JTS: Toolsfor Implementing Domain-Specific L anguages

Don Batory, Bernie Lofaso, and Yannis Smaragdakis
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712
{batory, bernie, smaragd}@s. utexas. edu

Abstract?

The Jakarta Tool Suite (JTS) aims to reduce substantially
the cost of generator development by providing domain-
independent tools for creating domain-specific languages
and component-based generators called GenVoca genera-
tors. JTSis a set of precompiler-compiler tools for extend-
ing industrial programming languages (e.g., Java) with
domain-specific constructs. JTSisitself a GenVoca gener-
ator, where precompilers for JTS-extended languages are
constructed from components.

1 Introduction

Software generators are among the most effective
methods of achieving software reuse. Generators reduce
maintenance costs, produce more evolvable software, and
provide significant increases in software productivity
[Deu97, Die97, Kie96]. From atechnical standpoint, gen-
erators are compilers for domain-specific languages
(DSLs) or general-purpose programming languages with
domain-specific extensions [Cor90, Sma97]. Such lan-
guages express fundamental abstractions of a domain
using high-level programming constructs. The P2 data
structure generator is an example: P2 extended the C lan-
guage with cursor and container data types [Bat93-94].
This alowed P2 users to program in data-structure-spe-
cific abstractions, which resulted in substantial improve-
ments in productivity, program clarity, and performance.

Implementing a domain-specific language as an
extension of an existing programming language (called a
host language) has several advantages. First, we can lever-
age off existing functionality and not have to re-implement

1. This work was supported in part by Microsoft, Schlumberger, the
University of Texas Applied Research Labs, and the U.S. Department of
Defense Advanced Research Projects Agency in cooperation with the
U.S. Wright Laboratory Avionics Directorate under contract F33615-
91C-1788.

common language constructs. Second, the extensions
themselves only need to be transformed to the point where
they are expressible in the host language. Third, existing
infrastructure (e.g., development and debugging environ-
ments) can be reused. All these factors result into lower
implementation costs for language developers and
decreased transition and education costs for users.

Nevertheless, adding domain-specific constructs to a
general programming language presents severe technical
difficulties. Programming languages are generaly not
designed to be extensible, and the ones that are (e.g., Lisp
and a variety of other functional languages) have not
gained wide acceptance. Addressing the needs of the
industry (where C, C++, and Java prevail) is paramount
for promulgating generator technology. Our interest in
DSL s comes from our work in the design and construction
of component-based generators, called GenVoca genera-
tors [Bat92-97]. Target applications are specified as com-
positions of reusable components; GenVoca generators
convert these compositions into source code. From our
experience, there is a serious lack of tools to simplify the
construction of these generators. We estimate that over
60% of the effort in building a GenVoca generator
involves the creation of alargely domain-independent pro-
gramming infrastructure (e.g., component specification
languages, component composition languages, etc.).

The Jakarta Tool Suite (JTS) is aimed at providing
this common infrastructure: it is a set of domain-indepen-
dent tools for extending industrial programming languages
with domain-specific constructs. JTS is designed specifi-
cally for creating DSL s and GenVoca generators. JTS con-
sists of two tools: Jak and Bali. The Jak language is an
extensible superset of Java that supports meta-program-
ming (i.e., features that allow Java programs to write other
Java programs). Bali is a tool for composing grammars.
JTS is itself a GenVoca generator. Languages and lan-
guage extensions are encapsulated as reusable compo-
nents. A JTS component consists of a Bali grammar file

(which defines the syntax of a language or extension) and
aset of Jak files (that define the semantics of the extension
as syntactic transformations). Different combinations of
these components yield different language variants. Bali
and Jak work cooperatively to automatically convert a
composition of components that defines alanguage variant
into a preprocessor for that variant.

The implementation of JTS is bootstrapped: JTS is
written in Jak and Jak is also the first customized language
that has been produced by JTS. (That is, new extensions
are written in Jak (Java); the Jak preprocessor is then
extended by this new component so that it can be used to
write other extensions, and so on). In the following sec-
tions, we review the current features of Jak and Bali and
explain the strategy behind their implementation. After-
wards, we explain the novelty of JTS and differentiate JTS
from other language specification and construction tools.

2 TheJak Language

Jak is an open, extensible superset of Java. It extends
Java with support for meta-programming (i.e., features
that enable Java programs to write other Java programs).
In the following sections, we explain two key features of
Jak —namely, AST constructors and Generation Scoping
— that distinguish it from Java. Both have been imple-
mented as JTS components and are examples of the kinds
of language extensions that JTS is capable of expressing.

2.1 AST Constructors

JTS internally represents programs and code frag-
ments as two kinds of trees. A surface syntax tree (SST) is
aparse tree of a code fragment (as defined by some gram-
mar). An abstract syntax tree (AST) is a semantically-
checked SST that has been annotated with type declara
tions and references to the symbol table. An SST is con-
verted into an AST by invoking thet ypecheck() method
on the root of the tree. In this section, we present the (sur-
face syntax) tree constructors and composition methods in
Jak.

A tree constructor is a code-template operator, analo-
gous to the Lisp quot e construct. It converts a code frag-
ment into an SST; the value of a constructor is a pointer to
the root. The expression constructor exp{ ... }exp, for
example, encloses a syntactically correct Jak expression.
When the constructor is evaluated, an SST for that expres-
sion is created, and the root of that tree is the result. Simi-
larly, st n{ ... }st mis the corresponding constructor for
Jak statements. SSTs can be unparsed (into text) using the
print () method:

AST _Exp x = exp{ 7 + z*8 }exp;
AST_Stms = stm{ foo(3);

if (y<4) returnr; }stm
x.print(); /] outputs “7 + z*8”
s.print(); /1 outputs “foo(3);

/1 if (y<4) returnr;”

There are presently 17 different tree constructors in
Jak, the most commonly used are listed in Table 1.

Code fragments are composed using escapes, the
counterpart to the Lisp comma (unquote) construct. The
example below shows a statement constructor with an
escape $st nm(body) . When the constructor is evaluated,
the SST of body is substituted in the position at which its
escape clause appears.

AST_St m body
AST_Stm | oop

stm{ if(i>40) foo(i); }stm
stm{ for(i=1; i<10; i++) {
$stn(body); } }stm

| oop. print();
/1 outputs “for (i=1; i<10;i++)
/1 { if (i > 40) foo(i); }”

Unlike Lisp and Scheme which have only a single
constructor operator (e.g., backquote/comma), multiple
congtructors in syntactically rich languages are common
(e.0., [Wei93], [Chi96]). The main reason has to do with
the ease of parsing code fragments. We avoided the com-
plications described in [Wei93] by making explicit the
type of SST that is returned by a tree constructor. The
result is a slightly more complicated but robust system.

Constructor Escape Class AST Representation Of

exp{ ... }exp $exp(...) AST_Exp expression

stm{ ... }stm $stn(...) AST_St nt list of statements

mh{ ... }nth $nth(...) AST_Fi el dDecl list of datamember and method declarations
cls{ .. }cls $cls(...) AST Ol ass list of class and interface declarations

id{ ..}id $id(...) AST_Qual i fiedName qualified name

Table 1: AST Constructors and Escapes

Although the tree constructors of Table 1 are pres-
ently specific to Jak, this will not always be the case. Tree
constructors can be added for other languages, such as
CORBA IDL, embedded SQL, (subsets of) C and C++, so
that IDL code, embedded SQL code, etc. can be generated.

2.2 Generation Scoping

Tree constructors and escapes are not sufficient for
code generators (meta-programs); there must also be a
mechanism to solve the variable binding or inadvertent
capture problem [Koh86], which arises when indepen-
dently-written code fragments are composed. Consider the
following parameterized macro that defines a variable
t enp and initializes it to be twice the value of parameter
X:

macro(x) { int temp = 2*x; ... }

Now consider application code that defines avariable,
also called t enp, and that invokes macr o(t enp) :

int tenp = 5;
macr o(tenp);

The code that is produced on expansion is incorrect:

int tenp = 5;

{ int tenp /1l wrong

2*tenmp; ... }

The inner t enp variable was to be initialized using
the outer t enp variable; instead the uninitialized inner
tenp variable is used to initiaize itself! The problem is
that the t enp identifiers are not sufficient to disambiguate
the variables that they reference.

Hygienic, lexically-scoped macros (HLSM) were
designed to solve this problem. HLSM relies on a “paint-
ing” algorithm that ensures identifiers are bound to the
correct variables [Ree91]. Often, HLSM is implemented
as a preprocessing step that mangles variable names to
ensure their uniqueness:

int tenp_O

:5;
{ int tenp_1 =

2*tenp_0; ... } /] right

HLSM’s applicability is limited to macros (pattern-
based source code transformations). Since JTS supports
programmatic (as opposed to macro or pattern-based) tree
construction, we devised Generation Scoping (GS), an
adaptation and generalization of HLSM that is suited for
JTS. We originaly developed GS for Microsoft's Inten-
tional Programming (IP) system [Sim95], and used it to
develop the DiSTiL generator, an IP-version of the P2
generator [Sma96-97]. The IP implementation of GS used
handles to symboal table entries to represent variable refer-
ences (see also [Tah97]). Since JT'S produces domain-spe-

cific preprocessors, we chose an adternative
implementation that mangles identifiers. In the following
sections, we review its features.

2.2.1 GSEnvironments

A GS environment is alist of identifiers (i.e., class or
interface names, data member or method names, etc.) that
arelocal to aset of related code fragments. To ensure there
is no inadvertent capture, local identifiers are mangled.
Associated with each environment instance is a unique
mangle number, an integer that is attached to an identifier
to make it unique. For example, if an environment’s man-
gle number is005 and identifier i isto be mangled, identi-
fieri _005 is produced.

Environments are associated with classes; environ-
ment instances are associated with objects. Class f oo
below defines an envi r onment with identifiersi andj .
Each foo instance creates an environment containing
identifiersi and j . Different f oo instances represent dis-
tinct environment instances. Whenever a tree constructor
is evaluated by af oo object, it does so in the context of
that object’s environment. Thus, if x andy aredistinct f oo
instances, and x. bar () and y. bar () return code frag-
ments, the returned fragments will be isomorphic in struc-
ture, but will have different namesfori andj .

class foo {
environment i, j; /1 ids to mangle
AST_Exp bar() { return exp{ i+ }exp; }

}
foo x = new foo();// assume mangl e# is 000
fooy = new foo();// assume mangle# is 001

X.bar().print(); // yields “i_000+j _000”
y.bar().print(); // yields “i_001+ _001"

With the above capabilities, the variable binding
problem presented earlier is easily avoided. One defines a
class (macr oExanpl e) with an envi ronment that con-
tains the t enp identifier. A method of this class (macr o-
Code) uses a tree constructor to manufacture the body of
the “macro”. The t enp variable that is defined internally
to that tree is given a unique name via mangling, so inad-
vertent capture can not arise.

cl ass macr oExanpl e {
envi ronment tenp;

AST_Stnmt nmacroCode(AST_Qual i fi edNane n)

{ return stn{ int tenp = 2*$id(n);
}stm

}

Since identifiers in an environment need to be explic-
itly designated, the JTS version of generation scoping is
not fully automatic.?2 Associating environments with
objects does, however, represent an improvement com-
pared to the explicit creation of unique identifiers (as with
Lisp's gensym [Gra96]) and the manual substitution of
mangled names (via explicit escapes) into generated code
fragments. Identifiers are now encapsulated and can be
treated as a group. Additionally, these groups can be
arranged in complex configurations, as we will see next.

2.2.2 GSEnvironment Hierarchies

Environment instances can be organized hierarchi-
caly to emulate scopes in the name space of generated
programs. As expected, identifiers of parent environments
are visible in child environments and identifiers that are
declared in a child environment hide identifiers in parent
environments with the same name. Parent linkages among
environments are made at meta-program run-time using
the environnent parent declaration. The example
below shows that instances of class baz make their envi-
ronments children of environments of f oo objects. Note
that atree constructor for the expression“i + k” produces
“i_000 + k_002" because identifier i is mangled by the
f oo environment while k is mangled by the baz environ-
ment:

class baz {
envi ronnment Kk;
baz(foo z) { environnent parent z; }

AST Exp biff() {return exp{ i+k }exp; }

2. The IP version of GS automatically enters identifiers into environ-
ments as tree constructors are evaluated. The JTS version reflects a
design that was used in the P2 generator, where manual declaration of
identifiers was used.

baz r = new baz(x); [// x has mangle # 000

/1l r has mangle # 002

r.biff().print(); // yields *i_000+k_002"

More generally, generation scoping allows environ-
ment instances to be arranged in directed acyclic graphs.
This permits the visibility of identifiers from multiple par-
ent environments, which is indispensable when building
GenVoca generators. Detailed examples of generation
scoping are presented in [Sma96].

2.3 TreeTraversals

Jak provides a Java package of classes for searching
and editing trees using objects of type Ast_Cursor.
Methods that can be performed on cursors are listed in
Table 2.2 In the code fragment below, a cursor ¢ is used to
examine every node of a tree and subtrees that define
interface declarations are del eted.

Ast _Cursor ¢ = new Ast_Cursor();
Ast _Node Root = // root of AST to search

for(c.First(root); c.Mre(); c.PlusPlus())
if (c.node instance™ Ast_Interface)
c.Delete();

2.4 Jak Extensibility

Representing programs internally as parse trees offers
a powerful form of language extensibility. This principle
has been widely explored in the Lisp community and vari-
ous syntax tree formats are commonly used in transforma-
tions systems (e.g., Microsoft's IP [Sim95], Open C++
[Chi96]). New kinds of tree nodes can have domain-spe-

3. Tree editing methods guarantee syntactic correctness; however, they
cannot guarantee semantic correctness.

Cursor Operation

M eaning

First(r)

Mor e()

Pl usPl us()
Si bl i ng()
Par ent ()

Del et e()
Repl ace(x)
AddAf t er (x)
AddBef or e(x)

print()

position cursor on root (r) of tree

true if more nodes to examinein tree
advance cursor to next node of tree

skip the search of subtrees of current node
reposition to parent of current subtree
delete subtree rooted at current node
replace the current node with x

add tree x after the current node

add tree x before the current node
unparse the tree rooted at the current node

Table 2: Operations on Tree Cursors

cific semantics and transform, at reduction time, to a host
language implementation (or, more accurately, a tree that
defines this implementation). This approach is called
intention-based programming® [Sim95]. For example, the
P2 language extended the C language with cursor and con-
tainer data types and operators. Tree nodes that repre-
sented these types and operations were intentions. At
reduction time, a P2 program was converted into a pure C
program by replacing cursor and container nodes with
trees that defined their concrete C implementations.

JTS follows this approach (see Figure 1). A domain-
specific program is converted into an AST by a lexical
analyzer (lexer) and parser. The AST is then manipulated
into another tree by a reduction program, and the resulting
tree is unparsed into a pure host-language program (cur-
rently a Java program). Note that the reduction program
itself iswritten in Jak, because Jak is specifically designed
for tree creation and manipulation.

2.5 Pergpective

Jak is an integration of a popular programming lan-
guage (Java), with meta-programming concepts (tree con-
structors and generation scoping), and intention-based
programming. The structure of Jak provides the basis for
an inherently open precompiler. In the following sections,
we answer the following questions:

e How are lexers and parsers produced by JTS?
e How isthe reduction program produced by JTS?
* How isGenVocarelated to JTS?

3 Bali: A GenVoca Generator of DSL
Precompilers

Bali is the second tool of JTS. There are two aspects
to Bali. First, it is a tool for writing precompilers for
domain-specific languages. In this respect, Bali looks sim-
ilar to other DSL -specification tools: the syntax of a DSL
or language extension is specified using an annotated,

4. Although the term is new, the idea is quite old. Lisp macros were
powerful enough to express useful extensions to the language. They have
been routinely used to encode new constructs in terms of core language
constructs. We prefer, however, to use the term “macro” exclusively for
pattern-based program transformations.

Jak lexer
program) — % | and | TP
' |parser

' Jak Preprocessor

extended BNF grammar. Second, Bali is a GenVoca gener-
ator. DSLs and their precompilers are specified as a com-
position of components; evolution of a DSL (e.g., adding
and removing features) is accomplished by adding and
removing components.

To show that Bali is a GenVoca generator, we will
examine one of its most important applications: Jak itself.
Jak is a preprocessor implemented as an extended version
of Javausing Bali. The reasoning behind this design deci-
sion is simple. Jak is really not a single language, but a
family of related languages. There will be variants of Jak
with/without generation scoping, variants with/without
tree constructors, variants with/without CORBA DL
extensions, and so on. This a classical example of the
library scalability problem[Bat93, Big94]: there are n fea-
tures and often more than n! valid combinations (because
composition order matters and feature replication is possi-
ble [Bat92]). It isn’'t possible or practical to build all com-
binations by hand. Instead, the specific instances that are
needed can be generated. The JTS library presently
includes components for the Java language, tree construc-
tors, generation scoping, and domain-specific generators
(e.g., P3 [Bat98]). Compositions of these components
define a particular variant of Jak.

3.1 BaliasaDSL Compiler Tool

Bali transforms a Bali grammar into a preprocessor. A
Bali grammar is BNF with regular-expression repetitions.
For example, two Bali productions are shown below: one
defines St at ement Li st as a sequence of one or more
St at ements, while ArgunentList is defined as a
sequence of one or more Ar gunent s separated by com-
mas. The use of repetitions simplifies grammar specifica-
tions [Wil93, Rea90a] and allows an efficient internal
representation as alist of trees.

St at ement Li st
Ar gument Li st

(Statenent)+ ;

Argurent (‘,’ Argunment)*;

Bali productions are annotated by the class of objects
that is to be instantiated when the production is recog-
nized. For example, consider the Bali specification of the
Jak Sel ect St nt rule:

. written
: in Jak

p |reduction| _| . Java
program !

Figure 1: Data Flow in Jak

Sel ect St nt
IF ‘(" Expression ‘)’ Statement ::1fStm
| SWTCH ‘(" Expression ‘)’ Block ::SwStm

When a parser recognizes an “if” statement (i.e., an
| F token, followed by ‘(*, Expression,‘)’, and St at e-
ment), an object of class | f Stm is created. Similarly,
when the pattern defining a“ switch” statement (a SW TCH
token followed by ‘(‘, Expression, ‘)’, and Bl ock) is
recognized, an object of class SwSt mis created. As a pro-
gram is parsed, the parser instantiates the classes that
annotate productions, and links these objects together to
produce the SST of that program.

For each production, Bali infers (among other things)
the constructors for tree nodes. Each parameter of a con-
structor corresponds to a token or nonterminal of a pat-
tern.® For example, the constructor of the | f St mclass has
the following signature;

I fStm Token iftok, Token Ip,
Expression exp, Token rp, Statenment stm)

Methods for editing and unparsing nodes are addition-
ally generated.

Bali also deduces an inheritance hierarchy of tree
node classes. Consider Figure 2a which shows rules
Rul el and Rul e2. When an instance of Rul el is parsed,
it may be an instance of pat t er n1 (an object of class C1),
or an instance of Rul e2 (an object of class Rul e2). Simi-
larly, an instance of Rul e2 is either an instance of
patt ern2 (an object of C2) or an instance of pattern3
(an object of C3). From this information, the inheritance
hierarchy of Figure 2b is constructed: classes C1 and
Rul e2 are subclasses of Rul el, and C2 and C3 are sub-
classes of Rul e2.

A Bali grammar specification is a streamlined docu-
ment. It is a list of the lexical patterns that define the
tokens of the grammar followed by alist of annotated pro-

5. Thetokens need not be saved. However, Bali-produced precompilers
presently save al white space — including comments — with tokens. In
this way, JTS-produced tools that transform domain-specific programs
will retain embedded comments. This is useful when debugging pro-
grams that have a mixture of generated and hand-written code, and is a
necessary feature if transformed programs will subsequently be main-
tained by hand [Tok95].

() Rul el : patternl o]
| Rule2

Rul e2 : pattern2 M 07

| pattern3 . C3

ductions that define the grammar itself. A Bali grammar
for an elementary integer calculator is shown in Figure 3.
To give readers an idea of the size of other grammars, the
Jak grammar uses 160 tokens, 270 productions, defines
290 classes in 750 lines. The “meta’ grammar for Bali
grammars uses 20 tokens, 20 productions, defines 37
classesin 100 lines.

/1 Lexene definitions

"print" PRINT
S PLUS
AR M NUS
LPAREN
RPAREN
0-9]*" | NTEGER

—_— o~

W /1 production definitions
[l start rule is Action

Action : PRINT Expr :o Print
Expr : Expr PLUS Expr i Plus
| Expr M NUS Expr :: Mnus
| M NUS Expr :: UnaryM nus
| LPAREN Expr RPAREN :: Paren
| I NTEGER 11 Integer

Figure 3: A Bali Grammar for an Integer Calculator

Bali generates the following from a grammar specifi-
cation:

e Alexical analyzer. We are using JI ex, a version of

I ex written in Java [Lof96].

e A parser. We are using JavaCup, a version of yacc
written in Java [Hud96].

¢ Inheritance hierarchies of tree node classes, with con-
structor, editing, and unparsing methods.

There are obviously many methods that cannot be
generated by Bali, including type checking, reduction, and
optimization methods. Such methods are node-specific;
we hand-code these methods and encapsulate them as sub-
classes of Bali-generated classes. (The reason for this will
become clear in Section 3.2). Figure 4 shows the inherit-
ance hierarchy of a Bali-generated precompiler. Ast Node
isthe root of al node hierarchies; it is a hand-written class

(b)

Figure 2: Grammar Inheritance Hierarchies

in the JTS ker nel package. Its immediate subclasses are
the hierarchy of subclasses generated from a Bali gram-
mar. The terminal classes of this hierarchy are hand-coded
and define the type checking, reduction, and optimization
methods for individual nodes. It is these termina classes
that are instantiated during the compilation of a domain-
specific program.

JTS kernel |

Bali-generated | Sel ect St m |
mkﬁ.erltan(r:]e P T
ierarchy | |
Y Cirsim) sestm)
e — —————_ _

hand-coded
subclasses ! ('fStm>< SwSt m) !

Figure 4: A Bali-Generated Class Hierarchy

3.2 Bali asa GenVoca Gener ator

GenVoca is a scalable model of component-based
software construction [Bat92-97b]. The central ideais that
software domains are characterized by a finite set of fun-
damental abstractions. By standardizing the programming
interfaces to these abstractions, components can encapsu-
late reusable algorithms of a domain by exporting and
importing standardized interfaces. A target systemis spec-
ified by a composition of components called a type equa-
tion. Elementary compositions of components can be
visualized as a stack of layers. Figure 5a depicts a system
S where component Z sits atop Y which sits atop X. Itstype
equationisS=Z[Y[X]].

GenVoca generators have been created for widely dis-
parate domains. Interestingly, most have been written in

inheritance hierarchies

O OO

(@) layer stack

(B

(@) layering
hierarchy

(b) subclassing
hierarchy

Figure 5: Layering and Subclassing Hierarchies

the C language, and only two have been written in OO lan-
guages [Sin93-96, Van96]. A problem that we have faced
for years but only very recently have been able to answer
is: What is the relationship between GenVoca components
and OO classes? The key lies in the relationship of layer-
ing and inheritance.

A common phenomenon in layered systems is opera-
tion propagation [Bat97b]: operations of lower layers are
exported through the top of a system. In Figure 5a, sup-
pose operation g() of layer X is to be exported by system
S. Thismeansthat g() must be propagated through layers
Y and Z (or in general, whatever layers are stacked above
X). When an operation of Siscalled (suchasg()), the cor-
responding operation of layer Z is invoked, which might
call methods of layer Y, which further might call methods
of X.

Now, suppose every component encapsul ates a single
class. To account for operation propagation and the pro-
cessing of operations in layered systems, the subclassing
hierarchy of Figure 6b comes to mind. Operation g() of
class X is propagated to classes Y and Z by inheritance.
Invoking an operation of S (such asg()) invokes the cor-
responding operation of class Z, which might call methods

inheritance hierarchies

g@@
@

(b) layer stack

E=

inheritance hierarchies

=l ==

(c) layer stack

inheritance hierarchies

application classes circled

(d) layer stack

Figure 6: Component Composition and Inheritance Hierarchies

of class Y, which might further call methods of X. From
this perspective, inheritance hierarchies are inverted layer
hierarchies.®

The relationship of GenVoca components and OO
classes can now be seen. GenVoca components encapsu-
late suites of interrelated classes. Figure 6a shows a (ter-
minal) shaded layer that encapsulates three classes. Figure
6b shows a striped layer that also encapsulates three
classes; when it is stacked on top of the shaded layer, one
class becomes a subclass of the left-most shaded class,
while the others begin new inheritance hierarchies. Figure
6¢ shows a white layer to encapsulate four classes. When
stacked upon the striped layer, each of these classes
becomes a subclass of an existing class. Lastly, Figure 6d
shows the effect of adding a black layer, which encapsu-
lates two classes. The application (which is defined by the
resulting layer stack) instantiates the most refined classes
(i.e., the terminal classes) of these hierarchies. These
classes are circled in Figure 6d; the non-terminal classes
represent intermediate derivations of the terminal classes.
Thus, when GenVoca components are composed, a forest
of inheritance hierarchies is created. Adding a new com-
ponent (stacking a new layer) causes the forest to get pro-
gressively broader and deeper [Sma98].

The connection of these ideas to Bali and the Jak lan-
guage is straightforward. A JTS component has two parts:
Thefirst isaBali grammar file (which contains the lexical
tokens and grammar rules that define the syntax of the
host language or language extension). The second is a
GenVoca component: a collection of multiple hand-coded
classes that encapsulate the reduction, etc. methods for
each tree node defined in that grammar file. These classes
define the semantics of an extension. There are JTS com-
ponents for Java (Java), SST constructors and explicit
escapes (SST), generation scoping (GScope), and data

6. Note that the converse is not true; there are layer hierarchies that are
not inheritance hierarchies. Inheritance hierarchies arise whenever layer
hierarchies refine a single abstraction (e.g., classes X, Y, and z are differ-
ent implementations of the same concept). When layers implement dif-
ferent abstractions, class composition relies solely on parameterization
and does not involve inheritance.

Bali layer stack

P3 -___C_% __________

inheritance hierarchies

structures (P3 [Bat98]), anong others.” The Jak language
and precompiler is defined by a composition of these com-
ponents, i.e, the type equation Jak =
P3[GScope[SST[Java]]].

The syntax of a composition is defined by taking the
union of the sets of production rules in each JTS compo-
nent grammar. The semantics of a composition is defined
by composing the corresponding GenVoca components, as
described previously. Figure 7 depicts the class hierarchy
of the Jak precompiler. Ast Node belongs to the JTS ker-
nel, and is the root of al inheritance hierarchies that Bali
generates. Using the composition grammar file (the union
of the grammar files for the Java, SST, GScope, and P3
components), Bali generates a hierarchy of classes that
contain tree node constructors, unparsing, and editing
methods. Each JT'S component then grafts onto this hierar-
chy its hand-coded classes. These define the reduction,
optimization, and type-checking methods of tree nodes by
refining existing classes, just as in Figures 4 and 6. The
terminal classes of this hierarchy are those that are instan-
tiated by the generated preprocessor.

It is worth noting that Figure 7 is not drawn to scale.
Jak consists of over 300 classes. The average number of
classes that a language-extension component adds to an
existing hierarchy ranges from 10 to 40. In terms of the
number of classes a GenVoca component encapsulates,
Bali components are clearly the largest we've ever
encountered. However the simplicity and economy of
specifying Jak using type equations is enormous: to build
the Jak precompiler, al that users have to provide to Bali
is the equation Jak = P3[GScope[SST[Java]]], and
Bali does the rest. To compose all these classes by hand
(as would be required by Java) would be very sow,
extremely tedious, and error prone. This is (another) good
example why programming with reusable components
(and hence at higher-levels of abstraction) offers big pro-
ductivity gains. Additionally, the scalability advantages of
GenVoca can easily be obtained: when new extension

7. Presently, Bali supports a single realm of components (J) that define
and extend the Java language. Using the standard notation for realm defi-
nitions,J = {Java, SST[J], GScope[J], P3[J], ...}.

AstNode

GScope

Java

R

Figure 7: The Jak Inheritance Hierarchy

mechanisms or new base languages are specified as com-
ponents, a subset of them can be selected and Bali will
automatically compose a preprocessor for the desired lan-
guage variant.

3.3 Pergpective

The primary goal of JTSisto provide tool support for
building GenVoca generators. Initially, it was unclear to us
how language extensions could be encapsulated or com-
posed; we feared that we would invent an ad hoc technol-
ogy for defining and specifying components that was
foreign to GenVoca. (This would then put a significant
burden upon us to demonstrate the generality of this new
model and its connection with other work, let alone how to
address the odd situation of using a different component
model to implement a more general model). Thus, realiz-
ing the connection between layering and inheritance hier-
archies was awatershed event. It told us that JTS (or more
specifically the central tool of JTS — Bali) was yet
another example of GenVoca. Our focus immediately
shifted away from an ad hoc implementation of Bali to one
that would exhibit a principled and clean design.

4 Related Work

Meta-programming and syntactic transformations
have been areas of active research for several decades.
Since the volume of related work is enormous we will be
selective in our presentation and only discuss approaches
that are particularly closeto JTS.

As should be evident from the previous sections, JTS
is only concerned with the front-end of what is tradition-
aly termed a transformation system (e.g., Draco [Nei89],
Refine [Rea90b]). JTS mainly deals with parsing and the
mechanics of syntactic transformation. Any sophistication
of the transformation process (e.g., algebraic rewrites) will
have to be provided by JTS client programs (e.g., the P3
generator [Bat9g]).

Part of the novelty of JTSisthat basic ideas of meta-
programming and precompiler-compiler tools have trans-
ported to a "modern” and syntax-rich language platform
(i.e., Java). The intricacies of our task are demonstrated,
for instance, by the large variety of AST constructors dis-
cussed in Section2.1 (compared to a single "quoting"
operator for languages like Lisp).

Another contribution of JTSis in the way it achieves
language extensibility: it does so through the prescripts of
an architectural model (GenVoca): language extensions
are encapsulated as components and languages and their
preprocessors are assembled from these components.

It is instructive to compare this approach to that of
Dialect [Rea90d]. Didlect is the front-end of the Refine

transformation system and is in many ways analogous to
the part of Bali described in Section 3.1. One of the big-
gest differencesisin the way separate language extensions
can be composed. By analogy to object-oriented program-
ming, Dialect introduces the notion of grammar inherit-
ance: a grammar (e.g., one defining a language extension)
could "inherit* from another grammar (e.g., a base lan-
guage). The resulting grammar is defined by taking the
union of all productions contained in the two grammars —
just like in JTS. An important difference, however, is that,
unlikein Dialect, JTS grammars do not have to specify the
grammar they areinheriting from. Thisisimplicitly speci-
fied when grammar components are composed to form an
entire language. The benefit is that a single JTS grammar
component can be used to extend multiple base languages.
Carrying the object-oriented programming analogy fur-
ther, we could say that, instead of grammar inheritance,
JTS adlows grammar mixins (in the sense of OO mixin
classes[Bra9q0]).

An interesting technical comment on comparing JTS
with Dialect has to do with the way grammar rules are
associated with inheritance between classes of AST nodes
(see Section 3.1). Recall that JTS infers inheritance rela-
tionships from grammar rules. Conversely, Dialect
requires that inheritance relationships be explicitly speci-
fied but infers grammar rules from them. The two
approaches are semantically equivalent but we preferred
having an explicit and compact representation of all gram-
mar rules, as opposed to a mixed representation.

It is interesting to examine the relationship of JTS to
meta-object protocols (MOPSs). The fundamental premise
of aMOP is that class-specific extensions are themselves
object-oriented in nature. Thus, they can be encapsulated
in another class, called a meta-class. If a certain class A
has meta-class MA, A is itself viewed as an object — an
instance of MA. Methods of MA define extensions for all
objects of A. For instance, methods of MA may define
extension code for every construction of objectsof classA,
any assignment to such objects, or any method invocation
on them.

Most MOPs are compositional: meta-classes contain
code to be executed at a specified moment. There are,
however MOPs where extensions are transformational:
meta-classes contain code that transforms the source code
of a class definition or use. The transformational MOP
closest to JTS is Open C++ ([Chi95], [Chi96]). Open C++
encapsulates transformational extensionsto C++ (i.e., syn-
tax tree transforms, just like JTS) as meta-classes. Like
JTS, Open C++ is implemented as a compiler that takes
meta-class specifications as input and produces a prepro-
cessor and compiler (packaged together) for extended C++
as output. Unlike JTS, however, no arbitrary syntactic
extensions are allowed (the changes to the language syntax

are of one of afew pre-determined forms). The reason has
to do with the complicated syntax of C++ and the diffi-
culty of adding more syntax rules to it. The complexity of
arbitrary syntactic extensionsin JTS iswhat led us to rep-
resent them as GenVoca components. Compared with
Open C++, the elements of JTS have direct counterparts:
Jak corresponds to the meta-programming part (language
for transformational extensions), while Bali is the counter-
part of the meta-object protocol. Now we can see the role
of JT'S extensions as GenVoca components. Just like Open
C++ (or any MOP) represents class-specific extensions as
(meta-)classes, JTS represents arbitrary syntactic exten-
sions as GenVoca components (encapsulated suites of
classes). The main purpose of JTS has been to facilitate
adding extensions for building GenVoca components in
Java. By making the extension mechanism structure simi-
lar to that of the intended applications, the JTS design
exhibits the same kind of simplicity and self-containment
as meta-object protocols for object-oriented languages.
Microsoft’s Intentional Programming (IP) system isa
visionary project that has similar goalsto JTS [Sim95]. IP
inherently supports language extensibility through syntac-
tic rewrites. It is not, however, concerned with surface lan-
guage syntax but operates directly on an abstract syntax
tree representation of a program. Additionally, IP transfor-
mations have no inherent knowledge of the semantics of
any particular programming language. The purpose of IP
is to become a powerful enough transformation system so
that entire languages can be expressed as collections of
cooperating transformations. We considered using 1P but
did not do so for reasons that had to do both with its cur-
rent state (under development) and with our funding
requirement for public availability of our code. Addition-
aly, we were interested in experimenting with an extensi-
ble language system implemented around ideas from
object-oriented and component-based programming.

5 Conclusions

Future software development tools will feature the
generation and transformation of OO programs. Such tools
will automate certain aspects of software design methodol-
ogiesthat aim at reuse, namely automating OO design pat-
terns and generating domain-specific software from
declarative specifications. The Jakarta Tool Suite (JTS) is
designed with these applications in mind. JTS is a careful
integration of three different technologies — meta-pro-
gramming, precompiler-compiler tools, and component-
based generators. JTS is also aimed at a growing commu-
nity of software developers — those that use Java— who
will benefit most from such toals.

The novelties of JTS are its integration of technolo-
gies and that JTS is an example of the very software

design paradigm it was intended to support — GenVoca.
With appropriate language support, it is substantially eas-
ier to write generators. And with clearly written and docu-
mented examples, it should be much easier to transition
component-based generator technology from academic
environments to industry.

In this paper, we have reviewed the two tools that
comprise JTS: Jak and Bali. Jak is a JTS-produced lan-
guage that extends Java with meta-programming features
(e.g., tree constructors, generation scoping). Bali is the
generator that produced Jak through component assem-
blies. Thefirst GenVoca generator that we have built using
JTS is P3 [Bat9g], a Jak-based version of the P2 data
structures generator. P3 was developed in a fraction of the
time that was needed for P2. Moreover, the source code of
P3 is substantially more elegant, readable, and maintain-
able because JT'S provides the appropriate language con-
structs for building such generators. Further work on JTS
will extend Jak to have language support for component
definitions and compositions.

JTS runs on Unix (Solaris), and Windows (95 and
NT) platforms. A beta-release became available in Febru-
ary 1998. For current information, release announcements,
and the latest technical reports, please check our web page
http: //ww. cs. ut exas. edu/ users/ schwart z.

6 References

[Bat92] D. Batory and S. O'Maley, “The Design and
Implementation of Hierarchical Software Systems with
Reusable Components’, ACM TOSEM, October 1992.

[Bat93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas,
“Scalable Software Libraries’, ACM S GSOFT 1993.

[Bat94] D. Batory, J. Thomas, and M. Sirkin, “Reengineering a
Complex Application Using a Scelable Data Structure
Compiler”, ACM SIGSOFT 1994.

[Bat97&] G. Jimenez-Perez and D. Batory, “Memory Simulators
and Software Generators’, 1997 Symposium on Software
Reuse.

[Bat97b] D. Batory, “Component Validation and Subjectivity in
GenVoca Generators’, |IEEE Trans. Software Engineering,
February 1997.

[Bat98] D. Batory, G. Chen, E. Robertson, and T. Wang,
“Design Wizards and Visual Programming Environments for
Generators’, Int. Conference Software Reuse, 1998.

[Big94] T. Biggerstaff, “The Library Scaling Problem and the
Limits of Concrete Component Reuse’, International
Conference on Software Reuse, 1994.

[Bra90] G. Bracha and W. Cook, “Mixin-Based Inheritance”,
ECOOP/OOPSLA 90, 303-311.

[Chi95] S. Chiba, “A Metaobject Protocol for C++”, OOPSLA
1995.

[Chig6] S. Chiba, “Open C++ Programmer's Guide for Version
2", SPL-96-024, Xerox PARC, 1996.

[Cor90] J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow,
“TXL: A Rapid Prototyping System for Programming
Language Dialects’, Computer Languages, Vol. 16#1, 1991,
97-101.

[Deud7] A. van Deursen and P. Klint, “Little Languages: Little
Maintenance?’, Proc. SIGPLAN Wbrkshop on Domain-
Soecific Languages, 1997.

[Die97] P. Dietz, C. Jervis, M. Kogan, and T. Weigert,
“ Automated Generation of Marshalling Code from High-Level
Specifications’, RNSG Research, Motorola, Schaumburg,
Illinois, 1997.

[Gra96] P. Graham, ANSI Common Lisp, Prentice Hall, 1996.

[Hud96] S.E. Hudson, “Cup Users Manuad”, Graphics
Visualization and Usability Center, Georgia Institute of
Technology, March 1996.

[Kie96] R.Kieburtz, L. McKinney, J. Bell, J. Hook, A.Kotov, J.
Lewis, D. Oliva, T. Sheard, I. Smith and L. Walton, “A
Software Engineering Experiment in Software Component
Generation”, |CSE1996.

[Koh86] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B.
Duba, “Hygienic Macro Expansion”. In SGPLAN ‘86 ACM
Conference on Lisp and Functional Programming, 151-161.

[Lof96] B. Lofaso, “JLex Users Manual”, University of Texas
Applied Research Laboratories, 1996.

[Nei89] J. Neighbors, “Draco. A Method for Engineering
Reusable Software Components”. In Software Reusability, T.J.
Biggerstaff and A. Perlis, eds, Addison-Wesley/ACM Press,
1989.

[Rea90a] Reasoning Systems, “Dialect User’s Guide”, Palo Alto,
California, 1990.

[Rea90b] Reasoning Systems, “Refine 3.0 User’'s Guide”, Palo
Alto, California, 1990.

[Ree91] W. Clinger and J. Rees. “Macros that Work”. In
Conference Record of the Eighteenth Annual ACM Symposium

on Principles of Programming Languages, January 1991, 155-
162.

[Sim95] C. Simonyi, “The Death of Computer Languages, the
Birth of Intentional Programming”, NATO Science Committee
Conference, 1995.

[Sin93] V. Singhal and D. Batory. “P++: A Language for
Large-Scale Reusable Software Components’, 6th Annual
Workshop on Software Reuse (Owego, New York), Nov. 1993.

[Sin96] V.P. Singhal. “A Programming Language for Writing
Domain-Specific Software System Generators’. Dept. of
Computer Sciences, University of Texas at Austin, September
1996.

[Sma96] Y. Smaragdakis and D. Batory, “Scoping Constructs
for Program Generators’. TR 96-37, Dept. of Computer
Sciences, University of Texas at Austin, December 1996.

[Sma97] Y. Smaragdakis and D. Batory, “DiSTiL: a
Transformation Library for Data Structures’, USENIX Conf. on
Domain-Specific Languages, 1997.

[Sma98] Y. Smaragdakis and D. Batory, "Implementing
Reusable Object-Oriented Components’, Int. Conference on
Software Reuse 1998.

[Tah97] W. Taha and T. Sheard, "Multi-Stage Programming
with Explicit Annotations’, Partial Evaluation and Semantics
Based Program Manipulation (PEPM'97), June, 1997,
Amsterdam.

[Tok95] L. Tokuda and D. Batory, "Automated Software
Evolution via Design Pattern Transformations’, Symp. on
Applied Corporate Computing, Monterrey, Mexico, Oct. 1995.

[Wei93] D. Weise and R.Crew, “Programmable Syntax
Macros’, ACM SIGPLAN Notices 28(6), 1993, 156-165.

[Wil93] D.S. Wile, “POPART: Producer of Parsers and Related
Tools”, USC/ISI, November 1993.

[Van96] M. VanHilst and D. Notkin, “Using Role Components
to Implement Collaboration-Based Designs’, OOPS_A 1996,
359-369.

