixels in the block, to

9

complete a training cycle for a block of an image. Note that we compute pC(x, y) as
a floating-point number, and retain floating-point precision for the perceptual error
calculation.

By training the 64 neural networks independently, we provide the system with a
simple problem to solve: cancelling the effect of a single coefficient quantization,
in isolation from other coefficient quantizations, and without the roundoff noise
of a complete inverse DCT computation. In addition, this approach offers 64-way
parallelism for neural network training, and allows the incremental improvement of
the artifact reduction system by upgrading a few of the 64 neural networks without
requiring retraining of the rest.

Our image database consists of 699 color images, with an average dimension of 451
by 438 pixels. We collected these images from Internet archives. These images
include natural scenes, face close-ups, and computer graphics images, and have not
undergone previous lossy compression or subsampling. We divide the database into
3 parts: a training set of 347 images, a cross-validation set of 176 images, and a final
test set of 176 images. We built our training software on top of the public-domain
PVRG JPEG codec.

To train one of the 64 neural networks, we used two different methods of choosing
the quantization divisors for the training images. The first method (“constant
divisor”) uses fixed divisor tables. We use the Qs divisor tables scaled by 1.5, to
exaggerate the artifacts and simplify the learning task. Pilot experiments showed
that networks trained using scaled tables worked better on the artifacts induced by
unscaled Qs compression than networks trained with the unscaled Qs tables.

However, there is a large variance in the measured perceptual error over the train-
ing set database compressed with a fixed divisor table. We found that for many
coefficients, training the neural network with images quantized using a fixed table
resulted in suboptimal performance.

As a result, we developed a second training method (“constant error”), where dif-
ferent images in the training set use different quantization divisors. We determined
the quantization divisors using a multi-step process. First, we measured the average
perceptual error Eav over the entire training set using Qs. Then, for each image i

in the training set, we found the value of Ki (0.5 ≤ Ki ≤ 1.5, in steps of 0.02), so
that compression using the divisor tables KiQs resulted in a perceptual error Ei

such that 0.9Eav ≤ Ei ≤ Eav. We used the divisor tables KiQs for training image i;
if no Ki could be found which met the inequality, the image was not used during
training. This process resulted in a training set devoid of images with unusually
large or small perceptual error; for most coefficients, the absence of these outlier
images during training improved performance on the cross-validation set.

To train one of the 64 neural networks using the constant divisor or the constant
error method, we initialize the weights of the network to random values, and mea-
sure the average E(Y, Cb, Cr; Ŷ , Ĉb, Ĉr) value for the cross-validation set (defined as
Ēcv(u, v)). We then train the network on each block of each image in the training
set, using the per-block procedure described above. We set the initial learning rate
to 1.0 for constant error training (0.001 for constant divisor training), and measure
Ēcv(u, v) at the end of each training pass. If Ēcv(u, v) increases from the previous
pass, we undo the weight updates from that training pass, reduce the learning rate
by a factor of

√
10, and continue training. We terminate training when the learn-

10

ing rate falls below 0.0001 (0.00001 for coefficient (0,0)), and measure the average
E(Y, Cb, Cr; Ŷ , Ĉb, Ĉr) per pixel for the test set (defined as Ētst(u, v)).

In our current system, the neural network architecture for each coefficient is chosen
as follows. For each coefficient (u, v), we train all applicable network variants for
each coefficient (see Section 5 and Figures 1 and 2 for details) with both training
methods. We measure the cross-validation error Ēcv(u, v) for each trained network,
and pick the network with the lowest error. No artifact reduction is applied to
a coefficient if all network architectures have a higher cross-validation error than
the baseline error for the coefficient (i.e. the measured error when quantized using
Qs). After choosing the 64 networks for the final system, we measure the test-set
error while correcting all 64 coefficients (defined as Ētst, note the lack of a (u, v)
specifier). In this final test, the coefficients for each block are computed using
Equation 3, and normal JPEG decoding (Equation 2) is used to compute the pixels
of the reconstructed images.

We trained our networks using a workstation cluster and a 4–CPU multiprocessor as
our compute engines, powered by 250 MHz and 300 MHz UltraSPARC II processors.
Depending on the network architecture, coefficient number, and training method,
it took 30-120 minutes of computing time on an unloaded processor to compute a
single epoch of training, and 3-15 epochs to completely train a network. To train
the baseline system, we used approximately 5500 hours of processor time.

7. RESULTS: PERCEPTUAL ERROR PERFORMANCE

In this section, we describe the performance of the artifact reduction system on
test-set images compressed using the Qs quantization tables. In the description of
these tables in Section K.1 of CCITT Rec T.81 Standards Document, it is noted
that images compressed with the quantization table Qs/2 (which we define to be
Qe) result in images that are usually indistinguishable from the source image. In
light of this observation, a reasonable benchmark for our artifact reduction system
is its success in reducing the perceptual error of an image compressed with Qs to
the perceptual error of the same image compressed with Qe.

Figure 3 shows the performance of the artifact reduction system against this bench-
mark. It shows a plot of the perceptual error on the test set as a function of
coefficient frequency. To produce these plots, we measure the error for quantizing
one coefficient, while leaving the other coefficients unquantized. The frequency axis
on this plot is a zig-zag scan of the (u,v) frequency space, as shown in Figure 2b.

Figure 3 shows three measurements. The bottom thick curve (labeled Qe) shows
JPEG decoding without artifact reduction, using Qe divisor tables. The top thick
curve (labeled Qs) shows JPEG decoding without artifact reduction, using the Qs

tables. The thin line in Figure 3 (labeled JQT) shows the test-set performance
of the artifact reduction system, while processing images compressed with the Qs

quantization tables.

In Figure 4, we replot this JQT performance curve in percentage terms, relative to
the Qs and Qe performance values, using the expression

% reduced = 100
E(Qs) −E(JQT)

E(Qs) − E(Qe)
. (5)

11

0 20 40 60

2

4

6

k

E

Qs

Qe

JQT

Figure 3. Plot showing Ētst(u, v) for JPEG encoding with Qe quantizer tables
(lower thick line), JPEG encoding with Qs quantizer tables (upper thick line), and
the results of the artifact reduction system when applied to the Qs encoding (thin
lines labeled JQT). Coefficient numbering scheme shown in Figure 2b.

0 20 40 60

0

10

20

30

40

k

%

Figure 4. The percent reduction of perceptual error achieved by the artifact re-
duction system. Zero percent corresponds to Qs error values, one hundred percent
corresponds to Qe error values. The dots indicate networks trained with the constant
divisor training method; for all other coefficients, the cross-validation performance
of a network trained with the constant error method was superior.

12

This plot shows 25% to 35% error reduction for most of the coefficients. Performance
degrades for the lowest-frequency coefficients (due to the difficultly of the task) and
for the highest-frequency coefficients (due to the limited amount of the training data,
since natural images have very little energy at these spatial frequencies). The dip
in performance for isolated midrange coefficient values corresponds to coefficients
with the highest horizontal or vertical spatial frequency. This behavior can be seen
more clearly in Figure 5(a), where we replot the percent reduction data on the
two-dimensional u, v coefficient grid.

(b)

(c)

(a)

36

18

0

%

0 1 2 3 4 5 6 7 u

0 1 2 3 4 5 6 7 u

0 1 2 3 4 5 6 7 u

0
1
2
3
4
5
6
7
v

0
1
2
3
4
5
6
7
v

0
1
2
3
4
5
6
7
v

Figure 5. (a) The percent reduction for the artifact reduction system, plotted
using gray scale on the (u, v) coordinate grid (see Figure 2b). Rule on side of
Figure shows mapping of shading to percentage. (b) Percent reduction performance
using a linear network instead of artifact reduction system; network trained with
the perceptual error metric (See Section 8.4). Negative percentages mapped to
white (0%). (c) Percent reduction performance using a linear network instead of
artifact reduction system; network trained using mean square error (See Section
8.4). Negative percentages mapped to white (0%).

13

As described in Section 6, we used two different training methods (constant divisor
and constant error) for each architecture; cross-validation performance was used to
pick the final networks. For most coefficients, the constant error training method
produced the best cross-validation performance; the dots shown in Figure 4 mark
the exceptional coefficients whose highest-performing network was the product of
constant divisor training. This result shows the advantage of excluding outlier
images from the training set. We found that for architecture A, constant divisor
training is particularly ineffective for higher-frequency coefficients; to save training
time, we only trained architecture A using constant divisor training for coefficients
0–43.

0 20 40 60

0

10

20

30

40

50

k

%

A

B

C & D

Figure 6. The percent reduction of perceptual error measured on the cross-
validation, for architectures A (thin line), B (thick line), C and D (dots). For
each coefficient number, the architecture with the highest percent reduction was
chosen for the artifact reduction system.

A A A A C C A B
A
A

A A
A

D
A

A
A

A

B
D
A B A A B B

A
A

A
A
A

A
A

A
B A
A

A
A

A
B A

A
A

A
A

A
B

B
B

B
A B

B

B
B
A
B

u

v

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Figure 7. The network architecture (A–D) chosen for each coefficient, plotted on
the (u, v) grid. A blank box indicates no network is used for this coefficient.

14

Figure 6 shows further data concerning the architecture selection process. In this
graph, we show the performance on the cross-validation set for architectures A–D,
for the training method with the higher performance. We show the cross-validation
results because performance on this set is used to select the network architecture
of the final system. Figure 7 shows the architecture selected for each coefficient.

The thin curve in Figure 6 shows the percentage error for architecture A (see Fig-
ure 2a), which has three copies of each hidden unit type. The thick curve shows the
performance of architecture B, which has one copy of each hidden unit type. Ar-
chitecture A works best for lower-frequency coefficients (below 25); to save training
time, we did not train architecture B networks for the lowest-frequency coefficients
(0–9). For higher frequency coefficients, the best architecture is coefficient depen-
dent; as the graph shows, for some coefficients A is superior, for others B works
better. This behavior is consistent with the theory that lower frequency artifacts
are more complicated in nature, and are better modeled by higher-parameter mod-
els, whereas higher frequency coefficients have simpler artifact behavior, that may
be overfit by a higher-parameter model.

The dots in Figure 6 show the cross-validation performance of architectures C and
D. Recall that these architectures are used for the 14 coefficients ((0, u "= 0) and
(v "= 0,0)) which have energy in only one spatial frequency axis. For the mid-
frequency coefficients 9, 14, 15 and 21, these architectures perform better than
architectures A and B on the cross-validation set: note the dots lie on or above the
thin and thick lines at these locations in Figure 5. These networks generalized well,
providing equivalent (14 and 15) or superior (9 and 21) performance to networks A
and B on the test set.

Finally, we measure the perceptual error on the test set if all 64 coefficients are
quantized simultaneously; this test simulates the performance of the artifact reduc-
tion system in a JPEG transcoder application. Without artifact reduction, this
error is 0.02555 for Qs quantization and 0.01965 for Qe quantization. The test set
error of the artifact reduction system while processing images compressed with the
Qs quantization tables is 0.02365 (defined as Ētst in Section 6). Equation 5 yields
a percent reduction of 32.2% for this task. This result shows a good correlation
between the improvements in single-coefficient performance shown in Figure 4.

8. RESULTS: STANDARD PERFORMANCE MEASURES

In Section 7 we report the performance of the artifact reduction system using the
perceptual error metric. In this section, we characterize the system performance
with techniques common in the image processing community.

8.1 PSNR

A classical way to judge image processing systems is the Peak Signal to Noise Ratio
(PSNR). For a Y CrCb image of size N by M , with original image pixels (Y, Cr , Cb)
and degraded pixels (Ŷ , Ĉr, Ĉb), the PSNR is defined as

10 log10

2552

(1/3)(1/NM)
∑

M,N
((Y − Ŷ)2 + (Cr − Ĉr)2 + (Cb − Ĉb)2)

.

15

While this metric does not correlate well with human perception of artifacts
(Fuhrmann et al, 1995), it is a common figure of merit in the image processing
community. For each test-set image in the database used in Section 7, we measured
the difference between the PSNR for compression using Qs and compression using
Qe. The average PSNR difference between the two compression levels for an image
in the test-set database is 2.5 dB. We also measured the difference between the
PSNR for compression using Qs and compression using Qs followed by the artifact
reduction system. The average PSNR difference is 0.63 dB, a significant portion
of the 2.5 dB PSNR that corresponds to the perceptually-indistinguishable Qe ta-
bles. Figure 8 tabulates this result, along with PSNR measurements for three color
photos often used in the image processing community: Lena, Parrot, and Peppers.
These images are not in our training or cross-validation datasets.

8.2 BIT-RATE SAVINGS

Another way to characterize the artifact reduction system is to measure the equiva-
lent savings in bit-rate. In this approach, we compress a test-set image using divisor
table Qs, and measure the size of the compressed file in terms of bits per color pixel
(Ss). We decode the image, apply the artifact reduction system, and measure the
perceptual error of the image (Es). We then use a search technique to find the divi-
sor table KQs that results in a compressed image whose perceptual error is equal to
Es, without applying the artifact reduction system. In this search, K is quantized
in steps of 0.02, modeling the quantization of this scaling parameter in many JPEG
applications. We measure the bits per pixel Seq of the file compressed with KQs,
and consider the difference Seq −Ss to be the bits gained by artifact reduction. Fig-
ure 8 shows this measure, both for the entire test set, and for specific images. We
tabulate the average values of Ss, Seq − Ss, and the average percentage bit savings,
defined to be the average of (Ss − Seq)/Seq over the dataset. For the test set, an
average percentage bit savings of 14.4% is achieved.

8.3 SCALING PERFORMANCE

We targeted the artifact reduction system to work well for the Qs quantization
tables. In Figure 9, we tabulate the performance of the system on the scaled quan-
tization tables KQs, for K < 1.0 (higher image quality) and K > 1.0 (lower image
quality), using the perceptual error, PSNR, and bit-rate savings metrics. We mea-
sured this performance because in practice, JPEG end-users often manually scale
the Qs tables to achieve a certain perceptual-quality vs. file size tradeoff, and so a
practical JQT would need to work reasonably well for a range of scalings.

Figure 9 shows reasonable performance over the range of K scalings, on all three
metrics. The relative performance of the system as a function of K is metric depen-
dent. In terms of bit-rate savings, the system performs best for K > 1.0. However,
in terms of percent reduction of perceptual error relative to the perceptually Qe,
the system performs best for K < 1.0.

8.4 COMPARISON WITH LINEAR NETWORKS

Another way to characterize the artifact reduction system is to compare its perfor-
mance with a linear system. To perform this comparison, we trained an artifact
reduction system that replaced the 64 multi-layer perceptron neural networks with

16

0.0440

Testset Parrot

768 x 512

Lena

512 x 512

Peppers

512 x 512

0.03470.02980.01910.0196Qe

0.03620.02520.0255Qs

JQT

Lin:
Perc.

MSE

32.2%

0.0248,12%

50.8% 55.2% 57.8%

0.0237, 25% 0.035,24% 0.0420, 21%

0.10 dB0.18 dB0.22 dB

0.68 dB0.70 dB0.79 dB

0.132 dB

0.634 dB

MSE

Perc.
Lin:

Qs - JQT

2.50 dB 2.26 dB 1.74 dB 2.20 dBQs - Qe

Ss 0.7440.7040.5171.110

Ss - Seq

Lin:
Perc.

MSE

14.4%

0.0503,5.5%

20.7% 21.4% 22.4%

0.051, 9% 0.0682, 8.4%

0.025,10.2% 0.0239, 21% 0.035,24% 0.0425,15%

0.129 dB 0.23 dB 0.21 dB 0.11 dB

0.0407,4.4% 0.040,7.2% 0.066,8.5% 0, 0%

Perceptual

PSNR

bits/pixel

0.0236 0.0221 0.0327 0.0386

0.160 0.135 0.192 0.215

0.066,8.5%

Figure 8. Tabulation of artifact reduction system performance for the test data
set and for three images from the testset that are commonly used in the image
processing community; these images are reproduced at the top of the Figure. Results
for the baseline nonlinear system and for two linear systems are shown. Three
metrics (perceptual error, PSNR, and bits/pixel) are used, grouped in the table by
shading; see Sections 7 and 8 for details.

17

0.648dB0.634dB0.577dB0.504dBJQT

0.613dB 1.666dB 2.505dB 3.075dBQe

Ss 1.001.111.291.54

Ss - Seq
0.170 0.160 0.160 0.140 0.129

3.583dB

0.645dB

0.897

PSNR

bits/pix

11.4% 12.4% 14.4% 14.2% 14.4%

K

Percept

0.0290

0.01960.01960.01960.0196

1.4

0.02650.02530.02360.02170.0195
JQT

0.0208 0.0234 0.0255

Qe 0.0196

1.21.00.80.6

0.0273K Qs

111% 46.5% 32.2% 26.1% 26.2%

Figure 9. Artifact reduction system performance for different scalings of the Qs

tables. The shaded K = 1 scaling corresponds to the results shown in Figure 8.

0 20 40 60

-20

0

20

40

k

%

Figure 10. Comparison of the percent reduction of the artifact reduction system
(heavy curve, data reproduced from Figure 4) with systems that replaces the multi-
layer perceptron neural networks with single-layer linear networks. Thin line shows
results from a linear net trained with the perceptual metric; dots show results from
a linear net trained with mean square error (computed only for coefficients 0–31).

18

64 single-layer linear networks. These networks use the same 47 coefficient inputs of
architectures A and B (Figure 2a). The output of the linear networks are clipped to
the range of plausible values, as indicated by the quantization divisor. We trained
the linear networks with gradient descent, using the annealing methods we described
in Section 6. Separate linear networks were trained using the constant divisor and
constant error methods for each coefficient, and cross-validation performance was
used to select the best network. We trained two systems, one using the perceptual
error metric to compute the gradient, one using the conventional mean-square error
(MSE) metric to compute the gradient.

Figure 10 shows the performance of the linear networks for single-coefficient artifact
reduction, using the percentage metric of Equation 5. We reproduced the single-
coefficient performance curve shown in Figure 4 for reference. Figure 10 shows the
linear networks are markedly inferior in performance for the lowest coefficients, and
unable to provide any artifact reduction for all other coefficients. The negative
percentages on this graph indicate the poor generalization of the linear networks:
the cross-validation results for these coefficients showed improvements over the Qs

error, but test results were inferior to the Qs error. The linear network trained
with the perceptual error metric (thin line) performs better than the MSE-trained
networks (dots) on the key low-frequency coefficients 1 and 2. In Figures 5(b) and
5(c) we replot the performance of the linear networks on the two-dimensional u, v

coefficient grid, mapping all negative percentages to white (0%).

The single-coefficient results in Figure 10 are confirmed when the linear networks
are used for artifact reduction on all 64 coefficients simultaneously. To show the
linear networks in the best possible light, we only included networks for coefficients
0-9, eliminating the negative effects of high-frequency poor generalization shown in
Figure 10. Figure 8 shows the poor performance of the linear network artifact re-
duction system, both on the perceptual error measure, PSNR, and bit-savings, both
on the full test set data and on selected images. The linear network trained with the
perceptual error metric performs marginally better than the network trained with
MSE, reflecting the better performance on coefficients 1 and 2 shown in Figure 9.

8.5 IMAGES

Finally, we present color images to qualitatively show the performance of the artifact
reduction system (attached to end of paper). Figure 11 shows a closeup of a parrot
head in the Parrot image for the 5 values of K tabulated in Figure 9. The top row
shows the original image, the upper middle row shows the image compressed with
KQs (from left to right, K = 0.6,0.8,1.0,1.2,1.4), and the lower middle row shows the
results of the artifact reduction system on the KQs compressed images. This closeup
was chosen to highlight the high-frequency performance of the system: note the
corona of artifacts around the parrot’s head and beak is significantly reduced by the
artifact reduction system. This improvement corresponds to the high performance
figures for midrange of coefficients (3–50) in Figure 4.

Figure 12 shows a closeup of the cheek and nose of the Lena image. The format of
the Figure is identical to Figure 11. Note the facial discoloration and lip artifacts
are modestly reduced at each scaling value. The modest improvement in these low-
frequency artifacts corresponds to the modest performance figures for the lowest
frequency coefficients (0-2) in Figure 4.

19

In both Figures, we computed the signed difference between the artifacts present in
the upper middle row and the artifacts present in the lower middle row (artifacts
were computed by subtraction from the original images). This difference image
was scaled (by 3 for Figure 11, by 4 for Figure 12) and added to a neutral gray to
produce the bottom row of each image. Non-gray parts of this image indicate areas
where the artifact reduction system significantly altered the compressed image; the
reader can use this difference image to guide comparisons of the middle rows.

9. DISCUSSION

Examining the results presented in Sections 7 and 8, we see several promising av-
enues for improving the performance of the artifact reduction system. One av-
enue concerns improving the accuracy of the perceptual error metric. For example,
the current metric does not model chromatic masking or the spatial-frequency de-
pendence of the relative weightings of opponent channel outputs. In addition, the
per-coefficient training methods provides an implicit model of spatial-frequency sen-
sitivity, but more explicit modeling of this phenomena may produce better results.

Another promising avenue for further research is improving system performance
through more appropriate neural-network architectures. Possible improvements in-
clude more hidden layers to model the complexity of artifacts, and an automatic
method for choosing inputs relevant for each coefficient. These improvements need
to focus on the lowest frequency coefficients, where the current system shows only
modest performance improvements.

Apart from performance improvements, the work presented in this paper requires
other enhancements in order to be used in a practical system. A practical JQT
implementation must also include a method of requantization. As implemented
in this paper, the enhanced coefficients k̃C(u, v) are maintained as floating point
values. To create the transcoder JPEG file, a JQT must decide, for each enhanced
coefficient, how many bits of precision should be maintained. This decision involves
both the importance of the coefficient to the quality of the image, and the confidence
that the enhanced coefficient results in less artifacts than the original coefficient.

10. CONCLUSIONS

We have presented a neural network image processing system that operates directly
on a compressed representation of an image, and that uses a perceptual error metric
to guide supervised learning on a large image database. We believe this approach
has more general application in image processing, beyond the artifact reduction
problem.

An advantage of this approach is the ability to define a variant of a general problem
by customizing the training database of images. A JQT customized for photographs
of faces can be specified by assembling an image database with a heavy representa-
tion of these types of photos. A JFIF transcoder that corrects for artifacts caused
by an inexpensive analog-to-digital conversion in a consumer digital camera can
be trained by collecting a database using a prototype camera that has auxiliary
high-quality conversion circuitry. This ease of customization may be the deciding
factor for using a pattern recognition approach for a particular problem in digital
imaging.

20

Acknowledgments

We thank Krste Asanovic, Dan Hammerstrom, Yann LeCun, Richard Lyon, John
Platt, Larry Yaeger, and the reviewers for the journal version of this technical report
for useful comments. Funded by DARPA DABT63-96-C-0048.

APPENDIX 1: Y CrCb to LMS TRANSFORMATION

In this section, we derive the transformation from Y CrCb color space to LMS color
space. The Y CrCb color space, as used in the JPEG/JFIF standards, uses 8-bit
integer values. Substituting this scaling into the suggested Y CrCb to RGB conversion
in CCIR Recommendation 601-1 yields:

R = (Y/255)+ 1.402(Cr/255)

G = (Y/255)− 0.3441(Cb/255)− 0.7141(Cr/255)

B = (Y/255) + 1.772(Cb/255).

These equations assume Y ranges from 0 to 255, and Cr and Cb range from -128 to
127. The R, G, and B values are valid between 0.0 and 1.0. Since some values of
Y CrCb may produce RGB values outside the valid range, we clamp the RGB values
to a maximum of 1.0 and a minimum of 0.0.

Following CCIR Recommendation 709 (D65 white point), we convert RGB to 1931
2-deg CIE XY Z tristimulus values using the equations:

X = 0.4124R + 0.3576G + 0.1804B

Y = 0.2127R + 0.7152G + 0.07217B

Z = 0.01933R + 0.1192G+ 0.9502B.

We use the following equations, derived for typical spectral power distributions of
the phosphors in a Sony 17 inch color monitor (Tjan, 1996), to convert CIE 1931
XY Z values to Judd-Vos tristimulus values XpYpZp :

Xp = 0.9840X + 0.00822Y − 0.00459Z

Yp = 0.00028X + 0.9992Y + 0.00519Z

Zp = −0.00177X + 0.00388Y + 0.9215Z.

To complete the transformation to LMS space, we convert Judd-Vos tristimulus
values to Smith-Pokorny cone excitations (Tjan, 1996):

L = 0.1551Xp + 0.5431Yp − 0.03286Zp

M = −0.1551Xp + 0.4568Yp + 0.03286Zp

S = 0.00801Zp.

21

These operations can be collapsed into two sets of linear equations and a clipping
operation. Appendix 2 includes this compact form of the Y CrCb to LMS transfor-
mation.

APPENDIX 2: PERCEPTUAL ERROR METRIC

In this section, we define a pointwise perceptual metric, computed on a pixel
(Y, Cb, Cr) in an original image and the corresponding pixel (Ŷ , Ĉb, Ĉr) in a recon-
structed image. We begin by converting both points from Y CbCr color space to LMS

space, as derived in Appendix 1. We assume Y ranges from 0 to 255, and Cb and
Cr range from -128 to 127.

R = 0.003922Y + 0.005498Cr

G = 0.003922Y − 0.001349Cb − 0.002800Cr

B = 0.003922Y + 0.006949Cb.

Clamp R, G, and B to lie between 0.0 and 1.0, then compute LMS values as:

L = 0.17816R + 0.4402G + 0.04005B

M = 0.03454R + 0.2750G + 0.03703B

S = 0.0001435R+ 0.0008970G+ 0.007014B.

Using (L, M, S) and (L̂, M̂, Ŝ) values, we compute cone contrast vectors as:

∆L/L =
L − L̂

L + Lo

∆M/M =
M − M̂

M + Mo

∆S/S =
S − Ŝ

S + So

.

Using the recommendations in (Macintyre and Cowan, 1992) for the dark pixel char-
acteristics of commercial CRT monitors, we set Lo = 0.01317,Mo = 0.006932,So =
0.0001611. Consult (Macintyre and Cowan, 1992) for details on tuning these val-
ues to a particular CRT monitor. Using these cone contrast values, we compute
opponent space values as:

BW = A(x, y)(∆L/L + ∆M/M)

RG = ∆L/L −∆M/M

BY = ∆S/S − 0.5(∆L/L + ∆M/M)

where A(x,y) is the activity function value for the pixel position under comparison.
Using these opponent values, we compute the error function

22

E(Y, Cb, Cr; Ŷ , Ĉb, Ĉr) = 0.07437 |BW |+ 0.8205 |RG|+ 0.1051 |BY |.

The channel weightings in the error function are the averaged relative sensitivities
of the three subjects measured in (Cole et al, 1993). The error function sums the
absolute values of the opponent channels, rather than the squared values used in a
Euclidean metric: this choice reflects the assumed independence of the underlying
mechanisms.

Straightforward application of the chain rule yields the partial derivatives ∂E()/∂Ŷ ,
∂E()/∂Ĉb, ∂E()/∂Ĉr used in the backpropagation learning algorithm.

To compute the A(x, y) function over the original image, we use the Y component of
Y CbCr pixels directly, without converting to LMS space. We take this approach be-
cause BW in opponent space and Y in Y CbCr space are qualitatively similar measures
of luminance.

To compute A(x, y), we first compute the mean luminance value Ym in a 5 by 5 block
centered around pixel position (x,y). We then compute the contrast Y/Ym for each
pixel in a 5 by 5 block centered around pixel position (x,y), and clamp the lower
limit of this contrast at 10/Ym. If a contrast is less than 1, we take its reciprocal.
We sum these 25 modified contrast values, divide by 25, and take the reciprocal of
the result to produce A(x, y). The function is an average measure of edge activity
in a region, that takes a value of 1 for smooth areas, and a value less than one for
regions around an edge.

References

Ahumada, Albert J. and Horng, Rensheng (1994). Smoothing DCT compression
artifacts. In 1994 SID International Symposium Digest of Technical Papers. p.
708-11.

van der Branden Lambrecht, Christian J., and Farrell, Joyce E. (1996). Percep-
tual quality metric for digitally coded color images. Proceedings of EUSIPCO-96,

Trieste, Italy.

Cole, Graeme R., Hine, Trevor, and McIlhagga, William (1993). Detection mech-
anisms in L-, M-, and S-cone contrast space. Journal Optical Society of America,

Vol. 10, No. 1.

Fuhrmann, Daniel R., Baro, John A., and Cox, Jerome R. (1995). Experimental
evaluation of psychophysical distortion metrics for JPEG-encoded images. Journal

of Electronic Imaging, Vol. 4, No. 4, pp. 397-406.

Jarske, Tiina, Haavisto, Petri, and Defee, Irek (1994). Post-Filtering Methods for
Reducing Blocking Arifacts from Coded Images. IEEE Transactions on Consumer

Electronics, Vol. 40, No. 3, pp. 521-526.

Kim, Kyeong Man, Lee, Chae Soo, Eung, Joo Lee, and Yeong, Ho Ha. (1996).
Color Image Quantization and Dithering Method based on Human Visual System
Characteristics. Journal of Imaging Science and Technology, Vol. 40, No. 6, pp.
502-509.

Macintyre, Blair and Cowan, William B. (1992). A Practical Approach to Calcu-
lating Luminance Contrast on a CRT. ACM Transaction on Graphics, Vol. 11, No.

23

4, pp. 336–347.

Minami, Shigenobu and Zakhor, Avideh (1995). An Optimization Approach for
Removing Blocking Artifacts in Transform Coding. IEEE Transactions on Circuits

and Systems for Video Technology, Vol 5, No 2., pp. 74-81.

O’Rourke, Thomas P. and Stevenson, Robert L. (1995). Improved Image Decom-
pression for Reduced Transform Coding Artifacts. IEEE Transactions on Circuits

and Systems for Video Technology, Vol 5, No 6., pp. 490-499.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal
Representations by Error Propagation. In Rumelhart, D. E. and McClelland, J. L.
(eds), Parallel Distributed Processing: Explorations in the Microstructure of Cogni-

tion. Vol. 1: Foundations. MIT Press.

Tjan, Bosco S. (1996). Color Spaces for Human Observer. Technical Memo, Min-
nesota Laboratory for Low-Vision Research, University of Minnesota. Available
online at http://vision.psych.umn.edu/www/people/bosco/techs.html.

Wallace, Gregory K. (1992). The JPEG still picture compression standard. IEEE

Transactions on Consumer Electronics. Vol 38 No 1 pp. 18-34.

Westen, S. J. P., Lagendijk, R. L., and Biemond, J. (1996). Optimization of JPEG
color image coding using a human visual system model. Proceedings of the SPIE,

Vol. 2657, pp. 370-81.

Wu, Siu-Wai and Gersho, Allen (1992). Improved Decoder for Transform Coding
with Application to the JPEG Baseline System. IEEE Transactions of Communi-

cations, Vol 40, No 2., pp 251–254.

Yang, Yongyi, Galasysanos, Nikolas P., and Katsaggelos, Aggelos K. (1995). Pro-
jection Based Spatially Adaptive Reconstruction of Block-Transform Compressed
Images. IEEE Transactions on Image Processing, Vol. 4 No 7., pp. 896-908.

Color Plate Captions

Figure 11. Closeup from Parrot image, showing high-frequency system perfor-
mance at 5 scalings of Qs. From left to right, scalings are 0.6Qs, 0.8Qs, 1.0Qs, 1.2Qs,

1.4Qs. From top to bottom: original image, image compressed with KQs, image
compression with KQs followed by artifact reduction system, difference image (see
text for details).

Figure 12. Closeup from Lena image, showing low-frequency system performance
at 5 scalings of Qs. Format identical to Figure 11.

24

