jPredictor: A Predictive Runtime Analysis Tool for Java

Feng Chen
CS Department
University of lllinois, Urbana
fengchen@cs.uiuc.edu

ABSTRACT

JPREDICTOR is a tool for detecting concurrency errors in JAVA pro-
grams. The Java program is instrumented to emit property-relevant
events at runtime and then executed. The resulting execution trace
is collected and analyzed by JPREDICTOR, Which extracts a causality
relation sliced using static analysis and refined with lock-atomicity
information. The resulting abstract model, a hybrid of a partial or-
der and atomic blocks, is then exhaustively analyzed against the
property and errors with counter-examples are reported to the user.
Thus, JPREDICTOR can “predict” errors that did not happen in the
observed execution, but which could have happened under a differ-
ent thread scheduling. The analysis technique employed in JPRE-
pIcTOR is fully automatic, generic (works for any trace property),
sound (produces no false alarms) but it is incomplete (may miss er-
rors). Two common types of errors are investigated in this paper:
dataraces and atomicity violations. Experiments show that jPREDIC-
TOR is precise (in its predictions), effective and efficient. After the
code producing them was executed only once, JPrREDICTOR found
all the errors reported by other tools. It also found errors missed
by other tools, including static race detectors, as well as unknown
errors in popular systems like Tomcat and the Apache FTP server.

Categories and Subject Descriptors
D.2.4 [Software Engineereing]: Software/Program Verification;
D.2.5 [Software Engineereing]: Testing and Debugging

General Terms
Verification, Algorithms

Keywords

predictive runtime analysis, sliced causality, runtime verification

1. INTRODUCTION

Concurrent systems in general and multithreaded systems in par-
ticular may exhibit different behaviors when executed at different
times. This inherent nondeterminism makes multithreaded pro-
grams difficult to analyze, test and debug. This paper presents a
novel runtime predictive analysis technique to correctly detect con-
currency errors from observing execution traces of multithreaded
programs. By “correct” or “sound” prediction of errors, in this pa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

Traian Florin Serbanuta
CS Department
University of lllinois, Urbana

tserban2 @cs.uiuc.edu

221

Grigore Rosu
CS Department
University of lllinois, Urbana
grosu@cs.uiuc.edu

per we mean no false alarms. The program is automatically instru-
mented to emit runtime events to an external observer. The partic-
ular execution that is observed needs not hit the error; yet, errors in
other executions can be correctly predicted together with counter-
examples leading to them. This technique has been implemented in
JPREDICTOR and evaluated on several non-trivial Java applications.
There are several other approaches also aiming at detecting po-
tential concurrency errors by examining particular execution traces.
Some of these approaches aim at verifying general purpose proper-
ties [21, 22], including temporal ones, and are inspired from de-
bugging distributed systems based on Lamport’s happens-before
causality [17]. Other approaches work with particular properties,
such as data-races and/or atomicity. [20] introduces a first lock-
set based algorithm to detect data-races dynamically, followed by
many variants aiming at improving its accuracy. For example, an
ownership model was used in [27] to achieve a more precise race
detection at the object level. [19] combines the lock-set and the
happen-before techniques. The lock-set technique has also been
used to detect atomicity violations at runtime, e.g., the reduction
based algorithms in [12] and [28]. [28] also proposes a block-based
algorithm for dynamic checking of atomicity built on a simplified
happen-before relation, as well as a graph-based algorithm to im-
prove the efficiency and precision of runtime atomicity analysis.

Previous efforts tend to focus on either soundness or coverage:

those based on happens-before try to be sound, but have limited
coverage over interleavings, resulting in more false negatives; lock-
set based approaches have better coverage but suffer from false
alarms. Our runtime analysis technique proposed in this paper aims
at covering more interleavings from one execution without giving
up soundness or genericity of properties (errors may still be missed,
e.g., when the code causing errors is not executed in one execution).
It combines sliced causality [7], a happen-before causality drasti-
cally but soundly sliced by removing irrelevant causalities using
semantic information about the program obtained with an apriori
static analysis, with lock-atomicity. Our predictive runtime analy-
sis technique can be understood as a hybrid of testing and model
checking. Testing because one runs the system and observes its
runtime behavior in order to detect errors, and model checking be-
cause the special causality with lock-atomicity extracted from the
running program can be regarded as an abstract model of the pro-
gram, which can further be investigated exhaustively by the ob-
server in order to detect potential errors.
This paper makes two important contributions:

1. It proposes a sound and generic (with respect to the trace
property to check) approach to extend causal partial orders
with lock-atomicity semantics to improve the coverage of
predictive analysis, together with a technique to efficiently
compute the sliced causality with lock-atomicity using vec-
tor clocks and lock sets; and

2. It presents and empirically evaluates with encouraging re-
sults JPREDICTOR, a predictive runtime analysis tool for Java
that implements the above technique, together with special-
ized algorithms to efficiently check data races and atomicity
based on sliced causality with lock-atomicity.

Many concurrency errors, including several previously unknown
ones caused by data races or atomicity violations, were discov-
ered using JPREDICTOR in popular open source programs such as
the Apache Commons package and the Tomcat webserver. Af-
ter the code producing them was executed only once, JPREDICTOR
found all the data-race or atomicity errors reported by other tools.
It also found errors missed by other tools, including static race de-
tectors supposed to have high code coverage. Even though for per-
formance reasons JPREDICTOR slightly deviates in its implementa-
tion from the soundness of the sliced causality with lock-atomicity
technique, no false alarms were ever reported in our experiments.

This paper is organized as follows. Section 2 contains the main

theoretical developments: it first gives a brief overview of sliced
causality, then proposes a sound but incomplete vector clock algo-
rithm to capture it, then proposes our general technique to extend
causalities with lock-atomicity, and finally describes an algorithm
to generate sound linearizations of events consistent with both the
sliced causality and the lock-atomicity. Section 3 is dedicated to the
implementation of jPredictor. The evaluation results are discussed
in Section 4 and Section 5 concludes the paper.

2. PREDICTIVE RUNTIME ANALYSIS
2.1 Sliced causality

Previous approaches to detect concurrency bugs based on happen-
before techniques, e.g., [19, 21, 22], extract causal partial orders
from analyzing exclusively the dynamic thread communication in
executions. But as discussed in [23], without additional informa-
tion about the structure of the program that generated the event
trace, the least restrictive causal partial order that an observer can
extract is the one in which each write event of a shared variable
precedes all the corresponding subsequent read events and which
is a total order on the events generated by each thread. Since this

causality considers a/l interactions among threads, e.g., all reads/writes

of shared variables, the obtained causal partial orders are rather re-
strictive, or rigid, in the sense of allowing a reduced number of lin-
earizations and thus of errors that can be detected; in general, the
larger the causality (as a binary relation) the fewer linearizations it
has, i.e., the more restrictive it is.

In [7] we defined sliced causality, a causal partial order rela-
tion significantly reducing the size of the computed causality with-
out giving up soundness or genericity of properties to check: it
works with any monitorable (safety) properties, including regular
patterns, temporal assertions, data-races, atomicity, etc. In this sub-
section we recall sliced causality and intuitively explain how and
why sliced-causality-based predictive runtime analysis techniques
have an increased coverage still avoiding any false alarms.

Consider a
simple and com-
mon safety prop-
erty for a shared
resource, that
any access should
be authenticated.
Figure 1 shows
a buggy pro-
gram using the shared resource. The main thread authenticates
and then the task thread uses the authenticated resource. They
communicate via the flag variable. Synchronization is unnec-
essary, since only the main thread modifies flag. However, the

Main Thread: Task Thread:

resource.authenticate()

flag.set= true;
9 T if (I flag.se)
Thread.yield();
resource.access();

Figure 1: Multi-threaded execution

222

developer makes a (rather common [10]) mistake, using if in-
stead of while in the task thread. Suppose now that we observed
a successful run of the program, as shown by the arrow. Tech-
niques based on traditional happen-before will not be able to find
this bug, due to the causality induced by the write/read on flag.
But since resource.access() is not controlled by if !, sliced-
causality techniques will correctly predict this error from the suc-
cessful execution. When the bug is fixed replacing if with while,
resource.access() is controlled by while (since it is a poten-
tially non-terminating loop), so no violation is reported.

Based on an apriori static analysis, sliced causality drastically
cuts the usual happen-before causality by removing unnecessary
dependencies; this way, a significantly larger number of consistent
runs can be inferred and thus analyzed. Experiments show that, on
average, the sliced causality relation has 50% or less direct inter-
thread causal dependencies compared to happen-before [7]. Since
the number of linearizations of a partial order tends to be expo-
nential with the size of the complement of the partial order (as a
binary relation), any linear reduction in size of the sliced causality
compared to traditional happen-before, is expected to increase ex-
ponentially the coverage of the analysis. Indeed, the use of sliced
causality allowed us to detect concurrency errors that are unlikely
be detected using conventional happen-before causalities.

The sliced causality is constructed by making use of dependence
information obtained both statically and dynamically. Briefly, in-
stead of computing the causal partial order on all the observed
events like in the traditional happen-before based approaches, our
approach first slices the trace according to the desired property and
then computes the causal partial order on the achieved slice; the
slice contains all the property events, i.e., events relevant to the
property, as well as all the relevant events, i.e., events upon which
the property events depend, directly or indirectly. This way, irrele-
vant causality on events is trimmed without breaking the soundness
of the approach, allowing more permutations of relevant events to
be analyzed and resulting in better coverage of the analysis.

Unlike in (static) program slicing [14] which is based on de-
pendencies between statements, to assure correct causal slicing we
employ dependencies between finer grained units here, namely be-
tween events. Our dependency analysis keeps track of actual mem-
ory locations in every event, available at runtime, avoiding inter-
procedural analysis. Intuitively, event ¢’ depends upon event e,
written e C ¢, iff a change of ¢ may change or eliminate ¢’; in
other words, e should occur before e’ in any consistent permutation
of events. We distinguish: (1) control dependence, written e T, €',
when a change of the state of e may eliminate ¢’; and (2) data-flow
dependence, written e Cy,, €', when a change of the state of e may
lead to a change in the state of ¢’. Control dependence only relates
events generated by the same thread. Data-flow dependence may
relate events generated by different threads (e.g., e writes shared
variable x in thread ¢, then ¢’ reads x in thread ¢).

An additional dependence relation, called the relevance depen-
dence in [7], is also needed for soundness. In Figure 2, threads
T, and T, are executed as shown by the solid arrows (A), yield-
ing the event sequence “ey, e, €3, €4, €s, €5~ (B). Suppose the
property to check refers only to y; the property events are then
ey, es, and eg. Events e, and e; are immediately marked as rele-
vant, since €; Cyuq €3 Con es. If only closure under control- and
data-dependence was used to compute the relevant events, like in
dynamic program slicing [1], then e4 would appear to be irrelevant,
so one may conclude that “e, e, €1, €3, e5” is a sound permutation;

Tt is more complicated to decide the control dependence when
more control flow statements, e.g., exception throwing, are con-
sidered. Interested readers can refer to [8] for details.

T T
Thread t1: Thread t2: !
y=1
X = o< e, write y
if (x == 0) { o
e e,: write x e, read x
\ x=y "r
y=0 — |" \\
} e,: write x ,: e;:‘,read y
\ 4
eq write y RN g

A. Example program

B. Example Trace

Figure 2: Example for relevance dependence

there is, obviously, no execution that can produce that trace, so one
reported a false alarm if that trace violated the original property on
y. Consequently, e, is also a relevant event and ez C,y,,, €.

Sliced causality is defined as the transitively closed union of the
three dependencies above (together with the total intra-thread or-
ders). Its sound use in predictive runtime analysis techniques is
given by the following important result (see [7] for formal details).

THEOREM 1. If “<” is the sliced causality, then any permutation
of property events that is consistent with < corresponds to some
possible execution of the multi-threaded system.

Therefore, one can run the system once, extract a sliced causality,
and then analyze sliced-causality-consistent permutations of prop-
erty events. This way, one can detect potential violations of prop-
erties without re-executing the program.

2.2 Extracting Sliced Causality

We here describe a technique to extract from an execution trace
of a multithreaded system the sliced causality relation correspond-
ing to some property of interest ¢. Our technique is offline, in the
sense that it takes as input an already generated execution trace; that
is because it needs to traverse the trace backwards. Our technique
consists of two steps: (1) all the irrelevant events (those which are
neither property events nor relevant events) are removed from the
original trace, obtaining the (¢)-sliced trace; and (2) a vector clock
(VC) based algorithm is applied on the sliced trace to capture the
sliced causality partial order.

2.2.1 Slicing Traces

Our goal here is to take a trace & and a property ¢, and to gener-
ate a trace &, obtained from ¢ filtering out all its events which are
irrelevant for ¢. When slicing the execution trace, one must never-
theless keep all the property events. Moreover, one must also keep
any event e with e (C.y U Cuug)™ € for some property event e’.
This can be easily achieved by traversing the original trace back-
wards, starting with £, empty and accumulating in &, events that ei-
ther are property events or have events depending on them already
in &,. One can employ any off-the-shelf analysis tool for data- and
control- dependence; e.g., our predictive analysis tool, JPREDICTOR,
uses termination-sensitive control dependence [8].

The algorithm informally described above is a variant of dynamic
program slicing [1], where the slicing criterion is not the conven-
tional reachability of a particular program statement, but, more gen-
erally, a set of event patterns determined by the desired property
(e.g., reads/writes of a shared location for dataraces, etc.). Unfor-
tunately, one backwards traversal of the trace does not suffice to
correctly calculate all the relevant events. Let us re-consider the
example in Figure 2. When the backward traversal first reaches ey,
it is unclear whether e, is relevant or not, because we have not seen
e3 and e; yet. Thus a second scan of the trace is needed to include
e4. Once ey is included in &, it may induce other relevance de-
pendencies, requiring more traversals of the trace to include them.

223

This process ceases only when no new relevant events are detected
and thus resulting sliced trace stabilizes.

As the discussion preceding Theorem 1 shows, if one misses
relevant events like e, then one may “slice the trace too much”
and, consequently, one may produce false alarms. Because at each
trace traversal some event is added to &,, the worse-case complex-
ity of the sound trace slicing procedure is square in the number of
events. Since execution traces can be huge, in the order of billions
of events, any trace slicing algorithms that is worse than linear may
easily become prohibitive. For that reason, jPrReDICTOR slices the
trace only once, thus achieving an approximation of the complete
slice that can, in theory, lead to false alarms. However, our ex-
periments show that this approximation is actually very precise in
practice: all the programs that we have evaluated follow our ap-
proximation (Section 4).

2.2.2 Capturing Sliced Causality with Vector Clocks

Vector clocks [17] are routinely used to capture causal partial or-
ders in distributed and concurrent systems. A VC-based algorithm
was presented in [22] to encode a conventional multithreaded-system
“happen-before” causal partial order on the unsliced trace. We next
adapt that algorithm to work on our sliced trace and thus to capture
the sliced causality. Recall from [22] that a vector clock (VC) is
a function from threads to integers, VC : T — Int. We say that
VC < VC' iff ¥t € T,VC(t) < VC'(t). The max function on VCs is
defined as: max(VCy, ..., VC,)(t) = max(VC(?), ..., VC,(1)).

Before we explain our VC algorithm, let us introduce our event
and trace notation. An event is a mapping of attributes into corre-
sponding values. One event can be, e.g., e; : (counter = 8, thread =
ty, stmt = Ly, type = write, target = a, state = 1), which
is a write on location a with value 1, produced at statement L;;
by thread #;. One can include more information into an event by
adding new attribute-value pairs. We use key(e) to refer to the value
of attribute key of event e. To distinguish different occurrences of
events with the same attribute values, we add a designated attribute
to every event, counter, collecting the number of previous events
with the same attribute-value pairs (other than the counter). A trace
is a finite sequence of events. From here on, our default trace is the
p-sliced trace &, obtained in Section 2.2.1.

Intuitively, vector clocks are used to track and transmit the causal
partial ordering information in a concurrent computation, and are
typically associated with elements participating in such computa-
tions, such as threads, processes, shared variables, messages, sig-
nals, etc. If VC and VC’ are vector clocks such that VC(r) < VC'(¢)
for some thread 7, then we can say that VC’ has newer informa-
tion about 7 than VC. In our VC technique, every thread ¢ keeps a
vector clock, VC,, maintaining information about all the threads ob-
tained both locally and from thread communications (reads/writes
of shared variables). Every shared variable is associated with two
vector clocks, one for writes (VCY) used to enforce the order among
writes of x, and one for all accesses (VC;) used to accumulate infor-
mation about all accesses of x. They are then used together to keep
the order between writes and reads of x. Every property event e
found in the analysis is associated a VC attribute, which represents
the computed causal partial order. We next show how to update
these VCs when an event e is encountered (the third case can over-
lap the first two; if so, the third case will be handled first):

1. type(e) = write, target(e) = x, thread(e) = t (the variable x
is written in thread) and x is a shared variable. In this case,
the write vector clock VCY is updated to reflect the newly
obtained information; since a write is also an access, the ac-
cess VC of x is also updated; we also want to capture that ¢
committed a causally irreversible action, by updating its VC
as well: VC, « VC{ « VC « max(VCy, VC,).

2. type(e) = read, target(e) = x, thread(e) = t (the variable
x is read in ¢t), and x is a shared variable. Then the thread
updates its information with the write information of x (we
do not want to causally order reads of shared variables!),
and x updates its access information with that of the thread:
VC, « max(VCY, VC,) and then VC{ < max(VC;, VC)).

. e is a property event and thread(e) = t. In this case, let
VC(e) := VC,. Then VC,(¢) is increased to capture the intra-
thread total ordering: VC,(t) < VC,(t) + 1.

The vector clocks associated with property events as above soundly,

but incompletely, capture the sliced causality:

THEOREM 2. e < € implies VC(e) < VC(¢€').
The proof of Theorem 2 can be (non-trivially) derived from the one
in [22]. The extension here is that the dependence is taken into ac-
count when computing the sliced trace. Note that, unlike in [22],
the partial order < among VCs is stronger than the causality. This is
because when VCs are computed, the write-after-read order is also
taken into account (the first case above), which the sliced causality
< does not need to encode. We do not know how to faithfully cap-
ture the sliced causality using VCs yet. Nevertheless, soundness is
not affected because Theorems 1 and 2 yield the following:

CoroLLARY 1. Any permutation of property events consistent with
< (on events’ VCs) is sound w.r.t. the sliced causality <.

2.3 Causality with Lock-Atomicity

Happen-before techniques for detecting/predicting concurrency
bugs typically rely on checking, directly or indirectly, linearizations
of events consistent with a causal partial order. Two happen-before
techniques that we are aware of generalize the concept of causality
beyond a partial-order. One example is [19], which proposes a hy-
brid approach combining the happen-before causality with lock-set
techniques for detecting data-races. The algorithm in [19] is, un-
fortunately, unsound and specialized for detecting data-races, so it
cannot be used to generate sound linearizations of events to check
against arbitrary properties. Another example is [23], which groups
a write atomicity with all its subsequent reads; the resulting causal-
ity is extended with atomicity information and new linearizations
of events are allowed, namely those that permute groups of events
in the same atomic block. In this subsection we present another
generalization of causality beyond a partial-order, one borrowing
the idea of atomic blocks from the technique in [23], but whose
atomicity is given by the semantics of locks rather than by writes
and subsequent reads of shared variables. Unlike the technique in
[19], our novel causality is general purpose, in the sense that it still
allows for sound linearizations of events, so it can be used in com-
bination with any trace property, data-races being only a special
case. Even though in this paper we use this improved causality as
a generalization of our sliced causality, the idea is general and can
be used in combination with any other happen-before causality.

Our causality with lock-atomicity
below is reminiscent of the no-
tion of synchronization depen-
dence defined in [13] and used
for static slicing there. How-
ever, our causality is based on
runtime events instead of state-
ments in the control-flow graph,
and is used to assure the (dy-
namic) causal atomicity of lock-
protected blocks.

A simple sound approach to partially incorporating lock seman-
tics into causality, followed for example in [22], is to regard locks
as shared variables and their acquire and release as reads and writes.

Thread t;:

ey4(type =read, target =y ...)
eqo(type = write, target =y ...)
ey3(type = acquire, target = lock ...)
eq,(type = read, target =x...)
eys(type = write, target =x...)
eqg(type = release, target = lock ...)

Figure 3: Event trace con-
taining lock operations

224

This way, blocks protected by the same lock are ordered and kept
separate. However, this ordering is stronger than the actual lock
semantics (which only requires mutual exclusion). We extend our
sliced causality to take into account the actual semantics of lock-
atomicity: the set of events generated within a lock-protected block
are considered lock-atomic. Two lock-atomic event sets w.r.t. the
same lock cannot be interleaved, but can be permuted if there are
no other causal constraints on them. Consider two more types of
events for lock operations, acquire and release, whose target is the
accessed lock. If there are embedded same-lock lock operations
(a thread can acquire the same lock multiple times), only the out-
ermost acquire-release event pair is considered. Figure 3 shows a
trace containing lock events.

From here on, let 7 be any execution trace. Let “<” be the
union of the total intra-thread orders induced by 7, that is, e < ¢’
iff thread(e) = thread(e’) and e appears before ¢’ in 7. Let < be
any partial order on the events in 7. The lock-atomicity technique
described below can be therefore used in combination with any
(causal) partial order. We are, however, going to apply the subse-
quent results for a particular causality, namely the sliced causality
restricted to relevant and property events (see Corollary 2). When
doing that, we also discard all those irrelevant acquire/release events
(i.e., those synchronizing only irrelevant events).

DeriNiTiON 1. Events ey and e, are [-atomic, written e; §§; e,
if and only if there is some event e such that type(e) = acquire,
target(e) = I, e < ey, e < ey, and there is no ¢’ with type(e’) =
release, target(e) =1, and e < ¢’ < e; ore < €' < e,. For each lock
I, we let [e]; denote the I-atomic equivalence class of e.

In Figure 3, e14 S €15. We capture the lock-atomicity as fol-
lows. A counter ¢; is associated with every lock /. Each thread
stores the set of locks that it holds in LS,. Events are enriched
with a new attribute, LS, which is a partial mapping from locks
into corresponding counters. When event e is processed, the lock
information is updated as follows:

1. if type(e) = acquire, thread(e) = t, and target(e) = [, then
c=c+1,LS, =LS U{l};
2. if type(e) = release, thread(e) = t, and target(e) = [, then

LS, = LS, - {I}.
3. LS(e)(l) = ¢ for all [€ LSieade) and LS (e)(I) undefined for
any other /;

If we write LS(e)(I) = LS(¢’)(l) then we mean that the two are de-
fined and equal. The following important result holds:

THEOREM 3. e §; ¢ iff LS(e)(]) = LS(e")(D).
Intuitively, a permutation of events is consistent, (or sound, or re-
alizable, or possible during an execution) if and only if it preserves
both the sliced causality and the lock-atomicity relation above.

DEerINiTION 2. A cut X is a set of events in T. X is consistent if
and only if for all e, e’ € 7,

(a)ife’ e Xand e < ¢’ then e € X; and

(b)ife,e’ e Xande' ¢ [e], foralockl, then [¢'], C Z or[e]; C %
The first item says that for any event in X, all the events upon which
it depends should also be in £. The second property states that
there is at most one incomplete lock-atomic set for every particular
lock [in 2. Otherwise, the lock-atomicity is broken. Essentially, £
contains the events in the prefix of a consistent permutation. When
an event e can be added to £ without breaking the consistency, e is
called enabled for X.

DeriNition 3. Event e’ € T— X is enabled for consistent cut X iff
(a) for any event e € 7, if e < €' then e € X; and
(b) for any e € X and any lock |, either ¢’ € [e]; or [e]; C Z.

Hence, e is enabled for consistent cut X iff XU {e} is also consistent.

globals &, « ¢-sliced trace, CurrentLevel « {Zg_o}
procedure main()
while (&, # 0) do verifyNextLevel()
endprocedure
procedure verifyNextLevel()
local NextLevel «— 0
for all e € &, and X € CurrentLevel do
if enabled(Z, e) then NextLevel < NextLevel U createCut(Z, e)
CurrentLevel «— NextLevel
&, « removeRedundantEvents()
endprocedure
procedure enabled(Z, e)
return VC(e)(thread(e)) = VC(X)(thread(e)) + 1 and
VC(e)(t) < VCZ)(¢) for all t # thread(e) and
LS(e)(I) = LS(Z)(1) when both defined, for all locks /
endprocedure
procedure createCut(Z, e)
Y « new copy of £
VC(X)(thread(e)) « VC(Z)(thread(e)) + 1
if type(e) = acquire and target(e) = I then LS(Z")(l) « LS(e)(])
if type(e) = release and target(e) = [then LS(X")(I) « undefined
MS(X') « runMonitor(MS(X), e)
if MS(X") = “error” then reportViolation(Z, e)
return ¥’
endprocedure

Figure 4: Consistent runs generation algorithm

DerFINITION 4. A consistent permutation ee;...ey of T is one
that generates a sequence of consistent cuts LoX;... 2y forall 1 <
r < |t|, ¥,_1 is consistent, e, is enabled for Z,_,, and X, = £,_1U{e,}.

The following result holds and shows the soundness of lock-atomicity:

THEOREM 4. Any consistent permutation of T corresponds to some

possible execution of the multithreaded system.

The proof is non-trivial and can be done by extending the proof of
Theorem 1 (using the parametric framework for causality like in
[7]) to incorporate lock-atomicity.

CoroLLARY 2. Consider now our original trace & together with
its p-sliced trace &,. Then any permutation of property events that
is consistent with the sliced causality and the lock-atomicity corre-
sponds to some possible execution of the multi-threaded system.

2.4 Generating Potential Runs

We here discuss an algorithm to check all the consistent permu-
tations of events against the desired property ¢. The actual per-
mutations of events are not generated, because that would be pro-
hibitive. Instead, a monitor is assumed for the property ¢ which
is run synchronously with the generation of the next level in the
computation lattice, following a breadth-first strategy. Figure 4
gives a high-level pseudocode to generate and verify, on a level-
by-level basis, potential runs consistent with the sliced causality
with lock-atomicity. &, is the set of relevant events. CurrentLevel
and NextLevel are sets of cuts. We encode cuts X as: a VC(X) which
is the max of the VCs of all its threads (updated as shown in pro-
cedure createCut); a partial mapping LS(X) which keeps for each
lock [its current counter ¢; (updated as also shown in createCut);
and the current state of the property monitor for this run, MS. The
property monitor can be any program, in particular those generated
automatically from specifications, like in MOP [6].

Figure 5 shows a simple example for generating consistent per-
mutations. Figure 5 (A) is an observed execution of a two-thread
program. The solid arrow lines are threads, the dotted arrows are
dependencies, and the dotted boxes show the scopes of synchro-
nized blocks. Both synchronized blocks are protected by the same

225

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

(A

Figure 5: Example for consistent run generation

lock, and all events marked here are relevant. Figure 5 (B) illus-
trates a run of the algorithm in Figure 4, where each level cor-
responds to a set of cuts generated by the algorithm. The labels
of transitions between cuts give the added events. Initially, there
is only one cut, Xy, on Level 0. The algorithm first checks ev-
ery event in &, and every cut in the current level to generate cuts
of the next level by appending enabled events to current cuts. The
enabled procedure implements the definition of a consistent permu-
tation (compares the VCs between a candidate event and a cut, then
checks for the compatibility of their lock-atomicity). For example,
only e, is enabled for the initial cut, Xy; e, is enabled for X,y on
Level 1, but e, is not because of the lock-atomicity. On Level 2,
after e;; and e, have been consumed, e,; and e;3 are both enabled
for the cut Z,y. If an event e is enabled for a cut X, e is added to
Y to create a new cut X', as depicted by the transitions in Figure 5.
The vector clocks and lock set information of X’ will be computed
according to e. After the next level is generated, redundant events,
e.g., ey after Level 1, will be removed from &,. Also, the property
monitor in X will be run (see the createCut procedure) and its new
state stored in X’; violations are reported as soon as detected.

The pseudocode in Figure 4 glossed over many implementation
details that make it efficient. For example, &, can be stored as a set
of lists, each corresponding to a thread. Then the VC of a cut X can
be seen as a set of pointers into each of these lists. The potential
event e for the loop in verifyNextLevel can only be among the next
events in these lists. The function removeRedundantEvents() elimi-
nates events at the beginning of these lists when their VCs are found
to be smaller than or equal to the VCs of all the cuts in the current
level. In other words, to process an event, a good implementation
of the algorithm in Figure 4 would take time O(|Threads|).

3. JPREDICTOR

JPREDICTOR is a runtime analysis tool to detect concurrent bugs
in Java programs using sliced causality with lock-atomicity. In
addition to an efficient implementation of the vector-clock-based
algorithm discussed above, JPREDICTOR also provides an optimal in-
strumentation framework to log and replay program execution, as
well as specialized property checkers for data races and atomicity.
Interested readers can find more information on JPREDICTOR at its
website [16], where it is also available for download.

3.1 Architecture

JPREDICTOR is composed of two major components: the program
instrumentor and the trace predictor (Figure 6). The program in-
strumentor instruments the program under testing with instructions
that log the execution. To reduce the runtime overhead caused
by monitoring, only partial information is logged during execu-
tion. The trace predictor analyzes the logged execution trace to
predict potential bugs using sliced causality. If a possible bug is

>
Instrumentoﬁ Specification% :>

Figure 6: Working Architecture of jPreEDICTOR

Trace
Predictor

E> Predicted
Results

Logged
Trace

Instrumented
[Program }Ij[

detected, JPREDICTOR generates an abstract execution trace leading
to it, which explains how the bug can be hit in a real execution.

As shown in Figure 7, the trace predictor consists of four stages:
the pre-processor, the trace slicer, the VC calculator, and the prop-
erty checker. The role of the pre-processor is two-fold. First, it
constructs a more informative trace from the partially logged trace
using static analysis on the original program, providing a founda-
tion for the subsequent analysis. Second, it identifies all the shared
locations in the observed execution, which are critical for a pre-
cise predictive analysis. The slicer scans the re-constructed trace,
producing a trace slice for every property to check. The generated
slices are fed into the VC calculator, which computes the sliced
causality as discussed in Section 2.2. In the last stage, the property
checker verifies the execution against the desired property using the
computed sliced causal with lock-atomicity. All these stages com-
municate using plain ASCII text, making the tool easy to extend.
For example, we also implemented a conventional happen-before
slicer to generate trace slices containing all the shared variable ac-
cesses. This way, we were able to compute the traditional happen-
before causality without changing any other components of JPRE-
DICTOR; it has been used in [7] for comparison purposes. We next
give more details about each component of JPREDICTOR.

3.2 Partial Monitoring

Program monitoring plays a fundamental role in predictive run-
time analysis. For sliced causality, complete monitoring, i.e., ob-
serving every instruction of the program, is desired for an accu-
rate data-flow analysis. However, such monitoring imposes huge
runtime overhead that we want to avoid in practice. An impor-
tant observation here is that, by using static analysis, one can re-
play the execution with much less observation of the program. The
more complicated the static analysis, the fewer observation points
and the less monitoring overhead one can achieve. For example,
one could symbolically execute the program and only need run-
time information when the symbolic execution cannot decide how
to proceed. How to achieve minimum but sufficient information
by runtime monitoring in order to replay an execution is an in-
teresting question by itself, but out of the scope of this paper. In
what follows, we briefly discuss an effective solution adopted by
JPREDICTOR, Which aims at reducing the monitoring overhead with
relatively simple static analysis.

Two components of JPREDICTOR are involved in obtaining a com-
plete trace via partial monitoring, namely the program instrumentor
and the pre-processor of the trace predictor (Figures 6 and 7). The
program instrumentor, built on top of Soot [24], a Java bytecode
engineering package, is used to insert logging instructions into the
original program. Three kinds of program points are observed: be-
ginnings of methods, targets of conditionals, and accesses to ob-
jects/arrays (i.e., field/element access or method invocations). To
faithfully replay an execution, we need to know which method im-
plementation was actually executed when a method invocation is
encountered. Because of the polymorphism and the virtual method
mechanism of Java, it can be difficult to identify the actual target

226

L d
%%%Z !:}‘ Pre-processor :> C?I'rrna%l:te :> Trace Slicer
{VC Trace%@ VC Calculator

Trace Predictor

Predicted
Results <;j

Property Veriﬁer

Figure 7: Staged Architecture of Trace Predictor
method implementation at a specific program point by static anal-
ysis, while logging the entry of the method at runtime is a simple
and precise solution. Similarly, static conditional analysis is of-
ten difficult and imprecise but can be totally avoided using runtime
information. For object accesses, static aliasing analysis is usu-
ally expensive and often imprecise in the absence of runtime infor-
mation. Admittedly, monitoring every object/array access is fairly
heavy and can be improved by advanced aliasing analysis, but we
leave that to future research; the current solution yielded reasonable
runtime overhead in our experiments.

The information logged for every event is as follows. Each event
should carry along the id of the thread which issued it. In addi-
tion, the begin method event records a full signature of the method,
so that we can locate the actual method implementation later; the
branch target event needs to store the line number of the target;
the object/array access event contains the id of the accessed ob-
ject/array and, for the array access, the index of the element. In-
stead of analyzing this partial trace directly to compute the sliced
causality, JPREDICTOR first re-constructs a complete trace out of it
using the pre-processor. The constructed complete trace can be
reused by different trace slicers to verify different properties. Also,
the trace slicer becomes simpler and independent of the instrumen-
tation strategy. The pre-processor also works at the Java bytecode
level. It goes through the instructions of the program following the
control flow information recorded in the logged trace, supplement-
ing the trace with useful information ignored by the monitoring.
More specifically, the following information is added into the trace:
return points of method executions, origins of jump statements,
field names of object accesses, starts of threads, and lock/unlock
events. The first two are needed because the slicing is performed in
a backward manner; field names are used to achieved fine grained
data analysis; thread start events and lock-related events are needed
to compute correct VCs and lock-atomicity.

It is impossible or undesired to instrument all the methods used
in a program, e.g., the (native) Java library functions. JPREDIC-
ToR by default does not instrument any Java library function un-
less requested by the user. However, without further knowledge,
the data-flow dependence analysis of JPrREDICTOR may lose infor-
mation and produce imprecise results. For example, when the Ar-
rayList.addAll(Collection c) is called, the target ArrayList object
will be changed according to the input argument ¢. A conserva-
tive solution is to assume all the instrumented methods impure, i.e.,
they may change the target object and any of the input arguments.
This assumption is often too restrictive, because many functions
simply return the state of the object. Hence, JPREDICTOR allows the
user to input purity information about functions that are used but
not instrumented in the program. If no information is provided for
a certain function, the function will be considered impure. The pu-
rity information can be reused for different programs and we have
pre-defined the purity of many Java library functions; that was suf-
ficient to do our experiments entirely automatically.

3.3 Trace Slicing and VC Calculator

The trace slicer implements the dynamic slicing algorithm de-
scribed in Section 2.2.2 to extract property-specific trace slices from
the completed trace. JPREDICTOR handles all thread-related, e.g.,
start and join, and all synchronization events specially, according
to the Java semantics. Also, for efficiency purposes, only one pass
of the backward slicing is performed in the present implementation.
This may result in a trace slice that does not contain all the relevant
events and thus lose the soundness of the predictive analysis. In
other words, the current JPREDICTOR prototype may produce false
alarms due to incomplete trace slices. However, this deliberately
unsound implementation proved to be sufficiently effective in our
evaluation: no false alarm has been reported in our experiments.

The trace slice is then used by the VC calculator to compute VCs
based on the algorithm described in Section 2.2.2. Similarly to the
slicer, Java-specific language features are specially handled during
the VC computation to ensure the correctness and accuracy of the
results, for example, the beginning of a thread execution should
depend on the corresponding thread creation event. The output of
the VC calculator is a sequence of property events associated with
VCs and lock-atomicity information. This output is then verified
against the desired property as explained below.

3.4 Verifying Properties

The property checker of jPrEDICTOR implements the algorithm
in Figure 5 to generate consistent permutations of property events,
providing a generic way to verify temporal properties against the
observed execution using the sliced causality. In other words, JPRE-
DICTOR is not bound to any particular type of property: one can hook
up any property monitor to JPREDICTOR to predict possible violations
of the desired property which can be specified using any trace spec-
ification language, e.g., regular expressions, temporal properties, or
context-free languages. This way, combining it with the automatic
monitor generation framework provided by JavaMOP [6], sPrREDIC-
TOR gives an automated platform to formally specify and dynami-
cally verify trace properties against concurrent Java programs.

Unfortunately, generating all the consistent permutations of a
partial order is a #P-complete problem [4] and can be unneces-
sarily expensive for those properties for which we can have more
efficient solutions. JPrREDICTORprovides two specialized checkers to
detect data races and atomicity violations efficiently using sliced
causality and lock-atomicity. We next discuss both of them briefly.

First, we need to determine the property events for these two
types of properties: the property events for detecting races of a spe-
cific memory location (i.e., the same object field or array element)
are all the writes/reads of the memory location; the property events
for analyzing the atomicity of atomic blocks are all the accesses of
shared locations used within those blocks. Let <7, be the sliced
causality for detecting the data race of the shared location x. We
then formally define a data race as follows:

DeriNiTION 5. For two events, ey and e, if they access the same

memory location x and at least one of them is a write, then we say
that they cause a data race on x iff e; and e, are not comparable
under <., and they are not protected by the same lock.

race

Therefore, the data race can be detected by comparing events
generated in different threads. In our implementation, the prop-
erty events, writes/reads of the shared variable in this case, are pro-
cessed following the order in the logged trace (i.e., the order in the
original execution). When a new property event is processed, it is
checked against those events processed in other threads using the
above race condition. The complexity of this algorithm is square to
the number of property events.

Thanks to the genericity of JPREDICTOR With regards to proper-
ties, one is allowed to use existing algorithms, e.g., the reduction

227

| Program || LOC | Threads | S.V. | Slowdown |
Banking 150 3 10 0.34
Elevator 530 4 123 N/A
tsp 706 4 648 7.05
sor 17.7k 4 102 0.47
hedc 39.9k 10 119 0.56
StringBuffer 1.4k 3 7 0.61
Vector 12.1k 18 49 0.79
IBM Web Crawler unknown 7 76 0.01
StaticBucketMap 748 6 381 35.6
Pool 1.2 5.8k 2 119 0.29
Pool 1.3 7.0k 2 95 0.32
Apache Ftp Server 22.0k 12 281 N/A

Tomcat Components 4.0k 3 13 0.1

Table 1: Benchmarks

based algorithm in [12] or the causality based algorithm in [11],
to check the atomicity on the consistent permutations generated
by sPrepicTOR. The specialized efficient algorithm implemented in
JPREDICTOR to identify atomicity violations is based on the problem-
atic scenarios proposed in [26]. In short, JPREDICTOR first constructs
all the atomic blocks from the execution trace; then each pair of
blocks generated in different threads is examined to see if any of
the 11 violation patterns in [26] can be matched under the sliced
causality and lock-atomicity constraints. Since those patterns in-
volve at most two different variables, the complexity of checking
each pair is O(m?), where m is the number of events in both blocks.
The worse case complexity of this atomicity algorithm is therefore
O(n*), where n is the number of all the property events.

When both data races and atomicity are checked, the analysis
cost can be further reduced by reusing the trace slices generated
for race detection in the atomicity analysis. More specifically, if an
atomic block B contains accesses of shared variables xi, ...x;, the
trace slice for checking the atomicity of B is the union of the slices
for checking races on xi, ..., x;. The formal proof of the correctness
is left out of this paper. Intuitively, for two sets of events, E; and
E,, if trace slices & and &, contain all the events affecting £, and
E,, respectively, then & U &, should also contain all the events af-
fecting E; U E,. This way, one does not need to re-slice the trace
for atomicity analysis if race detection has been carried out. As
our experiments show, merging trace slices is much cheaper than
generating slices (Section 4.3). So the analysis performance can be
significantly improved by reusing existing slices.

4. EVALUATION

Here we present evaluation results of JPREDICTOR on two types of
common and well-understood concurrency properties, which need
no formal specifications to be given by the user and whose viola-
tion detection is highly desirable: dataraces and atomicity. JPREDIC-
ToR has also been tried on properties specified formally and moni-
tors generated using the MOP [6] logic-plugins, but we do not dis-
cuss those here; the interested reader is referred to [5]. We discuss
some case studies, showing empirically that the proposed predictive
runtime verification technique is viable and that the use of sliced
causality significantly increases the predictive capabilities of the
technique. All experiments were performed on a 2.6GHz X2 AMD
machine with 2GB memory. Interested readers can find detailed
result reports on JPREDICTOR’S website at [16].

4.1 Benchmarks

Table 1 shows the benchmarks that we used, along with their size
(lines of code),> number of threads created during their execution,

Different papers give different numbers of lines of code for the

Program Var to Trace Size Running Time (seconds) per S.V. Races
Check | Logged | Complete | Preprocess | Slice | VC | Verify | Harmful | Benign | False

Banking 10 244 320 0.01 0.04 [0.01 | 0.01 1 0 0
Elevator 48 62314 71269 1.0 8.1 1.2 | 0.15 0 0 0
tsp 47 141239 | 237801 22 26.1 | 23 | 023 1 0 0
sor 17 10968 12654 0.3 1.9 02 | 0.01 0 0 0
hedc 43 128289 | 183317 2.1 17.9] 0.16 | 0.01 4 0 0
StringBuffer 4 738 871 0.06 0.28 | 0.05 | 0.01 0 0 0
Vector 47 876 1086 0.08 03 | 0.06 | 0.01 0 1 0
IBM Web Crawler 59 3128 3472 0.18 06 |0.16 | 0.01 1 3 0
StaticBucketMap 39 319482 | 366743 7.6 131.6 | 122 | 0.03 1 0 0
Pool 1.2 54 20541 24072 0.26 1.42 [034 | 0.01 35 0 0
Pool 1.3 45 1426 1669 0.16 0.76 | 0.23 | 0.01 1 0 0
Apache FTP Sever 71 19765 20047 0.69 3.87 | 0.34 | 0.02 11 5 0
Tomcat Components 13 3240 3698 0.21 0.62 | 0.2 0.01 2 2 0

Table 2: Race detection results

number of shared variables (S.V.) detected, and slowdown ratios
after instrumentation 3. Banking is a simple example taken over
from [10], showing relatively classical concurrent bug patterns. El-
evator, tsp, sor and hedc come from [27]. Elevator is a discrete
event simulator of an elevator system. tsp is a parallelized solution
to the traveling salesman problem. sor is a scientific computation
application synchronized by barriers instead of locks. hedc is an
application developed at ETH that implements a meta-crawler for
searching multiple Internet achieves concurrently.

StringBuffer and Vector are standard library classes of Java 1.4.2
[15]. IBM web crawler is a component of the IBM Websphere
tested in [9]. * StaticBucketMap, Pool 1.2 and 1.3 are part of the
Apache Commons project [2]: StaticBucketMap is a thread-safe
implementation of the Java Map interface; Pool 1.2 and 1.3 are
two versions of the Apache Commons object pooling components.
Apache FTP server [3] is a pure Java FTP server designed to be a
complete and portable FTP server engine solution. Tomcat [25] is
a popular open source Java application server. The version used in
our experiments is 5.0.28. Tomcat is so large, concurrent, and has
so many components, that it provides a base for almost unlimited
experimentation all by itself. We only tested a few components of
Tomcat, including the class loaders and logging handlers.

For most programs, we used the test cases contained in the origi-
nal packages. The Apache Commons benchmarks, i.e., StaticBuck-
etMap and Pool 1.2/1.3, provide no concurrent test drivers, but only
sequential unit tests. We manually translated some of these into
concurrent tests by executing the tests concurrently and modifying
the initialization part of each unit test method to use a shared global
instance. For StringBuffer and Vector, some simple test drivers
were implemented, which simply start several threads at the same
time to invoke different methods on a shared global object. The
present implementation of JPREDICTOR tracks accesses of array el-
ements, leading to the large numbers of shared variables and sig-
nificant runtime overhead in tsp and StaticBucketMap. For other
programs, the runtime overhead is quite acceptable.

Each test was executed precisely once and the resulting trace has
been analyzed. While multiple runs of the system, and especially

same program due to different settings. In our experiments, we
counted those files that were instrumented during the testing, which
can be more than the program itself. For example, the kernel of
hedc contains around 2k lines of code; but some other classes used
in the program were also instrumented and checked, e.g., a comput-
ing library developed at ETH. This gave us a much larger bench-
mark than the original hedc.

3Not applicable for some programs, e.g., Elevator.

“No source code is available for this program.

228

combinations of test case generation and random testing with pre-
dictive runtime analysis would almost certainly increase the cover-
age of predictive runtime analysis and is worth exploring in depth,
our explicit purpose in this paper is to present and evaluate predic-
tive runtime analysis based on sliced causality in isolation. Careful
inspection of the evaluation results revealed that the known bugs
that were missed by JPrebicTOR were missed simply because of
limited test inputs: their corresponding program points were not
touched during the execution. Any dynamic analysis technique
suffers from this problem. Our empirical evaluation of JPREDICTOR
indicates that the use of sliced causality in predictive runtime anal-
ysis makes it less important to generate “bad” thread interleavings
in order to find concurrent bugs, but more important to generate test
inputs with better code coverage.

4.2 Race Detection

The results of race detection are shown in Table 2. The second
column gives the number of shared variables checked in the anal-
ysis, which is in some cases smaller than the number of shared
variables in Table 1 for the following reasons. Some shared vari-
ables were introduced by the test drivers and therefore not needed
to check. Also, as already mentioned, many shared variables are
just different elements of the same array and it is usually redundant
to check all of them. JPREDICTOR provides options to turn on an au-
tomatic filter that removes undesired shared variables (using class
names) or randomly picks only one element in each array to check.
This filter was kept on during our experiments, resulting in fewer
shared variables to check. The third and the fourth columns report
the size of the trace (i.e., the number of events) logged at runtime
and the size of the trace constructed after preprocessing, respec-
tively. The difference between these shows that, with the help of
static analysis, the number of events to log at runtime is indeed
reduced, implying a reduction of runtime overhead.

Columns 5 to 8 show the times used in different stages of the
race detection. Because JPREDICTOR needs to repeat the trace slic-
ing, the VC calculation, and the property checking for every shared
variable, the times shown in Table 2 for these three stages are the
average times for one shared variable. Considering the analysis
process is entirely automatic, the performance is quite reasonable.
Among all the four stages, the trace slicing is the slowest, because
it is performed on the complete trace. In spite of its highest al-
gorithmic complexity, the actual race detection is the fastest part
of the process. This is not unexpected though, since it works on
the sliced trace containing only the property events, which is much
shorter than the complete one.

The last section of Table 2 reports the number of races detected
in our experiments. The races are categorized into three classes:

if ((entry == null) || (entry.binaryContent == null)
&& (entry.loadedClass == null))
throw new ClassNotFoundException(name);

Class clazz = entry.loadedClass;
if (clazz != null) return clazz;

Figure 8: Buggy code in WebappClassLoader

harmful, benign (do not cause real errors in the system) and false
(not real races). JPREDICTORTEported no false alarms and, for all the
examples used in other works except for the FTP server, e.g., hedc
and Pool 1.2, it found all the previously known dataraces. Note
that we only count the races on the same field once, so our num-
bers in Table 2 may appear to be smaller than those in other ap-
proaches that use the number of unsafe access pairs. Some races in
the FTP server reported in [18] were missed by JPREDICTOR because
the provided test driver is comparatively simple and preformed lim-
ited testing of the server, avoiding the execution of the buggy code.

Surprisingly, JPrREDICTOR found some races in Pool 1.2 that were
missed by the static race detector in [18], which is expected to have
a very comprehensive coverage of the code (at the expense of false
alarms). JPREDICTOR also reported some unknown harmful races in
StaticBucketMap, Pool 1.3 and Tomcat. The race in StaticBuck-
etMap is caused by unprotected accesses to the internal nodes of
the map via the Map. Entry interface. It leads to a harmful atomicity
violation, explained in more detail in the next subsection. Although
Pool 1.3 fixed all the races found in Pool 1.2, jPreDICTOR still de-
tected a race when an object pool is closed: in GenericObjectPool, a
concrete subclasses of the abstract BaseObjectPool class, the close
process first invokes the close function in the super class without
proper synchronization. Hence, other methods can interfere with
the close function, leading to unexpected exceptions.

For Tomcat, sPrRepIcTOR found four dataraces: two of them are
benign and the other two are real bugs. Our investigation showed
that they have been previously submitted to the bug database of
Tomcat by other users. Both bugs are hard to reproduce and only
rarely occur, under very heavy workloads; JPREDICTOR was able to
catch them using only a few working threads. More interestingly,
one bug was claimed to be fixed, but when we tried the patched
version, the bug was still there. Let us take a close look at this bug.

This bug resides in findClassinternal of org.apache.catalina.loader.

WebappClassLoader. This bug was first reported by JPREDICTOR as
dataraces on variables entry.binaryContent and entry.loadedClass
at the first conditional statement in Figure 8. The race on en-
try.loadedClass does not lead to any errors, and the one on en-
try.binaryContent does no harm by itself, but fogether they may
cause some arguments of a later call to definePackage(packageName,
entry.manifest, entry.codeBase)’ to be null, which is illegal. It
seems that a Tomcat developer tried to fix this bug by putting a lock
around the conditional statement, as shown in Figure 9. However,
JPREDICTOR showed that the error still exists in the patched code,
which was a part of the latest version of Tomcat 5 when we carried
out our experiments. We reported the bug with a fix and it has been
accepted by the Tomcat developers.

4.3 Atomicity Violation Detection

The results of evaluating JPREDICTOR on atomicity analysis are
shown in Table 3. Although sPrepicTOR allows the user to define
different kinds of atomic blocks, we only checked for the atom-
icity of methods in these experiments. Not all benchmarks were

checked: we do not have enough knowledge of the IBM Web Crawler

to judge atomicity (its source code is not public), while method

SThere is another definePackage function with eight arguments that
allows null arguments.

229

if (entry == null)
throw new ClassNotFoundException(name);

Class clazz = entry.loadedClass;

if (clazz !'= null) return clazz;

synchronized (this) {

if (entry.binaryContent null && entry.loadedClass
throw new ClassNotFoundException(name);

null)

}

Figure 9: Patched code in WebappClassLoader

Program Running Time (seconds) Violations
Slice | VC | Verify | Actual | False
Banking 0.01 | 0.01 0.01 1 0
Elevator 04 32 0.6 0 0
tsp 05 | 25 0.6 1 0
sor 0.1 0.6 0.46 0 0
hedc 0.02 | 0.18 0.02 1 0
StringBuffer 0.01 | 0.05 0.01 1 0
Vector 0.06 | 0.15 0.06 4 0
StaticBucketMap 8 14 0.03 1 0
Pool 1.2 0.23 | 1.87 3.4 10 0
Pool 1.3 0.19 | 0.61 0.03 0 0

Table 3: Atomicity analysis results

atomicity is not significant for FTP and Tomcat, since their methods
are complex and usually not atomic (finer grained atomic blocks are
more desirable there, but this is beyond our purpose in this paper).

We do not need to repeat the pre-processing stage for atomic-
ity analysis. Hence, only the times for slicing, VC calculation
and atomicity checking are shown in columns 2 to 4 in Table 3.
As discussed in Section 3.4, our evaluation of atomicity analysis
reused the trace slices generated for race detection to reduce the
slicing cost, which turned out to be effective according to the re-
sults. The other two stages took more time in atomicity analysis
than in race detection because the analyzed trace slice was larger.
The last part of Table 3 shows the number of detected atomicity
violations, which are divided into two categories: actual violations
and false alarms. No benign violations were found in our evalua-
tion, probably because the definition of atomicity that we adopted
is based on problematic patterns of event sequences.

JPREDICTOR did not report any atomicity false alarm in its analy-
sis. It also found all the previously known harmful atomicity viola-
tions in the examples also analyzed by other approaches, e.g., [28]
and [12]. Moreover, JPreDICTOR found harmful atomicity violations
in tsp and hedc that were missed by [28] and [12] using the same
test drivers. This indicates that JPREDICTOR, through its combination
of static dependence analysis and sliced causality, provides a better
capability of predicting atomicity violations. Some unknown vio-
lations in StaticBucketMap and Pool 1.2 were also detected. We
next briefly explain the violation in StaticBucketMap.

In StaticBucketMap, fine grained internal locks are used to pro-
vide thread-safe map operations. Specifically, every bucket in the
map is protected by a designated lock. A data race was still detected
by JPREDICTOR in this well synchronized implementation, caused by
the usage of the Map.Entry interface. As shown in Figure 10, one
can obtain a map entry, which represents a key-value pair, via an
iterator of the map and use the setValue method to change the en-
try. JPREDICTOR showed that the setValue method is not correctly
synchronized and causes a data race. This data race is benign in
most cases, because no new entry can be added or removed through
the Map. Entry interface and also because the bulk operations of the

StaticBucketMap map;

Map.Entry entry = (Map.Entry)map.entrySet().iterator().next();
entry.setValue(null);

Figure 10: Unprotected modification of the map entry

class MapPrinter implements Runnable{
public void run(){

Iterator it = map.entrySet().iterator();

while (it.hasNext()) {
Map.Entry entry = (Map.Entry)it.next();
if (entry.getValue() != null)

System.out.println(entry.getValue().toString());
}

public void atomicPrint(){
map.atomic(this);

}

}

Figure 11: Atomic iteration on the map

map, e.g., iteration, are not guaranteed to be atomic. However, Stat-
icBucketMap provides an atomic(Runnable r) method to support
atomic bulk operations. This method accepts a Runnable object and
executes the run() method of the object atomically with regards to
the map. Figure 11 shows an example of using this method to print
out all the values in the map atomically. However, this atomicity
guarantee can be violated when another thread accesses the map’s
elements using the unsafe setValue method, like the code in Figure
11, which can cause an unexpected null pointer exception. JPRE-
picToR detected this violation (without directly hitting it during the
execution) in our experiments, generating a warning message that
clearly points out the cause of the violation.

5. CONCLUSION

A novel predictive runtime analysis technique was presented,
which employs sliced causality and lock-atomicity to improve the
coverage of concurrent program testing. This technique has been
implemented in the JPREDICTOR tool, and was evaluated using JPRE-
DICTOR on several non-trivial Java applications for race detection
and atomicity analysis. The results of our experiments show that
our predictive runtime analysis technique implemented in JPREDIC-
ToR is very precise and effective. No false alarms were reported
in any of our experiments, and several unknown bugs were found.
It is also surprising to see that JPREDICTOR achieved results that are
as comprehensive as the static analysis based approaches in some
cases, even though the coverage of the runtime analysis is restricted
by the limited coverage of the test input. The runtime overhead of
trace logging and the analysis time of JPREDICTOR were reasonable
in our experiments. The runtime analysis process is fully automated
and its setting requires very little human interference. There are
several interesting future directions to pursue, such as increasing
the predictive capability by strengthening the static analysis part,
or investigating test case generation and random testing techniques
to generate causally orthogonal executions.

6. REFERENCES

[1] H. Agrawal and J. R. Horgan. Dynamic program slicing. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’90), 1990.

Apache Commons project. http://commons.apache.org/.
Apache FTP server project. incubator.apache.org/ftpserver;.
G. Brightwell and P. Winkler. Counting linear extensions is
#p-complete. In ACM symposium on Theory of computing
(STOC91), 1991.

F. Chen and G. Rosu. Predicting concurrency errors at
runtime using sliced causality. Technical Report
UIUCDCS-R-2005-2660, Department of CS at UIUC, 2005.
F. Chen and G. Rosu. MOP: An Efficient and Generic
Runtime Verification Framework. In Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA’07), 2007.

(2]
(3]
(4]

(5]

(6]

230

[7] E. Chen and G. Rosu. Parametric and Sliced Causality. In
Computer Aided Verification (CAV’07), 2007.

F. Chen and G. Rosu. Parametric and termination-sensitive
control dependence - extended abstract. In Static Analysis
Symposium (SAS’06), 2006.

O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded java program test generation. IBM Systems
Journal, 41(1):111-125, 2002.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how
to test them. In International Parallel and Distributed
Processing Symposium (IPDPS’03), 2003.

A. Farzan and M. Parthasarathy. Causal atomicity. In
Computer Aided Verification (CAV’06), 2006.

C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In Principles
of Programming Languages (POPL’04), 2004.

J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and
H. Zheng. A formal study of slicing for multi-threaded
programs with JVM concurrency primitives. In Static
Analysis Symposium (SAS’99), 1999.

S. Horwitz and T. W. Reps. The use of program dependence
graphs in software engineering. In International Conference
on Software Engineering (ICSE’92), 1992.

Java. http://java.sun.com.

jPredictor. http://fsl.cs.uiuc.edu/jPredictory.

L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Comm. of ACM, 21(7):558-565, 1978.
M. Naik, A. Aiken, and J. Whaley. Effective static race
detection for java. ACM SIGPLAN conference on
Programming language design and implementation
(PLDI’06), 2006.

R. O’Callahan and J.-D. Choi. Hybrid dynamic data race
detection. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’03), 2003.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and

T. Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Transaction of Computer
System, 15(4):391-411, 1997.

A. Sen and V. K. Garg. Detecting temporal logic predicates
in distributed programs using computation slicing. In
International Conference on Principles of Distributed
Systems (OPODIS’03), 2003.

K. Sen, G. Rosu, and G. Agha. Runtime safety analysis of
multithreaded programs. In ACM SIGSOFT Symposium on
Foundations of Software Engineering (FSE’03), 2003.

K. Sen, G. Rosu, and G. Agha. Detecting errors in
multithreaded programs by generalized predictive analysis of
executions. In Formal Methods for Open Object-Based
Distributed Systems (FMOODS’05), 2005.

Soot website. http://www.sable.mcgill.ca/soot/.

Apache group. Tomcat. http://jakarta.apache.org/tomcat/.
M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In
Principles of Programming Languages (POPL’06), 2006.
C. von Praun and T. R. Gross. Object race detection. In
Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA’01), 2001.

L. Wang and S. D. Stoller. Accurate and efficient runtime
detection of atomicity errors in concurrent programs. In
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’06), 2006.

(8]

(9]

(10]

(1]

(12]

(13]

[14]

[15]
(16]
(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]
[25]
[26]

[27]

(28]

