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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1-3] and its holographic dual Jackiw-Teitelboim
(JT) gravity [4-9] are useful testing ground to study various issues in quantum gravity and
holography. This duality is based on the fact that the 1d Schwarzian theory, which arises
from the Nambu-Goldstone mode of the spontaneously broken time-reparametrization sym-

metry of the SYK model, also appears as the boundary mode dynamics of JT gravity on



asymptotic AdSy. This duality tells us that the random average of the thermal parti-
tion function (Z(8)) = (Tre PHsvk) of the SYK model reduces, at large number Ngyk
of fermions and at low energy, to the partition function of JT gravity on Euclidean AdSs
which is topologically a disk with renormalized boundary length j.

Recently, Saad, Shenker and Stanford [10] found that one can go beyond the strict
large Ngyk limit and actually compute the partition function of JT gravity including the
contribution of various topologies adding handles (or Euclidean wormholes) to the disk.
They proposed that the partition function Zjp () of JT gravity on asymptotically AdSo
space is defined by a certain double-scaled random matrix integral (Tre ##), where the
Hamiltonian of the SYK model Hgyk is replaced by a random hermitian matrix H. Then
the sum over topologies is reproduced from the 1/N expansion of the matrix integral with
N ~ eNsvi,

Their proposal comes from the following facts [10]: the path integral of JT gravity re-
duces to the contribution of the Schwarzian mode describing the boundary wiggles, together
with the Weil-Petersson volume V1 (b) of the moduli space of Riemann surfaces with g han-
dles and one geodesic boundary of length b. The crucial point is that the recursion relation
obeyed by the Weil-Petersson volume found by Mirzakhani [11] is equivalent to the topo-
logical recursion of a double-scaled matrix model with the spectral curve y =  sin(2z) [12].
Moreover, the genus-zero eigenvalue density po(F) corresponding to this spectral curve is
exactly equal to the eigenvalue density computed from the Schwarzian theory [13]. Since
the topological recursion of Eynard and Orantin [14] is essentially determined by the data of
spectral curve (or po(E)) only, the above observations imply that the boundary Schwarzian
theory “knows” how to perform the sum over topologies on the bulk JT gravity side. It
is further argued in [10] that this relation between JT gravity and the matrix model is
generalized to arbitrary number of boundaries.

In this paper we will study the proposal in [10] more closely, focusing on the single
boundary case. We find that the matrix model of JT gravity in [10] is nothing but a special
case of the old matrix model of 2d gravity coupled to ¢ < 1 matter [15-18] (see also [19]
for a review). The important difference from the old story is that in the JT gravity case
infinitely many closed string couplings ¢,, are turned on in a specific way: tg =t =0, t =
((k%li; (k > 2).! We then introduce a natural two-parameter generalization of Zy1(3) by
releasing to and t; from the above constraint. Using this we find that the partition function
of JT gravity Zyr(8) is written as the expectation value of the macroscopic loop operator
Tr(e#RI) [22], where Q = 02 4 u(z) is the Lax operator and II is the projection to the
states below the Fermi level. We will show that this expression of Tr(e’?II) naturally
includes both of the Schwarzian contribution and the Weil-Petersson volume.

This rewriting of the partition function using the Lax operator () is not just a formal
expression, but is very useful in practice for the actual computation of the genus expansion.
We will develop a systematic method of computing the higher genus corrections to Zjr
using the Korteweg-de Vries (KdV) equations obeyed by u(z) and 0, Zj7, generalizing the

Tt is advocated in [10] that this background corresponds to a p — oo limit of the (2,p) minimal string
theory [20, 21].



approach of Zograf [23]. Using this method we have computed the genus expansion of Zjr
up to g = 46. It turns out that this genus expansion of Zjr is valid in the high temperature
regime (5 < 1). In the low temperature regime, on the other hand, we can compute Zjp
as a series expansion in 7' = B! using the same KdV equations as above. We find that
this low temperature expansion can be rearranged by taking a scaling limit, which we will
call the 't Hooft limit:

h—0, 3 — o0 with A=h8 fixed, (1.1)

where i = 1/N is the genus counting parameter. It turns out that the free energy in the
't Hooft limit admits an open string like expansion

F=log Zyr =Y K" ' Fa(N), (1.2)

n=0

and we find the first few terms of F,,(\) in a closed form.

Another interesting quantity to consider is the Baker-Akhiezer (BA) function ¢ (FE),
which is a solution of the Schrédinger equation —Qu(FE) = Ev(FE) and interpreted as the
wavefunction of FZZT brane [24, 25]. We find that the Laplace transform @E()\) of the BA
function has a natural expansion in the 't Hooft limit. We also study the behavior of the
eigenvalue density p(FE) and the BA function ¢ (FE) by numerically evaluating the inverse
Laplace transform of e and 1()). We confirm the oscillating behavior of p(E) and
Y(F) in the classically allowed region F > 0 discussed in [10] which is non-perturbative in
the coupling h.

This paper is organized as follows. In section 2, we develop a technique of the genus
and the low temperature expansions of Zjr based on the KdV equations generalizing the
approach of [23]. Along the way, we show that Zjr is written as the expectation value of the
macroscopic loop operator Tr(eBQH). In section 3, we consider the low energy expansion
of p(E) and 9(FE), as well as the corresponding low temperature expansion of Zyr and 12
in the 't Hooft limit. In section 4, we study the behavior of p(F) and ¢ (E) numerically.
In section 5, we comment on the connected correlator (Z(/51)Z(52))conn and its analytic
continuation known as the spectral form factor. Finally we conclude in section 6 with some
discussions for the interesting future directions. In appendix A we summarize the known
facts in the Airy case described by the spectral curve y = z. In appendix B we consider
a partial resummation of the genus expansion. In appendix C we consider the so-called
string equation for the JT gravity case. In appendix D we summarize useful properties of
the resolvent and the wave functions for the Schrodinger equation.

2 General properties of partition function

In this section we will show that JT gravity is realized as the conventional 2d topological
gravity in the background where infinitely many couplings are turned on in a specific
way. We will consider the partition function of JT gravity on Riemann surfaces with
one boundary and introduce its two-parameter generalization. The generalized partition



function is closely related to the tau-function for the KdV hierarchy. Using this relation we
will derive a simple differential equation which uniquely determines the partition function
both in the genus and the low temperature expansions.

2.1 JT gravity as 2d gravity in specific coupling background

Before discussing the partition function of JT gravity, let us first recall some useful proper-
ties of the partition function of the general 2d topological gravity which we will use shortly.
(See e.g. [26] for a recent review). Let ¥ be a closed Riemann surface of genus g with n
marked points p1,...,p, and let Mg, be the moduli space of ¥. We are interested in the
intersection numbers

<f€del~-'Tdn> :/ ﬁmwill'n g”, m,dl,...,dn EZZ(), (2.1)
Myg.n
which are viewed as the correlation functions of the 2d topological gravity. Here, x (often
denoted as k1 in the literature) is the first Miller-Morita-Mumford class and is proportional
to the Weil-Petersson symplectic form

w = 21K, (2.2)

; is the first Chern class of the complex line bundle whose fiber is the cotangent space
to p; and 14, = 1/1? ‘ ﬂgm is the Deligne-Mumford compactification of the moduli space
M, . Note that (2.1) vanishes unless m +dy +--- +d, =39 —3 +n.

For the above correlation functions one can introduce the formal generating function

Gl (i) = 3 g (e+Eiotama) . (2.3)

9=0 g

It is proved in [27] (see also [26]) that the intersection numbers involving both x and ¢’s can
be obtained from those involving ¢’s only. More specifically, let F' be the formal generating
function that involves 1’s only

F({t}) = 3 g0 (e>iotem) . (2.4)
g=0
G is then given by
G(s, {tr}) = F({te +ms*'}) (2.5)
with
1)k
Y =7 =0, Vk:(l({:_l)l)! (k > 2). (2.6)

By using this property we will see that JT gravity is nothing but the special case of the
topological gravity with t; = .



Let us now consider the partition function of JT gravity on two-dimensional surfaces
of arbitrary genus with one boundary. In [10] this partition function is evaluated as the
one-point correlation function

(Z2(8)) = (Z(8))g=0 + (Z(B))g=1, (2.7)

where Z(3) = Tre P is the thermal partition function of a certain Hermitian matrix
model. The genus-zero part is to be evaluated separately. Let us first begin with the g > 1
part. In [10] it is evaluated as?

Z(B))g>1 = 26(1_29)30/ bdbzglgflmpet(ﬁj b)V,.1(b)
=1 0
! (2.8)

oo / — 2’];
(1-29)So 0
=> 172 / bdbi(Q BRE V1(b).

=1

Q

Here, Vg 1(b) is the Weil-Petersson volume of the moduli space of a genus g surface with
one geodesic boundary of length b and Zgrclflmpe‘:(ﬁ ,b) comes from the path integral of the
Schwarzian mode on the “trumpet” geometry. V; 1(b) is given by

Vi (b)—/ ex 27r2/<5+g1/) = (ex 27r2/<c+gw (2.9)
g,1 = T, p B 1] = p 5 1 gvl. .

As mentioned below (2.2), the correlation function (k¥!), 1 (k,1 € Z>) has the following
property

(KMply,1 =0 unless k+1=3g—2. (2.10)
One can thus expand V1 as
39—2

2 3g 2—d b2 9
Z ng — _( ),2,) (K292 %), 1. (2.11)
—~ I

By plugging this expression into (2.8) and evaluating the integral, one obtains

3g-2 g o\
(Z(8))g21 rz Y g () e 2

where we have identified the genus counting parameter as

gs = (2m2)3/2e=50, (2.13)

On the other hand, the genus-zero part comes from the path integral of the Schwarzian
mode on the disk, which is expressed as [10]

2
(Z(B)) — Sogdisk _ So 62 2 I 2m2y 3/26277527 (2.14)
g=0 = Sch — (271')1/2,83/2 - mgs 3 . .

2Throughout this paper we fix the normalization of the Weil-Petersson form by setting o = 1 (see [10]).




We see from (2.12) and (2.14) that it is convenient to absorb v into the normalization of £,

B
oy B, (2.15)

or equivalently, one can simply set v = 1/27%. Doing this, we find

(Z(B))g=0 = \/12?95_15_3/2651,

(Z(B))gz1 = 2= > 3 g B A )0

g=1d=0

(2.16)

The last expression is obtained from (2.12) with the help of the property (2.10). Putting
these expressions together we obtain

oo o
-1
T3S g2 () g

1
(Z(B)) = \/W( 22 ) (2.17)
From (2.3)—(2.6) we see that
;gf“’(@“wil>g,1 = 04G(s = 1, {ty = 0}) 218)

= 0al" ({tk = % }) -

Plugging this into (2.17) we finally obtain

(Z(8)) (ef“ £y B0 ({1 = »yk}>). (2.19)
d=0

1
" Varg

We have thus shown that the partition function of JT gravity on surfaces with one boundary
is expressed entirely in terms of the general topological gravity in a specific background

te = Yk

2.2 Generalized partition function and KdV constraints

The relation (2.19) of JT gravity with the general topological gravity provides us with
a better understanding of (Z(3)) as well as an efficient algorithm of computing it. It
is well known that the partition function of the topological gravity obeys the KdV con-
straints [28-30]. In fact, Zograf proposed an efficient algorithm of computing the Weil-
Petersson volume by making use of the KdV equation [23]. In what follows we will gener-
alize his idea and present a more direct application of the KdV constraints to JT gravity.

Let us first recall how the KdV constraints occur in the general topological gravity. It
was conjectured by Witten [28] and proved by Kontsevich [29] (see also [30]) that ef” with
F defined in (2.4) is a tau function for the KdV hierarchy. This means that

u:=0gF (2.20)



satisfies the (generalized) KdV equations
Oru = OoRi1, (2.21)

where Ry, are the Gelfand-Dikii differential polynomials of u

(2.22)
Here we have introduced the notations
O 1= a(?k’ Dy, := g50. (2.23)
For k =1, (2.21) gives the traditional KdV equation
Dyu = Dy (uj + D1(2)2u> . (2.24)
R are determined by the recursion relation
(2k +1)DoRyy1 = %D%Rk + 2uDoRy, + (Dou) Ry (2.25)
with the initial condition Ry = 1. Integrating (2.21) once in ¢y, we have
OkO0F = Ry41. (2.26)

In this paper we call the above relations obeyed by F' the KdV constraints.

We would like to make use of the KdV constraints to study the JT gravity partition
function (2.19). To do this, it is better not to fix the value of ¢; completely as in (2.19) but
rather leave ty and ¢; as parameters. In what follows we regard F' as a function in tg,t;
(and also in gs)

F(to,t1) = F (to, t1, {tk = Y }e>2) - (2.27)

As we will see, at least locally around (to,t;) = (0,0) one can introduce such a two-
parameter deformation. Omne should also keep in mind that there is no guarantee that
F(to,t1) is well-defined for arbitrary values of (tg,¢;). For our purposes it is convenient to

introduce the rescaled parameters
1

hi=——gs, x:=Hh1ty, T:=h't 2.28

ﬁgs 0 1 ( )

and the notation
".=0, = h0y, ~:=0.=ho. (2.29)

We then introduce a two-parameter deformation of the partition function (2.19) as

Zyr(to, t1) == e+ Bto + Z /Bk+2akF(to, t1)>. (2.30)

1



Zjt reproduces (Z(f3)) as
Zy1(0,0) = (Z(B))- (2.31)

We have added the term [tg in the definition of Zjp(to,¢1) in (2.30) so that we obtain a
simple relation

O Zy1 = 2\/7 (1 + ZBk+18kaOF>

k=0
(2.32)

1 k
= R
Qszoﬁ k
=W,

where we have used Ry = 1 and (2.26). Zj7 is thus computed from the generating function
W for the Gelfand-Dikii polynomials Ry.
The Laplace transform of W

Re) = [ dse W) (2.33)
0
has a beautiful interpretation. It is expanded as
R=> ¢+ 2R, (2.34)
k=0

with coefficients being again the Gelfand-Dikii polynomials

2k — 1!
In this notation Ry are written as
R _1 R=2% R 1(3u +d"), R 1(10u + 10w’ + 5u’” +u™")
0 27 1 47 2 = 16 3 = 64 )
(2.36)

With change of notation w — —u these Ry are identified precisely with the original poly-
nomials appeared in the paper of Gelfand and Dikii [31]. This means that their generating
function R is the resolvent [31]

R() = (| : ! 5 =) (2.37)
for the Schrodinger equation
QY =&y (2.38)
with
Q=92+ u. (2.39)



Here, |z) is the coordinate eigenstate. Note that ) is nothing but the Lax operator L for
the KdV equation, which we will discuss later.
By taking the inverse Laplace transform of (2.37) we obtain the formal expression

W = (z|eQx). (2.40)

From the relation 0, Z;r = W in (2.32), we find
xX
Zyr = / da! (x'|eP9|z"). (2.41)
—0o0
Introducing the projector II by

xX
= / da'|2') (@], (2.42)
—o0
we arrive at a very simple expression of Zjr
Zyr = Tr(ePCII). (2.43)

Topological gravity and other models of 2d gravity coupled to matter are described by
a double-scaling limit of the general matrix model, in which Tr(e®@II) is known as (the
expectation value of) the macroscopic loop operator [22].3 We have thus shown that the
partition function of JT gravity on surfaces with one boundary is identified with a single
macroscopic loop operator of the matrix model. In this sense JT gravity is merely an
example of the old 2d gravity (see [19] for a review). What is special about JT gravity,
when compared with the previously known examples, is that infinitely many couplings t,
are turned on with a specific value ¢, = v, in (2.6).

2.3 Lax formalism and master differential equation

As is well known, the KdV equation admits the Lax formalism. This enables us to derive
a simple differential equation for W, which can be used to compute Zjr.
A crucial fact about the resolvent R is that it is written as [32] (see also appendix D)

R=14i4-, (2.44)
where 11 are certain two independent solutions to the auxiliary linear problem
Lipg = o, tha = M), . (2.45)
Here

2 1
L=Q=0+u,  M=0}+ud+ (2.46)

30ur definition of the sign of x is opposite from that in [22]; in [22] the projector is given by IT =
[ da'|2") (2’| while in our definition II is given by (2.42).



are the Lax pair for the KdV equation. In fact, in the rescaled notation (2.28)—(2.29) the
KdV equation (2.24) is written as

1
0= éu’” + uu (2.47)
and it is obtained as the compatibility condition

L=[M,L] (2.48)

for the linear problem (2.45).
From (2.44)-(2.45) one can show that

1 1
fR' = 74 R" + uR' + fu/R,
2 (2.49)

Bl

The first equation is equivalent to the recursion relation (2.25), which is written for Ry as
1
el = R’” +uR}, + 5u’R,f. (2.50)
From the second equation it immediately follows that
. 1
W = 6W”’ + ulW’. (2.51)

We have thus derived a simple, linear differential equation for W = 9, Zjr. Explicitly in
terms of Zj7 it is expressed as

1
0,0 231 = éa§ZJT + UagZJT. (2.52)

2.4 Genus expansion

We can use the differential equation (2.51) together with the KdV equation (2.47) to
compute Zjr as a power series expansion in gs. For this purpose, it is convenient to rewrite
these equations in such a way that the g-dependence is manifest

2
O1u = udpu + %8{3’% (2.53)
2
NW = udoW + %agw. (2.54)

As we will see below, the genus expansion of u© and W are completely determined by these
equations. Prior to the practical computation it is useful to recall the following fact [30]:
F, = (eXa=otamd) (g > 2) is a polynomial in I}, (k > 2) and (1 — I;)~", where*

k(uo, {tx}) : Z tn+k* (2.58)

“The coupling ¢ and the parameter A = diag(\1,--- , Aar) in the Kontsevich model [29] are related by
the so-called Miwa transformation
ty = —(2k — N Tr A~ 21 (2.55)

~10 -



with ug := 93Fy. In our present case with t; = v, (k > 2), where - is given in (2.6), it is
convenient to introduce the new variables

Y = uop, t:=1-— [1 (259)
and the functions
In(2/Y) S (=1
k=max(0,—n)

Here, J,(z) is the Bessel function of the first kind. One then finds that I, (n > 2) are
identified as

In(y, {to, t1, te = v (k 2 2)}) = (=1)"Bp—1. (2.61)
Therefore, in our case F, (g > 2) is a polynomial in B, (y) (n > 1) and t~1. Note that B,
satisfies
OyBp = —Bp41, yBn+1 =nB, — Bh—1 (2.62)
and also
BA@z%P n>0. (2.63)

The old variables (g, 1) and the new ones

—~

y, 1) are related as
th=By—t, to=y(Bi—t). (2.64)

The first equation of (2.64) simply follows from the definition of I; in (2.58), while the
second equation of (2.64) comes from the classical, & — 0 limit of the string equa-
tion (C.10) [30]

ug — Io(’LLO, {tk}) =0. (265)

This relation (2.65) can be interpreted as the stationarity condition g—fg = 0 of the genus-

zero free energy [30]
1

%:2A%m@—%mﬁﬂﬁ. (2.66)

In terms of (y,t) the differentials Jp; are written as

1
0o = g(ay - Blat), 01 = yao — 0. (2.67)

In terms of A, I, is written as [33, 34]

=

I, = —(2k — DU Tr(A® — 2ue) * 2. (2.56)

It is interesting to observe that going from t, to Iy amounts to shifting A> — A% — 2uy. Note that 7
in (2.6) is written as a contour integral on the spectral curve y = 1 sin(2/€) (2.99)

== (k- 2 f S yeeh, (2.57)

2mi

- 11 -



This is identical to the change of variables introduced by Zograf (see [23]). One can show
that the “on-shell” value (to,t;) = (0,0) corresponds to (y,t) = (0,1). It is important
to note that the map (2.64) from (y,t) to (to,t1) is neither one-to-one nor onto. This
gives rise to a somewhat delicate issue: Zjyp and related quantities we are going to solve
become multivalued and not globally well-defined (at least as real functions) when viewed
as functions in (¢g,t1). But as far as local expansions around the “on-shell” value are
concerned, one can ignore such intricacies.

With these preparations let us first consider the genus expansion of u. By construction
u has the expansion of the form

u= Zgggug (2.68)
g=0

with u, = 93F,. One can easily show that the differential equation (2.53) is written as the
recursion relation
1 = 1
3
—~0i(tug) = hz_:lughaouh + 500U (9= 1). (2.69)
Then u, are obtained by recursively solving this equation with the initial condition ug = y.

First two of them are

B} B

YT T o (2.70)
_ 49B}  11B{B, = 84B?B3+ 109B1B3  32B1B4+ 51B3Bs Bs

Y27 98819 T 3618 1152¢7 B 288016 1152t5°

Precisely speaking, the equation (2.69) by itself does not determine the “integration con-

7

stant,” i.e. there is freedom to add a term linear in t~! at each step of the recursion. Such
a term is, however, forbidden by the relation ugy = 8§Fg. For instance, the above results of

ug can also be obtained from the results of Fj; (¢ = 1,2) in [30]

1
Fl — —ﬂlnt,

7B} 29191132+ Bs
1440t5 5760t 1152t3

and one can verify that u, (g = 1,2) do not contain any terms linear in t~!. More generally,

(2.71)

=

since Fy (g > 2) are polynomials in t~1 and the action of Jy increases the degree of ¢!
at least by one, uy (¢ > 2) cannot have any terms linear in t~1. Therefore, one can in
fact unambiguously determine u, by recursively solving (2.69). Note that the polynomial
structure of Fy also allows us to compute it unambiguously from wug.

Let us next consider the genus expansion of W. In contrast to u, W depends not only on
y, t, gs but also on 3, though 5 does not appear explicitly in the differential equation (2.51).
The genus-zero part of W is obtained from (2.40) by ignoring the commutator of d, and
u(x) and by performing the integral with respect to the momentum p =i~19,

 dp g_.2 ePuo
Wymog = [ —eflptuo) = : 2.72
9=0 /_Oo 27T€ 2y/7B ( )

- 12 —



Alternatively, this form can also be obtained from (2.32) by noticing the following property
of the Gelfand-Dikii polynomials

u 2 ug 2
Ri = T +O(Dg) = T + O(g3)- (2.73)
Let us then expand W as
Py 2
W = G2IW,. 2.74
2 /77/8 ; g ( )

We have chosen the overall factor so that Wy = 1. By plugging the genus expansions (2.74)
and (2.68) into the differential equation (2.51) we obtain the recursion relation

g—1

- 1 -~
— W, = ;)ug_haowh + Eagwg_l (g>1), (2.75)

where 9 is given by
do = e PVape = 9y + Bt (2.76)

The equation (2.75) by itself again does not determine the ¢-independent part of W,. How-
ever, if we express W in terms of u using (2.32) and (2.22) and consider the genus expansion,
we see that the only possible source of t-independent term is ug with no derivatives acting
on it. As we saw above, the contribution of such wug is entirely captured by the overall
factor in (2.74) and consequently W, (g > 1) does not contain any t-independent term.
We can therefore unambiguously compute W, by recursively solving (2.75), starting from
the initial condition Wy = 1. For instance, we find

3 2 2
_ b 24°B1 — BBs 531‘ (2.77)
24t2 24¢3 12¢4

Wi

It is also easy to prove that Wy is a polynomial of weight (3g,—2g) in the generators
B, (n>1), Band t~!, to which weights (n, 1), (1,0) and (0, —1) are assigned respectively.
Finally let us consider the genus expansion of Zjp

By

> 9297, (2.78)

ZyT =
27?539s g=0

From the relation 0,Z;r = W, one can show that Z, and W, are related by
B o0z, = Wy, (2.79)

where Jp is defined in (2.76). Note that the extra factor 5~! comes from the difference
of the powers of 8 in the prefactor of W (2.74) and Zjr (2.78). One can prove that
Wy (g > 1) has the structure W, = 2292_2; (til)ng(k) when written as a polynomial in ¢~!.

It then follows from (2.79) that Z; (¢ > 1) has the structure Z, = Zii;?_l(t_l)kZék).
Then using (2.79) we can easily compute Z; (g > 1) from the result of W, by iteratively
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determining the coefficient Zék) in descending order with respect to k. For example, from
the result of W; in (2.77) we find

_ B BB (2.80)

7, = .
V7 om " 242

We have checked that the on-shell value of Z; reproduces the known intersection numbers

39—2
Zy| =3 e (2:81)
t=1,y=0 =0

One can see that Z, becomes small when 8 < 1, i.e. at high temperature T" = B> 1.
In this sense the genus expansion of Zjp in (2.78) can be thought of as a high temperature
expansion. As we will see in section 2.6 we can consider the opposite low temperature limit
T < 1. To study the low temperature regime it is useful to define

- 3 39—2-4 T 0 39—2—8 eTr
Z,= 3797 ‘ = E — 9= = . 2.82
g IB g y=0,t=1 o | <'L€ ¢1 >971 1— wl ) ( 8 )
= 97

In the last equality we have used the selection rule (2.10). The first three terms are

- 1 T
7= — 4+ —
L= o T o

~ 1 N 29T N 13972 16973 N 2974
1152 5760 11520 11520 3072’
~ 1 T 378172 4720973  127189T*
Zs = + + + +
82044 414720 © 2903040 = 8709120 = 8709120
80833797°  8497697T° 929284177

348364800 + 298598400 * 522547200

(2.83)

Using the above algorithm we have computed Zq up to g = 46.> These data provide us
with valuable information of the large genus behavior of the genus expansion. In particular,
we find the all-genus result of the intersection number </<fwi’g _2_£>971 with fixed ¢

¢ 39—2-0, _ Pu(g)
<’i 1/]1 >Q»1 = (24)99!7 (2'84)
where Py(g) is a degree-2¢ polynomial of g. The ¢ = 0 case is computed in [30] with the
famous result Py(g) = 1. The £ = 1 case has appeared in [36] with the result

Pilg) =1+ (g~ 1) (285)

5The data of Z,(g = 1,--- ,46) are attached to the arXiv submission in the file zdata.txt. The reader
can import this file to Mathematica by the command data=Get["./zdata.txt"];. Then data[[g]] returns
Z4. We have checked that our data agree with the result of Zograf up to g = 20 [35].
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From our data of 29 we find Py(g) for ¢ > 2, which are not known in the literature:

1
Py(g) = —(g — 1) (1008¢® — 1200¢> + 888g — 175) ,

175
1
Ps(g) = %(g — 1) (12096¢° — 31104¢* + 358569> — 25644¢> + 7960g — 875), (2.86)
) .
Pyg) = 33657F (g — 1)(11176704g" — 46303488¢° + 821145604 — 89621280¢*

+ 62820096¢° — 2297425242 + 8338585¢ — 336875).

One can see from (2.84) that (k w?’g 2 Z> .1 does not exhibit the usual (2g)! growth with
fixed £. The (2g)! growth comes from the opposite end (k39~274¢¢), | with fixed small
d [23, 37]. One can also see that the sum over genus of (2.84) is convergent, which we will
study in detail in section 2.6.

From our data of Zg up to g = 46, we have extracted numerically the large genus
asymptotics of </139—2_d1/1f> g,1 using the technique of Richardson transformation. We find

(k39727dydy 1 1 s 2\0 m\2 T(3/2)
szod ~vel) (3) taprs |
2 _
+(_2511_6d 9d;r211 65d,0>r(2g_3/2_1)+..., (g> d).

(2.87)
For d = 0 this agrees with the result in [23, 37]. Plugging (2.87) into the definition of
Vg,1(b) in (2.11), we find the large genus asymptotics of V; 1(b)

2(471_2)2‘973/2 0

Vq,l(b) ~ (271’)3/2 Z fn(b)F(Zg - 3/2 - n)7 (g > 1) (2'88)
n=0
with 5 1
fob) = 5 sinh 7,

2.89)

5 17 b b 2 b (
D=2 4L ho 1+ cosh= | .

f1(b) <24+3772+87r2> psihg + — ( + cos 2)

fo(b) agrees with the result in [10]. Note that the above fn( ) vanishes at b = 27i which
is consistent with the property V, 1(27i) = 0 [37]. The large genus asymptotics in (2.88)
implies that there is a non-perturbative correction of the form

e an? = e 3R, (2.90)

This is interpreted in [10] as the effect of ZZ brane [38] sitting at E = —%2 and the instanton
action agrees with the value of the effective potential ‘/eﬁ‘(—%Q) = 5. (See (3.18) for the
explicit form of Veg(E)).

2.5 Genus-zero part of Zjr

Let us revisit the genus-zero part of Zjr using our expression of the macroscopic loop
operator (2. 41) At genus-zero, (2.41) is reduced to

/ / p 5 —p2+ug(a’ —2 dx,eﬁuo ) (2.91)
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As discussed in [30], the a-dependence of ug is determined from the classical string equa-
tion (2.65). Recalling our definition ¢y = hz in (2.28), (2.65) is rewritten as

> k
ha = ug — Ztk% (2.92)
k=1 )

For the on-shell value of the coupling ¢, = 7, (n > 1), this becomes

© o 1\k
hm:uo—z(é 1)), 1 = Vuoi(2y/uo). (2.93)

k=2

Then we can change the integration variable in (2.91) from z to ug via the relation (2.93)

Z(g 0) 895 Bu
JT 2\/7

2Fh duJo (2v/u) e (2.94)

2\/717, [uo d’l)[0<2\f>

Here 1y(2+/v) denotes the modified Bessel function of the first kind, which should not be
confused with Iy(ug, {tx}). Finally, using the relation

& e —BE T
—e P 2.95
e 7Y, .
/v VE —wv B (2.95)
we can recast Zj (g 0 n (2.94) into the integral of eigenvalue density
(9=0) _ [T
Zyr = / dEe P po(E),
o (2.96)

(®) /E dv Ip(2/v)
p(B)= | ==

—ug 2th \/E — v
When ug = 0 this reduces to the familiar form of the eigenvalue density of the Schwarzian
theory [13]

_[F dv Iy(2y/v) _ sinh(2VE)
Po(E) _/0 2mh \;m B 2nh (2.97)

and the genus-zero part of Zyr in (2.16) is correctly reproduced

00 . 671
(9=0) _ 75Esmh(2\/E) _ e 9.8
z5% / dBe ot N (2.98)

To summarize, our expression of Zyr as the macroscopic loop operator Tr(e#@II) in (2.43)
automatically includes the contribution of disk topology (g = 0) as well as the higher genus
(g9 > 1) corrections. In other words, we do not have to treat the disk and other contributions
separately as in (2.16). Our expression Zyp = Tr(e’?Il) captures all contributions in
one shot.
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In the large N limit of the matrix model, the genus-zero resolvent obeys an algebraic
equation which defines the so-called spectral curve. In our normalization of E and A
n (2.97), the spectral curve of the matrix model is written as

= sm (24/€) = = sm (22), (2.99)

where F, £ and z are related by
E=—¢=-2° (2.100)

As utilized heavily in [10], the genus expansion of matrix model is essentially determined
by the spectral curve via the topological recursion [14]. However, to perform the actual
computation of the genus expansion with a fixed number of boundaries, the topological
recursion turns out to be a very slow algorithm since to compute Vj 1(b) we need to know
all the data of Vi, with ¢’ +n < g+1 (¢’ > 0,n > 1). As emphasized in [23], the method
of KdV equation in section 2.4 provides us with a very fast algorithm for the computation
of the genus expansion at a fixed number of boundaries.

2.6 Low temperature expansion

As we saw in section 2.4, the intersection number (x Z¢3g > £> with small ¢ can be com-
puted for all genus. We observed that the values for fixed ¢ are governed by the poly-
nomial P(g). Based on this observation we expect that one can write the expansion of

(Z(B)) = Z31(0,0) as

00 39—2 1y
1 T° Py(g)
(Z(B)) = ———— €T+ (9:8°)% T
V2mgs 33/2 gz:; — (! 249¢!
1 =7t 2 a9 Pi(g)
_ 4 /2\29 20\9 2.101

3/2 29
@Tg 5372 £ Z 0 Z (958 24991

When going from the first line to the second line of (2.101) we have removed the restriction
3g — 2 > { since Py(g) = (24)9g(k ¢3g - £>971 vanishes when 3g — 2 < /. In the last
equality of (2.101) we used the property Py(0) = 1 to extend the summation to g = 0.
It is natural to expect that Zyr(to,t1) also admits a similar low temperature expansion,
namely a power series expansion in T with gs3%/2 being fixed. In what follows we will see
that such an expansion indeed exists and can be computed with the help of the differential
equation (2.51) and the results of the genus expansion of u.

To begin with, let us consider the all-genus resummation of the £ = 0 term in (2.101)

] 0o ] 938
- 33/2)29 __ &= 2.102
V21 gs 33/2 g;)(gsﬂ ) 24991 \/2mgy33/2 (2.102)
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We notice that this is essentially the partition function in the Airy case

- 1253
- . -pE _ _ ¢ " 2.103
ZAlry = /OO dEpAlry(E)e - 2ﬁhﬂ3/2’ ( )

where
pairy(E) = 13 [AI( h3E)? — Ai(—h~3 B)AY(—h ™3 B) (2.104)

and 7 is related to gs by (2.28). (See appendix A for the summary of the Airy case). In
what follows we will use & as the genus counting parameter instead of gs.

One can generalize the exponential factor in (2.103) to the off-shell value, as follows.
When computing Zjyp from W = 0, Zjr, the above £ = 0 term at each genus is originated
from the O(5%9) term in W,. We observe that the O(%9) term, which is of highest order
in 3, appears in Wy as

B39
W, = 249g10%s 4o (2.105)
This gives rise to the factor
o
339 2
Z(\/iﬁ)Qgﬁ =e12?, (2.106)
o 249¢glt=9
where we have defined
h = hB3/2, (2.107)
Thus it is natural to make an ansatz
VT >
W = Qﬁew? FrW,, W = > Thw(h), (2.108)

where we have factored out the genus-zero part (2.72) and the exponential in (2.106) as
the prefactor, so that we have wy = 1. In the rest of this section we regard T and h as the
independent parameters. Plugging this ansatz into (2.54), we find

h? h2T?
_atWL + G?WL = ﬁDWL + l)?’VVL7 (2.109)
where D is given by
L L 1  Rm®’B
D=c¢ 12z2 #3061;2‘*‘% =9y + T + 761541 (2.110)

and ¥ = u — y is given by

Z 294, = Z V2h) T30, (2.111)

g=1

Here ug, is determined by the recursion relation (2.69). By plugging the expansion (2.108)
into the differential equation (2.109) and integrating the O(T*) part with respect to ¢, one
can recursively compute wy starting with the initial condition wg = 1. To determine wy
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uniquely one needs to require that w, (¢ > 1) does not contain any O(t°) term. This can
be shown as follows: since W, (g > 1) is a polynomial in t~! without any O(t°) term,
Wr,—1= exp(—%t_Q) a0 gng — 1 is a formal power series in ¢t~! without any O(")
term and so does wy (¢ > 1). Consequently, (2.109) unambiguously determines wy. The
first two terms of wy are given by

R Rt
(X B
b <6t3 + 6Ot5> b

h2 +h4 N 7hS . hs B2 h2 . R4 . RS 5
wo = — + — —
2 6t4 86 ' 7208 " 7200¢10 ) 1 1263 " 3066 ' 8407 ) 2

(2.112)

It turns out that wy is actually a polynomial of weight (¢, 0) in the generators B,, (n > 1),
t~1 and h, to which weights (n,1), (0, —1) and (0, 1) are assigned respectively.
Finally, let us expand ZjT as

h2 Yy

e122 T Sy
Zyr = ———27 Z; = — 2.113
JT 2 /h L L 2 7 2 ( )
The relation 9, Zyp = W is rewritten as
TDZ;, =Wry. (2.114)

Comparing the coefficient of T* on both sides of (2.114) we find the recursion relation for
zy (E > 0)

’B
zp =1 |:£"wg -/ <(90 + h6t41> Zz_li| R (2115)

where we formally set z_; = 0. For instance, using wg = 1 and the result of w; 2 in (2.112)
we find

20 =1,
h4
4T (1 " 60t4> B (2.116)
Tht KO 1 K2Rt RS
= Bl+(2———-— - —— | Bs.
2 (60t5 METT 3600t9> Ol < 612 3044 420756) 2

For the on-shell value (y,t) = (0,1), (2.113) becomes

—Z(h), (2.117)

where Zp := zz| Note that Z;(h) can be thought of as the generating function for

y=0,t=1"
. . _9_
the intersection numbers (kf> 2 9.1

o0

S (VBRSO s, (2.118)
g=0

= (12)94!
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The first few of them read

h4
s1(h) =1+ —
Zl( ) + 607

h2 Rt 4n8 8
- o 2.119
Z(h) 5710 " 315 T 36000 (2:119)
() =1 hj N 16n* N 1163h° N 13h® N h'0 N h'?
sV 12 45 5040 560 1575 ' 216000

We have computed Z,(h) up to £ = 50. The method above serves as another very efficient

algorithm for computing the intersection number (x €w3g 2= €>g’1, in particular for large g
with fixed ¢.
Note that Zy(h) is obtained from Py(g) as
2 h 0 2 h?> h O
5(h) =e 2P, (2(%> etz = P, ( + 28) 1. (2.120)

Conversely, noticing that

R h O h2k
<12 + 28h> 1= 19k + lower order terms in h, (2.121)

one can easily calculate Py(g) from Z;(h) by iteratively determining the coefficients of

k(0 < k < 2¢) in descending order. We have thus obtained P;(g) also up to £ = 50. As
we explained below (2.101), P(g) vanishes for {g € Z~0|3g —2 < ¢}. We have verified
that our results indeed satisfy this property.

3 Various limits in the low temperature regime

In the low temperature regime we can take various limits of Zjr and the BA function
Y(E). In this section we will consider the low energy limit of p(F) and ¢(FE), and also the
't Hooft limit of Zyp and the Laplace transform 121\ of the BA function. In the rest of this
paper we will turn off the deformation parameter t5 = t1 = 0 and consider the partition
function Zjp and related quantities at the on-shell value of t,, = 7, (n > 0).

3.1 Low energy expansion of p(F)

In this subsection we will consider the low energy expansion of the eigenvalue density p(E)
in the limit
hE—0 with n=—h3E fixed. (3.1)

In this limit the genus-zero part po(F) in (2.97) is expanded as

dE 92f [pl+3 2 220(— z+§
E)dE = — —_— = 3t 2
Po(E) whz(2€+l Z 2£+1 (3:2)
®The data of Z¢(h) (£ =1,---,50) are attached to the arXiv submission in the file zlowdata.txt.
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Let us consider the first term of this expansion

inh(2vV E)dE vEdIE
po(E)dE = 22 (2VE)E _ T (3.3)
21h mh

It is well-known that this term corresponds to the Airy case as reviewed in appendix A.
In this case the genus-zero eigenvalue density in (3.3) is promoted to the full eigenvalue
density pairy(E) in (2.104). It turns out that each term of this expansion (3.2) has its own
all-genus completion

oo
— " nstog(m)dn, (3.4)
£=0
where g¢(n) is defined in such a way that it reduces to the ¢-th term in the expansion of
po(E) in (3.2) in the classically allowed region E > 0

92¢( e+

: )
ngf_noo oc(n) = mv (3.5)

up to an oscillatory correction. As we discussed above, go(7) is given by pairy () in (2.104)
up to a normalization factor

eo(n) = Ai'(n)* — nAi(n)*. (3.6)

In terms of the coupling h defined in (2.107), Zairy in (2.103) is written as

h2
(9] B 00 e1s
| ane i = [ anet et = 52 (37)

We can determine the higher order terms gy(n) by matching the low temperature
expansion of Zyp in (2.117)

h2

2
e12 ° Te e12 §Z
Zyr = —=— » ——2%¢(h) - : 3.8
T aymh =i % 2\fhzf'< ) (h) (3:8)
From the definition of eigenvalue density
Zyr = / dEp(E)e ", (3.9)
the expansion of Zjr (3.8) and the expansion of p(E) (3.4) become consistent if gy(n)
satisfies
h2
" e hE wing, i 3.10
/_Oodne o / dne"*"oy(n) = N e Zo(h). (3.10)
Using (3.7), this relation can be formally solved as
2((=09)*")
= Y 7 . 3.11
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For instance, from the result of Z;(h) in (2.119), o1(n) is given by

5
o1(n) = =8, oo(n) — gggo(ﬁ) = 135 6n°Ai(n)? — Ai(n)Ai'(n) — 4nAi'(n)?]. (3.12)

Here the negative power of J, should be understood as the integration with respect to
7. One might think that there is an ambiguity in the integration constant, but ogy(n) is
actually determined unambiguously by requiring (3.10). Using the data of Z;(h) in (2.119)
we find

4
eo(n) = 220 pimy? (296”3 i3 ) Ai(n)? - (16” T 8”) Ai()AY (),

1575 1575 " 200 225 ' 525
64n7 16n* 37 .. \9 7041n° n? . .
_ - A ) Ai(n)A 3.13
23(n) (10125+ 567 8100 ) M+ 23605 T 189 ) AMAT() (3:13)

64n°  32n° 19 ,
* (101?725 - 1417775 N 8100) AT ()"

This procedure enables us to find the all-genus completion of the eigenvalue density order

by order in the small E expansion (3.2). In general, gy(n) is written as a combination of

the Airy function Ai(n) and its derivatives. This implies that gy(n) is exponentially small

in the classically forbidden region n > 0, which is indeed necessary for the convergence of

the integral (3.10). In appendix B, we consider a partial resummation of this expansion

of p(E).
3.2 ’t Hooft expansion of Zjr

In the low temperature regime we can take the 't Hooft limit (1.1). As we will see shortly,
the relation between Zj1 and the spectral curve becomes manifest in this limit.

We can rearrange the low temperature expansion in terms of the parameters A and 7
n (1.1). Plugging the relation

3\ 2
hz(;) Cor=h (3.14)

into the low temperature expansion of Zyr in (3.8), we find that the free energy is expanded
as (1.2). From the data of Z;(h) obtained in the previous section, we can compute F, ()
in (1.2) as a power series expansion in A\. By matching the first few orders of this series
expansion, we find the closed form of Fy(\)

Fo(X) = %)\arcsin()\)z + %(\/1 ~ A arcsin()) — )\). (3.15)

One can show that this is written as

A2
R =2 [ ey, (3.16)
0
where £(y) is determined by the spectral curve (2.99)

y=5sn@VE) = ly) = | arcsin(2y)” (3.17)

- 29 —



Namely, Fo(A) is given by the integral of one-form £dy on the spectral curve. Recall
that the effective potential Veg(E) for the eigenvalue is given by the integral of another
one-form yd§

V() =2 | e = Lsin(2V=F) - V=Feos(2vE) (3.18)

0
As we will discuss in section 3.4, the appearance of the “dual” one-form £dy in (3.16) can
be understood from the Laplace transformation.

From the data of series expansion, we also find the closed form of Fj ()

3 1 1.k
Fi(\) = —3 log arcsin(\) — 1 log(1 — \?) + 3 log yoe
17 1 23\
AN)=—-——— -1 _
F2N) 3arcsin(\)3 [ + m] 12(1 — A2) arcsin())2 (3.19)

1 2 5
- 72 . .
* 12 arcsin(\) [ VI— X2 + (1— )\2)3/2]

In section 3.4, we will see that F2(\) can be obtained analytically from the result of

topological recursion. Apparently, the above form of F,(\) becomes singular at A = 1,
and (3.19) can be trusted only in the region A < 1. If we analytically continue F,,(\) to
complex A, there is a cut running from A = 1 to A\ = 400 along the real axis of complex
A-plane. It is interesting to understand the physical origin of the singularity at A = 1.
Before closing this section, we comment on the genus expansion of free energy F =
log Zyr. In the original parameters (gs,5) without taking any particular limit, the free
energy admits the ordinary genus expansion
B+ 52
24

0o
F=Y g2Fp) = ; —log (V27gs8*?) + g2 ¢ 7+ O(g). (3.20)
g=0

This expansion is valid in the high temperature regime § < 1. On the other hand, in the
low temperature regime in the 't Hooft limit (1.1), the free energy is expanded as (1.2).
One can recognize that the high temperature expansion (3.20) is “closed string” like, while
the low temperature expansion (1.2) is “open string” like. gs and A can be thought of as
the closed string coupling and the open string coupling, respectively.

3.3 Low energy expansion of ¢(E)

In this section we will consider the low energy expansion of BA function t(F) in the
limit (3.1). This expansion is easily obtained from the expansion of W = (z|e®?|z) by
using the relation

[e.e] o
W= / dE(z|E)e PP (E|x) = h/ dE e PEy(E)?. (3.21)
—c0 —00
Here we have put the extra factor of & to match the result of Airy case in (A.4). From the
low temperature expansion of W

h2 h2

€17 — 1 €1z = 2er1 wy(h)
W= > T aw(h) = > ho : (3.22)
2y/m = 2/mhs = s
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we can compute the low energy expansion of ¢ (E)? starting from the relation

h2
o ST IR e
dne””TAi(n)” = . (3.23)
—00 Qﬁhg

As in the case of g;(n) in (3.11), ¥(E)? can be formally written as

ad 20—4 W 3/2
G(E)? =) hs f(((_g)))Al( )2 (3.24)
£=0 n

From this expansion we can easily find the expansion of ¢(E) in the low energy limit (3.1)

)= > r3EDT(9,)Ai(n). (3.25)
=0

The first few terms of the differential operators ¥, read

U =1,
Uy = 49, + 07
15
v, 80, 2120] N 50 90, (326)

225 315 ' 2 8

32015 1360} 6609 3905 165503 11
+ - + - + =

10125~ 945 35 5 216 ' 24

In a similar manner as in section 3.2, we can consider the 't Hooft limit of the Laplace

Uy = —

transform of ¢(E). Plugging the integral representation of Airy function

Ai(n) = dfv.eéfm’ = / i\ ; egTiﬁ% (3.27)
¢ 2mi C 4rmihs

into the expansion of ¢)(E) in (3.25), we find the 't Hooft expansion of the Laplace transform
() of the BA function ¢ (F)

2 d\  Ex ~
¢(E):/ i et Zhﬂ%( ,\h—> /4mhezhw(A). (3.28)

More explicitly, QZ()\) is written as
D) = e i ﬁgé\llg< - 1Ahé>. (3.29)
=0 2
In (3.27) the integration contour C'is chosen as the so-called Airy contour running from

e~ 3 00 to €3 0o on the complex A-plane. As in the case of the partition function Zjr, 12()\)
admits the open string like expansion

V(N = exp (Z h”‘lGn(A)> . (3.30)

n=0
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From the data of ¥, in (3.26), we can compute G, (\) as a series expansion in A. By
matching the first few orders of the series expansion, we find the closed form of G, ()

GolX) = 3 Fol),

1
Gi(A) = —Zlog(l - ),

)
G2(N) = 6 arcsin(\)3 [1 *

. £\ (3.31)
m] + 6(1 — A?) arcsin(\)?

1 D 1 1

* arcsin(\) [6(1 —A2)B32 31— 12] ’
where Fy(A) is given by (3.15). Again, in the next section we will see that Ga(A) can be
obtained analytically from the topological recursion.
3.4 WKB expansion of ¢(F) and p(E) from topological recursion
In this section we will systematically compute the semi-classical fi-expansion (WKB ex-
pansion) of ¢(FE) and p(F) from the topological recursion.
3.4.1 WKB expansion of ¢(F)

Let us first consider the WKB expansion of ¢(E). Once we know the WKB expansion of
Y (E), the expansion of 1)(\) can be obtained from the saddle point approximation of the
integral

i = [ apeBum) = [ deefiu-g, (3:32)

—00 —

where FE and £ are related by (2.100). The BA function has the following WKB expansion

Y(F) = exp (Z n“sn@)) . (3:33)
n=0

It is well-known that the leading term Sp(€) is given by the integral of one-form yd{ on the
spectral curve (2.99) (see appendix D for a review)

1

3
5u(6) = = [ w(€)de’ = ~3Veal-9) (334)

where Vg is given by (3.18). In the limit 7 — 0, we can evaluate the integral (3.32) by the
saddle point approximation. The saddle point &, of (3.32) is given by

A—sin(2/&) =0 = &= %arcsin()\)Q. (3.35)

Then the leading term G()) in the fi-expansion of 12()\) in (3.30) becomes

_ &
2

Go(N)

A2
+50e) = [ sy = R0 (3.36)

As advertised, the integral of dual one-form £dy naturally arises from the saddle point
approximation of (3.32).
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Let us proceed to the higher order corrections. Using the fact that the BA function is
the expectation value of the determinant operator

Y(B) = e 3 (det(E — H)), (3.37)
Sp(€) can be computed from the connected correlators of the operator X = Trlog(E —
H) [14]
1 m
Su(€) = Y X", (3.38)

2g—1+m=n
As demonstrated in [10], these correlators can be computed systematically by the topolog-
ical recursion.” For instance S1(£) comes from the cylinder amplitude

$1(€) = 5 (X%)gm0 = — 5 loa(2,/8) (3.41)

Then the order O(R°) term of the integral (3.32) is obtained by evaluating the Gaussian
integral around the saddle point
1 1
Gi(\) = S1(&) — 5 log[—Sh ()] = —5 log cos(2v/&x). (3.42)
One can check that this reproduces the result in (3.31).
One can easily generalize this calculation to higher order corrections. To do this we set

¢ — & =Vho, (3.43)

and perform the integral of ¢ perturbatively by the Wick contraction with respect to the
Gaussian measure around the saddle point &,

exp (i h”_lGn()\)> e (Y <exp <Z ALS, (&, +\f¢)>> (3.44)
n=2

where (¢?™) is given by
o[ dpe2S3 €S g2m (o gy
<¢ > fd¢els//(£* Y2 - [_S(/)/(é'*)]m (345)

Let us compute Ga(\) using this formalism. At this order we need S3(§), which is

easily obtained from the topological recursion as

1, 4 5 1
S2(8) = (X)g=1 + 3|<X Jg=0 = 4823 2427

"Our normalization of the spectral curve y = % sin(2z) = 2z + O(z%) is the same as the Airy curve y = 2

(3.46)

near z = 0. Thus the first few orders of resolvent } B2972 "W, (21, - -, 2s) have the same coefficients
as the Airy case
1 1
W =2 , W JZ2) = =, W 1 22,23) = m5 55 .
0.1(2) = 2zy(2) 0.2(21, 22) =) 0,3(21, 22, 23) R (3.39)

For the g = 1 corrections we find

3+ 222

521 4 32323 + 525 + 4(2325 + 2123) + 22125
4824 '

322828

Wia(z) = Wi,2(21, 22) = (3.40)
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where z is the uniformization coordinate defined in (2.100). From our general for-
mula (3.44), G2()) is given by

(3) 2 (4) (3) /
: : - (3.47)
b5 (S1E) + S(€) ().

One can check that this reproduces the result in (3.31). We can in principle compute Gy, ()
up to any desired order using this formalism.

3.4.2 WKB expansion of p(F)

We can repeat the same analysis in the previous subsection for the eigenvalue density p(FE).
It turns out that the 't Hooft expansion of Z;r is related to the WKB expansion of p(E)
in the forbidden region F < 0.

Let us consider the WKB expansion of p(E)

p(E) = exp [Z h”_lSn(z)] . (3.48)

n=0
So(z) and Si(z) are given by [10]

822

So(2) = —Veg(—2?), Si(z) = —log <7T> . (3.49)

As discussed in [10], Sp>2(%) is written as some combination of the connected correlator of
the operator Y

Sn(z)= > %<Ym>g (3.50)

2g—1+m=n

where Y is given by
Y =Trlog(E(z) — H) — Trlog(E(—z) — H). (3.51)

Here the sign of z in F(+z) distinguishes the two sheets of the spectral curve. In other
words, Y is defined by integrating the resolvent from —z to +z. Again, one can compute
Sn(z) systematically from the topological recursion. For instance Sy(z) is given by

1 17 1
= (V)1 + = (Y3 oo = — S — 3.52
22) = Womr + 511 o0 = —503 ~ 132 (352
One can check that the saddle point approximation of the integral
Zre= [ aBpE) T = [ dgp(-g)e® (3.53)

correctly reproduces the free energy F,,(\) in the 't Hooft limit in (3.19). This computation
is completely parallel to that in the previous subsection 3.4.1, so we will not repeat it here.
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4 Numerical analysis of p(F) and ¥ (FE)

In this section we will numerically study the behavior of p(F) and ¢ (F) as a function of E.
Let us consider the integral representation of p(E) given by the inverse Laplace trans-
form of Zy7(5)
dp
oB) = [ 3Zin(B)e”. (11)

27

Here we take the contour C' to be homotopic to the Airy contour. We will approximate
this integral by keeping the free energy F,,(A\) up to n = 2 obtained in (3.16) and (3.19)

A AE 4 Fo(A)
E) =~ —=+ F1(\) + hF2(N)| . 4.2
o)~ [ s exn |25 A0 ) (4.2
This truncation might be justified when the coupling 7 is small A < 1. To avoid the cut
of F,(A) running from A = 1 to A = 400 along the real axis, we choose the contour C
to cross the real axis in the region 0 < Re(A) < 1. In practice, in order to evaluate the
integral numerically we choose C' as a union of three straight segments

C= [e_%ioo,e_?‘] U [e_?,e?] U [e?‘,eﬁm] (4.3)

and use NIntegrate in Mathematica to evaluate the integral. In figure 1 we show the
numerical plot of the integral (4.2). As expected, p(E) approaches the genus-zero value
po(F) in the allowed region £ > 0. It turns out that the genus-zero part comes from the
integral around the origin A = 0. Although our integration contour (4.3) does not encircle
the origin, we can deform the contour to pick up the contribution around A = 0. However,
we should emphasize that the contour (4.3) is completely fixed in the actual numerical
computation of the integral (4.2). Near A = A = 0, we can go back to the original
expression (4.1) using 3 as the integration variable. In the limit # — 0 with fixed /3, only
Fi(A) and the first term F(\) = 1 + O(A?) in the small A expansion of F,()) survive

o0

lim R Fa(hB) = —log(2v/h3%/2) + ; + O(hY). (4.4)

n=0

Note that this is the same as the first two terms in the high temperature expansion (3.20).
It is interesting that the genus-zero term 1/ in the original expansion (3.20) becomes a
part of Fa(A) after taking the 't Hooft limit. Put differently, in order to reproduce the
genus-zero part po(E) numerically we have to include Fa(A) in the approximation (4.2).
Then the contribution around = 0 is evaluated as

1

N dg 66E+% _ En
p(E) ~ izomzﬁhﬁ?ﬂ? = 2\/7?711'%(2\@). (4.5)

Using the explicit form of the modified Bessel function

I%(z) = \/Zsinh(z), (4.6)

one can see that (4.5) reproduces the genus-zero eigenvalue density po(E) in (2.97).
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Figure 1. Plot of p(E) for i = 1/30. The blue curve represents p(F) in the approximation (4.2)
while the orange curve represents the genus-zero eigenvalue density po(F) in (2.97).

Next consider the difference between p(E) and po(E)

pup(E) = p(E) — po(E). (4.7)

We can estimate this difference by the saddle point approximation of (4.2). When E > 0,
we can pick up the contribution of two saddle points on the imaginary axis of complex
A-plane

A+ = +isinh(2VE), (4.8)

by deforming the contour C' within the homotopy class of Airy contour. Adding the
contributions of two saddle points (4.8) we find

pup(E) ~ — 1 cos 2\/ECOSh(2\/E) - sinh(2\/E)

B 5% , (E>0), (4.9)

where the prefactor comes from the Gaussian integral around the saddle points. This
agrees with the result of [10] obtained from a different method. In figure 2 we show the
plot of pnp(E). One can see that the numerical value of p,,(E) fits nicely with the analytic
expression in (4.9).

In a similar manner we can numerically compute the BA function ¢ (F) in the approx-
imation of keeping Go(A) and G1(\) in (3.31) in the 't Hooft expansion of 12()\) (3.30)

P(E) ~ /C d>\, (1- /\2)_% exp (AE_;;:()()\)) . (4.10)

In this case we do not have to include Ga(A) for the purpose of numerical analysis since
G2(A\) = O(A) in the small A expansion and hence there is no non-trivial contribution from
A = 0. Again, in the allowed region F > 0 there are two saddle points A1 in (4.8). Adding
the contributions of these saddle points we find

2v/E cosh(2v/E) — sinh(2VE) 7
i - 4] . (E>0). (4.11)

Y(E) =~ - COS
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Figure 2. Plot of p,,(E) for i = 1/30. Blue dots represent the numerical value of p,,(E) obtained
from (4.2) while the red curve is the plot of analytic expression in (4.9).

v

5L

Figure 3. Plot of ¢(E) for i = 1/30. Blue dots represent the numerical value of ¢ (E) obtained
from (4.10) while the red curve is the plot of analytic expression in (4.11).

In figure 3 we show the plot of ¢)(EF). One can see that the numerical value of ¢(F) agrees
well with the saddle point result (4.11) in the allowed region E > 0.

Let us consider the behavior of ¢(E) in the forbidden region E < 0. Naively, when
E < 0 there is a saddle point

A = sin(2v—FE) (4.12)
and it contributes to ¥ (F) as

Vet (E)
2h

Y(E) =~ exp [— ] , (E<0), (4.13)
where the effective potential Veg(E) is given by (3.18). It is argued in [10] that this model
is non-perturbatively unstable since Vog(E) is not positive definite and ¢ (E) blows up as
E — —occ.

However, we do not see this pathological behavior in the numerical plot of ¥(F) in
figure 3. As we can see from figure 4, Re[Fp())] is negative in the region Re(\) > 0.
Thus, the real part of the leading term EX + Fy(A) in the WKB expansion (4.10) is
negative for ¥ < 0 with an appropriate choice of contour C. This suggests that the
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Figure 4. Plot of the real part of Fy(\) on the complex A-plane.

integral representation of ¢ (FE) in (3.28) and its approximation (4.10) are convergent and
well-defined in the region E < 0 as long as the contour C lies on the right half Re(\) > 0
of the complex A-plane, under the condition that C' crosses the real axis in the region
0 < XA <1 to avoid the cut of Fy(A).

Now suppose that we decrease the value of E from E = 0 toward the negative E
direction. At the begging E ~ 0 the saddle point A, in (4.12) lies on the positive half
plane A, > 0, but A, turns negative at £ = —7’742 and it ceases to contribute to the integral
below FE = —%2. This suggests that Vog(E) in (3.18) cannot be trusted for F < —%2. It
is tempting to speculate that this model is actually non-perturbatively stable. It would be

very interesting to understand the non-perturbative instability discussed in [10] better.

5 Comment on the spectral form factor

One can easily generalize our expression of the macroscopic loop operator Zyp = Tr(e#%II)
to the case of arbitrary numbers of boundaries by applying the general formula in [22]
to the JT gravity case t, = ,. Of particular interest is the connected correlator of two
macroscopic loops and its analytic continuation known as the spectral form factor. The
spectral form factor is extensively studied in the literature as a useful diagnostics of the
quantum chaos of the SYK model and its bulk gravity dual [39-42].

The connected two-loop correlator is written as [22]
(Z(B1)Z(B2))comn = Tr (e”19(1 — M)e™C11), (5.1)
and the spectral form factor is obtained by an analytic continuation of the correlator

g(ﬂa t) = <Z(ﬁ + it)Z(/B - it))conn- (52)
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As a function of ¢, g(3,t) exhibits characteristic features called ramp and plateau. These
features naturally correspond to the following decomposition of (5.1)

9(B,t) = Tr (e*°CII) — Tr (e(ﬁ+it)QH€(ﬂ—it)QH>

= (Z(2B)) — Tr (e(ﬁJrit)QHe(ﬁ*it)QH)' (5:3)
The first term is independent of ¢ and it sets the value of plateau. On the other hand,
the second term is a non-trivial function of ¢ and it is expected that this term gives rise
to the linearly growing ramp. It is interesting to show this explicitly for JT gravity. (See
appendix A for the computation of the spectral form factor in the Airy case). It would
also be interesting to consider the bulk gravity picture of plateau. The first term of (5.3)
might be interpreted on the bulk gravity side as a geometry where the two boundary circles
are merged into a single boundary. Such a geometry was considered before in the context
of 2d gravity (see figure 20 in [19]), but its status in the bulk geometry is not clear as
mentioned in [19].

6 Conclusions and outlook

In this paper we have seen that the partition function of JT gravity Z;p(8) = (Z(B)) is
written as the expectation value of the macroscopic loop operator Tr(e'BQH) in the matrix
model of 2d gravity in the closed sting background ¢, = 7, (2.6). By deforming this back-
ground by the two parameters (tg,t1), one can utilize the KdV equation to compute the
genus expansion of Zjp in a very efficient way. We have also shown that the low tempera-
ture expansion of Zyr as well as its 't Hooft limit (1.1) can be obtained systematically. By
evaluating the inverse Laplace transformation numerically, we have confirmed the oscillat-
ing behavior of p(E) and ¢ (E) in the region E > 0 as discussed in [10]. Interestingly, the
oscillating cosine term arises by adding the contributions of two saddle points (4.8). On
the other hand, we do not see any evidence of the pathological behavior of p(F) and ¢ (E)
in the region F < 0 within our approximation. It would be very interesting to understand
the non-perturbative instability discussed in [10]. It is desirable to perform more detailed
numerical analysis of 1)(E) along the lines of [43].%

There are many open questions and interesting future directions. First, it is interesting
to understand the physical meaning of the background t,, = ~, corresponding to JT grav-
ity. Naively one can imagine that the asymptotic AdSs is “built” by this background. To
see this more quantitatively, it would be useful to study the Kontsevich’s matrix Airy inte-
gral [29] corresponding to the background ¢, = 7,. In the modern interpretation [43-45],
the Kontsevich’s model and Witten’s topological gravity [28] are related by the open/closed
duality; the Kontsevich’s model arises as the open string theory on the FZZT branes while
the closed string background ¢, is obtained by replacing the insertion of FZZT branes
with the deformation of matrix model potential. It would be interesting to understand the
configuration of background FZZT branes corresponding to ¢, = 7, (see also footnote 4).

8We would like to thank Douglas Stanford for emphasizing this point.
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It is very important to understand the analytic properties of the genus expansion of
Zy1 and its non-perturbative completion. Apparently, the 't Hooft expansion of the free
energy becomes singular at A = 1, and the analytic form of F,()) in (3.19) can be trusted
only in the region A < 1 when A is real. It is interesting to understand what happens at
A =1 (or B =h"1). Also, it is very important to see if JT gravity is non-perturbatively
well-defined. One possible avenue is to study the string equation for u(x) in the background
tn = Yn, which we will discuss briefly in appendix C.

In section 3.1 we have constructed the full eigenvalue density p(FE) as a low energy
expansion in the limit (3.1) starting from the Airy case pairy(F). It would be very sig-
nificant if we can find the exact eigenvalue density p(E). It is argued in [46, 47] that the
eigenvalue density of the SYK model is closely related to the g-Hermite polynomials. It
would be interesting to see if the double scaling limit of the g-Hermite polynomials has
some connection to the exact eigenvalue density p(F) of the JT gravity case.

In section 5 we have briefly commented on the spectral form factor. Using the result
of [22] it is straightforward to write down the connected correlator of two macroscopic
loops (5.1). It would be interesting to compute it at least in the genus expansion. To this
end, we need to know not only the diagonal matrix element W = (2]e@|z) but also the non-
diagonal part (x|e®?|y). Fortunately, it is known [48] that the non-diagonal matrix element
(z]ePR|y) is written as some combination of the derivatives of tau-function, hence it is
possible to generalize the method of KdV equation in our paper to the computation of multi-
boundary correlators. We will report on the computation of multi-boundary correlators
elsewhere [49]. The result of the spectral form factor in the Airy case (A.16) indicates that
in the double-scaled matrix model the time scale of the transition to plateau diverges as
8 — 0, which deserves further investigation.

Finally, it is interesting to extend our approach to more general settings, including
JT supergravity [50], adding gauge fields to the bulk theory [51], and a possible analytic
continuation to the 2d de Sitter space [52, 53], to name a few.
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A Airy case

In this appendix we summarize the result in the Airy case, where the spectral curve is
given by
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and the corresponding classical eigenvalue density is

m(E) = Y2, (42)

This is realized by a double scaling limit of the Gaussian matrix model by zooming in on
the edge of the Wigner semi-circle (see [43] and references therein). In this case u(z) = x
and @ is given by

Q = h20? + z. (A.3)

In this appendix we will use the normalization ¢ty = z, which differs from (2.28) by a factor
of . The BA function obeying (Q + E)y(E) = 0 is given by the Airy function

G(E) = (z|E) = h™ 5 Ai[—h"3 (E + )]. (A.4)
One can show that ¢(£) in (A.4) is normalized as

(E|E') = / " dn(Bla)(z|E') = 0(E — E). (A.5)

—00

Now let us consider the one-point function of macroscopic loop operator

0 00
20) = [ dalale®a) = [ aBpn (), (A6)
where the eigenvalue density pairy(F) is given by
0
pain(E) = [ dolal ). (A7)

Using the expression of BA function (z|E) in (A.4), one can show that (A.7) reproduces the
eigenvalue density in (2.104). This defines a non-perturbative completion of the classical
eigenvalue density (A.2). We can evaluate the integral in (A.6) and find

1233
e 12
(28)) = 5 g (A-8)
This can be thought of as the generating function for the intersection numbers (wi’g _2> g1
Next consider the connected correlator of two macroscopic loops
<Z(51)Z(ﬁ2>>conn ="Tr (eﬁlQ(l - H)Q'BQQH) (Ag)

where II is the projector
0
II= / dx|z)(x|. (A.10)
— 00
The general n-loop amplitude ([[;"_; Z(5;))conn has been computed in [54] and the result
for the two-loop correlator reads

oo (Br+B2)?

<Z(61)Z(B2)>conn — 2\/77'h(61 T 52

St (Zm) | (A11)

~ 34—



Z(By*y

120
1.0+
08+
061
04+

0.2

S NS N S
2 3 4 5 6 7 8

Figure 5. Plot of two-loop correlator in the Airy case for A = 1/10. The blue curve represents the
disconnected part (Z(3)?)ais while the orange curve represents the connected part (Z()?)conn-

where Erf(z) denotes the error function

Frf(2) = \; /0 e (A.12)

It is interesting to compare the connected part and the disconnected part of the two-loop
correlator as a function of

723
(Z(8)%)ais = (Z(8))? = ——1—,
e BT (A.13)
2 6% h 3/2
<Z</3) >conn - MT(FL(Q,B)S/QErf<\/§B )

Here we have set 81 = Py = [ for simplicity. In figure 5 we show the plot of the two-
loop correlator in (A.13) for & = 1/10. One can see that at high temperature (small /)
the disconnected part (blue curve) is dominant, while at low temperature (large () the
connected part (orange curve) becomes dominant. As we lower the temperature there
occurs the exchange of dominance between the disconnected and the connected part at
some critical value 8 = Beit. A similar phenomenon was observed in the coupled SYK
model [55] and it was interpreted as the Hawking-Page transition on the bulk gravity side.
Since both (Z(8)?)ais and (Z(8)?)conn depend on B only through the combination A233,
the critical temperature scales as’

Berit ~ 15 (A.14)

We can also study the spectral form factor in the Airy case by analytically continuing
the result in (A.11)

9(B,t) = (Z(B +it)Z(B — it))conn- (A.15)
It turns out that the time derivative of g(f,t) has a simple form
t 13203 _ 1 242
o )= L B asne A1
19(8,1) 47Tﬁ\/m (A.16)

9A similar scaling behavior of e also appeared in the Gaussian matrix model before taking the double-
scaling limit [56].
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This 0;g(5,t) decays exponentially at large ¢ and the spectral form factor approaches a
constant plateau at late times

‘ - o (28)? - AL
Jim 9(8,1) = = o = (2CA). (A.17)

From (A.16) one can read off the time scale for the transition from ramp to plateau as

1
tplateau ~ m

We notice that tpjatean depends on 8. This is in contrast to the situation in the Gaussian

(A.18)

matrix model before taking the double scaling limit where ¢pjatean is independent of 5 [57].

It is interesting to observe that the 5 — 0 limit of g(3, ) is singular due to the one-loop
factor (81 4+ B2)~%/? in (A.11). In [52, 53] the analytically continued two-loop correlator
(Tre " Ty ey in the JT gravity case was interpreted as the inner product of Wheeler
de Witt wave functions of the 2d de Sitter space. This inner product naively corresponds
to ¢(0,¢), which is divergent. Interpretation of the singularity of ¢g(/3,t) at 5 = 0 is unclear
at present.

B Partial resummation of the eigenvalue density

In this appendix we consider a partial resummation of the low energy expansion of p(E).
We observe from (2.119) that

lim Z,(h) = 1.
lim Z(h) (B.1)

Then it is interesting to see what happens if we replace Z;(h) — 1 and perform the summa-
tion over ¢ in the low temperature expansion of Zjp in (2.117). This replacement leads to

ot B+
e 12 ~ e
£=0

By the inverse Laplace transformation we find a simple closed form expression of the
eigenvalue density ppartial(E£) for Zpartial(5)

df g
artia. E) = o BZ artia
Ppart l( ) /027Tie part 1(6)

_ %Im [Ai(h 3 (B +in))a¥ (nF (-E - i) (B.3)

1
~ ~Im [Ai(n + i) AT (n — ih%)} :
which can be thought of as a partial resummation of the expansion (3.4). It turns out that
in the classical limit (B.3) reduces to the genus-zero eigenvalue density po(E) of the full
partition function Zjp

_ sinh(2VE)
. — B.4
%1_1)% ppartlal (E) omh . ( )
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Figure 6. Plot of ppartiai(E) for A = 1/30. The blue curve represents ppartial(£) in (B.3) while the
orange curve represents the genus-zero eigenvalue density po(E) in (2.97).

This is expected since Zpartial(f) in (B.2) reduces in the limit 4 — 0 to the genus-zero part
of ZJT in (216)

To see that this is indeed the case, in figure 6 we show the plot of ppartial(E) in (B.3)
for h = 1/30. One can see that ppartial(E) agrees with po(E) in (2.97) in the allowed region
E > 0 up to an oscillatory correction. This implies that the genus-zero part po(E) (2.97) is
completely accounted for by ppartial(E) and the difference from the true density p(F) has
only oscillatory contribution in the region £ > 0

p(E) - ppartial(E) = (OSCﬂlatOTY)’ (E > 0)' (B'5)

C String equation for JT gravity

In this appendix we consider the so-called string equation for u(x) (see [32] for a review).
It is known that the genus-zero relation (2.92) can be promoted to the all-genus string
equation [58]

[P, Q] = h, (C.1)

which arises from the compatibility condition for the following set of equations obeyed by
the BA function

Qv =&y, Py =hogp. (C.2)
Here @ is defined in (2.39). To find P, we start with the relation
Ot = — > tkOk11, (C.3)
k=1
where ¢, is defined by
tpy =t — 5k,1' (04)

Ot is given by the KAV flow equation in the k-th direction

hojt = My (C.5)
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with M}, being
2k k+3
M, . C.6
1
Here the subscript + of QT_Q indicates that we truncate the pseudo-differential operator
QIH% to its differential part. In this notation M in (2.45) is written as M = My = 3Q3/2.

From (C.3) and (C.5) we find that P is given by

k—1
ZtksMk 1=- Ztk % ,,Q+ % (C.7)
The compatibility of the flow equation and Qv = £y leads to the following relation
hopu = hdoRi+1 = [ Mk, Q], (C.8)
where we used u = 92 F and (2.26). Then the string equation (C.1) becomes
h=[P,Q]=— ka[qu,Q] = —hszﬁoRk, (C.9)

k=1

which can be integrated as
= tRe. (C.10)
k=1

Using Rg = 1 this is more compactly written as
o
> Ry =0. (C.11)

From the behavior of Ry in (2.73), one can see that (C.10) reduces to (2.65) in the classical
limit 2~ — 0. Note that the shift of ¢; in (C.4) is important to recover the classical
equation (2.65). This equation (C.10) determines the z-dependence of u(x). For instance,
the string equation for the pure gravity tg = —Rs2 is known as the Painlevé I equation.
The so-called minimal string theory (2d gravity coupled to a minimal model CFT) [20, 21]
is obtained by turning on a finite number of couplings ¢, in which case the string equation
can be solved at least numerically [43, 59, 60].
For the JT gravity case t, = v, (2.6), P in (C.7) becomes

pP=

;sin(2Q;)] . (C.12)
+
In the classical limit, this reduces to the spectral curve in (2.99) by the replacement P —
y,Q — £ Eq. (C.12) can be thought of as the “quantum spectral curve” for the JT gravity.
It would be interesting to study the property of (C.12) along the lines of [61, 62].

Let us consider the string equation (C.10) for the JT gravity case. We set t,, = -, for
n > 1 and leave ty as a free parameter. Then (C.10) becomes

to = —i (_1)672,@. (C.13)
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Due to the fact that infinitely many couplings ¢,, are turned on, (C.13) is no longer a
differential equation for u; it is rather thought to be a certain non-linear difference equation
for u. Based on this expectation, we would like to write down the string equation (C.13)

in the form
n

hx = iDn(aml, oy Or,) HU(%)
n=1

=1

(C.14)

T;=x

The operator D,, can be found from the recursion relation of Ry (2.25). The first two
terms are

D, — sincfgﬁx)7
X
Dy — sin(0y, + Oyy) — sin Oy, — sin dy, (C.15)
i O, O (0r, + 0,) ‘
Appearance of the exponentiated derivative in sin(d,) = % indicates that D,, should

be regarded as a difference operator rather than a differential operator. It would be inter-
esting to find the general structure of D,,.

D Resolvent and wave functions

In this appendix we summarize useful properties of the resolvent and the wave functions
for the Schrodinger equation.

As discussed in [36, 63], one can integrate the equation for R in (2.49) once. By
multiplying R to the first equation in (2.49) we find

1 1
0 = R |:4R”/ + (u — g)R/ + 2'LL/R:|

) 1 1 (D.1)
_ - /" T2 - _ 2
—(%;LRR 8R +2(u f)R].
This is integrated as
2RR" — R 4 4(u — £) R* = const. (D.2)
From the large £ behavior of R
1
lim R=¢ 2Ry = €2, (D.3)
£—o00 2
the constant on the right hand side of (D.2) is fixed to be —1
2RR" — R”? 4+ 4(u — )R?* = —1. (D.4)
From this equation, one can show that /R satisfies
1
(Q-¢)VR= ~ (D.5)
The resolvent R can be written as a product of two functions
R=1v4-, (D.6)
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where ¢4 takes the form

e = VRe™. (D.7)

Using the equation for v/R in (D.5), one can show that 11+ becomes a solution of the
Schrodinger equation (Q — &)1 = 0 provided that S satisfies [63, 64]

y 1
= —. D.8
S'=5p (D.8)
This is integrated as
S(&, o) 1/t0dt L (D.9)
T 2R[E, ulto)] '

Let us consider the classical limit of S. On general ground, we expect that S is
written as

1 /¢
Sa=7 | wehae (.10

where ¥ is given by the classical limit of P in (C.7)

-1
Ztk 2k: gk 1/2, (D.11)

Evaluating the integral in (D.10) we find

ok gh+1/2
Sel = hz km (D.12)

On the other hand, we can take the classical limit of (D.9) directly. At the classical level
h =0, one can see from (D.4) that R has a square-root branch cut

Ri= - (D.13)
Plugging (D.13) into (D.9) we find

Sa = ;/dtovﬁ — Uug. (D.14)

Using the classical string equation

7,0 (D.15)

we can rewrite the tp-integral to uo—integral
L[5 ot
Se1 = / dug—+/& — ug
h 0 auo
1 13 > uk—l
=—— | d 2
h/o “0; Hle—1)!

1 © 2k€k+1/2

R /T E—
I
h& 2k + Dl

VE—uo (D.16)

This agrees with the integral of yd¢ in (D.12).
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For the JT gravity case t, = =, we find

1. & (L1)k gkgkt1/2 1
Su = _hkz (;_)1)! (2:+ i = E[sm@\/é) —2\/c05(2\/g)}, (D.17)

1

which reproduces the effective potential Veg(—¢) in (3.18), as expected.
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