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Abstract

We propose a test for the identifying assumptions invoked in designs based
on random assignment to one of many “judges.” We show that standard identi-
fying assumptions imply that the conditional expectation of the outcome given
judge assignment is a continuous function with bounded slope of the judge
propensity to treat. The implication leads to a two-part test that generalizes
the Sargan-Hansen overidentification test and assesses whether implied treat-
ment effects across the range of judge propensities are possible given the do-
main of the outcome. We show the asymptotic validity of the testing procedure,
demonstrate its finite-sample performance in simulations, and apply the test
in an empirical setting examining the effects of pre-trial release on defendant
outcomes in Miami. When the assumptions are not satisfied, we propose a
weaker average monotonicity assumption under which IV still converges to a
proper weighted average of treatment effects.

1 Introduction

Examining the impact of incarceration length on subsequent labor market earnings,

Kling (2006) leveraged plausibly exogenous variation in sentence length arising from

the random assignment of offenders to judges. Specifically, he instrumented the of-

fender’s realized sentence with the average sentence of all other offenders who faced

the same judge. The paper pioneered a now widespread methodology, dubbed the
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“judged fixed effects” design, in which the exogenous assignment to a judge, admin-

istrator, or other decision maker identifies the effects of some treatment on outcomes.

Recent examples employing this strategy include the effect of incarceration on eco-

nomic and family outcomes (Green and Winik, 2010; Loeffler, 2013; Aizer and Doyle,

2015; Mueller-Smith, 2015; Bhuller et al., 2016; Eren and Mocan, 2017; Arteaga, 2018;

Norris et al., 2018; Bhuller et al., 2018; Dobbie et al., 2018b), the effect of pretrial

detention on a variety of legal and economic outcomes (Gupta et al., 2016; Leslie

and Pope, 2017; Dobbie et al., 2018a), the effect of consumer bankruptcy on house-

hold financial well-being (Dobbie and Song, 2015; Dobbie et al., 2017), the effect of

bankruptcy on firm outcomes (Chang and Schoar, 2013), the effect of foster care on

child outcomes (Doyle, 2007, 2008), the effect of disability on labor supply, mortal-

ity, and intergenerational welfare use (Maestas et al., 2013; Dahl et al., 2014; Autor

et al., 2017; Black et al., 2018), and the effect of patents on innovation (Galasso and

Schankerman, 2015; Sampat and Williams, 2015).

The judge fixed effects design is an example of a more general estimation scenario

in which one or more instrumental variables are used to estimate the causal effects

of binary treatment variable. Examples include experiments making use of a vari-

ety of information nudges to influence program take-up or enrollment (Hastings and

Weinstein, 2008; Barghava and Manoli, 2015; Bergman et al., 2017) and randomized

controlled trials with multiple intervention arms all aimed an increasing participation

in a single treatment (Olken, 2007; McKenzie et al., 2008; Thornton, 2008).It is cru-

cial that the treatment variable of interest be binary, but the instrument(s) need not

be; a valid continuous instrument can be broken up into a series of binary indicators

and remain valid. While we refer to the judge fixed effects design as the leading

special case, this article applies to any design in this broader instrumental variables

treatment effecs framework.
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The intuition and transparency of the judge fixed effects design notwithstanding,

identification relies on assumptions that may be controversial in some settings and at

the very least deserve scrutiny. The design’s popularity and the policy relevance of the

research questions it has been employed to answer further underscore the importance

of testing the identifying assumptions.

In this paper we develop a test of the identifying assumptions underlying the

judge fixed effects design. Most commonly, researchers using this design adopt the

local average treatment effects (LATE) framework introduced by Imbens and Angrist

(1994), which allows for heterogeneous treatment effects. The key assumptions are

that individuals are randomly assigned to judges, an exclusion restriction whereby

judges exert no influence on outcomes other than through their decision whether to

“treat” an individual, and that judge assignment has a weakly monotonic effect on

each individual’s treatment status. In the context of Kling’s (2006) original study,

this latter monotonicity condition implies that if judge A is more likely to incarcerate

offenders than judge B, every individual incarcerated by judge B would also have

been incarcerated by judge A had judge A handled the case. A variation on the

LATE framework relaxes monotonicity slightly, provided the average treatment effect

among individuals who violate monotonicity is identical to the average treatment

effect among some subset of individuals who satisfy it (de Chaisemartin, 2017).

Our test follows from the implication that outcomes averaged at the judge level will

be a continuous function with bounded slope of the judge-level treatment probability

(or “propensity”). The slope of the function at any given point corresponds with

the marginal treatment effect, so that bounds on the slope arise from bounds on

the support of the outcome variable. We develop a two-part test of this implication

that takes into account that judge propensity is estimated and demonstrate that

our test has substantial statistical power in empirically reasonable settings. One
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part of the test can be characterized as a generalization of the traditional Sargan-

Hansen overidentification test (Sargan, 1958; Hansen, 1982), which probes the stricter

condition that average outcomes given the instrument are a linear function of the

treatment propensity. The other part of the test assesses whether implied treatment

effects are possible given the support of the outcome. Our test remains feasible even

when additional covariates are not available, a situation that would preclude the use

of traditional balance tests of randomization and existing tests examining how judge

severity varies across subgroups.

Our procedure jointly tests exclusion and monotonicity, and therefore a rejection

suggests one or both may fail. When a priori institutional considerations support the

plausibility of the exclusion restriction (implying that a rejection is evidence against

the monotonicity condition), we propose a weaker average monotonicity condition

under which the instrumental variables estimator converges to a proper weighted

average of individual treatment effects. If, instead, a priori information suggests the

exclusion restriction fails, researchers may consider falling back on the relaxation of

the exclusion restriction described in Kolesár et al. (2015) to interpret estimates as

consistent estimates of treatment effects.

We apply our test in an examination of the effect of pretrial release on the prob-

ability of conviction. We do so using exogenous variation in judge assignment for

offenders in Miami-Dade county, a setting used in Dobbie et al. (2018a). We reject

the null hypothesis that the exclusion restriction and monotonicity assumption hold.

Interpreting the estimates as causal effects of pretrial detention therefore requires

alternative assumptions such as the weaker average monotonicity assumption we pro-

pose and/or the relaxation of the exclusion restriction described in Kolesár et al.

(2015).

Our paper builds on previous work related to tests of instrument validity. As
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mentioned above, our test can be seen as a generalization of the traditional Sargan

(1958) overidentification test to a setting with heterogeneous effects. Angrist and

Imbens (1995) show that the monotonicity condition can be tested in a setting with a

treatment that takes on more than two values. Our test complements their result by

allowing testing with a binary treatment as well, an important case in practice. Kita-

gawa (2015), Huber and Mellace (2015), Mourifié and Wan (2017), and Norris et al.

(2018) also proposed tests for instrument validity in settings with a binary treatment

similar to ours. These tests require a priori knowledge of the instruments’ order with

respect to the probability of treatment, knowledge not commonly available in em-

pirical settings. Applying such tests as if the instrument order were known can lead

to substantial overrejection, as we show in simulations below. Most common in the

literature are informal tests that examine the correlation of judge severity across ob-

servable subgroups (Bhuller et al., 2018; Dobbie et al., 2018a). This approach cannot

detect violations of the exclusion restriction, and is only a weak test of monotonicity;

strict monotonicity requires not only that subgroup-specific propensities across judges

be positively correlated with the overall propensity, but that they are monotonically

increasing with the each judge’s overall propensity. This approach does, however, test

an implication of the weaker average monotonicity assumption we propose for when

our test rejects, and thus complements our approach well.

2 Econometric Framework

Consider a binary treatment indicator, Di for individual i, such as pre-trial release or

placement in foster care, whose possible effects on outcome Yi are of interest. Denote

the potential outcome realized by individual i if untreated by Yi (0), and if treated

by Yi (1). Individual i’s treatment effect is therefore δi := Yi (1) − Yi (0). A class of
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parameters of interest consists of weighted averages of the treatment effect:

αw =
E [wiδi]

E [wi]
, (1)

for nonnegative weights wi. Treatment status is influenced by the assignment to a

judge, denoted by Ji ∈ {0, . . . , J}. An individual’s potential treatment status as a

function of the judge assignment is given by Di (j) ∈ {0, 1}. Define each judge’s

propensity to assign treatment as p (j) := E [Di (j)]. Observed variables include the

judge assignment Ji, treatment status Di := Di (Ji), and outcome Yi := Yi (Di).

Treatment effect parameters of the form (1) can be consistently estimated under

the local average treatment effects (LATE) assumptions (Imbens and Angrist, 1994).

This framework makes the following assumptions:

Condition 1 (LATE instrumental variables validity) For all j ∈ {0, . . . , J},

the following hold jointly:

a. Random assignment and exclusion: the triple (Yi (0) , Yi (1) , Di (j)) is jointly

independent of Ji;

b. Nontrivial instrument: the propensity p (j) is a nontrivial function of j;

c. Monotonicity: For all j, w ∈ {0, . . . , J}, either Di (j) ≥ Di (w) for all i, or

Di (j) ≤ Di (w) for all i.

Conditions 1a and 1b will be satisfied if judge assignment is random, and judges

vary in their influence on treatment status, but do not otherwise affect outcomes.

Given part a, the second part can be verified, since under the first part of the con-

dition p (j) = E [Di|Ji = j]. Part a, however, cannot be directly verified. Part c,

monotonicity, means that any individual who is treated when assigned to a particular
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judge would also be treated if assigned to a judge of equal or greater propensity. It

implies that individuals can be partitioned into a group that never receives treatment

regardless of judge assignment (never-takers), a group that always receives treatment

regardless of judge assignment (always-takers), and groups corresponding to each

propensity value p who are treated when assigned to a judge with p (j) ≥ p and

not otherwise. We refer to members of these latter groups as p-compliers. Imbens

and Angrist (1994) show that under Condition (1), weighted average treatment ef-

fects of the form (1) are identified, including the average treatment effect among each

complier group, and an overall complier average treatment effect that puts positive

weights on each of the complier groups.

The LATE Condition 1 implies that expected outcomes conditional on judge as-

signment lie on a continuous funtion of the judge’s propensity, p (Ji), and that the

slope of the function at some propensity value p is equal to the average treatment

effect among p-compliers. Any bounds on the magnitude of possible treatment effects

are also bounds on the slope of the conditional expectation function of Yi given p (Ji).

At a minimum, treatment effects are bounded by the outcome variable’s support.

The following theorem formalizes this implication:

Theorem 2 Suppose Condition 1 holds and Yi has compact support. Then there

exists K <∞ such that E [Yi|Ji = j] = φ (p (j)) where φ ∈ LipK ([0, 1]).

Proof. All proofs are in the Appendix.

The result of the theorem means the judge fixed effects identifying assumptions

have testable implications. The requirement that the outcome have compact support

does not limit its usefulness: one can always replace the outcome by a set of indicator

variables of the form 1 (Yi ≤ y), and doing so leads to tests that exploit the whole

outcome distribution. We focus initially on the conditional expectation of Yi itself,
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and explore extensions to distributions and quantiles in an appendix.

Common alternatives to the LATE assumptions also share this implication. The

traditional instrumental variables assumptions do not assume monotonicity, but do

require constant treatment effects. In this framework the result of Theorem 2 is even

stronger: E [Yi|Ji = j] is not only continuous, but a linear function of propensities.

de Chaisemartin (2017) presents a weaker monotonicity assumption under which a

proper weighted average of treatment effects is still identified. His “compliers-defiers

assumption” is that, for each pair of judges, there is a subset of compliers that (1)

is the same size as the set of defiers for that judge pair, and (2) has the same av-

erage treatment effect as the set of defiers (those whose treatment status response

violates monotonicity) for that judge pair. Replacing traditional monotonicity with

this compliers-defiers assumption leaves the result of Theorem 2 unchanged. Thus,

the test described below applies equally well when these alternative assumptions are

invoked.

3 Testing Procedure

Our proposed test is based on two observations that follow from Theorem 2: (1)

average outcomes conditional on judge assignment should fit a continuous function of

judge propensities; and (2) the slope of that continuous function should be bounded

in magnitude by the width of the outcome variable’s support. The tests consists of

examining whether observed outcomes averaged by judge are consistent with such a

function.

Figure 1 illustrates graphically the intution behind the test. The top panel depicts

a situation in which the assumptions are satisfied, so that average outcomes by judge

lie on a continuous function of judge propensity, and that slope of that function is
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within the required bounds. The bottom panel illustrates two ways that violations of

the assumptions may appear. In the first (labeled “A” on the figure), two judges have

identical propensities, but different average outcomes; thus no continuous function can

pass through both points. In the second (labeled “B”), two adjacent judges do not

have identical propensities, but their average outcomes are sufficiently different that

the slope of the curve connecting them exceeds the possible treatment effect values.

This suggests a conceptually straightforward procedure for testing the judge fixed

effects design’s assumptions:

1. Regress the outcome Yi on a flexible function of the judge propensity, φ (p (Ji))

2. Jointly test fit and slope by

(a) Regressing the residuals from step 1, ui = Yi−φ (p (Ji)), on judge indicators

and testing whether the coefficients are jointly zero;

(b) Testing whether the slopes of the function are within the bounds dictated

by the support of Yi.

This procedure presents two complications. The first is specifying the propensity

regression in step 1. The step 1 regression of the outcome on the judge propensi-

ties should be as flexible as the researcher’s assumptions regarding treatment effect

heterogeneity. A linear regression imposes constant treatment effects and makes the

test procedure above equivalent to the usual Sargan-Hansen overidentification test

(Sargan, 1958; Hansen, 1982). To impose minimal assumptions on treatment effect

heterogeneity, Theorem 2 suggests one should choose a flexible specification that ap-

proximates Lipschitz functions well, such as polynomials or splines (Chen, 2007). Our

simulations and application use b-splines (see Racine, 2018), but other bases could be
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used as well. Let the number of terms in the chosen series be m+ 1, and let the func-

tion class in which the chosen specification lies be denoted Sm; for example, degree-m

polynomials or degree-r splines with m−r knots. In the context of the judges design,

the number of terms in the approximating series is limited by the number of judges;

settings with a large number of judges, such as our application, allow the specification

to be quite flexible.

The second complication is accounting for the estimation of the judge propensities

and the step 1 residuals when performing the tests in step 2. The simplest estimator

for p (Ji) is simply the fitted value from a regression of treatment status Di on a

vector of judge indicators Wi = (1, 1 (Ji = 1) , . . . , 1 (Ji = J))′, which amounts to the

fraction treated among individuals assigned to judge j, although it may be generalized

by adding controls to the first stage regression. Denote the estimated fitted values

P̂i. The first-step residuals also depend on a linear regression coefficient: collecting

the terms of the spline (or whichever basis is chosen) in the estimated propensity into

the vector Ŝi, the estimated residual for the i-th observation is

ûi = Yi − Ŝ ′i

(
n∑

i=1

ŜiŜ
′
i

)−1 n∑
i=1

ŜiYi.

The fit component of our test is based on the second-step coefficients obtained by

regressing ûi on Wi:

γ̂ =

(
n∑

i=1

WiW
′
i

)−1 n∑
i=1

Wiûi.

Under the conditions of Theorem 2, γ̂ converges in probability to zero. Our procedure

tests this via the following Wald statistic:

T̂ = nγ̂′Ω̂−1γ̂, (2)
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where Ω̂ is a consistent estimator of the limiting covariance of
√
nγ̂, accounting for the

first-step estimates
(∑n

i=1 ŜiŜ
′
i

)−1∑n
i=1 ŜiYi and P̂i. Given an iid sample, a suitable

estimator is:

Ω̂ =

(
n−1

n∑
i=1

WiW
′
i

)−1(
n−1

n∑
i=1

(
Wiûi − R̂i

)(
Wiûi − R̂i

)′)(
n−1

n∑
i=1

WiW
′
i

)−1
,

where R̂i is and adjustment term defined in the appendix.

Given the assumptions so far, the test statistic (2) converges in distribution to a

chi-squared random variable with degrees of freedom equal to the difference between

the number of judges and the number of terms in the specification for φ, as the

following theorem formalizes:

Theorem 3 Suppose Condition 1 holds and φ ∈ Sm, where m < J . Suppose further

that {Yi, Di, Ji}ni=1 comprise an iid sample and E
[
|Yi|3

]
<∞. Then

T̂ →
d
χ2 (J −m) .

Performing the fit component of the test means computing the test statistic and

obtaining the associated p-value from the appropriate chi-squared distribution.

The slope component of the test examines whether the slopes of the function

relating outcomes to judge propensities lie between −K and K, recalling that K is

the width of the outcome variable’s support. The function relating average outcomes

given judge assignment to judge propensities is specified as

φ (p) = δ0S0 (p) + · · ·+ δmSm (p) ,

where S0, . . . , Sm are elements of a polynomial series, spline series, or whichever basis
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is chosen for φ. When φ is specified as a quadratic b-spline, the maximum slope

occurs at one of the knots, {t0 = 0, t1, . . . , tm−2, tm−1 = 1}. The slope at the l-th knot

is given by

φ′ (tl) =
2

tl+1 − tl−1
(δl+1 − δl) , l = 0, . . . ,m− 1,

where we define t−1 = t0 = 0 and tm−1 = tm = 1. The restriction on the slope of φ

corresponds to the following set of inequality constraints:

{
−K ≤ 2

tl+1 − tl−1
(δl+1 − δl) ≤ K

}m−1

l=0

.

Given estimates δ̂ =
(∑n

i=1 ŜiŜ
′
i

)−1∑n
i=1 ŜiYi and corresponding variance matrix

that accounts for the estimation of P̂i, we implement the moment inequality testing

procedure proposed by Andrews and Soares (2010). This procedure first performs

generalized moment selection to eliminate inequalities that are far from binding, and

then constructs a modified method of moments (MMM) test statistic to test the

remaining inequalities. The appendix describes the details of the implementation.

Finally, we combine the fit component and slope component of the test via a

weighted Bonferroni procedure to produce a single joint test. If we denote the

p-value from the fit component of the test as pf and the p-value from the slope-

component of the test as ps, then a joint level-α test rejects if either pf < ωα or

ps < (1− ω)α, for some weight ω ∈ [0, 1]. Equivalently, one can define a joint p-

value as min {pf/ω, ps/ (1− ω)} and reject if the joint p-value is less than α. The

choice of ω governs the direction of power between the fit component and the slope

component, with values near one directing more power to the fit component of the

test. In the “just identified” case when there are only two judges, the fit component

of the test will have no power, and therefore choosing ω = 0 is appropriate. As the
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number of judges grows, the specification of φ becomes more flexible and the number

of inequalities being tested in the slope component grows, causing the slope compo-

nent of the test to lose power; choosing ω to be near one will be most appropriate in

cases with many judges, as in our application. The procedure described above has

asympotic size of at most α; the simulations below show the test also performs well

in finite samples.

The test has power against alternatives in which the conditional expectation of Yi

given the assigned judge differs from a continuous function of the judge propensity, or

in which the function has slopes that exceed the maximum possible treatment effect

size. This includes violations of random assignment or exclusion (Condition 1a) or

violations of monotonicity (Condition 1c). The test has power against violations of

random assignment when, for example, a given judge, j̃, is more likely than other

judges to be assigned to a certain group of defendants, and that group differs in

its potential outcomes from other defendants. Similarly, the test has power against

violations of the exclusion restriction that arise when judges affect outcomes through

channels besides the treatment, so that defendants assigned to one judge j̃ experience

different average outcomes than defendants assigned to another judge with a similar

propensity.

Finally, the test has power against violations of monotonicity when, for example,

a given judge j̃ with similar propensity to another judge nevertheless treats a quite

different set of defendants, and treatment affects those defendants differently from

the average. Under the preceding types of violations, average outcomes conditional

on Ji = j̃ will differ discretely from average outcomes conditional on other judges no

matter how close their propensity. As a result, the conditional expectation function

will not be well approximated by a continuous function with bounded slope, the

coefficients from regressing residuals on judge indicators will have nonzero probability
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limits, or the slopes will exceed the maximum treatment effects size and the test will

have asymptotic power.

The test does not have power against all violations of Condition 1, however, as

is also the case for other specification tests in the literature (Kitagawa, 2015; Huber

and Mellace, 2015; Mourifié and Wan, 2017). For example, the test will not detect

violations of the monotonicity condition where two judges with similar propensity

nevertheless treat different types of defendants, but those types have identical average

treatment effects. (Monotonicity violations are unimportant in this case anyway,

because they do not induce bias unless treatment effects are heterogeneous.) Similarly,

the test will not detect violations of the exclusion restriction where two judges with

similar propensity values also have exclusion violations in similar magnitude and

direction. The test will not have power against knife-edge alternatives like this, but

will nevertheless have power against a wide class of alternatives as described in the

previous paragraph.

4 Implications if the test rejects

A test rejection constitutes evidence that either the exclusion restriction or the mono-

tonicity assumption (or both) fail to hold. Intuitively, it implies either that judges

influence outcomes beyond their propensity to assign treatment, or judges disagree on

their implicit ordering of which defendants should be treated. Strictly speaking, the

test does not distinguish which assumption is violated, although a priori information

may be informative about the nature of the violation. But regardless of which as-

sumption is violated, the consequence is that instrumental variables estimators using

the full set of judge indicators cannot be guaranteed to consistently estimate causal

parameters such as (1) except under special circumstances, described below.
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4.1 Exclusion restriction violations

If exclusion restriction violations cannot be ruled out, researchers may consider as-

sumptions that relax the exclusion restriction but still allow for identification of causal

parameters. One such assumption is the “many invalid instruments” condition pro-

posed by Kolesár et al. (2015), who allow the exclusion restriction to be violated, and

instead assume that the direct effects of instruments on the outcome are uncorrelated

with their effects on treatment.1 In the current setting, this means that a judge’s di-

rect effect on defendant outcomes is uncorrelated with his or her propensity to assign

treatment. Whether this assumption is plausible will depend on the specific setting.

Mueller-Smith (2015) proposes a more traditional strategy for dealing with exclu-

sion restriction violations when the channels of the violations are observed, namely,

to treat the channels through which judges affect outcomes besides treatment as ad-

ditional endogenous variables. Under the traditional linear simultaneous equations

framework, which includes constant treatment effects and that the number of judges

is greater than the number of channels, the treatment effect of interest is identified.

4.2 Monotonicity violations

If a priori considerations rule out exclusion restriction violations, then a rejection

provides evidence against the strict monotonicity assumption, Condition 1c. A nat-

ural next step by researchers would be to relax monotonicity, perhaps by adopting

the weaker compliers-defiers condition (de Chaisemartin, 2017). Unfortunately, the

implication our procedure tests is also implied by the compliers-defiers condition,

meaning a rejection constitutes evidence against that assumption as well.

1The proof that causal effects can be identified under this assumption uses a model with constant
treatment effects. A similar result may exist for a heterogeneous effects setting, but has not been
demonstrated.
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Strict monotonicity can be relaxed in another way, however, that still preserves the

interpretation of the IV estimand as a proper weighted average of individual treatment

effects of form (1), and may hold even when strict monotonicity’s testable implication

is not satisfied. Define D̄i =
∑J

j=1 λjDi (j) as individual i’s average treatment status

across judges, where λj is the probability of being assigned Ji = j, and consider the

following average monotonicity condition:

Condition 4 (Average monotonicity) ωi :=
∑J

j=1 λj (p (j)− p)
(
Di (j)− D̄i

)
≥

0 almost surely.

Condition 4 means that for each individual, the covariance between the individual’s

judge-specific treatment status and judge overall treatment propensities is weakly

positive. This means that individuals may violate monotonicity with specific judges,

as long as they comply with monotonicity for enough other judges so that the overall

covariance stays nonnegative.

Under this weaker notion of average monotonicity (and the exclusion restriction)

the IV two-stage least squares estimand can be interpreted as a proper weighted

average, as the following theorem shows.

Theorem 5 (IV weighted average) Suppose Condition 1a and 1b hold and define

β2SLS =
E [(Yi − E [Yi]) (E [Di|Ji]− E [Di])]

E
[
(E [Di|Ji]− E [Di])

2] .

Then

β2SLS =
E [ωiδi]

E [ωi]
,

where ωi is defined in Condition 4.

Thus, falling back on Condition 4 when the test we propose rejects provides a way to

nevertheless interpret estimates causally.
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But can the weaker average monotonicity condition be verified? Although the

individual weights ωi are not identified, as they are a function of potential treatment

status, their conditional expectation is, which provides a testable implication of Con-

dition 4. Given random assignment and the exclusion restriction, the conditional

expectation of ωi given some covariate Xi conditional upon which Ji is independent

of (Yi (0) , Yi (1) , {Di (j)}) is given by the covariance between judges’ x-specific treat-

ment propensity and judges’ overall propensity:

E [ωi|Xi = x] =
J∑

j=1

λj (p (j)− p) (px (j)− px) ,

where px = E [Di|Xi = x] and px (j) = E [Di|Ji = j,Xi = x]. The assumption that

ωi ≥ 0 implies E [ωi|Xi = x] ≥ 0 for all x in the support of Xi, which may be

tested by examining the observed covariance between judges’ group-specific treatment

propensities and overall propensity. This gives a formal motivation to the informal

tests that overall propensity is positively correlated with group-specific propensities

in the applied literature (Bhuller et al., 2018; Dobbie et al., 2018a).

If the many-invalid-instruments assumption and our average monotonicity as-

sumption seem reasonable in a given application, then using judge assignment for

identification is still appropriate even if our test rejects the conventional exclusion

and monotonicity conditions. However, these weaker assumptions do constrain the

scope of inference. In particular, they do not allow for the identification of marginal

effects along the entire distribution of judge propensities, as can be achieved in the

conventional framework (Mogstad et al., 2017). The weaker assumptions rely on aver-

aging across the entire set of judges, while identification of marginal effects throughout

the distribution requires assumptions to hold judge by judge.

17



5 Simulations

The section illustrates how the proposed test’s performance in terms of finite-sample

size and power depends on features of the underlying data. The simulations’ data

generating process mimics a setting with J judges, to whom individuals are assigned

with uniform probablity:

Ji ∼ U {1, . . . , J} .

A judge’s propensity to assign treatment is given by:

p (Ji) = θJi/ (J) .

The outcome is generated as

Yi = β0 + β1Di + εi,

and treatment is determined by

Di = 1 (Φ (−νi) ≤ p (Ji)) ,

where

vi = ρεi +
√

1− ρ2ηi

and

(εi, ηi) ∼ N (0, I2) .

In this setup the parameter θ governs the strength of the instruments and ρ determines

the degree of treatment endogeneity. Note that this setup satisfies Condition 1. The

main simulation results set ω = 1, which directs power to the fit component of the
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test. Further simulation results below show how the test performs under different

choices for ω.

The first set of simulations examines how the test’s size depends on the number

of observations. We set the simulation parameters as J = 10, θ = 1, β0 = β1 = 1,

and ρ = .5. We consider sample sizes of n ∈ {500; 1, 000; 2, 000; 5, 000; 10, 000}, and

for each sample size draw 999 samples from the data generating process described

above and perform the test with nominal size α = .05, recording the rejection rate

for each sample size. The simulations show that the test has very close to nominal

size even for modest sample sizes. Figure 2 plots the rejection rate as a function of

the sample size. The horizontal line is at .05. The simulated rejection rate is very

near the nominal level throughout the range of sample sizes.

The next set of simulations explores the test’s power to detect a violation of the

exclusion restriction, Condition 1a, which can arise if judges have direct effects on

outcomes other than through treatment. The data generating process is as described

above, except judges now have direct effects on the outcomes:

Yi = β0 + β1Di +
J∑

j=1

γj1 (Ji = j) + εi,

where the individual judge effects γj are drawn from a normal distribution with mean

zero and standard deviation that varies from zero (corresponding to no violation) to 1

(severe violation). We set n = 1000 for this set of simulations. The simulations show

that the proposed test’s power increases rapidly with the severity of the violation.

Figure 3 plots the rejection rate as a function of the standard deviation of the direct

judge effects. At the far left the rejection rate is very near .05, reproducing the result

that the test has correct size when the assumptions are satisfied. As the standard

deviation of the direct judge effects grows, the rejection rate increases rapidly. Power
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exceeds 90 percent when the standard deviation is 0.2 and is essentially 100 percent

for standard deviations above 0.3.

The next set of simulations illustrates the test’s power to detect violations of the

monotonicity assumption, Condition 1c, which can occur if judges do not implicitly

agree on the order in which defendants should be treated. To allow for monotonicity

violations in the simulations, we introduce heterogeneity in defendants and judges.

We introduce an additional set of J judges (indexed J + 1, . . . , J) who order most

defendants identically to the first J judges, but order a fraction φ < .5 of defendants,

whom we call defiers, in the opposite order. Since violations of monotonicity only

lead to bias when treatment effects vary, we set defiers’ treatment effect to −β1. Let

the binary variable Fi with Pr (Fi = 1) = φ indicate whether a defendant is a defier.

Treatment assignment and outcomes are then determined as follows:

Yi =

 β0 − β1Di + εi , Fi = 1

β0 + β1Di + εi , otherwise
,

Di =

 1 (Φ (−νi) ≤ 1− p (Ji)) , Fi = 1 and Ji ≥ J + 1

1 (Φ (−νi) ≤ p (Ji)) , otherwise
.

The simulations show the proposed test has good power to detect violations of mono-

tonicity of this sort. Figure 4 plots the test’s rejection rate as a function of the fraction

of defiers φ. At the far left (φ = 0, corresponding to no violation) the test rejects at a

rate near α = .05 as expected. As the fraction φ increases and the violation of mono-

tonicity becomes more severe, the rejection rate increases rapidly. Power exceeds 80

percent when the fraction of defiers is greater than .3.

We also run simulations that allow us to compare how our test performs rela-

tive to the the test described in Kitagawa (2015). The Kitagawa test assumes a
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priori knowledge of the instruments’ order with respect to the probability of treat-

ment. In the context of judge assignment, this assumption is problematic because

the judge propensities to treat are estimated rather than directly observed. To as-

sess the size of the Kitagawa test, we run simulations with four judges (the test

quickly becomes computationally burdensome as the number of judges increases)

with population propensities .25, .495, .5, and .505 using three different samples sizes

(n ∈ {5, 000; 10, 000; 100, 000}). The monotonicity assumption in this scenario means

individuals fall into one of five compliance categories: always-takers, never-takers,

and one of three complier groups. We set the treatment effect equal to zero, and set

always-takers’ outcomes to Yi = 0, judge 1 compliers’ outcomes to Yi = 1, judge 2

compliers’ outcomes to Yi = 2, judge 3 compliers’ outcomes to Yi = 3, and never-

takers’ outcomes to Yi = 4. With a nominal test size of 5%, rejection rates for the

Kitagawa test are 10.3% for a sample size of 5,000, and grow to 22.2% for n = 10, 000

and 27.9% with a sample size of 100,000. In comparison, rejection rates for our test

in the same simulations are 5.2%, 5.1% and 4.7%. The results show that the Kita-

gawa test substantially overrejects and that the distortion does not decrease with the

sample size over the range considered. For a large enough sample size, of course,

and given a dgp, estimation error in the propensities will become negligible and the

Kitagawa test will have correct size. But for any given sample size, there is a dgp

for which the Kitagawa test will fail to control size; that is, the Kitagawa test is not

uniformly asymptotically valid when propensities are estimated, as illustrated in our

simulations.

Finally, we show how the test performs under different choices for ω. To demon-

strate this, we run two sets of simulations: one with a small number of judges (J = 2),

in which we will see that small values for ω are best, and another with a large number

of judges (J = 20) in which larger values for ω are best. The outcome variable is
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binary, as in our application below, with expected value conditional on judge assign-

ment given by

Pr (Yi = 1|Ji) = β0 + β1Ji/k +
J∑

j=0

γj1 (Ji = j) ,

and treatment propensity given by

Pr (Di = 1|Ji) = α0 + α1Ji/k.

As above, the γj terms represent violations of the exclusion restriction when they

are nonzero; in this set of simulations they are drawn from normal distribution with

standard deviation .2. This simulation setup also allows the assumptions to be vi-

olated when β1 > α1, as this would imply an average treatment effect greater than

one, which is impossible for a binary outcome. This corresponds to a violation of

the slope condition. In this simulation setup we set β1 = .3 and α1 = .2. Using a

simulated sample size of n = 1, 000, we perform our test for several choices of ω be-

tween zero and one, and examine how the test’s power depends on ω in the few-judge

case (J = 2) and the many-judge case (J = 20). The simulation results show that

in the few-judge case, power is greatest when ω = 0, since the fit component of the

test has no power in this case. The upper panel of Figure 5 shows that the test’s

power is over 80 percent when ω = 0, and drops to zero when ω = 1. The situation

is reversed in the many-judge case. The lower panel of Figure 5 shows that power

is very poor (around 10 percent) when ω = 0, and increases for higher values of ω.

Typical instances of the judge fixed effects design, including our application below,

involve relatively many judges. These simulation results suggest choosing ω to be

high in these cases. In the application we set ω = 1.
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6 Empirical Application: Pretrial Detention and

Case Outcomes

To illustrate how to implement and interpret our test in practice, we replicate results

from the literature on the impact of pretrial detention on case outcomes. When an

individual is charged with a crime, he may be released or held in jail while the case

is being adjudicated. Several recent papers on pretrial detention (Gupta et al., 2016;

Leslie and Pope, 2017; Dobbie et al., 2018a) find that holding defendants pretrial

increases the probability that they will be convicted. In most settings, the only

purpose of the first hearing for the majority of defendants is to determine their pretrial

status. The judge at this hearing decides whether and how high to set bail. Causal

identification of the impact of detention on conviction comes from variation across

arraignment judges in the rates at which they detain people.

6.1 Background

We analyze a dataset from criminal cases in Miami-Dade that is identical to the data

from this location used in Dobbie et al. (2018a). Following arrest in Miami-Dade,

defendants are brought to a police station where they can secure their release by

posting bail according to a schedule based on seriousness of offense. For the 70% of

defendants who do not post bail immediately, there is a bail hearing within 24 hours

of arrest. At the hearing, the bail judge on duty may change the bail amount or

impose nonmonetary conditions, like monitoring.

The weekday bail hearing shifts are presided over by a single judge, while ap-

proximately 60 judges preside at weekend bail hearings based on a rotating schedule.

Defendants are automatically assigned to the bail judge on duty, leaving little scope
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for manipulating judge assignment given the short window between arrest and the

hearing. The process of trial judge assignment is not connected to the bail hearing,

so the leniency of the bail judge does not have a systematic relationship with the

tendencies of judges involved in later stages of the case.

6.2 Data

Our data include all criminal cases on record in Miami-Dade between 2006 and 2014.

The court data include arrest charge, filing charge, and disposition charge; the out-

come for each charge; and the punishment for each guilty charge. We observe the bail

judge, bail amount and type, and if/when bail was posted. We know each defendant’s

name, gender, race, date of birth, and address. The individually identifying informa-

tion allows us to construct criminal history and future criminal activity during the

observation period. We restrict attention to cases in which there was a weekend bail

hearing; these are the cases assigned a bail judge based on a rotating schedule. Table

1 shows summary statistics for our sample, which is identical to the Miami-Dade

sample used in Dobbie et al. (2018a). The sample is predominantly male, and split

fairly evenly between whites and blacks. Defendants who are released pretrial are

less likely to have a prior offense from the past year and more likely to be white than

those detained pretrial. They are also less likely to be convicted, be sentenced to

incarceration, or to recidivate after case disposition. These differences are consistent

with the hypothesis that pretrial detention influences case outcomes. They also high-

light the nonrandom assignment of pretrial status, and the need to go beyond simple

comparisons of means to identify a causal effect.
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6.3 Research Design

We are interested in the relationship between pretrial release and conviction repre-

sented in the following equation:

convictedict = β0 + β1releasedic + β2Xict + εict

where convictedic is an indicator for whether individual i in case c was convicted,

releasedic is an indicator for whether the individual was released within three days

of the bail hearing, and Xic is a vector of defendant and case characteristics. OLS

will yield biased estimates if there are unobserved factors that are correlated with

both pretrial release and case outcomes. For example, defendants with above average

lawyers may have better outcomes at the bail hearing stage and a lower probability

of conviction.

To estimate the causal effect of pretrial status on case outcomes, we begin by

instrumenting for whether an individual was released pretrial with a measure of the

leniency of his bail hearing judge. Following Dobbie et al., we use a leave-out mean

of residualized pretrial outcomes as an instrumental variable. We first regress actual

pretrial release status on a vector of bail year by bail day of week and court by

bail month by bail day of week fixed effects, to account for the possibility of bail

judges who are more likely to work certain days or months. The variation we use

for identification is therefore differences in leniency between judges working the same

day of the week within a month and year. Let the residual from this regression be

Released∗ict. The instrumental variable for each defendant is the average of his bail

judge’s residuals for that year, excluding his own:

Zict =

(
1

ntj − nitj

)(
Σ

ntj

k=0(Released
∗
ikt − Σ

nitj

c=0Released
∗
ict

)
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where ntj is the number of cases seen by judge j in year t and nitj is the number

of cases of defendant i seen by judge j in year t.

6.4 Identification and Results

For our instrumental variable strategy to identify the causal effect of pretrial release,

the exclusion restriction and a monotonicity condition must hold. The exclusion

restriction in this setting requires both random assignment of judges and that judges

impact the outcome of interest only through pretrial detention. We provide evidence

that judge assignment is conditionally random in Table 2. Both the coefficients

and standard errors, and the p-values on the tests of joint significance indicate that

defendant characteristics are powerful predictors of pretrial status, but not of judge

leniency.

Even if defendants are randomly assigned to judges, the exclusion restriction could

be violated if bail judges influence case outcomes through channels besides pretrial

release. For example, a bail judge who orders pretrial drug testing or treatment

influences outcomes other than through pre-trial detention and violates the exclusion

restriction.

Monotonicity could be violated in this context if, for example, some judge were

harsh on average, but lenient toward female defendants. One approach employed

in the existing literature to assess the monotonicity assumption is to check whether

judge leniency within one subgroup is positively correlated with judge leniency within

another subgroup. Another test in the same spirit is to examine whether the first

stage estimates of the relationship between the residualized measure of judge leniency

Zict and individual pretrial status are positive for all subgroups, meaning that judges

who are more lenient overall are more likely to release members of any observable
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subgroup. As discussed above, this approach tests the weaker average monotonicity

condition, but is likely not a powerful test of strict monotonicity.

Our joint test of the exclusion restriction and monotonicity assumption probes

whether there is a continuous relationship between judge leniency and case outcomes

(averaged at the judge level), taking into account that judge leniency is estimated.

This can be assessed graphically. Figure 6 plots average case outcomes by release rates

for each judge. Intuitively, our test assesses whether the data are consistent with all

points lying on a single continuous curve, to within sampling variation. Visually, this

appears to be unlikely.

The formal test confirms the visual evidence. Table 3 shows results when we

apply our test to the data. We implement our test choosing ω = 1, since with a large

number of judges, the slope component of the test has little power. The conclusions

are unchanged for a wide range of choices for ω, however. The top panel shows that

we reject the null hypothesis on the full sample for various numbers of knots in the

spline function.2

As discussed above, one possibility is to rely instead on the weaker average mono-

tonicity assumption, provided that the rejection is not due to exclusion restriction

violations. To assess the plausibility of our average monotonicity assumption, we

check that the first-stage coefficient is positive within subsamples defined by case and

defendant characteristics (see Tables 4 and 5), an approach used in several papers

in the literature (Gupta et al., 2016; Leslie and Pope, 2017; Dobbie et al., 2018a).

The results confirm that the first stage coefficient is positive and statistically signifi-

cant within several important observable subsamples. Based on these estimates, the

2If we suspected that monotonicity violations along certain observable characteristics were to
blame, then we could test jointly across these dimensions. Assuming independence of the subsamples,
we could add up the chi-squared test statistics and degrees of freedom after running the test on all
subsamples defined by the relevant observables to get the joint test statistic and its chi-squared
degrees of freedom.
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average monotonicity assumption may be justified, and IV estimates have a causal in-

terpretation despite the violation of strict monotonicity, again, provided the rejection

was not due to exclusion restriction violations.

To the extent that there are also exclusion restriction violations, we must invoke

the many invalid instruments assumption to interpret our IV estimates causally. If we

observe any potential non-focal treatment dimensions in the data, we can use them to

probe the many invalid instruments assumption. In our setting, we observe whether

or not the defendant was represented by a public defender. The bail judge has no

control over the specific public defender (and prosecutor) involved in the case, but

the court does have the final say on eligibility for representation by a public defender.

We construct the propensity for defendants appearing before each judge to receive a

public defender using the same approach as we did for the construction of the focal

propensity. The first stage for this non-focal propensity is just as strong as the focal

first stage, suggesting that this is, in fact, a channel through which judges exercise

real influence. Finally, we check whether there is a statistically significant correlation

between the focal and non-focal propensities, and find a correlation coefficient of -0.18

with a p-value smaller than .0001. The strength of this relationship makes the many

invalid instruments assumption less palatable for this context.

Table 6 reports the estimated effect of pretrial release on conviction, and F-

statistics for the first stage. Pretrial release is estimated to reduce the probability

of conviction by 16 percentage points. The F-statistic from using the single judge

propensity to release instrument overstates the strength of the first stage. Using

jackknife instrumental variables estimation with the judge dummies reduces the size

of the F-statistic substantially..
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7 Conclusion

Judge fixed effects designs, or, more generally, treatment effects estimation involving

several dummy instrumental variables, are increasingly popular. Traditional overiden-

tification tests rely on often implausible constant treatment effects assumptions for

their validity. More recently developed tests that allow for heterogeneous treatment

effects, on the other hand, require that the order of the instruments by treatment

propensity be known, something that is rarely the case in judge fixed effects designs.

We have proposed a test of the identifying assumptions in judge fixed effects designs

that allows for heterogeneous treatment effects and accounts for the estimation of

judge propensities, established its asymptotic properties, and demonstrated its finite

sample performance in simulations and a real-world application to the effects of pre-

trial detention. Finally, we provided guidance on steps researchers can take when the

test reveals evidence against the identifying assumptions.
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Appendix

Proofs

Proof of Theorem 2. Condition 1 satisfies the conditions of Theorem 1 in Imbens

and Angrist (1994), which implies

E [Yi|Ji = j] = (p (j)− p (1))E [Yi (1)− Yi (0) |Di (j) > Di (0)] + E [Yi|Ji = 1] . (3)

By Condition 1c, monotonicity, for each individual i one can define a marginal

propensity, p̄i := inf {p : p = p (j) , Di (j) = 1}, such that when assigned a judge with

p (j) ≥ p̄i, the individual is treated, and otherwise is untreated. For never-takers, we

define p̄i =∞. For always-takers, p̄i = p (1). Note that p̄i depends only on Di (j), and

by Condition 1a is therefore independent of Ji, and that potential treatment status

can be written Di (Ji) = p̄i ≤ p (Ji). The right hand side of equation (3) then can be
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written

φ (p (j)) = (p (j)− p (1))E [Yi (1)− Yi (0) |p (1) < p̄i ≤ p (j)] + E [Yi|Ji = 1] ,

which depends on j only through p (j). By monotonicity the average slope of φ

through two points p and p′ (where p′ ≥ p) can be written:

φ (p′)− φ (p) = (p′ − p)E [Yi (1)− Yi (0) |p ≤ p̄i ≤ p′] .

Let Y be the compact support of Yi. Noting that K := supY − inf Y is finite and

that |E [Yi (1)− Yi (0) |p ≤ p̄i ≤ p′]| ≤ K yields the result.

Proof of Theorem 3. Define the estimated judge propensity to treat as

p̂ (Zi) = W ′
i α̂,

α̂ =

(
n∑

i=1

WiW
′
i

)−1 n∑
i=1

WiDi.

Define vi := Di−W ′
iα and ui := Yi−S ′iδ, where Si is a vector powers of p (Ji) := W ′

iα,

judge Ji’s (population) propensity to treat, and δ is the vector of coefficients from the

population regression of Yi on Si. Write S ′iδ := f (λ,Wi), where λ = (α′, δ′)′. Letting

δ̂ =

(
n−1

n∑
i=1

ŜiŜ
′
i

)−1
n−1

n∑
i=1

ŜiYi,

we can write ûi = Yi − f
(
λ̂,Wi

)
where λ̂ =

(
α̂′, δ̂

′)′
, which has limiting behavior as

follows:

√
n
(
λ̂− λ

)
= n−1/2

n∑
i=1

 Q−1W Wivi

Q−1S Siui

+ op (1) ,
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where for some random vector Ai we adopt the notation QA := E [AiA
′
i]. By a mean

value expansion we can write ûi = ui − ∇
(
λ̃,Wi

)′ (
λ̂− λ

)
, where ∇ (λ,Wi) is the

Jacobian of f (λ,Wi) with respect to λ,

∇ (λ,Wi) =

 Wi∆
′
iδ

Si


and

∆̂i =

(
dS0 (p̂i)

dp
, . . . ,

dSm (p̂i)

dp

)′
.

The estimator on which the test statistic is based can therefore be expanded as:

√
nγ̂ =

√
n

(
n−1

n∑
i=1

WiW
′
i

)−1
n−1

n∑
i=1

Wiûi

= Q−1W

(
n−1/2

n∑
i=1

Wiui − ri

)
+ op (1) ,

where

ri = E

Wi

 Wi∆
′
iδ

Si


′
 Q−1W Wi (Di −W ′

iα)

Q−1S Siui

 ,

a consistent estimator for which is

R̂i =

n−1 n∑
j=1

Wj

 Wj∆
′
j δ̂

Ŝj


′
 Q̂−1W Wi (Di − p̂i)

Q̂−1S Ŝiûi

 . (4)

By the central limit theorem we therefore have

√
nγ̂ →

d
N (0,Ω) ,
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where

Ω = Q−1W V ar (Wiui − ri)Q−1W

is consistently estimated by Ω̂ in the text. The quadratic form

nγ̂′Ω̂−1γ̂

is therefore asymptotically a chi-squared random variable with degrees of freedom

equal to the rank of Ω̂−1, in this case k −m.

Proof of Theorem 5. Define and note the following:

Yij = Yi (1)Di (j) + Yi (0) (1−Di (j))

D̄i =
J∑

j=1

λjDi (j)

p =
J∑

j=1

λjp(j)

Ȳi : =
(
D̄iYi (1) +

(
1− D̄i

)
Yi (0)

)
=

J∑
j=1

λjYij

E
[
Ȳi
]

= E

[
J∑

j=1

λjYij

]

=

[
J∑

j=1

Pr (Ji = j)E [Yi|Ji = j]

]
= E [Yi]

The IV estimand is the covariance between assigned judge propensity and individual
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outcome divided by the variance of the judge propensity:

β2SLS =
E [(Yi − E [Yi]) (E [Di|Ji]− E [Di])]

E
[
(E [Di|Ji]− E [Di])

2] .

Iterating expectations in the numerator and denominator, the right hand side be-

comes:

∑J
j=1 λj (E [(p(j)− p) (Yi − E [Yi]) |Ji = j])∑J

j=1 λj (p(j)− p)2

=

∑J
j=1 λj

(
E
[
(p(j)− p)

(
Yij − Ȳi

)
|Ji = j

])∑J
j=1 λj (p(j)− p)E

[(
Di (j)− D̄i

)] ,

where the second line follows from random assignment which implies E
[
Ȳi|Ji = j

]
=

E
[
Ȳi
]

= E [Yi]. Noting that λj (p(j)− p) is deterministic and that random assign-

ment implies E [Yij|Ji = j] = E [Yij], the IV estimand can be written:

∑J
j=1 λj (p(j)− p)

(
E [Yij]− E

[
Ȳi
])

E
[∑J

j=1 λj (p(j)− p)
(
Di (j)− D̄i

)]
=

E
[∑J

j=1 λj (p(j)− p)
(
Yij − Ȳi

)]
E
[∑J

j=1 λj (p(j)− p)
(
Di (j)− D̄i

)]
=

E
[∑J

j=1 λj
(
(p(j)− p)

(
Di (j)− D̄i

))
(Yi (1)− Yi (0))

]
E
[∑J

j=1 λj (p(j)− p)
(
Di (j)− D̄i

)] ,

where the first equality follows from the interchangeability of integration and sum-

mation, and the final equality from the definitions of Yij and Ȳi.

Hence, given random assignment and the exclusion restriction (and notably with-

out imposing monotonicity), the IV estimand can be written as a weighted average

39



of individual-level treatment effects:

βIV =
E [ωi (Yi (1)− Yi (0))]

E [ωi]
,

where the weights are given by

ωi :=
J∑

j=1

λj (p(j)− p)
(
Di (j)− D̄i

)
.

Extensions

The proposed test has power against alternatives that shift the mean of Yi, but will

not have power against alternatives where other features of Yi are changed but not

the mean. The test naturally extends to have power against shifts in other features of

the distribution, as well. Instead of regressing Yi on the instrument indicators and the

propensity power series, one can simultaneously regress a set of indicator variables of

the form 1 (Yi ≤ yj) for a grid of {yj} values and jointly test whether the coefficients

on the instrument indicators are zero across all equations.

Alternatively, one can replace the mean regression with a set of quantile regressions

of Yi with a grid of quantile values τj ∈ (0, 1). The test then consists of jointly testing

the hypothesis that the coefficients on the instrument dummies are zero across all

quantile regressions. In this case and the dummy dependent variable alternative

above, the test is carried out using a variance matrix accounting for the estimation

of p̂ (Ji), analogous to the procedure described in the main text. These extensions

allow the test to have power against a wider array of alternatives, although at the

expense of more computational burden and perhaps a lack of specific power against
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alternatives where only the mean is shifted.

Generalized Moment Selection Implementation

The slope component of the test implements the moment inequality testing procedure

proposed by Andrews and Soares (2010). This procedure is based on the following

modified method of moments (MMM) test statistic:

M̂ =
m−1∑
l=0


 K − φ̂

′
(tl)

s.e.
(
φ̂
′
(tl)
)
2

−

+

 K + φ̂
′
(tl)

s.e.
(
φ̂
′
(tl)
)
2

−

 ,

where [x]− = x1 (x < 0),

φ̂
′
(tl) =

2

tl+1 − tl−1

(
δ̂l+1 − δ̂l

)
,

s.e.
(
φ̂
′
(tl)
)

= n−1/2
2

tl+1 − tl−1

(
Σ̂l+1,l+1 + Σ̂l,l − 2Σ̂l+1,l

)1/2
,

and Σ̂ is a consistent estimator of the variance matrix of δ̂ =
(∑n

i=1 ŜiŜ
′
i

)−1∑n
i=1 ŜiYi

that takes into account estimation of P̂i:

Σ̂ = Q̂−1S

(
n∑

i=1

(
Ŝiûi − ∆̂iW

′
i Q̂
−1
W Wiv̂

)(
Ŝiûi − ∆̂iW

′
i Q̂
−1
W Wiv̂

)′)
Q̂−1S .

Under the regularity conditions described in Andrews and Soares (2010), the dis-

tribution of the MMM test statistic can be approximated by the distribution of

M̂∗ =
∑
l∈L−

[Z∗l ]2− +
∑
l∈L+

[−Z∗l ]2− ,

where Z∗ is an m-element multivariate normal random variable with unit variances
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and correlation matrix corresponding to the asymptotic variance of

([0m×1 : Im]− [Im : 0m×1]) δ̂,

and the moments selected by the generalized moment selection are given by:

L− =

l :
K − φ̂

′
(tl)

s.e.
(
φ̂
′
(tl)
) ≤ √lnn

 ,

and

L+ =

l :
K + φ̂

′
(tl)

s.e.
(
φ̂
′
(tl)
) ≤ √lnn

 .

The p-value from the slope component of the test can be found to arbitrary pre-

cision by simulating many multivariate draws, constructing M̂∗ for each draw, and

computing the fraction of draws for which M̂∗ ≥ M̂ .

Tables
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Table 1: Summary Statistics

Detained Released Full Sample
mean mean mean

Panel A: Bail Information
Release on Recognizance 0.05 0.11 0.07
Non-Monetary Bail 0.11 0.38 0.20
Monetary Bail 0.83 0.51 0.73
Bail Amount (in thousands) 59.94 24.80 48.38
Released in 14 Days 0.06 1.00 0.37
Released Before Trial 0.33 1.00 0.55
Panel B: Defendant Characteristics
Male 0.87 0.79 0.84
White 0.46 0.50 0.48
Black 0.54 0.50 0.52
Age at Bail Decision 36.52 34.00 35.69
Prior Offense in Past Year 0.40 0.22 0.34
Panel C: Charge Characteristics
Number of Offenses 1.66 1.59 1.64
Felony Offense 0.51 0.56 0.53
Misdemeanor Only 0.49 0.44 0.47
Any Drug Offense 0.27 0.30 0.28
Any DUI Offense 0.00 0.00 0.00
Any Violent Offense 0.14 0.30 0.19
Any Property Offense 0.41 0.23 0.35
Panel E: Outcomes
Any Guilty Offense 0.67 0.41 0.58
Guilty Plea 0.58 0.31 0.49
Any Incarceration 0.25 0.17 0.22
Rearrest in 0-2 Years 0.53 0.37 0.48
Rearrest Prior to Disposition 0-2 Years 0.14 0.16 0.15
Rearrest After Disposition 0.40 0.25 0.35

Observations 62644 30714 93358
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Table 2: Test of Random Judge Assignment

(1) (2)
Released in 3 Days Judge Leniency

Male -0.11∗∗∗ 0.00
(0.00) (0.00)

Black -0.03∗∗∗ 0.00
(0.00) (0.00)

Age at Bail Decision -0.03∗∗∗ -0.00
(0.00) (0.00)

Prior Offense in Past Year -0.16∗∗∗ 0.00
(0.00) (0.00)

Number of Offenses -0.02∗∗∗ 0.00
(0.00) (0.00)

Felony Offense 0.34∗∗∗ 0.02
(0.07) (0.01)

Any Drug Offense 0.04∗∗∗ 0.00
(0.01) (0.00)

Any Violent Offense 0.17∗∗∗ -0.00
(0.01) (0.00)

Any Property Offense -0.12∗∗∗ -0.00
(0.00) (0.00)

Missing Race -0.05 -0.00
(0.03) (0.00)

Joint Test p-value 0.00 0.37
N 93358.00 93358.00

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: Test Results

5 knots 10 knots 15 knots 20 knots

Full sample 935 839 819 749
(504) (499) (494) (489)
[0.000] [0.000] [0.000] [0.000]

Note: This table displays the test statistics, degrees of freedom, and associated p-values from
the proposed test. Each column shows results using a different number of knots in the spline
function.

Table 4: First Stage Results by Case Characteristics

Crime Severity Crime Type

Misd. Felony Drug Property Violent

Judge Leniency 0.699*** 0.281*** 0.571*** 0.479*** 0.060
(0.057) (0.048) (0.061) (0.053) (0.065)

Observations 44130 49228 24987 30855 17015

Note: This table shows the results from regressing pretrial release status on the judge leniency
instrument for subgroups defined by case characteristics. All specifications include controls for
crime type and severity; whether the defendant is black; whether the defendant is male; age
categories; whether the defendant has a prior offense within the past year; the number of counts;
and whether the charges include any drug crimes, and violent crimes, and any property crimes.
Standard errors are twoway clustered at the individual and judge levels.
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Table 5: First Stage Results by Defendant Characteristics

Priors Race

No prior Prior Black White

Judge Leniency 0.491*** 0.463*** 0.527*** 0.439***
(0.042) (0.054) (0.041) (0.046)

Observations 61697 31661 48900 44313

Note: This table shows the results from regressing pretrial release status on the judge leniency
instrument for subgroups defined by defendant characteristics. All specifications include controls
for crime type and severity; whether the defendant is black; whether the defendant is male; age
categories; whether the defendant has a prior offense within the past year; the number of counts;
and whether the charges include any drug crimes, and violent crimes, and any property crimes.
Standard errors are twoway clustered at the individual and judge levels.

Table 6: First Stage and IV Results

Judge IV

Effect of pretrial release

Convicted -0.165*
(0.079)

First-stage F for Z 226.291
(0.000)

First-stage F for dummies 5.972
(0.000)

Note: The top panel displays the estimated effect of pretrial release on conviction, instrumenting
for whether bail was met using judge leniency in column 1 and tercile leninecy in column 2.
The bottom panel shows first-stage F statistics, and their corresponding p-values, using first
the leniency instrument and then judge or tercile dummies. The first stage using dummies uses
jackknife instrumental variables estimation.
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Figure 1: Illustrations of hypothetical relationships between true judge propensities
to assign treatment and expected outcomes. Each dot represents a single judge.
The pattern in Panel A is consistent with the exclusion restriction and monotonicity,
because all the dots lie on a continuous function whose slope is nowhere larger in
magnitude that the largest possible treatment effects, given a binary outcome. The
pattern in Panel B could only arise if one or more of the assumptions were violated.
The judge labeled “A” has exactly the same propensity as another judge, but different
expected outcomes. The judge labeled “B” lies on a segment of the curve whose slope
is larger than one, implying an impossibly large treatment effect.
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Figure 2: Monte Carlo simulation rejection rates from the test for instrument validity
as a function of the sample size (x-axis). The nominal size of the tests is .05. Based
on 999 iterations.
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Figure 3: Monte Carlo simulation rejection rates from the test for instrument validity
as a function of the severity of the exclusion restriction violation, as measured by the
standard deviation of the direct judge effects (x-axis). The nominal size of the tests
is .05. Based on 999 iterations.
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Figure 4: Monte Carlo simulation rejection rates from the test for instrument validity
as a function of the severity of the monotonicity violation, as measured by the fraction
of defendants for whom judges disagree on the ordering. The nominal size of the tests
is .05. Based on 999 iterations.
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Figure 5: Monte Carlo simulation rejection rates from the test for instrument validity
as a function of the weight given to the fit component of the test. The upper panel
sets J = 2. The lower panel sets J = 20. The nominal size of the tests is .05. Based
on 999 iterations. 52
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Figure 6: Each dot corresponds to an individual bail judge. The x-axis measures
leniency, and is the average of the leave-out mean instrument for each bail judge.
The y-axis measures conviction rates for defendants who appeared before each bail
judge. Specifically, it is the average of the residual from regressing a dummy variable
for conviction on time/place fixed effects, and a vector of defendant and case char-
acteristics. Dot darkness reflects the number of bail hearings presided over by the
judge, with darker dots for higher caseloads. The median judge presided over 506
cases during our sample period.
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