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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1–3] and its holographic dual Jackiw-Teitelboim

(JT) gravity [4–9] are useful testing ground to study various issues in quantum gravity and

holography. This duality is based on the fact that the 1d Schwarzian theory, which arises

from the Nambu-Goldstone mode of the spontaneously broken time-reparametrization sym-

metry of the SYK model, also appears as the boundary mode dynamics of JT gravity on
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asymptotic AdS2. This duality tells us that the random average of the thermal parti-

tion function 〈Z(β)〉 = 〈Tr e−βHSYK〉 of the SYK model reduces, at large number NSYK

of fermions and at low energy, to the partition function of JT gravity on Euclidean AdS2
which is topologically a disk with renormalized boundary length β.

Recently, Saad, Shenker and Stanford [10] found that one can go beyond the strict

large NSYK limit and actually compute the partition function of JT gravity including the

contribution of various topologies adding handles (or Euclidean wormholes) to the disk.

They proposed that the partition function ZJT(β) of JT gravity on asymptotically AdS2
space is defined by a certain double-scaled random matrix integral 〈Tr e−βH〉, where the

Hamiltonian of the SYK model HSYK is replaced by a random hermitian matrix H. Then

the sum over topologies is reproduced from the 1/N expansion of the matrix integral with

N ∼ eNSYK .

Their proposal comes from the following facts [10]: the path integral of JT gravity re-

duces to the contribution of the Schwarzian mode describing the boundary wiggles, together

with the Weil-Petersson volume Vg,1(b) of the moduli space of Riemann surfaces with g han-

dles and one geodesic boundary of length b. The crucial point is that the recursion relation

obeyed by the Weil-Petersson volume found by Mirzakhani [11] is equivalent to the topo-

logical recursion of a double-scaled matrix model with the spectral curve y = 1
2 sin(2z) [12].

Moreover, the genus-zero eigenvalue density ρ0(E) corresponding to this spectral curve is

exactly equal to the eigenvalue density computed from the Schwarzian theory [13]. Since

the topological recursion of Eynard and Orantin [14] is essentially determined by the data of

spectral curve (or ρ0(E)) only, the above observations imply that the boundary Schwarzian

theory “knows” how to perform the sum over topologies on the bulk JT gravity side. It

is further argued in [10] that this relation between JT gravity and the matrix model is

generalized to arbitrary number of boundaries.

In this paper we will study the proposal in [10] more closely, focusing on the single

boundary case. We find that the matrix model of JT gravity in [10] is nothing but a special

case of the old matrix model of 2d gravity coupled to c ≤ 1 matter [15–18] (see also [19]

for a review). The important difference from the old story is that in the JT gravity case

infinitely many closed string couplings tn are turned on in a specific way: t0 = t1 = 0, tk =
(−1)k

(k−1)! (k ≥ 2).1 We then introduce a natural two-parameter generalization of ZJT(β) by

releasing t0 and t1 from the above constraint. Using this we find that the partition function

of JT gravity ZJT(β) is written as the expectation value of the macroscopic loop operator

Tr(eβQΠ) [22], where Q = ∂2x + u(x) is the Lax operator and Π is the projection to the

states below the Fermi level. We will show that this expression of Tr(eβQΠ) naturally

includes both of the Schwarzian contribution and the Weil-Petersson volume.

This rewriting of the partition function using the Lax operator Q is not just a formal

expression, but is very useful in practice for the actual computation of the genus expansion.

We will develop a systematic method of computing the higher genus corrections to ZJT

using the Korteweg-de Vries (KdV) equations obeyed by u(x) and ∂xZJT, generalizing the

1It is advocated in [10] that this background corresponds to a p → ∞ limit of the (2, p) minimal string

theory [20, 21].
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approach of Zograf [23]. Using this method we have computed the genus expansion of ZJT

up to g = 46. It turns out that this genus expansion of ZJT is valid in the high temperature

regime (β ≪ 1). In the low temperature regime, on the other hand, we can compute ZJT

as a series expansion in T = β−1 using the same KdV equations as above. We find that

this low temperature expansion can be rearranged by taking a scaling limit, which we will

call the ’t Hooft limit:

~ → 0, β → ∞ with λ = ~β fixed, (1.1)

where ~ = 1/N is the genus counting parameter. It turns out that the free energy in the

’t Hooft limit admits an open string like expansion

F = logZJT =

∞∑

n=0

~
n−1Fn(λ), (1.2)

and we find the first few terms of Fn(λ) in a closed form.

Another interesting quantity to consider is the Baker-Akhiezer (BA) function ψ(E),

which is a solution of the Schrödinger equation −Qψ(E) = Eψ(E) and interpreted as the

wavefunction of FZZT brane [24, 25]. We find that the Laplace transform ψ̂(λ) of the BA

function has a natural expansion in the ’t Hooft limit. We also study the behavior of the

eigenvalue density ρ(E) and the BA function ψ(E) by numerically evaluating the inverse

Laplace transform of eF(λ) and ψ̂(λ). We confirm the oscillating behavior of ρ(E) and

ψ(E) in the classically allowed region E > 0 discussed in [10] which is non-perturbative in

the coupling ~.

This paper is organized as follows. In section 2, we develop a technique of the genus

and the low temperature expansions of ZJT based on the KdV equations generalizing the

approach of [23]. Along the way, we show that ZJT is written as the expectation value of the

macroscopic loop operator Tr(eβQΠ). In section 3, we consider the low energy expansion

of ρ(E) and ψ(E), as well as the corresponding low temperature expansion of ZJT and ψ̂

in the ’t Hooft limit. In section 4, we study the behavior of ρ(E) and ψ(E) numerically.

In section 5, we comment on the connected correlator 〈Z(β1)Z(β2)〉conn and its analytic

continuation known as the spectral form factor. Finally we conclude in section 6 with some

discussions for the interesting future directions. In appendix A we summarize the known

facts in the Airy case described by the spectral curve y = z. In appendix B we consider

a partial resummation of the genus expansion. In appendix C we consider the so-called

string equation for the JT gravity case. In appendix D we summarize useful properties of

the resolvent and the wave functions for the Schrödinger equation.

2 General properties of partition function

In this section we will show that JT gravity is realized as the conventional 2d topological

gravity in the background where infinitely many couplings are turned on in a specific

way. We will consider the partition function of JT gravity on Riemann surfaces with

one boundary and introduce its two-parameter generalization. The generalized partition
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function is closely related to the tau-function for the KdV hierarchy. Using this relation we

will derive a simple differential equation which uniquely determines the partition function

both in the genus and the low temperature expansions.

2.1 JT gravity as 2d gravity in specific coupling background

Before discussing the partition function of JT gravity, let us first recall some useful proper-

ties of the partition function of the general 2d topological gravity which we will use shortly.

(See e.g. [26] for a recent review). Let Σ be a closed Riemann surface of genus g with n

marked points p1, . . . , pn and let Mg,n be the moduli space of Σ. We are interested in the

intersection numbers

〈κmτd1 · · · τdn〉 =
∫

Mg,n

κmψd1
1 · · ·ψdn

n , m, d1, . . . , dn ∈ Z≥0, (2.1)

which are viewed as the correlation functions of the 2d topological gravity. Here, κ (often

denoted as κ1 in the literature) is the first Miller-Morita-Mumford class and is proportional

to the Weil-Petersson symplectic form

ω = 2π2κ. (2.2)

ψi is the first Chern class of the complex line bundle whose fiber is the cotangent space

to pi and τdi = ψdi
i . Mg,n is the Deligne-Mumford compactification of the moduli space

Mg,n. Note that (2.1) vanishes unless m+ d1 + · · ·+ dn = 3g − 3 + n.

For the above correlation functions one can introduce the formal generating function

G(s, {tk}) :=
∞∑

g=0

g2gs

〈
esκ+

∑
∞

d=0 tdτd
〉
g
. (2.3)

It is proved in [27] (see also [26]) that the intersection numbers involving both κ and ψ’s can

be obtained from those involving ψ’s only. More specifically, let F be the formal generating

function that involves ψ’s only

F ({tk}) :=
∞∑

g=0

g2gs

〈
e
∑

∞

d=0 tdτd
〉
g
. (2.4)

G is then given by

G(s, {tk}) = F ({tk + γks
k−1}) (2.5)

with

γ0 = γ1 = 0, γk =
(−1)k

(k − 1)!
(k ≥ 2). (2.6)

By using this property we will see that JT gravity is nothing but the special case of the

topological gravity with tk = γk.

– 4 –



J
H
E
P
0
1
(
2
0
2
0
)
1
5
6

Let us now consider the partition function of JT gravity on two-dimensional surfaces

of arbitrary genus with one boundary. In [10] this partition function is evaluated as the

one-point correlation function

〈Z(β)〉 = 〈Z(β)〉g=0 + 〈Z(β)〉g≥1, (2.7)

where Z(β) = Tr e−βH is the thermal partition function of a certain Hermitian matrix

model. The genus-zero part is to be evaluated separately. Let us first begin with the g ≥ 1

part. In [10] it is evaluated as2

〈Z(β)〉g≥1 =

∞∑

g=1

e(1−2g)S0

∫ ∞

0
bdbZtrumpet

Sch (β, b)Vg,1(b)

=

∞∑

g=1

e(1−2g)S0

∫ ∞

0
bdb

γ1/2e
−

γb2

2β

(2πβ)1/2
Vg,1(b).

(2.8)

Here, Vg,1(b) is the Weil-Petersson volume of the moduli space of a genus g surface with

one geodesic boundary of length b and Ztrumpet
Sch (β, b) comes from the path integral of the

Schwarzian mode on the “trumpet” geometry. Vg,1(b) is given by

Vg,1(b) =

∫

Mg,1

exp

(
2π2κ+

b2

2
ψ1

)
≡
〈
exp

(
2π2κ+

b2

2
ψ1

)〉

g,1

. (2.9)

As mentioned below (2.2), the correlation function 〈κkψl
1〉g,1 (k, l ∈ Z≥0) has the following

property

〈κkψl
1〉g,1 = 0 unless k + l = 3g − 2. (2.10)

One can thus expand Vg,1 as

Vg,1(b) =

3g−2∑

d=0

(2π2)3g−2−d(b2/2)d

(3g − 2− d)!d!
〈κ3g−2−dψd

1〉g,1. (2.11)

By plugging this expression into (2.8) and evaluating the integral, one obtains

〈Z(β)〉g≥1 =
1√
2π

∞∑

g=1

g2g−1
s

3g−2∑

d=0

1

(3g − 2− d)!

(
β

2π2γ

)d+1/2

〈κ3g−2−dψd
1〉g,1, (2.12)

where we have identified the genus counting parameter as

gs = (2π2)3/2e−S0 . (2.13)

On the other hand, the genus-zero part comes from the path integral of the Schwarzian

mode on the disk, which is expressed as [10]

〈Z(β)〉g=0 = eS0Zdisk
Sch = eS0

γ3/2e
2π2γ

β

(2π)1/2β3/2
=

1√
2π
g−1
s

(
2π2γ

β

)3/2

e
2π2γ

β . (2.14)

2Throughout this paper we fix the normalization of the Weil-Petersson form by setting α = 1 (see [10]).
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We see from (2.12) and (2.14) that it is convenient to absorb γ into the normalization of β,

β

2π2γ
→ β, (2.15)

or equivalently, one can simply set γ = 1/2π2. Doing this, we find

〈Z(β)〉g=0 =
1√
2π
g−1
s β−3/2eβ

−1
,

〈Z(β)〉g≥1 =
1√
2π

∞∑

g=1

∞∑

d=0

g2g−1
s βd+1/2〈eκψd

1〉g,1.
(2.16)

The last expression is obtained from (2.12) with the help of the property (2.10). Putting

these expressions together we obtain

〈Z(β)〉 = 1√
2πgsβ3/2

(
eβ

−1
+

∞∑

g=1

∞∑

d=0

g2gs β
d+2〈eκψd

1〉g,1
)
. (2.17)

From (2.3)–(2.6) we see that

∞∑

g=1

g2gs 〈eκψd
1〉g,1 = ∂dG(s = 1, {tk = 0})

= ∂dF ({tk = γk}) .
(2.18)

Plugging this into (2.17) we finally obtain

〈Z(β)〉 = 1√
2πgsβ3/2

(
eβ

−1
+

∞∑

d=0

βd+2∂dF ({tk = γk})
)
. (2.19)

We have thus shown that the partition function of JT gravity on surfaces with one boundary

is expressed entirely in terms of the general topological gravity in a specific background

tk = γk.

2.2 Generalized partition function and KdV constraints

The relation (2.19) of JT gravity with the general topological gravity provides us with

a better understanding of 〈Z(β)〉 as well as an efficient algorithm of computing it. It

is well known that the partition function of the topological gravity obeys the KdV con-

straints [28–30]. In fact, Zograf proposed an efficient algorithm of computing the Weil-

Petersson volume by making use of the KdV equation [23]. In what follows we will gener-

alize his idea and present a more direct application of the KdV constraints to JT gravity.

Let us first recall how the KdV constraints occur in the general topological gravity. It

was conjectured by Witten [28] and proved by Kontsevich [29] (see also [30]) that eF with

F defined in (2.4) is a tau function for the KdV hierarchy. This means that

u := ∂20F (2.20)

– 6 –
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satisfies the (generalized) KdV equations

∂ku = ∂0Rk+1, (2.21)

where Rk are the Gelfand-Dikii differential polynomials of u

R0 = 1, R1 = u, R2 =
u2

2
+
D2

0u

12
, R3 =

u3

6
+
uD2

0u

12
+

(D0u)
2

24
+
D4

0u

240
, · · · .

(2.22)

Here we have introduced the notations

∂k :=
∂

∂tk
, Dk := gs∂k. (2.23)

For k = 1, (2.21) gives the traditional KdV equation

D1u = D0

(
u2

2
+
D2

0u

12

)
. (2.24)

Rk are determined by the recursion relation

(2k + 1)D0Rk+1 =
1

4
D3

0Rk + 2uD0Rk + (D0u)Rk (2.25)

with the initial condition R0 = 1. Integrating (2.21) once in t0 we have

∂k∂0F = Rk+1. (2.26)

In this paper we call the above relations obeyed by F the KdV constraints.

We would like to make use of the KdV constraints to study the JT gravity partition

function (2.19). To do this, it is better not to fix the value of ti completely as in (2.19) but

rather leave t0 and t1 as parameters. In what follows we regard F as a function in t0, t1
(and also in gs)

F (t0, t1) = F (t0, t1, {tk = γk}k≥2) . (2.27)

As we will see, at least locally around (t0, t1) = (0, 0) one can introduce such a two-

parameter deformation. One should also keep in mind that there is no guarantee that

F (t0, t1) is well-defined for arbitrary values of (t0, t1). For our purposes it is convenient to

introduce the rescaled parameters

~ :=
1√
2
gs, x := ~

−1t0, τ := ~
−1t1 (2.28)

and the notation

′ := ∂x = ~∂0, ˙ := ∂τ = ~∂1. (2.29)

We then introduce a two-parameter deformation of the partition function (2.19) as

ZJT(t0, t1) :=
1√

2πgsβ3/2

(
eβ

−1
+ βt0 +

∞∑

k=0

βk+2∂kF (t0, t1)

)
. (2.30)
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ZJT reproduces 〈Z(β)〉 as

ZJT(0, 0) = 〈Z(β)〉. (2.31)

We have added the term βt0 in the definition of ZJT(t0, t1) in (2.30) so that we obtain a

simple relation

∂xZJT =
1

2
√
πβ

(
1 +

∞∑

k=0

βk+1∂k∂0F

)

=
1

2
√
πβ

∞∑

k=0

βkRk

=:W,

(2.32)

where we have used R0 = 1 and (2.26). ZJT is thus computed from the generating function

W for the Gelfand-Dikii polynomials Rk.

The Laplace transform of W

R(ξ) =

∫ ∞

0
dβe−βξW (β) (2.33)

has a beautiful interpretation. It is expanded as

R =

∞∑

k=0

ξ−k−1/2Rk (2.34)

with coefficients being again the Gelfand-Dikii polynomials

Rk =
(2k − 1)!!

2k+1
Rk. (2.35)

In this notation Rk are written as

R0 =
1

2
, R1 =

u

4
, R2 =

1

16
(3u2 + u′′), R3 =

1

64
(10u3 + 10uu′′ + 5u′

2
+ u′′′′), · · · .

(2.36)

With change of notation u → −u these Rk are identified precisely with the original poly-

nomials appeared in the paper of Gelfand and Dikii [31]. This means that their generating

function R is the resolvent [31]

R(ξ) =
〈
x
∣∣∣ 1

ξ −Q

∣∣∣x
〉

(2.37)

for the Schrödinger equation

Qψ = ξψ (2.38)

with

Q := ∂2x + u. (2.39)
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Here, |x〉 is the coordinate eigenstate. Note that Q is nothing but the Lax operator L for

the KdV equation, which we will discuss later.

By taking the inverse Laplace transform of (2.37) we obtain the formal expression

W = 〈x|eβQ|x〉. (2.40)

From the relation ∂xZJT =W in (2.32), we find

ZJT =

∫ x

−∞

dx′〈x′|eβQ|x′〉. (2.41)

Introducing the projector Π by

Π =

∫ x

−∞

dx′|x′〉〈x′|, (2.42)

we arrive at a very simple expression of ZJT

ZJT = Tr(eβQΠ). (2.43)

Topological gravity and other models of 2d gravity coupled to matter are described by

a double-scaling limit of the general matrix model, in which Tr(eβQΠ) is known as (the

expectation value of) the macroscopic loop operator [22].3 We have thus shown that the

partition function of JT gravity on surfaces with one boundary is identified with a single

macroscopic loop operator of the matrix model. In this sense JT gravity is merely an

example of the old 2d gravity (see [19] for a review). What is special about JT gravity,

when compared with the previously known examples, is that infinitely many couplings tn
are turned on with a specific value tn = γn in (2.6).

2.3 Lax formalism and master differential equation

As is well known, the KdV equation admits the Lax formalism. This enables us to derive

a simple differential equation for W , which can be used to compute ZJT.

A crucial fact about the resolvent R is that it is written as [32] (see also appendix D)

R = ψ+ψ−, (2.44)

where ψ± are certain two independent solutions to the auxiliary linear problem

Lψa = ξψa, ψ̇a =Mψa . (2.45)

Here

L = Q = ∂2x + u, M =
2

3
∂3x + u∂x +

1

2
u′ (2.46)

3Our definition of the sign of x is opposite from that in [22]; in [22] the projector is given by Π =∫
∞

x
dx′|x′〉〈x′| while in our definition Π is given by (2.42).

– 9 –
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are the Lax pair for the KdV equation. In fact, in the rescaled notation (2.28)–(2.29) the

KdV equation (2.24) is written as

u̇ =
1

6
u′′′ + uu′ (2.47)

and it is obtained as the compatibility condition

L̇ = [M,L] (2.48)

for the linear problem (2.45).

From (2.44)–(2.45) one can show that

ξR′ =
1

4
R′′′ + uR′ +

1

2
u′R,

Ṙ =
1

6
R′′′ + uR′.

(2.49)

The first equation is equivalent to the recursion relation (2.25), which is written for Rk as

R′
k+1 =

1

4
R′′′

k + uR′
k +

1

2
u′Rk. (2.50)

From the second equation it immediately follows that

Ẇ =
1

6
W ′′′ + uW ′. (2.51)

We have thus derived a simple, linear differential equation for W = ∂xZJT. Explicitly in

terms of ZJT it is expressed as

∂τ∂xZJT =
1

6
∂4xZJT + u∂2xZJT. (2.52)

2.4 Genus expansion

We can use the differential equation (2.51) together with the KdV equation (2.47) to

compute ZJT as a power series expansion in gs. For this purpose, it is convenient to rewrite

these equations in such a way that the gs-dependence is manifest

∂1u = u∂0u+
g2s
12
∂30u, (2.53)

∂1W = u∂0W +
g2s
12
∂30W. (2.54)

As we will see below, the genus expansion of u and W are completely determined by these

equations. Prior to the practical computation it is useful to recall the following fact [30]:

Fg = 〈e
∑

∞

d=0 tdτd〉g (g ≥ 2) is a polynomial in Ik (k ≥ 2) and (1− I1)
−1, where4

Ik(u0, {tk}) :=
∞∑

n=0

tn+k
un0
n!

(2.58)

4The coupling tk and the parameter Λ = diag(λ1, · · · , λM ) in the Kontsevich model [29] are related by

the so-called Miwa transformation

tk = −(2k − 1)!! TrΛ−2k−1
. (2.55)
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with u0 := ∂20F0. In our present case with tk = γk (k ≥ 2), where γk is given in (2.6), it is

convenient to introduce the new variables

y := u0, t := 1− I1 (2.59)

and the functions

Bn(y) :=
Jn(2

√
y)

yn/2
=

∞∑

k=max(0,−n)

(−1)kyk

k!(k + n)!
(n ∈ Z). (2.60)

Here, Jn(z) is the Bessel function of the first kind. One then finds that In (n ≥ 2) are

identified as

In(y, {t0, t1, tk = γk (k ≥ 2)}) = (−1)nBn−1. (2.61)

Therefore, in our case Fg (g ≥ 2) is a polynomial in Bn(y) (n ≥ 1) and t−1. Note that Bn

satisfies

∂yBn = −Bn+1, yBn+1 = nBn −Bn−1 (2.62)

and also

Bn(0) =
1

n!
, n ≥ 0. (2.63)

The old variables (t0, t1) and the new ones (y, t) are related as

t1 = B0 − t, t0 = y(B1 − t1). (2.64)

The first equation of (2.64) simply follows from the definition of I1 in (2.58), while the

second equation of (2.64) comes from the classical, ~ → 0 limit of the string equa-

tion (C.10) [30]

u0 − I0(u0, {tk}) = 0. (2.65)

This relation (2.65) can be interpreted as the stationarity condition ∂F0
∂u0

= 0 of the genus-

zero free energy [30]

F0 =
1

2

∫ u0

0
du
[
u− I0(u, {tk})

]2
. (2.66)

In terms of (y, t) the differentials ∂0,1 are written as

∂0 =
1

t
(∂y −B1∂t), ∂1 = y∂0 − ∂t. (2.67)

In terms of Λ, Ik is written as [33, 34]

Ik = −(2k − 1)!! Tr(Λ2 − 2u0)
−k− 1

2 . (2.56)

It is interesting to observe that going from tk to Ik amounts to shifting Λ2 → Λ2 − 2u0. Note that γk

in (2.6) is written as a contour integral on the spectral curve y = 1
2
sin(2

√
ξ) (2.99)

γk = −(2k − 1)!!21−k

∮
dξ

2πi
y(ξ)ξ−k− 1

2 . (2.57)
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This is identical to the change of variables introduced by Zograf (see [23]). One can show

that the “on-shell” value (t0, t1) = (0, 0) corresponds to (y, t) = (0, 1). It is important

to note that the map (2.64) from (y, t) to (t0, t1) is neither one-to-one nor onto. This

gives rise to a somewhat delicate issue: ZJT and related quantities we are going to solve

become multivalued and not globally well-defined (at least as real functions) when viewed

as functions in (t0, t1). But as far as local expansions around the “on-shell” value are

concerned, one can ignore such intricacies.

With these preparations let us first consider the genus expansion of u. By construction

u has the expansion of the form

u =
∞∑

g=0

g2gs ug (2.68)

with ug = ∂20Fg. One can easily show that the differential equation (2.53) is written as the

recursion relation

−1

t
∂t(tug) =

g−1∑

h=1

ug−h∂0uh +
1

12
∂30ug−1 (g ≥ 1). (2.69)

Then ug are obtained by recursively solving this equation with the initial condition u0 = y.

First two of them are

u1 =
B2

1

12t4
− B2

24t3
,

u2 =
49B5

1

288t9
− 11B3

1B2

36t8
+

84B2
1B3 + 109B1B

2
2

1152t7
− 32B1B4 + 51B2B3

2880t6
+

B5

1152t5
.

(2.70)

Precisely speaking, the equation (2.69) by itself does not determine the “integration con-

stant,” i.e. there is freedom to add a term linear in t−1 at each step of the recursion. Such

a term is, however, forbidden by the relation ug = ∂20Fg. For instance, the above results of

ug can also be obtained from the results of Fg (g = 1, 2) in [30]

F1 = − 1

24
ln t,

F2 =
7B3

1

1440t5
− 29B1B2

5760t4
+

B3

1152t3

(2.71)

and one can verify that ug (g = 1, 2) do not contain any terms linear in t−1. More generally,

since Fg (g ≥ 2) are polynomials in t−1 and the action of ∂0 increases the degree of t−1

at least by one, ug (g ≥ 2) cannot have any terms linear in t−1. Therefore, one can in

fact unambiguously determine ug by recursively solving (2.69). Note that the polynomial

structure of Fg also allows us to compute it unambiguously from ug.

Let us next consider the genus expansion ofW . In contrast to u,W depends not only on

y, t, gs but also on β, though β does not appear explicitly in the differential equation (2.51).

The genus-zero part of W is obtained from (2.40) by ignoring the commutator of ∂x and

u(x) and by performing the integral with respect to the momentum p = i−1∂x

Wg=0 =

∫ ∞

−∞

dp

2π
eβ(−p2+u0) =

eβu0

2
√
πβ

. (2.72)
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Alternatively, this form can also be obtained from (2.32) by noticing the following property

of the Gelfand-Dikii polynomials

Rk =
uk

k!
+O(D2

0) =
uk0
k!

+O(g2s ). (2.73)

Let us then expand W as

W =
eβy

2
√
πβ

∞∑

g=0

g2gs Wg. (2.74)

We have chosen the overall factor so that W0 = 1. By plugging the genus expansions (2.74)

and (2.68) into the differential equation (2.51) we obtain the recursion relation

−∂tWg =

g−1∑

h=0

ug−h∂̃0Wh +
1

12
∂̃30Wg−1 (g ≥ 1), (2.75)

where ∂̃0 is given by

∂̃0 = e−βy∂0e
βy = ∂0 + βt−1. (2.76)

The equation (2.75) by itself again does not determine the t-independent part of Wg. How-

ever, if we expressW in terms of u using (2.32) and (2.22) and consider the genus expansion,

we see that the only possible source of t-independent term is u0 with no derivatives acting

on it. As we saw above, the contribution of such u0 is entirely captured by the overall

factor in (2.74) and consequently Wg (g ≥ 1) does not contain any t-independent term.

We can therefore unambiguously compute Wg by recursively solving (2.75), starting from

the initial condition W0 = 1. For instance, we find

W1 =
β3

24t2
+

2β2B1 − βB2

24t3
+
βB2

1

12t4
. (2.77)

It is also easy to prove that Wg is a polynomial of weight (3g,−2g) in the generators

Bn (n ≥ 1), β and t−1, to which weights (n, 1), (1, 0) and (0,−1) are assigned respectively.

Finally let us consider the genus expansion of ZJT

ZJT =
eβy√
2πβ3gs

∞∑

g=0

g2gs Zg. (2.78)

From the relation ∂xZJT =W , one can show that Zg and Wg are related by

β−1∂̃0Zg =Wg, (2.79)

where ∂̃0 is defined in (2.76). Note that the extra factor β−1 comes from the difference

of the powers of β in the prefactor of W (2.74) and ZJT (2.78). One can prove that

Wg (g ≥ 1) has the structure Wg =
∑5g−1

k=2g(t
−1)kW

(k)
g when written as a polynomial in t−1.

It then follows from (2.79) that Zg (g ≥ 1) has the structure Zg =
∑5g−3

k=2g−1(t
−1)kZ

(k)
g .

Then using (2.79) we can easily compute Zg (g ≥ 1) from the result of Wg by iteratively
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determining the coefficient Z
(k)
g in descending order with respect to k. For example, from

the result of W1 in (2.77) we find

Z1 =
β3

24t
+
β2B1

24t2
. (2.80)

We have checked that the on-shell value of Zg reproduces the known intersection numbers

Zg

∣∣∣
t=1,y=0

=

3g−2∑

d=0

βd+2〈eκψd
1〉g,1. (2.81)

One can see that Zg becomes small when β ≪ 1, i.e. at high temperature T = β−1 ≫ 1.

In this sense the genus expansion of ZJT in (2.78) can be thought of as a high temperature

expansion. As we will see in section 2.6 we can consider the opposite low temperature limit

T ≪ 1. To study the low temperature regime it is useful to define

Z̃g = β−3gZg

∣∣∣
y=0,t=1

=

3g−2−ℓ∑

ℓ=0

T ℓ

ℓ!
〈κℓψ3g−2−ℓ

1 〉g,1 =
〈

eTκ

1− ψ1

〉

g,1

. (2.82)

In the last equality we have used the selection rule (2.10). The first three terms are

Z̃1 =
1

24
+
T

24
,

Z̃2 =
1

1152
+

29T

5760
+

139T 2

11520
+

169T 3

11520
+

29T 4

3072
,

Z̃3 =
1

82944
+

77T

414720
+

3781T 2

2903040
+

47209T 3

8709120
+

127189T 4

8709120

+
8983379T 5

348364800
+

8497697T 6

298598400
+

9292841T 7

522547200
.

(2.83)

Using the above algorithm we have computed Z̃g up to g = 46.5 These data provide us

with valuable information of the large genus behavior of the genus expansion. In particular,

we find the all-genus result of the intersection number 〈κℓψ3g−2−ℓ
1 〉g,1 with fixed ℓ

〈κℓψ3g−2−ℓ
1 〉g,1 =

Pℓ(g)

(24)gg!
, (2.84)

where Pℓ(g) is a degree-2ℓ polynomial of g. The ℓ = 0 case is computed in [30] with the

famous result P0(g) = 1. The ℓ = 1 case has appeared in [36] with the result

P1(g) = 1 +
12

5
g(g − 1). (2.85)

5The data of Z̃g(g = 1, · · · , 46) are attached to the arXiv submission in the file zdata.txt. The reader

can import this file to Mathematica by the command data=Get["./zdata.txt"];. Then data[[g]] returns

Z̃g. We have checked that our data agree with the result of Zograf up to g = 20 [35].
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From our data of Z̃g we find Pℓ(g) for ℓ ≥ 2, which are not known in the literature:

P2(g) =
1

175
(g − 1)

(
1008g3 − 1200g2 + 888g − 175

)
,

P3(g) =
1

875
(g − 1)

(
12096g5 − 31104g4 + 35856g3 − 25644g2 + 7960g − 875

)
,

P4(g) =
1

336875
(g − 1)(11176704g7 − 46303488g6 + 82114560g5 − 89621280g4

+ 62820096g3 − 22974252g2 + 8338585g − 336875).

(2.86)

One can see from (2.84) that 〈κℓψ3g−2−ℓ
1 〉g,1 does not exhibit the usual (2g)! growth with

fixed ℓ. The (2g)! growth comes from the opposite end 〈κ3g−2−dψd
1〉g,1 with fixed small

d [23, 37]. One can also see that the sum over genus of (2.84) is convergent, which we will

study in detail in section 2.6.

From our data of Z̃g up to g = 46, we have extracted numerically the large genus

asymptotics of 〈κ3g−2−dψd
1〉g,1 using the technique of Richardson transformation. We find

〈κ3g−2−dψd
1〉g,1

(3g − 2− d)!
=

1√
8π

( 2

π2

)g (π
2

)2d Γ(3/2)

Γ(3/2 + d)

[
Γ(2g − 3/2)

+

(
− 5

24
− 6d2 − 9d+ 11− 6δd,0

3π2

)
Γ(2g − 3/2− 1) + · · ·

]
, (g ≫ d).

(2.87)

For d = 0 this agrees with the result in [23, 37]. Plugging (2.87) into the definition of

Vg,1(b) in (2.11), we find the large genus asymptotics of Vg,1(b)

Vg,1(b) ∼
2(4π2)2g−3/2

(2π)3/2

∞∑

n=0

fn(b)Γ(2g − 3/2− n), (g ≫ 1) (2.88)

with

f0(b) =
2

b
sinh

b

2
,

f1(b) = −
(

5

24
+

17

3π2
+

b2

8π2

)
2

b
sinh

b

2
+

2

π2

(
1 + cosh

b

2

)
.

(2.89)

f0(b) agrees with the result in [10]. Note that the above fn(b) vanishes at b = 2πi which

is consistent with the property Vg,1(2πi) = 0 [37]. The large genus asymptotics in (2.88)

implies that there is a non-perturbative correction of the form

e−
eS0

4π2 = e−
π
2~ . (2.90)

This is interpreted in [10] as the effect of ZZ brane [38] sitting at E = −π2

4 and the instanton

action agrees with the value of the effective potential Veff(−π2

4 ) = π
2 . (See (3.18) for the

explicit form of Veff(E)).

2.5 Genus-zero part of ZJT

Let us revisit the genus-zero part of ZJT using our expression of the macroscopic loop

operator (2.41). At genus-zero, (2.41) is reduced to

Z
(g=0)
JT =

∫ x

−∞

dx′
∫ ∞

−∞

dp

2π
eβ(−p2+u0(x′)) =

1

2
√
πβ

∫ x

−∞

dx′eβu0(x′). (2.91)
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As discussed in [30], the x-dependence of u0 is determined from the classical string equa-

tion (2.65). Recalling our definition t0 = ~x in (2.28), (2.65) is rewritten as

~x = u0 −
∞∑

k=1

tk
uk0
k!
. (2.92)

For the on-shell value of the coupling tn = γn (n ≥ 1), this becomes

~x = u0 −
∞∑

k=2

(−1)k

(k − 1)!

uk0
k!

=
√
u0J1(2

√
u0). (2.93)

Then we can change the integration variable in (2.91) from x to u0 via the relation (2.93)

Z
(g=0)
JT =

1

2
√
πβ

∫ u0

−∞

du
∂x

∂u
eβu

=
1

2
√
πβ~

∫ u0

−∞

duJ0(2
√
u)eβu

=
1

2
√
πβ~

∫ ∞

−u0

dvI0(2
√
v)e−βv.

(2.94)

Here I0(2
√
v) denotes the modified Bessel function of the first kind, which should not be

confused with I0(u0, {tk}). Finally, using the relation

∫ ∞

v
dE

e−βE

√
E − v

=

√
π

β
e−βv, (2.95)

we can recast Z
(g=0)
JT in (2.94) into the integral of eigenvalue density

Z
(g=0)
JT =

∫ ∞

−u0

dEe−βEρ0(E),

ρ0(E) =

∫ E

−u0

dv

2π~

I0(2
√
v)√

E − v
.

(2.96)

When u0 = 0 this reduces to the familiar form of the eigenvalue density of the Schwarzian

theory [13]

ρ0(E) =

∫ E

0

dv

2π~

I0(2
√
v)√

E − v
=

sinh(2
√
E)

2π~
, (2.97)

and the genus-zero part of ZJT in (2.16) is correctly reproduced

Z
(g=0)
JT =

∫ ∞

0
dEe−βE sinh(2

√
E)

2π~
=

eβ
−1

2
√
π~β3/2

. (2.98)

To summarize, our expression of ZJT as the macroscopic loop operator Tr(eβQΠ) in (2.43)

automatically includes the contribution of disk topology (g = 0) as well as the higher genus

(g ≥ 1) corrections. In other words, we do not have to treat the disk and other contributions

separately as in (2.16). Our expression ZJT = Tr(eβQΠ) captures all contributions in

one shot.
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In the large N limit of the matrix model, the genus-zero resolvent obeys an algebraic

equation which defines the so-called spectral curve. In our normalization of E and ~

in (2.97), the spectral curve of the matrix model is written as

y =
1

2
sin(2

√
ξ) =

1

2
sin(2z), (2.99)

where E, ξ and z are related by

E = −ξ = −z2. (2.100)

As utilized heavily in [10], the genus expansion of matrix model is essentially determined

by the spectral curve via the topological recursion [14]. However, to perform the actual

computation of the genus expansion with a fixed number of boundaries, the topological

recursion turns out to be a very slow algorithm since to compute Vg,1(b) we need to know

all the data of Vg′,n with g′ +n ≤ g+1 (g′ ≥ 0, n ≥ 1). As emphasized in [23], the method

of KdV equation in section 2.4 provides us with a very fast algorithm for the computation

of the genus expansion at a fixed number of boundaries.

2.6 Low temperature expansion

As we saw in section 2.4, the intersection number 〈κℓψ3g−2−ℓ
1 〉g with small ℓ can be com-

puted for all genus. We observed that the values for fixed ℓ are governed by the poly-

nomial Pℓ(g). Based on this observation we expect that one can write the expansion of

〈Z(β)〉 = ZJT(0, 0) as

〈Z(β)〉 = 1√
2πgsβ3/2


eT +

∞∑

g=1

(gsβ
3/2)2g

3g−2∑

ℓ=0

T ℓ

ℓ!

Pℓ(g)

24gg!




=
1√

2πgsβ3/2

∞∑

ℓ=0

T ℓ

ℓ!


1 +

∞∑

g=1

(gsβ
3/2)2g

Pℓ(g)

24gg!




=
1√

2πgsβ3/2

∞∑

ℓ=0

T ℓ

ℓ!

∞∑

g=0

(gsβ
3/2)2g

Pℓ(g)

24gg!
.

(2.101)

When going from the first line to the second line of (2.101) we have removed the restriction

3g − 2 ≥ ℓ since Pℓ(g) = (24)gg!〈κℓψ3g−2−ℓ
1 〉g,1 vanishes when 3g − 2 < ℓ. In the last

equality of (2.101) we used the property Pℓ(0) = 1 to extend the summation to g = 0.

It is natural to expect that ZJT(t0, t1) also admits a similar low temperature expansion,

namely a power series expansion in T with gsβ
3/2 being fixed. In what follows we will see

that such an expansion indeed exists and can be computed with the help of the differential

equation (2.51) and the results of the genus expansion of u.

To begin with, let us consider the all-genus resummation of the ℓ = 0 term in (2.101)

1√
2πgsβ3/2

∞∑

g=0

(gsβ
3/2)2g

1

24gg!
=

e
g2sβ

3

24

√
2πgsβ3/2

. (2.102)
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We notice that this is essentially the partition function in the Airy case

ZAiry =

∫ ∞

−∞

dEρAiry(E)e−βE =
e

~
2β3

12

2
√
π~β3/2

, (2.103)

where

ρAiry(E) = ~
− 2

3

[
Ai′(−~

− 2
3E)2 −Ai(−~

− 2
3E)Ai′′(−~

− 2
3E)

]
(2.104)

and ~ is related to gs by (2.28). (See appendix A for the summary of the Airy case). In

what follows we will use ~ as the genus counting parameter instead of gs.

One can generalize the exponential factor in (2.103) to the off-shell value, as follows.

When computing ZJT from W = ∂xZJT, the above ℓ = 0 term at each genus is originated

from the O(β3g) term in Wg. We observe that the O(β3g) term, which is of highest order

in β, appears in Wg as

Wg =
β3g

24gg!t2g
+ · · · . (2.105)

This gives rise to the factor

∞∑

g=0

(
√
2~)2g

β3g

24gg!t2g
= e

h2

12t2 , (2.106)

where we have defined

h := ~β3/2. (2.107)

Thus it is natural to make an ansatz

W =

√
T

2
√
π
e

h2

12t2
+ y

T WL, WL =
∞∑

ℓ=0

T ℓwℓ(h), (2.108)

where we have factored out the genus-zero part (2.72) and the exponential in (2.106) as

the prefactor, so that we have w0 = 1. In the rest of this section we regard T and h as the

independent parameters. Plugging this ansatz into (2.54), we find

−∂tWL +
h2

6t3
WL = ûDWL +

h2T 3

6
D3WL, (2.109)

where D is given by

D = e−
h2

12t2
−

y
T ∂0e

h2

12t2
+ y

T = ∂0 +
1

tT
+
h2B1

6t4
(2.110)

and û = u− y is given by

û =

∞∑

g=1

g2gs ug =

∞∑

g=1

(
√
2h)2gT 3gug. (2.111)

Here ug is determined by the recursion relation (2.69). By plugging the expansion (2.108)

into the differential equation (2.109) and integrating the O(T ℓ) part with respect to t, one

can recursively compute wℓ starting with the initial condition w0 = 1. To determine wℓ

– 18 –



J
H
E
P
0
1
(
2
0
2
0
)
1
5
6

uniquely one needs to require that wℓ (ℓ ≥ 1) does not contain any O(t0) term. This can

be shown as follows: since Wg (g ≥ 1) is a polynomial in t−1 without any O(t0) term,

WL − 1 = exp(−h2

12 t
−2)

∑∞
g=0 g

2g
s Wg − 1 is a formal power series in t−1 without any O(t0)

term and so does wℓ (ℓ ≥ 1). Consequently, (2.109) unambiguously determines wℓ. The

first two terms of wℓ are given by

w1 =

(
h2

6t3
+

h4

60t5

)
B1,

w2 =

(
h2

6t4
+
h4

8t6
+

7h6

720t8
+

h8

7200t10

)
B2

1 −
(
h2

12t3
+

h4

30t5
+

h6

840t7

)
B2.

(2.112)

It turns out that wℓ is actually a polynomial of weight (ℓ, 0) in the generators Bn (n ≥ 1),

t−1 and h, to which weights (n, 1), (0,−1) and (0, 1) are assigned respectively.

Finally, let us expand ZJT as

ZJT =
e

h2

12t2
+ y

T

2
√
πh

ZL, ZL =
∞∑

ℓ=0

T ℓ

ℓ!
zℓ. (2.113)

The relation ∂xZJT =W is rewritten as

TDZL =WL. (2.114)

Comparing the coefficient of T ℓ on both sides of (2.114) we find the recursion relation for

zℓ (ℓ ≥ 0)

zℓ = t

[
ℓ!wℓ − ℓ

(
∂0 +

h2B1

6t4

)
zℓ−1

]
, (2.115)

where we formally set z−1 = 0. For instance, using w0 = 1 and the result of w1,2 in (2.112)

we find

z0 = t,

z1 =

(
1 +

h4

60t4

)
B1,

z2 =

(
7h4

60t5
+

h6

72t7
+

h8

3600t9

)
B2

1 +

(
2− h2

6t2
− h4

30t4
− h6

420t6

)
B2.

(2.116)

For the on-shell value (y, t) = (0, 1), (2.113) becomes

ZJT =
e

h2

12

2
√
πh

∞∑

ℓ=0

T ℓ

ℓ!
z̃ℓ(h), (2.117)

where z̃ℓ := zℓ
∣∣
y=0,t=1

. Note that z̃ℓ(h) can be thought of as the generating function for

the intersection numbers 〈κℓψ3g−2−ℓ
1 〉g,1

∞∑

g=0

(
√
2h)2g〈κℓψ3g−2−ℓ

1 〉g,1 =
∞∑

g=0

h2g
Pℓ(g)

(12)gg!
= e

h2

12 z̃ℓ(h). (2.118)
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The first few of them read

z̃1(h) = 1 +
h4

60
,

z̃2(h) = 1− h2

12
+
h4

10
+

4h6

315
+

h8

3600
,

z̃3(h) = 1− h2

12
+

16h4

45
+

1163h6

5040
+

13h8

560
+

h10

1575
+

h12

216000
.

(2.119)

We have computed z̃ℓ(h) up to ℓ = 50.6 The method above serves as another very efficient

algorithm for computing the intersection number 〈κℓψ3g−2−ℓ
1 〉g,1, in particular for large g

with fixed ℓ.

Note that z̃ℓ(h) is obtained from Pℓ(g) as

z̃ℓ(h) = e−
h2

12 Pℓ

(
h

2

∂

∂h

)
e

h2

12 = Pℓ

(
h2

12
+
h

2

∂

∂h

)
· 1. (2.120)

Conversely, noticing that

(
h2

12
+
h

2

∂

∂h

)k

· 1 =
h2k

12k
+ lower order terms in h, (2.121)

one can easily calculate Pℓ(g) from z̃ℓ(h) by iteratively determining the coefficients of

gk (0 ≤ k ≤ 2ℓ) in descending order. We have thus obtained Pℓ(g) also up to ℓ = 50. As

we explained below (2.101), Pℓ(g) vanishes for {g ∈ Z>0 | 3g − 2 < ℓ}. We have verified

that our results indeed satisfy this property.

3 Various limits in the low temperature regime

In the low temperature regime we can take various limits of ZJT and the BA function

ψ(E). In this section we will consider the low energy limit of ρ(E) and ψ(E), and also the

’t Hooft limit of ZJT and the Laplace transform ψ̂ of the BA function. In the rest of this

paper we will turn off the deformation parameter t0 = t1 = 0 and consider the partition

function ZJT and related quantities at the on-shell value of tn = γn (n ≥ 0).

3.1 Low energy expansion of ρ(E)

In this subsection we will consider the low energy expansion of the eigenvalue density ρ(E)

in the limit

~, E → 0 with η = −~
− 2

3E fixed. (3.1)

In this limit the genus-zero part ρ0(E) in (2.97) is expanded as

ρ0(E)dE =
dE

π~

∞∑

ℓ=0

22ℓEℓ+ 1
2

(2ℓ+ 1)!
= −dη

π

∞∑

ℓ=0

~
2
3
ℓ 2

2ℓ(−η)ℓ+ 1
2

(2ℓ+ 1)!
. (3.2)

6The data of z̃ℓ(h) (ℓ = 1, · · · , 50) are attached to the arXiv submission in the file zlowdata.txt.
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Let us consider the first term of this expansion

ρ0(E)dE =
sinh(2

√
E)dE

2π~
=

√
EdE

π~
+ · · · . (3.3)

It is well-known that this term corresponds to the Airy case as reviewed in appendix A.

In this case the genus-zero eigenvalue density in (3.3) is promoted to the full eigenvalue

density ρAiry(E) in (2.104). It turns out that each term of this expansion (3.2) has its own

all-genus completion

ρ(E)dE = −
∞∑

ℓ=0

~
2
3
ℓ̺ℓ(η)dη, (3.4)

where ̺ℓ(η) is defined in such a way that it reduces to the ℓ-th term in the expansion of

ρ0(E) in (3.2) in the classically allowed region E > 0

lim
η→−∞

̺ℓ(η) =
22ℓ(−η)ℓ+ 1

2

π(2ℓ+ 1)!
, (3.5)

up to an oscillatory correction. As we discussed above, ̺0(η) is given by ρAiry(E) in (2.104)

up to a normalization factor

̺0(η) = Ai′(η)2 − ηAi(η)2. (3.6)

In terms of the coupling h defined in (2.107), ZAiry in (2.103) is written as

∫ ∞

−∞

dη e−βE̺0(η) =

∫ ∞

−∞

dη eh
2
3 η̺0(η) =

e
h2

12

2
√
πh
. (3.7)

We can determine the higher order terms ̺ℓ(η) by matching the low temperature

expansion of ZJT in (2.117)

ZJT =
e

h2

12

2
√
πh

∞∑

ℓ=0

T ℓ

ℓ!
z̃ℓ(h) =

e
h2

12

2
√
πh

∞∑

ℓ=0

1

ℓ!

(
~

h

) 2
3
ℓ

z̃ℓ(h). (3.8)

From the definition of eigenvalue density

ZJT =

∫ ∞

−∞

dEρ(E)e−βE , (3.9)

the expansion of ZJT (3.8) and the expansion of ρ(E) (3.4) become consistent if ̺ℓ(η)

satisfies ∫ ∞

−∞

dη e−βE̺ℓ(η) =

∫ ∞

−∞

dη eh
2
3 η̺ℓ(η) =

e
h2

12

2ℓ!
√
πh1+

2
3
ℓ
z̃ℓ(h). (3.10)

Using (3.7), this relation can be formally solved as

̺ℓ(η) =
z̃ℓ
(
(−∂η)3/2

)

ℓ!(−∂η)ℓ
̺0(η). (3.11)
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For instance, from the result of z̃1(h) in (2.119), ̺1(η) is given by

̺1(η) = −∂−1
η ̺0(η)−

∂5η
60
̺0(η) =

2

15

[
6η2Ai(η)2 −Ai(η)Ai′(η)− 4ηAi′(η)2

]
. (3.12)

Here the negative power of ∂η should be understood as the integration with respect to

η. One might think that there is an ambiguity in the integration constant, but ̺ℓ(η) is

actually determined unambiguously by requiring (3.10). Using the data of z̃ℓ(h) in (2.119)

we find

̺2(η) =
152η2

1575
Ai′(η)2 −

(
296η3

1575
+

3

200

)
Ai(η)2 −

(
16η4

225
+

8η

525

)
Ai(η)Ai′(η),

̺3(η) =

(
64η7

10125
+

16η4

567
− 37η

8100

)
Ai(η)2 +

(
704η5

23625
+

η2

189

)
Ai(η)Ai′(η)

+

(
64η6

10125
− 32η3

14175
− 19

8100

)
Ai′(η)2.

(3.13)

This procedure enables us to find the all-genus completion of the eigenvalue density order

by order in the small E expansion (3.2). In general, ̺ℓ(η) is written as a combination of

the Airy function Ai(η) and its derivatives. This implies that ̺ℓ(η) is exponentially small

in the classically forbidden region η > 0, which is indeed necessary for the convergence of

the integral (3.10). In appendix B, we consider a partial resummation of this expansion

of ρ(E).

3.2 ’t Hooft expansion of ZJT

In the low temperature regime we can take the ’t Hooft limit (1.1). As we will see shortly,

the relation between ZJT and the spectral curve becomes manifest in this limit.

We can rearrange the low temperature expansion in terms of the parameters λ and ~

in (1.1). Plugging the relation

h =

(
λ3

~

) 1
2

, T =
~

λ
(3.14)

into the low temperature expansion of ZJT in (3.8), we find that the free energy is expanded

as (1.2). From the data of z̃ℓ(h) obtained in the previous section, we can compute Fn(λ)

in (1.2) as a power series expansion in λ. By matching the first few orders of this series

expansion, we find the closed form of F0(λ)

F0(λ) =
1

4
λ arcsin(λ)2 +

1

2

(√
1− λ2 arcsin(λ)− λ

)
. (3.15)

One can show that this is written as

F0(λ) = 2

∫ λ/2

0
ξ(y)dy, (3.16)

where ξ(y) is determined by the spectral curve (2.99)

y =
1

2
sin(2

√
ξ) ⇒ ξ(y) =

1

4
arcsin(2y)2. (3.17)
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Namely, F0(λ) is given by the integral of one-form ξdy on the spectral curve. Recall

that the effective potential Veff(E) for the eigenvalue is given by the integral of another

one-form ydξ

Veff(E) = 2

∫ −E

0
ydξ =

1

2
sin(2

√
−E)−

√
−E cos(2

√
−E). (3.18)

As we will discuss in section 3.4, the appearance of the “dual” one-form ξdy in (3.16) can

be understood from the Laplace transformation.

From the data of series expansion, we also find the closed form of F1,2(λ)

F1(λ) = −3

2
log arcsin(λ)− 1

4
log(1− λ2) +

1

2
log

~

4π
,

F2(λ) =
17

3 arcsin(λ)3

[
−1 +

1√
1− λ2

]
− 23λ

12(1− λ2) arcsin(λ)2

+
1

12 arcsin(λ)

[
−2− 2√

1− λ2
+

5

(1− λ2)3/2

]
.

(3.19)

In section 3.4, we will see that F2(λ) can be obtained analytically from the result of

topological recursion. Apparently, the above form of Fn(λ) becomes singular at λ = 1,

and (3.19) can be trusted only in the region λ < 1. If we analytically continue Fn(λ) to

complex λ, there is a cut running from λ = 1 to λ = +∞ along the real axis of complex

λ-plane. It is interesting to understand the physical origin of the singularity at λ = 1.

Before closing this section, we comment on the genus expansion of free energy F =

logZJT. In the original parameters (gs, β) without taking any particular limit, the free

energy admits the ordinary genus expansion

F =
∞∑

g=0

g2gs F̃g(β) =
1

β
− log

(√
2πgsβ

3/2
)
+ g2s

β3 + β2

24
e
− 1

β +O(g4s ). (3.20)

This expansion is valid in the high temperature regime β ≪ 1. On the other hand, in the

low temperature regime in the ’t Hooft limit (1.1), the free energy is expanded as (1.2).

One can recognize that the high temperature expansion (3.20) is “closed string” like, while

the low temperature expansion (1.2) is “open string” like. gs and ~ can be thought of as

the closed string coupling and the open string coupling, respectively.

3.3 Low energy expansion of ψ(E)

In this section we will consider the low energy expansion of BA function ψ(E) in the

limit (3.1). This expansion is easily obtained from the expansion of W = 〈x|eβQ|x〉 by

using the relation

W =

∫ ∞

−∞

dE〈x|E〉e−βE〈E|x〉 = ~

∫ ∞

−∞

dE e−βEψ(E)2. (3.21)

Here we have put the extra factor of ~ to match the result of Airy case in (A.4). From the

low temperature expansion of W

W =
e

h2

12

2
√
π

∞∑

ℓ=0

T ℓ+ 1
2wℓ(h) =

e
h2

12

2
√
πh

1
3

∞∑

ℓ=0

~
2ℓ+1

3
wℓ(h)

h
2ℓ
3

, (3.22)
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we can compute the low energy expansion of ψ(E)2 starting from the relation

∫ ∞

−∞

dη eh
2
3 ηAi(η)2 =

e
h2

12

2
√
πh

1
3

. (3.23)

As in the case of ̺ℓ(η) in (3.11), ψ(E)2 can be formally written as

ψ(E)2 =

∞∑

ℓ=0

~
2ℓ−4

3
wℓ

(
(−∂η)3/2

)

(−∂η)ℓ
Ai(η)2. (3.24)

From this expansion we can easily find the expansion of ψ(E) in the low energy limit (3.1)

ψ(E) =

∞∑

ℓ=0

~
2
3
(ℓ−1)Ψℓ(∂η)Ai(η). (3.25)

The first few terms of the differential operators Ψℓ read

Ψ0 = 1,

Ψ1 = −
4∂5η
15

+ ∂2η ,

Ψ2 =
8∂10η
225

−
212∂7η
315

+
5∂4η
2

− 9∂η
8
,

Ψ3 = −
32∂15η
10125

+
136∂12η
945

−
66∂9η
35

+
39∂6η
5

−
1655∂3η
216

+
11

24
.

(3.26)

In a similar manner as in section 3.2, we can consider the ’t Hooft limit of the Laplace

transform of ψ(E). Plugging the integral representation of Airy function

Ai(η) =

∫

C

dv

2πi
e

v3

3
−ηv =

∫

C

dλ

4πi~
1
3

e
λ3

24~
+Eλ

2~ (3.27)

into the expansion of ψ(E) in (3.25), we find the ’t Hooft expansion of the Laplace transform

ψ̂(λ) of the BA function ψ(E)

ψ(E) =

∫

C

dλ

4πi~
e

λ3

24~
+Eλ

2~

∞∑

ℓ=0

~
2
3
ℓΨℓ

(
− 1

2
λ~−

1
3

)
=:

∫

C

dλ

4πi~
e

Eλ
2~ ψ̂(λ). (3.28)

More explicitly, ψ̂(λ) is written as

ψ̂(λ) = e
λ3

24~

∞∑

ℓ=0

~
2
3
ℓΨℓ

(
− 1

2
λ~−

1
3

)
. (3.29)

In (3.27) the integration contour C is chosen as the so-called Airy contour running from

e−
πi
3 ∞ to e

πi
3 ∞ on the complex λ-plane. As in the case of the partition function ZJT, ψ̂(λ)

admits the open string like expansion

ψ̂(λ) = exp

(
∞∑

n=0

~
n−1Gn(λ)

)
. (3.30)
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From the data of Ψℓ in (3.26), we can compute Gn(λ) as a series expansion in λ. By

matching the first few orders of the series expansion, we find the closed form of Gn(λ)

G0(λ) =
1

2
F0(λ),

G1(λ) = −1

4
log(1− λ2),

G2(λ) =
5

6 arcsin(λ)3

[
−1 +

1√
1− λ2

]
+

5λ

6(1− λ2) arcsin(λ)2

+
1

arcsin(λ)

[
5

6(1− λ2)3/2
− 1

3
√
1− λ2

− 1

12

]
,

(3.31)

where F0(λ) is given by (3.15). Again, in the next section we will see that G2(λ) can be

obtained analytically from the topological recursion.

3.4 WKB expansion of ψ(E) and ρ(E) from topological recursion

In this section we will systematically compute the semi-classical ~-expansion (WKB ex-

pansion) of ψ(E) and ρ(E) from the topological recursion.

3.4.1 WKB expansion of ψ(E)

Let us first consider the WKB expansion of ψ(E). Once we know the WKB expansion of

ψ(E), the expansion of ψ̂(λ) can be obtained from the saddle point approximation of the

integral

ψ̂(λ) =

∫ ∞

−∞

dE e−
Eλ
2~ ψ(E) =

∫ ∞

−∞

dξ e
ξλ
2~ψ(−ξ), (3.32)

where E and ξ are related by (2.100). The BA function has the following WKB expansion

ψ(E) = exp

(
∞∑

n=0

~
n−1Sn(ξ)

)
. (3.33)

It is well-known that the leading term S0(ξ) is given by the integral of one-form ydξ on the

spectral curve (2.99) (see appendix D for a review)

S0(ξ) = −
∫ ξ

0
y(ξ′)dξ′ = −1

2
Veff(−ξ), (3.34)

where Veff is given by (3.18). In the limit ~ → 0, we can evaluate the integral (3.32) by the

saddle point approximation. The saddle point ξ∗ of (3.32) is given by

λ− sin(2
√
ξ∗) = 0 ⇒ ξ∗ =

1

4
arcsin(λ)2. (3.35)

Then the leading term G0(λ) in the ~-expansion of ψ̂(λ) in (3.30) becomes

G0(λ) =
ξ∗λ

2
+ S0(ξ∗) =

∫ λ/2

0
ξ(y)dy =

1

2
F0(λ). (3.36)

As advertised, the integral of dual one-form ξdy naturally arises from the saddle point

approximation of (3.32).
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Let us proceed to the higher order corrections. Using the fact that the BA function is

the expectation value of the determinant operator

ψ(E) = e−
V (E)
2~ 〈det(E −H)〉, (3.37)

Sn(ξ) can be computed from the connected correlators of the operator X = Tr log(E −
H) [14]

Sn(ξ) =
∑

2g−1+m=n

1

m!
〈Xm〉g. (3.38)

As demonstrated in [10], these correlators can be computed systematically by the topolog-

ical recursion.7 For instance S1(ξ) comes from the cylinder amplitude

S1(ξ) =
1

2
〈X2〉g=0 = −1

2
log(2

√
ξ). (3.41)

Then the order O(~0) term of the integral (3.32) is obtained by evaluating the Gaussian

integral around the saddle point

G1(λ) = S1(ξ∗)−
1

2
log
[
−S′′

0 (ξ∗)
]
= −1

2
log cos(2

√
ξ∗). (3.42)

One can check that this reproduces the result in (3.31).

One can easily generalize this calculation to higher order corrections. To do this we set

ξ − ξ∗ =
√
~φ, (3.43)

and perform the integral of φ perturbatively by the Wick contraction with respect to the

Gaussian measure around the saddle point ξ∗

exp

(
∞∑

n=2

~
n−1Gn(λ)

)
= e−

S0(ξ∗)
~

−S1(ξ∗)

〈
exp

(
∞∑

n=0

~
n−1Sn(ξ∗ +

√
~φ)

)〉
(3.44)

where 〈φ2m〉 is given by

〈φ2m〉 =
∫
dφe

1
2
S′′

0 (ξ∗)φ
2
φ2m

∫
dφe

1
2
S′′

0 (ξ∗)φ
2

=
(2m− 1)!!

[−S′′
0 (ξ∗)]

m
. (3.45)

Let us compute G2(λ) using this formalism. At this order we need S2(ξ), which is

easily obtained from the topological recursion as

S2(ξ) = 〈X〉g=1 +
1

3!
〈X3〉g=0 = − 5

48z3
− 1

24z
, (3.46)

7Our normalization of the spectral curve y = 1
2
sin(2z) = z +O(z3) is the same as the Airy curve y = z

near z = 0. Thus the first few orders of resolvent
∑

g ~
2g−2+nWg,n(z1, · · · , zn) have the same coefficients

as the Airy case

W0,1(z) = 2zy(z), W0,2(z1, z2) =
1

(z1 − z2)2
, W0,3(z1, z2, z3) =

1

2z21z
2
2z

2
3

. (3.39)

For the g = 1 corrections we find

W1,1(z) =
3 + 2z2

48z4
, W1,2(z1, z2) =

5z41 + 3z21z
2
2 + 5z42 + 4(z21z

4
2 + z41z

2
2) + 2z41z

4
2

32z61z
6
2

. (3.40)
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where z is the uniformization coordinate defined in (2.100). From our general for-

mula (3.44), G2(λ) is given by

G2(λ) = S2(ξ∗) +
1

2

[
S
(3)
0 (ξ∗)

3!

]2
〈φ6〉+ S

(4)
0 (ξ∗)

4!
〈φ4〉+ S

(3)
0 (ξ∗)S

′
1(ξ∗)

3!
〈φ4〉

+
1

2

(
S′
1(ξ∗)

2 + S′′
1 (ξ∗)

)
〈φ2〉.

(3.47)

One can check that this reproduces the result in (3.31). We can in principle compute Gn(λ)

up to any desired order using this formalism.

3.4.2 WKB expansion of ρ(E)

We can repeat the same analysis in the previous subsection for the eigenvalue density ρ(E).

It turns out that the ’t Hooft expansion of ZJT is related to the WKB expansion of ρ(E)

in the forbidden region E < 0.

Let us consider the WKB expansion of ρ(E)

ρ(E) = exp

[
∞∑

n=0

~
n−1Sn(z)

]
. (3.48)

S0(z) and S1(z) are given by [10]

S0(z) = −Veff(−z2), S1(z) = − log

(
8z2

π

)
. (3.49)

As discussed in [10], Sn≥2(z) is written as some combination of the connected correlator of

the operator Y

Sn(z) =
∑

2g−1+m=n

1

m!
〈Y m〉g (3.50)

where Y is given by

Y = Tr log(E(z)−H)− Tr log(E(−z)−H). (3.51)

Here the sign of z in E(±z) distinguishes the two sheets of the spectral curve. In other

words, Y is defined by integrating the resolvent from −z to +z. Again, one can compute

Sn(z) systematically from the topological recursion. For instance S2(z) is given by

S2(z) = 〈Y 〉g=1 +
1

3!
〈Y 3〉g=0 = − 17

24z3
− 1

12z
. (3.52)

One can check that the saddle point approximation of the integral

ZJT =

∫ ∞

−∞

dEρ(E)e−βE =

∫ ∞

−∞

dξρ(−ξ) e
ξλ
~ (3.53)

correctly reproduces the free energy Fn(λ) in the ’t Hooft limit in (3.19). This computation

is completely parallel to that in the previous subsection 3.4.1, so we will not repeat it here.
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4 Numerical analysis of ρ(E) and ψ(E)

In this section we will numerically study the behavior of ρ(E) and ψ(E) as a function of E.

Let us consider the integral representation of ρ(E) given by the inverse Laplace trans-

form of ZJT(β)

ρ(E) =

∫

C

dβ

2πi
ZJT(β)e

βE . (4.1)

Here we take the contour C to be homotopic to the Airy contour. We will approximate

this integral by keeping the free energy Fn(λ) up to n = 2 obtained in (3.16) and (3.19)

ρ(E) ≈
∫

C

dλ

2πi~
exp

[
λE + F0(λ)

~
+ F1(λ) + ~F2(λ)

]
. (4.2)

This truncation might be justified when the coupling ~ is small ~ ≪ 1. To avoid the cut

of Fn(λ) running from λ = 1 to λ = +∞ along the real axis, we choose the contour C

to cross the real axis in the region 0 < Re(λ) < 1. In practice, in order to evaluate the

integral numerically we choose C as a union of three straight segments

C = [e−
πi
3 ∞, e−

πi
3 ] ∪ [e−

πi
3 , e

πi
3 ] ∪ [e

πi
3 , e

πi
3 ∞] (4.3)

and use NIntegrate in Mathematica to evaluate the integral. In figure 1 we show the

numerical plot of the integral (4.2). As expected, ρ(E) approaches the genus-zero value

ρ0(E) in the allowed region E > 0. It turns out that the genus-zero part comes from the

integral around the origin λ = 0. Although our integration contour (4.3) does not encircle

the origin, we can deform the contour to pick up the contribution around λ = 0. However,

we should emphasize that the contour (4.3) is completely fixed in the actual numerical

computation of the integral (4.2). Near λ = ~β = 0, we can go back to the original

expression (4.1) using β as the integration variable. In the limit ~ → 0 with fixed β, only

F1(λ) and the first term F2(λ) =
1
λ +O(λ0) in the small λ expansion of F2(λ) survive

lim
~→0

∞∑

n=0

~
n−1Fn(~β) = − log(2

√
π~β3/2) +

1

β
+O(~0). (4.4)

Note that this is the same as the first two terms in the high temperature expansion (3.20).

It is interesting that the genus-zero term 1/β in the original expansion (3.20) becomes a

part of F2(λ) after taking the ’t Hooft limit. Put differently, in order to reproduce the

genus-zero part ρ0(E) numerically we have to include F2(λ) in the approximation (4.2).

Then the contribution around β = 0 is evaluated as

ρ(E) ≈
∮

β=0

dβ

2πi

e
βE+ 1

β

2
√
π~β3/2

=
E

1
4

2
√
π~
I 1

2
(2
√
E). (4.5)

Using the explicit form of the modified Bessel function

I 1
2
(z) =

√
2

πz
sinh(z), (4.6)

one can see that (4.5) reproduces the genus-zero eigenvalue density ρ0(E) in (2.97).
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Figure 1. Plot of ρ(E) for ~ = 1/30. The blue curve represents ρ(E) in the approximation (4.2)

while the orange curve represents the genus-zero eigenvalue density ρ0(E) in (2.97).

Next consider the difference between ρ(E) and ρ0(E)

ρnp(E) = ρ(E)− ρ0(E). (4.7)

We can estimate this difference by the saddle point approximation of (4.2). When E > 0,

we can pick up the contribution of two saddle points on the imaginary axis of complex

λ-plane

λ± = ±i sinh(2
√
E), (4.8)

by deforming the contour C within the homotopy class of Airy contour. Adding the

contributions of two saddle points (4.8) we find

ρnp(E) ≈ − 1

4πE
cos

[
2
√
E cosh(2

√
E)− sinh(2

√
E)

2~

]
, (E > 0), (4.9)

where the prefactor comes from the Gaussian integral around the saddle points. This

agrees with the result of [10] obtained from a different method. In figure 2 we show the

plot of ρnp(E). One can see that the numerical value of ρnp(E) fits nicely with the analytic

expression in (4.9).

In a similar manner we can numerically compute the BA function ψ(E) in the approx-

imation of keeping G0(λ) and G1(λ) in (3.31) in the ’t Hooft expansion of ψ̂(λ) (3.30)

ψ(E) ≈
∫

C

dλ

4π~i
(1− λ2)−

1
4 exp

(
λE + F0(λ)

2~

)
. (4.10)

In this case we do not have to include G2(λ) for the purpose of numerical analysis since

G2(λ) = O(λ) in the small λ expansion and hence there is no non-trivial contribution from

λ = 0. Again, in the allowed region E > 0 there are two saddle points λ± in (4.8). Adding

the contributions of these saddle points we find

ψ(E) ≈ 1
√
π~E

1
4

cos

[
2
√
E cosh(2

√
E)− sinh(2

√
E)

4~
− π

4

]
, (E > 0). (4.11)
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Figure 2. Plot of ρnp(E) for ~ = 1/30. Blue dots represent the numerical value of ρnp(E) obtained

from (4.2) while the red curve is the plot of analytic expression in (4.9).
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Figure 3. Plot of ψ(E) for ~ = 1/30. Blue dots represent the numerical value of ψ(E) obtained

from (4.10) while the red curve is the plot of analytic expression in (4.11).

In figure 3 we show the plot of ψ(E). One can see that the numerical value of ψ(E) agrees

well with the saddle point result (4.11) in the allowed region E > 0.

Let us consider the behavior of ψ(E) in the forbidden region E < 0. Naively, when

E < 0 there is a saddle point

λ∗ = sin(2
√
−E) (4.12)

and it contributes to ψ(E) as

ψ(E) ≈ exp

[
−Veff(E)

2~

]
, (E < 0), (4.13)

where the effective potential Veff(E) is given by (3.18). It is argued in [10] that this model

is non-perturbatively unstable since Veff(E) is not positive definite and ψ(E) blows up as

E → −∞.

However, we do not see this pathological behavior in the numerical plot of ψ(E) in

figure 3. As we can see from figure 4, Re[F0(λ)] is negative in the region Re(λ) > 0.

Thus, the real part of the leading term Eλ + F0(λ) in the WKB expansion (4.10) is

negative for E < 0 with an appropriate choice of contour C. This suggests that the
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Figure 4. Plot of the real part of F0(λ) on the complex λ-plane.

integral representation of ψ(E) in (3.28) and its approximation (4.10) are convergent and

well-defined in the region E < 0 as long as the contour C lies on the right half Re(λ) > 0

of the complex λ-plane, under the condition that C crosses the real axis in the region

0 < λ < 1 to avoid the cut of F0(λ).

Now suppose that we decrease the value of E from E = 0 toward the negative E

direction. At the begging E ∼ 0 the saddle point λ∗ in (4.12) lies on the positive half

plane λ∗ > 0, but λ∗ turns negative at E = −π2

4 and it ceases to contribute to the integral

below E = −π2

4 . This suggests that Veff(E) in (3.18) cannot be trusted for E < −π2

4 . It

is tempting to speculate that this model is actually non-perturbatively stable. It would be

very interesting to understand the non-perturbative instability discussed in [10] better.

5 Comment on the spectral form factor

One can easily generalize our expression of the macroscopic loop operator ZJT = Tr(eβQΠ)

to the case of arbitrary numbers of boundaries by applying the general formula in [22]

to the JT gravity case tn = γn. Of particular interest is the connected correlator of two

macroscopic loops and its analytic continuation known as the spectral form factor. The

spectral form factor is extensively studied in the literature as a useful diagnostics of the

quantum chaos of the SYK model and its bulk gravity dual [39–42].

The connected two-loop correlator is written as [22]

〈Z(β1)Z(β2)〉conn = Tr
(
eβ1Q(1−Π)eβ2QΠ

)
, (5.1)

and the spectral form factor is obtained by an analytic continuation of the correlator

g(β, t) = 〈Z(β + it)Z(β − it)〉conn. (5.2)
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As a function of t, g(β, t) exhibits characteristic features called ramp and plateau. These

features naturally correspond to the following decomposition of (5.1)

g(β, t) = Tr
(
e2βQΠ

)
− Tr

(
e(β+it)QΠe(β−it)QΠ

)

= 〈Z(2β)〉 − Tr
(
e(β+it)QΠe(β−it)QΠ

)
.

(5.3)

The first term is independent of t and it sets the value of plateau. On the other hand,

the second term is a non-trivial function of t and it is expected that this term gives rise

to the linearly growing ramp. It is interesting to show this explicitly for JT gravity. (See

appendix A for the computation of the spectral form factor in the Airy case). It would

also be interesting to consider the bulk gravity picture of plateau. The first term of (5.3)

might be interpreted on the bulk gravity side as a geometry where the two boundary circles

are merged into a single boundary. Such a geometry was considered before in the context

of 2d gravity (see figure 20 in [19]), but its status in the bulk geometry is not clear as

mentioned in [19].

6 Conclusions and outlook

In this paper we have seen that the partition function of JT gravity ZJT(β) = 〈Z(β)〉 is

written as the expectation value of the macroscopic loop operator Tr(eβQΠ) in the matrix

model of 2d gravity in the closed sting background tn = γn (2.6). By deforming this back-

ground by the two parameters (t0, t1), one can utilize the KdV equation to compute the

genus expansion of ZJT in a very efficient way. We have also shown that the low tempera-

ture expansion of ZJT as well as its ’t Hooft limit (1.1) can be obtained systematically. By

evaluating the inverse Laplace transformation numerically, we have confirmed the oscillat-

ing behavior of ρ(E) and ψ(E) in the region E > 0 as discussed in [10]. Interestingly, the

oscillating cosine term arises by adding the contributions of two saddle points (4.8). On

the other hand, we do not see any evidence of the pathological behavior of ρ(E) and ψ(E)

in the region E < 0 within our approximation. It would be very interesting to understand

the non-perturbative instability discussed in [10]. It is desirable to perform more detailed

numerical analysis of ψ(E) along the lines of [43].8

There are many open questions and interesting future directions. First, it is interesting

to understand the physical meaning of the background tn = γn corresponding to JT grav-

ity. Naively one can imagine that the asymptotic AdS2 is “built” by this background. To

see this more quantitatively, it would be useful to study the Kontsevich’s matrix Airy inte-

gral [29] corresponding to the background tn = γn. In the modern interpretation [43–45],

the Kontsevich’s model and Witten’s topological gravity [28] are related by the open/closed

duality; the Kontsevich’s model arises as the open string theory on the FZZT branes while

the closed string background tn is obtained by replacing the insertion of FZZT branes

with the deformation of matrix model potential. It would be interesting to understand the

configuration of background FZZT branes corresponding to tn = γn (see also footnote 4).

8We would like to thank Douglas Stanford for emphasizing this point.
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It is very important to understand the analytic properties of the genus expansion of

ZJT and its non-perturbative completion. Apparently, the ’t Hooft expansion of the free

energy becomes singular at λ = 1, and the analytic form of Fn(λ) in (3.19) can be trusted

only in the region λ < 1 when λ is real. It is interesting to understand what happens at

λ = 1 (or β = ~
−1). Also, it is very important to see if JT gravity is non-perturbatively

well-defined. One possible avenue is to study the string equation for u(x) in the background

tn = γn, which we will discuss briefly in appendix C.

In section 3.1 we have constructed the full eigenvalue density ρ(E) as a low energy

expansion in the limit (3.1) starting from the Airy case ρAiry(E). It would be very sig-

nificant if we can find the exact eigenvalue density ρ(E). It is argued in [46, 47] that the

eigenvalue density of the SYK model is closely related to the q-Hermite polynomials. It

would be interesting to see if the double scaling limit of the q-Hermite polynomials has

some connection to the exact eigenvalue density ρ(E) of the JT gravity case.

In section 5 we have briefly commented on the spectral form factor. Using the result

of [22] it is straightforward to write down the connected correlator of two macroscopic

loops (5.1). It would be interesting to compute it at least in the genus expansion. To this

end, we need to know not only the diagonal matrix elementW = 〈x|eβQ|x〉 but also the non-
diagonal part 〈x|eβQ|y〉. Fortunately, it is known [48] that the non-diagonal matrix element

〈x|eβQ|y〉 is written as some combination of the derivatives of tau-function, hence it is

possible to generalize the method of KdV equation in our paper to the computation of multi-

boundary correlators. We will report on the computation of multi-boundary correlators

elsewhere [49]. The result of the spectral form factor in the Airy case (A.16) indicates that

in the double-scaled matrix model the time scale of the transition to plateau diverges as

β → 0, which deserves further investigation.

Finally, it is interesting to extend our approach to more general settings, including

JT supergravity [50], adding gauge fields to the bulk theory [51], and a possible analytic

continuation to the 2d de Sitter space [52, 53], to name a few.
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A Airy case

In this appendix we summarize the result in the Airy case, where the spectral curve is

given by

y =
√
ξ, (A.1)
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and the corresponding classical eigenvalue density is

ρ0(E) =

√
E

π~
. (A.2)

This is realized by a double scaling limit of the Gaussian matrix model by zooming in on

the edge of the Wigner semi-circle (see [43] and references therein). In this case u(x) = x

and Q is given by

Q = ~
2∂2x + x. (A.3)

In this appendix we will use the normalization t0 = x, which differs from (2.28) by a factor

of ~. The BA function obeying (Q+ E)ψ(E) = 0 is given by the Airy function

ψ(E) = 〈x|E〉 = ~
− 2

3Ai
[
−~

− 2
3 (E + x)

]
. (A.4)

One can show that ψ(E) in (A.4) is normalized as

〈E|E′〉 =
∫ ∞

−∞

dx〈E|x〉〈x|E′〉 = δ(E − E′). (A.5)

Now let us consider the one-point function of macroscopic loop operator

〈Z(β)〉 =
∫ 0

−∞

dx〈x|eβQ|x〉 =
∫ ∞

−∞

dEe−βEρAiry(E), (A.6)

where the eigenvalue density ρAiry(E) is given by

ρAiry(E) =

∫ 0

−∞

dx〈x|E〉2. (A.7)

Using the expression of BA function 〈x|E〉 in (A.4), one can show that (A.7) reproduces the

eigenvalue density in (2.104). This defines a non-perturbative completion of the classical

eigenvalue density (A.2). We can evaluate the integral in (A.6) and find

〈Z(β)〉 = e
~
2β3

12

2
√
π~β3/2

. (A.8)

This can be thought of as the generating function for the intersection numbers 〈ψ3g−2
1 〉g,1.

Next consider the connected correlator of two macroscopic loops

〈Z(β1)Z(β2)〉conn = Tr
(
eβ1Q(1−Π)eβ2QΠ

)
(A.9)

where Π is the projector

Π =

∫ 0

−∞

dx|x〉〈x|. (A.10)

The general n-loop amplitude 〈
∏n

i=1 Z(βi)〉conn has been computed in [54] and the result

for the two-loop correlator reads

〈Z(β1)Z(β2)〉conn =
e

~
2

12
(β1+β2)3

2
√
π~(β1 + β2)3/2

Erf

(
~

2

√
β1β2(β1 + β2)

)
, (A.11)
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Figure 5. Plot of two-loop correlator in the Airy case for ~ = 1/10. The blue curve represents the

disconnected part 〈Z(β)2〉dis while the orange curve represents the connected part 〈Z(β)2〉conn.

where Erf(z) denotes the error function

Erf(z) =
2√
π

∫ z

0
dte−t2 . (A.12)

It is interesting to compare the connected part and the disconnected part of the two-loop

correlator as a function of β

〈Z(β)2〉dis = 〈Z(β)〉2 = e
~
2β3

6

4π~2β3
,

〈Z(β)2〉conn =
e

~
2(2β)3

12

2
√
π~(2β)3/2

Erf

(
~√
2
β3/2

)
.

(A.13)

Here we have set β1 = β2 = β for simplicity. In figure 5 we show the plot of the two-

loop correlator in (A.13) for ~ = 1/10. One can see that at high temperature (small β)

the disconnected part (blue curve) is dominant, while at low temperature (large β) the

connected part (orange curve) becomes dominant. As we lower the temperature there

occurs the exchange of dominance between the disconnected and the connected part at

some critical value β = βcrit. A similar phenomenon was observed in the coupled SYK

model [55] and it was interpreted as the Hawking-Page transition on the bulk gravity side.

Since both 〈Z(β)2〉dis and 〈Z(β)2〉conn depend on β only through the combination ~
2β3,

the critical temperature scales as9

βcrit ∼ ~
− 2

3 . (A.14)

We can also study the spectral form factor in the Airy case by analytically continuing

the result in (A.11)

g(β, t) = 〈Z(β + it)Z(β − it)〉conn. (A.15)

It turns out that the time derivative of g(β, t) has a simple form

∂tg(β, t) =
t

4πβ
√
β2 + t2

e
1
6
~
2β3− 1

2
β~2t2 . (A.16)

9A similar scaling behavior of βcrit also appeared in the Gaussian matrix model before taking the double-

scaling limit [56].
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This ∂tg(β, t) decays exponentially at large t and the spectral form factor approaches a

constant plateau at late times

lim
t→∞

g(β, t) =
e

~
2

12
(2β)3

2
√
π~(2β)3/2

= 〈Z(2β)〉. (A.17)

From (A.16) one can read off the time scale for the transition from ramp to plateau as

tplateau ∼ 1

~
√
β
. (A.18)

We notice that tplateau depends on β. This is in contrast to the situation in the Gaussian

matrix model before taking the double scaling limit where tplateau is independent of β [57].

It is interesting to observe that the β → 0 limit of g(β, t) is singular due to the one-loop

factor (β1 + β2)
−3/2 in (A.11). In [52, 53] the analytically continued two-loop correlator

〈Tr e−iℓH Tr eiℓH〉 in the JT gravity case was interpreted as the inner product of Wheeler

de Witt wave functions of the 2d de Sitter space. This inner product naively corresponds

to g(0, ℓ), which is divergent. Interpretation of the singularity of g(β, t) at β = 0 is unclear

at present.

B Partial resummation of the eigenvalue density

In this appendix we consider a partial resummation of the low energy expansion of ρ(E).

We observe from (2.119) that
lim
h→0

z̃ℓ(h) = 1. (B.1)

Then it is interesting to see what happens if we replace z̃ℓ(h) → 1 and perform the summa-

tion over ℓ in the low temperature expansion of ZJT in (2.117). This replacement leads to

Zpartial(β) =
e

h2

12

2
√
πh

∞∑

ℓ=0

T ℓ

ℓ!
z̃ℓ(h = 0) =

e
~
2β3

12
+ 1

β

2
√
π~β3/2

. (B.2)

By the inverse Laplace transformation we find a simple closed form expression of the

eigenvalue density ρpartial(E) for Zpartial(β)

ρpartial(E) =

∫

C

dβ

2πi
eEβZpartial(β)

=
1

~
Im
[
Ai
(
~
− 2

3 (−E + i~)
)
Ai′
(
~
− 2

3 (−E − i~)
)]

=
1

~
Im
[
Ai(η + i~

1
3 )Ai′(η − i~

1
3 )
]
,

(B.3)

which can be thought of as a partial resummation of the expansion (3.4). It turns out that

in the classical limit (B.3) reduces to the genus-zero eigenvalue density ρ0(E) of the full

partition function ZJT

lim
~→0

ρpartial(E) =
sinh(2

√
E)

2π~
. (B.4)
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Figure 6. Plot of ρpartial(E) for ~ = 1/30. The blue curve represents ρpartial(E) in (B.3) while the

orange curve represents the genus-zero eigenvalue density ρ0(E) in (2.97).

This is expected since Zpartial(β) in (B.2) reduces in the limit ~ → 0 to the genus-zero part

of ZJT in (2.16).

To see that this is indeed the case, in figure 6 we show the plot of ρpartial(E) in (B.3)

for ~ = 1/30. One can see that ρpartial(E) agrees with ρ0(E) in (2.97) in the allowed region

E > 0 up to an oscillatory correction. This implies that the genus-zero part ρ0(E) (2.97) is

completely accounted for by ρpartial(E) and the difference from the true density ρ(E) has

only oscillatory contribution in the region E > 0

ρ(E)− ρpartial(E) = (oscillatory), (E > 0). (B.5)

C String equation for JT gravity

In this appendix we consider the so-called string equation for u(x) (see [32] for a review).

It is known that the genus-zero relation (2.92) can be promoted to the all-genus string

equation [58]

[P,Q] = ~, (C.1)

which arises from the compatibility condition for the following set of equations obeyed by

the BA function

Qψ = ξψ, Pψ = ~∂ξψ. (C.2)

Here Q is defined in (2.39). To find P , we start with the relation

∂ξψ = −
∞∑

k=1

t̃k∂k−1ψ, (C.3)

where t̃k is defined by

t̃k = tk − δk,1. (C.4)

∂kψ is given by the KdV flow equation in the k-th direction

~∂kψ =Mkψ (C.5)
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with Mk being

Mk =
2k

(2k + 1)!!
Q

k+ 1
2

+ . (C.6)

Here the subscript + of Q
k+ 1

2
+ indicates that we truncate the pseudo-differential operator

Qk+ 1
2 to its differential part. In this notation M in (2.45) is written as M =M1 =

2
3Q

3/2
+ .

From (C.3) and (C.5) we find that P is given by

P = −
∞∑

k=1

t̃kMk−1 = −
∞∑

k=1

t̃k
2k−1

(2k − 1)!!
Q

k− 1
2

+ . (C.7)

The compatibility of the flow equation and Qψ = ξψ leads to the following relation

~∂ku = ~∂0Rk+1 =
[
Mk, Q

]
, (C.8)

where we used u = ∂20F and (2.26). Then the string equation (C.1) becomes

~ = [P,Q] = −
∞∑

k=1

t̃k[Mk−1, Q] = −~

∞∑

k=1

t̃k∂0Rk, (C.9)

which can be integrated as

t0 = −
∞∑

k=1

t̃kRk. (C.10)

Using R0 = 1 this is more compactly written as

∞∑

k=0

t̃kRk = 0. (C.11)

From the behavior of Rk in (2.73), one can see that (C.10) reduces to (2.65) in the classical

limit ~ → 0. Note that the shift of t1 in (C.4) is important to recover the classical

equation (2.65). This equation (C.10) determines the x-dependence of u(x). For instance,

the string equation for the pure gravity t0 = −R2 is known as the Painlevé I equation.

The so-called minimal string theory (2d gravity coupled to a minimal model CFT) [20, 21]

is obtained by turning on a finite number of couplings tk, in which case the string equation

can be solved at least numerically [43, 59, 60].

For the JT gravity case tn = γn (2.6), P in (C.7) becomes

P =

[
1

2
sin
(
2Q

1
2
)
]

+

. (C.12)

In the classical limit, this reduces to the spectral curve in (2.99) by the replacement P →
y,Q→ ξ. Eq. (C.12) can be thought of as the “quantum spectral curve” for the JT gravity.

It would be interesting to study the property of (C.12) along the lines of [61, 62].

Let us consider the string equation (C.10) for the JT gravity case. We set tn = γn for

n ≥ 1 and leave t0 as a free parameter. Then (C.10) becomes

t0 = −
∞∑

k=1

(−1)k

(k − 1)!
Rk. (C.13)
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Due to the fact that infinitely many couplings tn are turned on, (C.13) is no longer a

differential equation for u; it is rather thought to be a certain non-linear difference equation

for u. Based on this expectation, we would like to write down the string equation (C.13)

in the form

~x =
∞∑

n=1

Dn(∂x1 , · · · , ∂xn)
n∏

i=1

u(xi)
∣∣∣
xi=x

. (C.14)

The operator Dn can be found from the recursion relation of Rk (2.25). The first two

terms are

D1 =
sin(∂x)

∂x
,

D2 =
sin(∂x1 + ∂x2)− sin ∂x1 − sin ∂x2

∂x1∂x2(∂x1 + ∂x2)
.

(C.15)

Appearance of the exponentiated derivative in sin(∂x) =
ei∂x−e−i∂x

2i indicates that Dn should

be regarded as a difference operator rather than a differential operator. It would be inter-

esting to find the general structure of Dn.

D Resolvent and wave functions

In this appendix we summarize useful properties of the resolvent and the wave functions

for the Schrödinger equation.

As discussed in [36, 63], one can integrate the equation for R in (2.49) once. By

multiplying R to the first equation in (2.49) we find

0 = R

[
1

4
R′′′ + (u− ξ)R′ +

1

2
u′R

]

= ∂x

[
1

4
RR′′ − 1

8
R′2 +

1

2
(u− ξ)R2

]
.

(D.1)

This is integrated as

2RR′′ −R′2 + 4(u− ξ)R2 = const. (D.2)

From the large ξ behavior of R

lim
ξ→∞

R = ξ−
1
2R0 =

1

2
ξ−

1
2 , (D.3)

the constant on the right hand side of (D.2) is fixed to be −1

2RR′′ −R′2 + 4(u− ξ)R2 = −1. (D.4)

From this equation, one can show that
√
R satisfies

(
Q− ξ

)√
R = − 1

4R3/2
. (D.5)

The resolvent R can be written as a product of two functions

R = ψ+ψ−, (D.6)
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where ψ± takes the form

ψ± =
√
Re±S . (D.7)

Using the equation for
√
R in (D.5), one can show that ψ± becomes a solution of the

Schrödinger equation (Q− ξ)ψ± = 0 provided that S satisfies [63, 64]

S′ =
1

2R
. (D.8)

This is integrated as

S(ξ, t0) =
1

~

∫ t0

dt0
1

2R[ξ, u(t0)]
. (D.9)

Let us consider the classical limit of S. On general ground, we expect that Scl is

written as

Scl =
1

~

∫ ξ

0
y(ξ′)dξ′ (D.10)

where y is given by the classical limit of P in (C.7)

y = −
∞∑

k=1

t̃k
2k−1

(2k − 1)!!
ξk−1/2. (D.11)

Evaluating the integral in (D.10) we find

Scl = −1

~

∞∑

k=1

t̃k
2kξk+1/2

(2k + 1)!!
. (D.12)

On the other hand, we can take the classical limit of (D.9) directly. At the classical level

~ = 0, one can see from (D.4) that R has a square-root branch cut

Rcl =
1

2
√
ξ − u0

. (D.13)

Plugging (D.13) into (D.9) we find

Scl =
1

~

∫
dt0
√
ξ − u0. (D.14)

Using the classical string equation

t0 = −
∞∑

k=1

t̃k
uk0
k!
, (D.15)

we can rewrite the t0-integral to u0-integral

Scl =
1

~

∫ ξ

0
du0

∂t0
∂u0

√
ξ − u0

= −1

~

∫ ξ

0
du0

∞∑

k=1

t̃k
uk−1
0

(k − 1)!

√
ξ − u0

= −1

~

∞∑

k=1

t̃k
2kξk+1/2

(2k + 1)!!
.

(D.16)

This agrees with the integral of ydξ in (D.12).
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For the JT gravity case tn = γn we find

Scl = −1

~

∞∑

k=1

(−1)k

(k − 1)!

2kξk+1/2

(2k + 1)!!
=

1

4~

[
sin(2

√
ξ)− 2

√
ξ cos(2

√
ξ)
]
, (D.17)

which reproduces the effective potential Veff(−ξ) in (3.18), as expected.
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