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How do people judge which of 2 risks claims more lives per year? The authors specified 4 candidate
mechanisms and tested them against people’s judgments in 3 risk environments. Two mechanisms,
availability by recall and regressed frequency, conformed best to people’s choices. The same mecha-
nisms also accounted well for the mapping accuracy of estimates of absolute risk frequencies. Their
nearly indistinguishable level of performance is remarkable given their different assumptions about the
underlying cognitive processes and the fact that they give rise to different expectations regarding the
accuracy of people’s inferences. The authors discuss this seeming paradox, the lack of impact of financial
incentives on judgmental accuracy, and the dominant interpretation of inaccurate inferences in terms of
biased information processing.
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How the public perceives health risks has been a long-standing
concern in the medical community. Writing in 1882 about infec-
tious diseases, William Simpson, the medical officer of health for
Aberdeen, Scotland, identified a spurious link in the public mind
between high frequency and low lethality:

It comes out, as a peculiar fact, that the most dreaded diseases are the
least fatal, and the least dreaded diseases are the most fatal. . . .
Measles, whooping cough and scarlet fever are the most serious,
although it is usually considered they do little harm. . . . Their very
frequency makes them less dreaded. . . . The disease that comes un-
expectedly, and passes over quickly, is looked upon with greater
feelings of terror than the disease which may be more fatal, but more
common. (cited in Pennington, 2004, p. 28)

As for why the public may erroneously view a disease as
harmless, the medical community has been of many (not neces-
sarily contradictory) minds. Whereas Simpson seemed to imply
that the ubiquity of some killers caused them to be regarded as a
mere nuisance, more than a century later, medical doctor Ronald J.
Glasser (2004) suggested that it is their relatively low prevalences
that make some public health threats appear innocuous. According
to Glasser, the public’s current sense of safety is particularly
unwarranted because medical historians consider the past few

decades an age of “emerging plagues,” in which factors such as
overpopulation, poverty, global climate change, chemical pollu-
tion, and industrial agriculture “conspire to create the conditions
for unprecedented death by infectious disease” (Glasser, 2004, p.
36). In support of this conclusion, Glasser painted a grim portrait
of the immediate threat in today’s America:

In 1995, 1.7 million American patients contracted hospital-spread
infections; 88,000 of these patients died; 70% of the infections were
drug-resistant. Each year an estimated 76 million Americans fall ill to
food-borne illnesses resulting in approximately 325,000 hospitaliza-
tions and 5,000 deaths. Influenza infects 10% to 20% of the U.S.
population every year and kills 36,000. (Glasser, 2004, p. 36)

In light of these figures and the potential risk of even worse
epidemics in the future, it is more important than ever to shed light
on the psychological mechanisms underlying the public’s percep-
tion of health risks. This is the goal of this article. Specifically, we
focus on one dimension of risk perception, namely, people’s
assessment of risk frequencies. Previous research in psychology
has offered two rather contradictory views of how, and how
accurately, people estimate the frequencies of events. We pitted
these views against each other to assess their relative merits. We
began by formulating two cognitive mechanisms implied by each
view and deriving specific predictions from each mechanism. The
predictions were tested at the level of aggregate frequency judg-
ments and estimates (Studies 1 and 3) and at the level of individual
frequency judgments (Study 2).

Judging Risk Frequencies: Heuristic Inference
or Direct Encoding?

Calibrating oneself to all the risks in one’s environment is a task
of Herculean proportions. For instance, there are currently more
than 1,400 documented microorganisms that can infect humans,
and this is just the tip of the iceberg: Only an estimated 1% of the
bacteria and 4% of the viruses on the planet have been identified
thus far (Glasser, 2004, p. 36). Infections, in turn, represent only
one class of health risks. Among the many others are the risks
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posed by artifacts such as guns, cars, and electricity outlets; by
natural hazards such as tornadoes, floods, and lightning; and by
human carcinogens such as asbestos, solar radiation, and tobacco
smoking.

How do real people—that is, people constrained by limited time,
limited memory, and limited computational capacities—judge the
frequency of risks in their environment, and how well do they do
it? Research in psychology on how people estimate the frequency
of events has given rise to two very different views on these
questions. One view suggests that event frequencies are directly
encoded and that the automaticity of the encoding process allows
for impressively accurate frequency estimates. At least implicitly
rejecting the premise that frequency estimates are based on directly
retrievable frequency records, the other view holds that people
infer the distal criterion (i.e., event frequency) by exploiting a
proximal cue, namely, availability. Although often appropriate, reli-
ance on this cue to judge frequency can lead to systematic biases in
risk perception. Next, we describe both of these accounts of frequency
judgments in detail, beginning with the notion of availability.

Availability Heuristic

Tversky and Kahneman (1974), who first proposed the avail-
ability heuristic, characterized it thus:

There are situations in which people assess the frequency of a class or the
probability of an event by the ease with which instances or occurrences
can be brought to mind. For example, one may assess the risk of heart
attack among middle-aged people by recalling such occurrences among
one’s acquaintances. (Tversky & Kahneman, 1974, p. 1127)

Availability was the key explanatory concept in a seminal study
by Lichtenstein, Slovic, Fischhoff, Layman, and Combs (1978) on
judgments of risk frequency. They asked participants to judge the
mortality rate (in the United States) associated with a wide range
of risks, including motor vehicle accidents, poisoning by vitamins,
and lung cancer. Frequency judgments were elicited from each
participant in two ways: Presented with a pair of risks, participants
were first asked to say of which risk a randomly selected person
would be more likely to die and to estimate how many times more
likely a person would be to die of this risk as opposed to the other
risk. Other participants were required to estimate the mortality rate
attributable to each individual cause of death in an average year.

In reviewing their own and related studies, Slovic, Fischhoff,
and Lichtenstein (1982) emphasized that “because frequently oc-
curring events are generally easier to imagine and recall than are
rare events, availability is often an appropriate cue” (p. 465) to
event frequency. Availability is not a foolproof cue, however,
because it is also affected by factors that are unrelated or even
negatively related to event frequency, such as “disproportionate
exposure, memorability, or imaginability” (Lichtenstein et al.,
1978, p. 551). For instance, a moviegoer who has just watched
Jaws (Zanuck, Brown, & Spielberg, 1975) would likely have little
trouble imagining the occurrence of a shark attack and might
therefore overestimate its probability, which is objectively low.1

As a result of such potential dissociations between frequency of
occurrence and availability in memory, risk frequency judgments
can be systematically distorted. Specifically, Lichtenstein et al.
(1978) identified two major biases that they attributed to the
availability heuristic.

The primary bias is the “overestimation of low frequencies and
underestimation of . . . high frequencies” (Lichtenstein et al., 1978,
p. 574) in people’s estimates of mortality rates. Figure 1 illustrates
this effect by plotting participants’ average frequency estimates
against the actual frequencies from public health statistics.
Whereas the average estimated frequencies of relatively rare
events (such as botulism and tornadoes) are larger than the actual
frequencies, the average estimated frequencies of common events
(such as stroke and diabetes) are smaller than the actual frequen-
cies. The secondary bias refers to the observation that “different
pairs [of causes of death] with the same [probability] ratio had
quite different judged ratios” (Lichtenstein et al., 1978, p. 558).
For instance, deaths due to motor vehicle accidents are only about
1.5 times more frequent than deaths caused by diabetes; Lichtenstein
et al.’s (1978) college students, however, estimated the former to be
an average of about 350 times more frequent than the latter.

How can the availability heuristic explain the primary and second-
ary biases? According to Lichtenstein et al. (1978), the primary bias
arises when two conditions hold: (a) People base their estimates on
recalled instances, and (b) the number of recalled instances is largely
independent of the actual frequency of the event—an assumption for
which Lichtenstein et al. marshaled support by referring to B. H.
Cohen (1966). Consequently, it is possible that people recall as many
cases of death from measles as of death from diabetes among their
acquaintances despite the fact that the latter event is much more
frequent than the former. Lichtenstein et al. explained the secondary
bias by proposing that the ease with which instances of an event can
be brought to mind or recalled is affected by the event’s vividness.
Whereas some risks represent “undramatic, quiet killers,” others rep-
resent “sensational events” (Lichtenstein et al., 1978, p. 575), and the
latter can by more easily brought to mind.

Lichtenstein et al.’s (1978) explanation of risk frequency judg-
ments in terms of the availability heuristic has been more or less
taken for granted since it was proposed (e.g., Folkes, 1988;
MacLeod & Campbell, 1992; Stapel, Reicher, & Spears, 1994;
Sunstein, 2002). Yet neither Lichtenstein et al. nor later research-
ers tested specific predictions derived from the heuristic. Instead,
the heuristic was typically invoked as a post hoc explanation for
the findings. In addition, the actual mechanism of availability was
left ambiguous in Tversky and Kahneman’s (1973) original paper.
As has frequently been pointed out (e.g., Betsch & Pohl, 2002;
Brown, 1995; Fiedler, 1983; Schwarz & Wänke, 2002), Tversky
and Kahneman’s formulation of availability is consistent with two
different mechanisms—one that is based on the amount of actually
recalled instances and one that is based on the (anticipated or
experienced) ease of recall. We propose the following definitions
of these mechanisms.

Availability-by-recall mechanism. In the context of risk fre-
quency judgments, we define availability by recall as the number
of deaths due to specific risks that one recalls having occurred in
one’s social circle, by which we mean one’s family, friends, and
acquaintances. Using availability by recall, one judges whether
more people die of heart attacks or breast cancer, for example, by
retrieving from memory specific cases of death from heart attack

1 According to the Florida Museum of Natural History’s shark research
Web site (http://www.flmnh.ufl.edu/fish/Sharks/sharks.htm), four fatalities
occurred in 2003 worldwide.
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and breast cancer, respectively, within one’s social circle. The
number of recalled instances serves as a cue to the criterion (i.e.,
the mortality rate associated with each risk in the population).2

Fluency mechanism. This mechanism is inspired by the assump-
tion that in judging availability, “it is not necessary to perform the
actual operations of retrieval” (Tversky & Kahneman, 1973, p. 208);
it suffices to anticipate the ease with which relevant instances could be
brought to mind. For instance, one judges whether more people die of
heart attacks or breast cancer by assessing the ease with which such
instances could be brought to mind without actually retrieving them.
This subjective judgment of ease of retrieval serves as a cue on whose
basis the frequency of each risk can be inferred. Although ease of
retrieval has been effectively manipulated in recent studies (e.g.,
Schwarz & Vaughn, 2002), it has rarely been measured (but see
Sedlmeier, Hertwig, & Gigerenzer, 1998).

One way to define ease of retrieval is by relating it to the notion
of fluency of processing of an object once it has been encountered
(see, e.g., Jacoby & Brooks, 1984; Toth & Daniels, 2002; Whit-
tlesea, 1993). In fact, Jacoby, Kelley, Brown, and Jasechko (1989)
explicitly articulated the link between availability and fluency:

Reading a word once allows it to be read more fluently later. . . . An
item seems familiar if it can be easily brought to mind or fluently
processed. This account of familiarity in terms of fluency is analogous
to Tversky and Kahneman’s (1973) account of probability estimations
based on an availability heuristic. (Jacoby et al., 1989, p. 328)

In numerous studies, processing fluency—mediated by prior
experience with a stimulus—has been shown to function as a cue
in a range of judgments. For example, more fluent processing due
to previous exposure can increase the perceived fame of non-
famous names (the false fame effect; Jacoby et al., 1989) and the
perceived truth of repeated assertions (the reiteration effect; Begg,
Anas, & Farinacci, 1992; Hertwig, Gigerenzer, & Hoffrage, 1997).

In our second interpretation of availability (henceforth referred
to as the fluency mechanism), we assume that previous experience
with a stimulus, such as a word denoting a risk, increases the
fluency with which the stimulus is later processed and that fluency
of processing is associated with the ease with which occurrences of
the respective risk can be retrieved. We therefore define ease of
retrieval in terms of the frequency with which words such as heart
attack, homicide, and botulism have been encountered. Of course,
this raises the question of how to determine the frequency of
encounters with words. In our view, one elegant proxy is environ-
mental statistics—that is, using tallies of the frequencies with

2 Benjamin and Dougan (1997) have argued that in the context of health
and safety risks, consideration of risk events in one’s social environment
represents an adaptive strategy when assessing risks. Furthermore, they
showed that such a sensitivity to occurrences among one’s age cohort is
reflected in Lichtenstein et al.’s (1978) original data.

Figure 1. The primary bias, illustrated by the relationship between estimated and actual number of deaths per
year for 41 causes of death in Lichtenstein, Slovic, Fischhoff, Layman, and Combs (1978). Each point is the
mean estimate (geometric mean) of 39 students. The observation that, for rare causes of deaths, the mean
estimated number is higher and that, for frequent causes, this number is lower has been called the primary bias.
The curved line is the best fitting quadratic regression line. From “Judged Frequency of Lethal Events,” by S.
Lichtenstein, P. Slovic, B. Fischhoff, M. Layman, and B. Combs, 1978, Journal of Experimental Psychology:
Human Learning and Memory, 4, p. 565. Copyright 1978 by the American Psychological Association.
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which such words appear in print media as a proxy for the
frequency of encounters with words.

Direct Encoding

Viewed in light of an influential research program launched by
Hasher and Zacks (1979, 1984), calibrating oneself to risk frequencies
in one’s environment may not be the Herculean task that it initially
appears to be. On the basis of their studies demonstrating people’s
“pervasive sensitivity” to event frequencies, these authors proposed
that frequency information enters memory via an encoding mecha-
nism that automatically processes “fundamental attributes of experi-
ence” such as spatial location, temporal order, and frequency of
occurrence (Zacks & Hasher, 2002, pp. 22, 25). In this framework,
automatic encoding means that the encoding of, for instance, fre-
quency information makes minimal demands on attentional resources
and does not require intention.

Hasher and Zacks’s (1984) automatic encoding thesis has
been extensively tested (for reviews, see Barsalou, 1992, and
Zacks & Hasher, 2002). In response to these tests, Zacks and
Hasher (2002) proposed the following modification of the au-
tomaticity claim, which gives attention a key role: “The encod-
ing of frequency information is an inevitable consequence of
attending to events, and in that sense, is obligatory” (p. 34).
Regardless of its processes, however, information encoding
appears to result in highly accurate frequency estimates. As
Jonides and Jones (1992) put it, “Ask about the relative num-
bers of many kinds of events, and you are likely to get answers
that reflect the actual relative frequencies of the events with
great fidelity” (p. 368; see also Zacks & Hasher, 2002, p. 27).
Using their conclusion as a starting point, we now present two
mechanisms of how people could make risk judgments on the
basis of directly encoded frequency information.

Regressed-frequency mechanism. In the context of risk fre-
quency judgments, the regressed-frequency mechanism assumes
(a) that people monitor the occurrence of individual health risks
(e.g., based on personal experiences, the reading of obituaries,
media reports, physicians’ warnings, and public awareness cam-
paigns) and (b) that in light of unreliability of processing, the
estimated mortality rates are regressed toward the mean such that
small frequencies are overestimated and large frequencies are
underestimated (Fiedler & Armbruster, 1994). In contrast to Lich-
tenstein et al.’s (1978) view, which assumes that people have
biased knowledge of risk frequencies because of “disproportionate
exposure, memorability, or imaginability of various events” (p.
551), the regressed-frequency mechanism assumes that people’s
frequency knowledge is roughly accurate except for the estimates’
tendency to regress toward the mean. It should be noted that not
only is this tendency akin to the primary bias observed by Lich-
tenstein et al. but also it is ubiquitous in studies of other types of
frequency judgments (e.g., Begg, Maxwell, Mitterer, & Harris,
1986; Greene, 1984; Hintzman, 1969, 1988; Sedlmeier et al., 1998;
Shanks, 1995; Williams & Durso, 1986; Zacks & Hasher, 2002).

Risk-category mechanism. When one learns that a neighbor
has passed away, one may not learn the exact cause of his or her
death. For instance, one may be told that the neighbor died of
cancer but never find out the precise type of cancer from which he
or she suffered. The event is thus inexactly represented. On the
basis of the premise that such inexact representations are the rule

rather than the exception, the risk-category mechanism postulates
that the frequency of specific events is judged by reference to the
central value of the category to which they belong. For example, a
person who does not know the mortality rates associated with
lightning and ovarian cancer may nevertheless have the (accurate)
sense that the average mortality rate for the category natural
hazards is markedly lower than the average mortality rate for the
category diseases. Therefore, the person judges death from ovarian
cancer to be more likely than death from lightning.

Several authors have espoused the thesis that information about
the superordinate categories of an object is used to judge individ-
ual objects (e.g., Brown, 2002b; Fiske & Pavelchak, 1986). For
instance, in Huttenlocher, Hedges, and Vevea’s (2000) category
adjustment model, estimates of the value of a stimulus on a
dimension are a blend of both fine-grained information about the
stimulus and knowledge derived from the category (e.g., the shape
of the distribution or the central tendency of values) to which the
stimulus belongs. The higher the uncertainty regarding the fine-
grained information, that is, the less exact the stimulus represen-
tation, the more weight the category information is given when
deriving an estimate. In the extreme case of complete lack of
stimulus-specific information, the estimate for the stimulus coin-
cides with the central tendency of the category.

It is interesting to note that Huttenlocher et al.’s (2000) model
predicts overestimation of small stimulus values and underestimation
of large stimulus values—the very phenomenon Lichtenstein et al.
(1978) referred to as primary bias. However, in the category adjust-
ment model, this phenomenon is seen as the side effect of a normative
judgment strategy that aims to minimize error in light of uncertain
knowledge. We return to this issue later in the General Discussion.

Predictions

In what follows, we derive specific predictions for each of the
four mechanisms (i.e., availability by recall, fluency, regressed
frequency, and risk category). The predictions assume a context in
which people are given two risks and asked to decide which one is
more frequent. To explore how robust the mechanisms’ perfor-
mance would be across different health risk environments, we
tested their predictions using different sets of risks and different
target criteria (i.e., mortality rate and disease incidence). The first
set encompassed the causes of death that Lichtenstein et al. (1978)
examined. Table 1 lists them and their respective mortality rates in
Germany. We refer to this set as the assorted set because it
compiles risks across various categories. Two other sets included
all types of cancer and all notifiable infectious diseases in Ger-
many, respectively. We refer to these sets as the cancer set and the
infection set. Table 1 lists the events in both sets and the respective
incidence rates in Germany. For the latter two sets, participants’
target criterion was the diseases’ annual incidence rates.3 It is
worth mentioning that the cancer set and the infection set rested on
existing classifications, that is, the decision of which events to
include was not ours; in contrast, in the assorted set, we adopted
the composition chosen by Lichtenstein et al. (1978, p. 554). In

3 Previous follow-ups of the Lichtenstein et al. (1978) studies have mostly
focused on the assorted set (e.g., Benjamin, Dougan, & Buschena, 2001;
Carnegie Mellon University Graduate Research Methods Class, 1983).
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Table 1
Entries in the Assorted Set, the Cancer Set, and the Infection Set; Average Annual Mortality Rates (Assorted Set) and Incidence Rates
(Cancer and Infection Sets) Averaged for the Years 1996–2000; and Median Estimated Frequencies (Study 3).

Assorted set

Annual
mortality

rate
Mdn

estimate Cancer set

Annual
incidence

rate
Mdn

estimate Infection set

Annual
incidence

rate
Mdn

estimate

Fireworks 0 30 Penis cancer 551 1,000 Poliomyelitis 0.25 300
Flood 0 30 Bone cancer 939 5,200 Diphtheria 1 1,000
Whooping cough 0 10 Cancer of the

connective tissuea
1,216 2,500 Egyptian ophthalmia/

trachoma
1.75 691

Smallpox 0 9 Thyroid cancer 2,987 5,000 Tularemia/rabbit fever 2 200
Smallpox vaccination 0 5 Larynx cancer 3,084 5,500 Cholera 3 17.5
Tornado 0 0 Testicular cancera 3,439 6,000 Leprosya 5 0.75
Poisoning by vitamins 0 50 Esophageal cancera 3,821 4,000 Tetanus 9 1,000
Measles 2 15 Hepatic cancera 4,835 5,000 Hemorrhagic fevera 10 150
Polio 3 40 Cancer of the gall

bladder
5,489 3,000 Botulism/food

poisoninga,b
15 37,500

Lightning 7 10 Skin cancer 6,563 25,000 Trichinosis 22 326.5
Firearm accident 19 100 Cancer of the

nervous systema
6,931 11,500 Brucellosis/undulant

fever
23 146.5

Venomous bite or sting 20 80 Ovarian cancera 7,819 6,000 Leptospirosis/Well’s
diseasea

39 370

Syphilis 24 11 Cancer of the mouth
and throat

10,273 3,900 Gas gangrene 98 400

Nonvenomous animal 26 30 Pancreatic cancer 10,315 5,000 Ornithosis/parrot fever 119 225
Pregnancy, childbirth, and

abortion
45 150 Renal cancer 13,036 3,000 Typhoid and

paratyphoida
152 200

Motor vehicle–train collision 48 100 Bladder cancera 15,368 2,500 Q fever 179 200
Botulism 74 100 Cervical cancer 16,478 13,450 Malaria 936 400
Electrocution 93 200 Stomach cancer 18,252 9,000 Syphilisa 1,514 1,500
Excess cold 159 39 Rectal cancer 20,981 4,000 Bacterial dysentery/

shigellosis
1,627 1,000

Appendicitis 242 100 Leukemia and
lymphomaa

23,937 15,000 Gonorrheaa 2,926 6,000

Infectious hepatitis 321 250 Prostate cancer 29,681 12,000 Meningitis and
encephalitis

4,019 5,000

Poisoning by solid or liquid 493 500 Colon cancer 33,373 8,000 Tuberculosisa 12,619 1,500
Fire and flames 526 200 Lung cancera 36,964 36,000 Viral hepatitisa 14,889 10,000
Drowning 538 51 Breast cancera 46,248 35,000 Gastroenteritis

(infective enteritis)a
203,864 37,000

Tuberculosis 551 100
Homicide 800 1,000
Emphysema 2,790 398
Asthma 4,086 250
Leukemia 6,844 1,500
Accidental falls 7,985 1,000
Motor vehicle (car, truck, or

bus) accidents
8,028 13,500

Suicide 11,670 1,603
Breast cancer 18,249 4,000
All accidents 20,784 80,000
Diabetes 21,820 400
Lung cancer 37,728 8,000
Stroke 47,276 10,000
Cancer of the digestive

system
69,744 8,000

All cancer 211,467 107,693
Heart disease 410,869 50,000
All disease 783,645 350,000

Note. The mortality rates for the assorted set were taken from tables made available by the Federal Statistical Office of Germany for the years 1996 to
2000 (e.g., Statistisches Bundesamt, 2002). The incidence rates for the cancer and infection sets were taken from tables made available for the years 1997
to 2000 (Arbeitsgemeinschaft Bevölkerungsbezogener Krebsregister in Deutschland, 1999; Robert Koch Institute, 2001). The infection set encompassed
24 infections (dangerous infectious diseases) that by law are notifiable in Germany (Bundesseuchengesetz—a law that has recently been revised and now
encompasses, for instance, HIV). Note that we dropped rabies from the infection set because there was no single incident during the specified time period.
a Included in Study 1.
b Not included in analysis.
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addition, the cancer set and the infection set, unlike the assorted
set, did not include entries with different degrees of abstraction
(e.g., all disease) that may have invited different inductive or
deductive strategies.

Availability by Recall

This mechanism assumes that the choice between two risks is a
function of the actual recall of deaths (or instances of diseases)
among one’s social circle. To be able to specify the predictions for
specific risks, we conducted a pilot study to obtain numerical
values. Forty participants were presented with the events in the
assorted set. For each cause of death, they were asked to recall
occurrences of deaths in their social circle (i.e., family, friends, and
acquaintances) and to write down the number of instances they
could retrieve. Similarly, two groups of 60 participants each were
presented with the infection set and the cancer set and asked to
recall occurrences of instances of such diseases in their social
circle. This recall task rendered it possible to specify predictions of
the availability-by-recall mechanism for individual pair compari-
sons. The recall data also provided a test for Lichtenstein et al.’s
(1978) assumption that actual recall is largely independent of the
frequency of the event (see above). Contrary to this assumption,
the number of recalled cases for each risk in the assorted set was
strongly correlated with the actual frequencies (Spearman rank
correlation � .77). In the cancer set and the infection set, the
correlations amounted to .61 and .43, respectively.

Availability by recall assumes that the choice between two risks
is a function of the number of cases (deaths or cases of disease)
recalled from participants’ social circles (as defined above), and its
prediction can be stated as follows:

Choice proportionRisk a � ¥Recalled instancesRisk a

/ �¥Recalled instancesRisk a � ¥Recalled instancesRisk b�,

where Choice proportionRisk a is the proportion of participants who
select Risk a to be more likely than Risk b, and ¥Recalled
instances

Risk a
and ¥Recalled instancesRisk b are the sum of instances

(recalled by all participants) of Risk a and Risk b, respectively.
Here and throughout this article, Risk a denotes the event that is,
in reality, the more frequent one in a pair comparison. We did not
simply assume that if, on average, more instances of Risk a than
Risk b were recalled, then 100% of participants would choose Risk
a. Rather than using such a deterministic rule, we employed a
probabilistic choice rule to derive choice proportions. That is, we
assumed that the probability that a would be chosen was proportional
to a’s relative support (i.e., the ratio of the recalled instances for Risk
a over the sum of the recalled instances for Risks a and b).4

Fluency

The fluency mechanism assumes that the choice between two risks
is a function of the fluency with which the names of the risks are
processed when they are encountered. As a proxy for ease of retrieval
and fluency, we determined how often the terms denoting causes of
death and diseases were mentioned in German print media. Using
COSMAS I, an extensive data archive of German daily and weekly
newspaper articles, we counted the frequency of occurrence with
which, for instance, the words died from breast cancer were men-
tioned.5 They occurred 3,302 times. We did the same for all causes of
death in the assorted set and for all events in the cancer and infection

sets. For the latter sets, we used only the names of the diseases (excluding
died from). We found that the rank correlations between the number of
mentions of a risk and its actual frequency were .74, .44, and .23 in the
assorted, the cancer, and the infection sets, respectively.

The fluency mechanism assumes that the choice between two
risks is a function of their number of mentions. Its prediction can
thus be stated as follows:

Choice proportionRisk a � ¥OccurrencesRisk a

/ �¥OccurrencesRisk a � ¥OccurrencesRisk b�,

where ¥OccurrencesRisk a and ¥OccurrencesRisk b are the number
of mentions of Risk a and Risk b, respectively.

Regressed Frequency

According to this mechanism, people keep track of the fre-
quency of occurrences of individual health risks. Thus, their fre-
quency judgments conform to the actual frequencies of events
except that the estimates tend to regress toward the mean fre-
quency within the set of risks (i.e., low frequencies are overesti-
mated, and high frequencies are underestimated). We assumed the
amount of regression to be 10%. To arrive at this estimate, we
analyzed the risk frequency judgments observed by Christensen-
Szalanski, Beck, Christensen-Szalanski, and Koepsell (1983).
They asked experts (physicians) and nonexperts (students) to es-
timate mortality rates of various diseases. We used the results from
the latter group to estimate the amount of regression because our
focus was on lay judgments. The median amount of regression
observed in students’ estimates was 10.2%.6

On the basis of this amount of regression, the prediction of the
regressed-frequency mechanism can be stated as follows:

Choice proportionRisk a � Regressed frequencyRisk a

/ �Regressed frequencyRisk a � Regressed frequencyRisk b�,

4 The numerical predictions of the candidate mechanisms for all pair
comparisons can be obtained directly from us.

5 COSMAS (Corpus Search, Management, and Analysis System) is the
largest online archive of German literature (e.g., encyclopedias, books, and
newspaper articles; http://corpora.ids-mannheim.de/�cosmas/). Our anal-
ysis was based on a total of 1,211,000,000 words.

6 To determine the amount of regression, we followed the procedure
used by Sedlmeier et al. (1998). First, both the actual frequencies of the
diseases and the geometric mean judgments were transformed to percent-
ages (of the 42 diseases in Christensen-Szalanski et al., 1983, we excluded
7 as no definite actual frequencies were reported). That is, the absolute
values were expressed in relation to the sum of all frequencies (sum of
actual frequencies for all diseases � 100%; sum of mean judgments for all
diseases � 100%). As a result of this transformation, both actual and
judged frequencies had an identical mean (100% divided by 35 diseases �
2.86%). Next, the distances of both the transformed actual frequencies and
the transformed mean judgments from this mean were calculated, yielding
the distance measures AD and JD for the actual frequencies and the mean
judgments, respectively. Finally, the amount of regression of the judgments
for each disease was determined by 100 � (JD/AD) � 100. This value is
zero if the deviation from the mean of the judged frequency equals the
actual frequency (JD/AD � 1). It is positive if the deviation is smaller, that
is, if there is a regression effect (JD/AD � 1), and it is negative if the
deviation is larger (JD/AD � 1). Across all events, we determined the
median amount of regression.

626 HERTWIG, PACHUR, AND KURZENHÄUSER



where the regressed frequencies are the actual mortality rates or
incidence rates of Risk a and Risk b, respectively, regressed by the
factor 0.1.7

Risk Category

The risk-category mechanism assumes that the frequency esti-
mate for an individual risk is inferred from the average frequency
in the category to which the risk belongs. Lichtenstein et al.’s
(1978) original list included at least three such categories of risks,
namely, diseases, accidents, and natural hazards.8 In Germany, the
average mortality rates in these three categories were 4,835, 860,
and 25, respectively. That is, many more people died on average
from diseases than from accidents, and more people died from
accidents than from natural hazards. In addition, the assorted set
included not only individual risks (e.g., breast cancer or firearm
accidents) but also summation categories such as all disease, all
cancer, all accidents, suicide, and homicide. For these summation
categories, we assumed that the frequency judgments were a
function of the total sum in the respective categories. Specifically,
for the total of eight categories (diseases, accidents, natural haz-
ards, and all summation categories), all values were regressed
toward the mean to make this mechanism comparable to the
regressed-frequency mechanism.

According to the risk-category mechanism, the choice between
two risks is based on the average frequency in Category A (to
which a belongs) and Category B (to which b belongs). The
prediction can therefore be stated as follows:

Choice proportionRisk a � Regressed average frequencyCategory A

/ �Regressed average frequencyCategory A

� Regressed average frequencyCategory B�,

where Regressed average frequencyCategory A and Regressed aver-
age frequencyCategory B are the regressed actual average frequen-
cies (i.e., mortality rate or disease incidence) in Risk Category A
and Risk Category B, respectively. Note that the risk-category
mechanism predicts that participants are not able to reliably dis-
tinguish events from the same category of risks. Consequently, it
predicts chance performance in the cancer set and the infection set
because they involve within-category comparisons only (e.g., lung
cancer vs. breast cancer or syphilis vs. gonorrhea).

Before we turn to Study 1, one comment is in order. One
might argue that the availability-by-recall and the fluency
mechanisms are at a disadvantage by not relying on regressed
values, as do the regressed-frequency and the risk-category
mechanisms. Indeed, because both the mapping of the subjec-
tive value on the response scale (availability by recall) and the
process of retrieval of a term (fluency) are not likely to be
devoid of random error, regression to the mean can be expected
(Dougherty, 2001; Erev, Wallsten, & Budescu, 1994). There-
fore, we decided to treat the availability-by-recall and fluency
mechanisms analogously to the other mechanisms. The follow-
ing analyses are based on the regressed values of the recalled
data and the number of mentions. Theses values yielded, in

general, the most favorable results for the availability-by-recall
mechanism and the fluency mechanism across all studies.

Study 1: Which Mechanism Accounts Best for Judgments
of Risk Frequencies?

Study 1 pursued two goals. First, we hoped to replicate the
results reported by Lichtenstein et al. (1978). On the basis of this
replication, we then would examine which of the candidate pro-
cesses, if any, could predict people’s risk frequency judgments in
our study and, by extension, in theirs. Second, we aimed to test
whether the same mechanism could also account for inferences in
other sets of health risks involving another criterion (i.e., disease
incidences in the cancer and infection sets).

Method

Participants and design. One hundred ten students participated in the
study, which was conducted at the Max Planck Institute for Human
Development, Berlin, Germany. One group of participants (n � 45) was
presented with pairs of causes of death and asked to choose the cause that
took more lives (per year). Two other groups of participants (n � 30 and
n � 35) were presented with pairs of types of cancer and pairs of infectious
diseases, respectively, and asked to choose the disease with the higher
incidence rate. All people were paid for participating (a flat fee of €10
[$12.56 U.S.]); half of the participants also received perfor-
mance-contingent payment according to the following scheme: Two to four
participants took part in each session. Within these small groups, the
person who achieved the highest percentage of correct inferences received
an extra payment of €3 ($3.77 U.S.), the person with the lowest number of
correct inferences received no extra payment, and for medium perfor-
mances, people received €1 ([$1.26 U.S.] in groups of four) or €2 ([$2.51
U.S.] in groups of three). The provision of financial incentives did not
affect the results—an issue to which we return in the final discussion.

Materials. Table 1 lists the risks included in the assorted set, the cancer
set, and the infection set. For all three sets, we determined the annual
averaged mortality rates (for the assorted set) and the incidence rates (for
the two disease sets) across a 5-year period (from 1996 to 2000), using
statistics prepared by the Federal Statistical Office of Germany (Statistis-
ches Bundesamt, 2002) and the Robert Koch Institute (Arbeitsgemein-
schaft Bevölkerungsbezogener Krebsregister in Deutschland, 1999; Robert
Koch Institute, 2001). In the assorted set, mortality rates in Germany were
strongly correlated with those reported by Lichtenstein et al. (1978; Pear-
son correlation � 0.99). From the assorted set, Lichtenstein et al. con-
structed 106 pairs (see their Table 2: Lichtenstein et al., 1978, pp. 556–
557). We examined the same pairs. From the cancer set, we randomly drew
10 types of cancer and constructed a set of all possible pairs (45). We did
the same for the infection set. Both the order in which the pairs appeared
and the elements within each pair were determined at random. To make
sure that participants understood unfamiliar or ambiguous terms, we in-
cluded a glossary for some events. If possible, we replaced medical jargon
(in the infection and cancer sets) with more commonly used terms. We

7 The value of, say, breast cancer was calculated as follows: Regressed
actual frequencybreast cancer � actual mortality rate in the assorted set �
0.1 � (actual mortality of breast cancer � average mortality rate in the
assorted set).

8 Note that each category subsumes multiple subcategories: The cate-
gory of accidents, for instance, includes 24 subcategories, according to
ICD-10 (World Health Organization, 1992), using the two-digit codes.
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consulted a physician to assure the equivalence of medical and colloquial
terms.9

Procedure. After an introductory text explaining the relevance of
accurate risk judgments for everyday behavior, people read the following
instructions:

We ask you to judge the annual frequency of occurrence of different
[causes of death/types of cancer/infections] in Germany. . . . Each
item consists of two different [causes of death/types of cancer/infec-
tions]. The question you are to answer is: For which of two events is
the [number of deaths/number of new incidents] per year larger?

Participants were presented with the pairs of risks displayed on a
computer screen. After they concluded the choice task, half of the partic-
ipants continued to work on an estimation task (see Study 3, involving a
different set of risks). Half of the participants started with the estimation
task first. (The order of the tasks turned out to have no effect.) Because, in
the assorted set, the mortality rates of seven causes of death were zero (see
Table 1), for this set we did not force participants to make a choice when
they thought a pair to be exactly equally frequent (for three pair compar-
isons of the assorted set, the actual mortality rates were equal). However,
we stressed that they should use the response option equally frequent only
after careful consideration. It was used in only 2.5% of all choices.

Results

Before we turn to the test of the mechanisms, we describe the
obtained choices in more detail. Table 2 shows the percentage
correct in all three sets. On average, participants scored 71.2%
correct in the assorted set, thus approximating the 73.7% correct
reported by Lichtenstein et al. (1978). Whereas, in the cancer set,
mean accuracy was slightly lower (68.2%), it was markedly higher
in the infection set (80.6%). Also consistent with Lichtenstein et al.
is the observation that participants’ scores in each set varied
widely, although the variability is more pronounced in the cancer
and infection sets than in the assorted set.

Why did mean accuracy vary so markedly across sets? We
suggest that some of the variation in the scores is due to differ-
ences in item difficulty. Ceteris paribus, the smaller the distance
between Risks a and b, the more difficult it is, so we assume, to
distinguish between them. One can capture the difficulty of an item
in terms of the ratio between the more frequent and the less
frequent cases. Figure 2 shows that participants’ percentage correct
scores were a function of this ratio: The majority of participants
decided correctly once the ratio was about 10:1 or larger. Table 2
also shows that the median ratio tracked the average scores: The
set with the best performance, the infection set, was the set with

the highest median ratio and vice versa. Across all three sets, the
majority of participants made the correct choice in 83% (152 out
of 184) of all pair comparisons.

Which mechanism predicted choices best? To answer this ques-
tion, we used two goodness-of-fit criteria. The first criterion was
the distance between actual and predicted choice proportions,
measured by root-mean-square deviations (RMSDs). Smaller
RMSDs indicate better predictions. Figure 3 shows the RMSD for
each mechanism.10 Across all three sets, two clear winners
emerged. The RMSDs are smallest for the regressed-frequency
mechanism and the availability-by-recall mechanism. Except in
the cancer set, in which the fluency mechanism performed well,
both mechanisms competed markedly better than the fluency
mechanism and the risk-category mechanism. The failure of the
risk-category mechanism becomes particularly obvious in the can-
cer and infection sets, which include within-category comparisons
only. For such comparisons, the risk-category mechanism pre-
dicted that people cannot reliably distinguish between risks. As the
level of accuracy reached in both sets testifies (see Table 2), this
prediction is wrong.

The RMSD measure does not take into account the pattern
predicted by the individual mechanisms. For instance, two mech-
anisms may have the same RMSD, but one mechanism monoton-
ically follows the data whereas the other zigzags around the data.
To quantify the extent to which predictions monotonically fol-
lowed the data, we computed Spearman rank correlations between
predicted and actual choice proportions. As Table 3 shows, the
correlation analysis is consistent with the RMSD analysis: In
general, the regressed-frequency and the availability-by-recall
mechanisms competed best and followed the actual data better

9 In one instance, however, our choices of words went astray. We used
the term food poisoning (Lebensmittelvergiftung) to refer to botulism.
Although botulism is indeed a form of food poisoning, it is only a special
form of it. Not surprisingly, participants estimated food-poisoning inci-
dence to be about 1,300 times more frequent than it actually was. We
decided to exclude this item from all analyses, thus reducing the number of
pairs in the infection set to 36.

10 Across all four mechanisms, we excluded 3 pairs the assorted set
because their mortality rates turned out to be exactly equally frequent. In
addition, for the fluency mechanism, we excluded 17 pairs for which no
predictions could be derived (because the terms, e.g., motor vehicle–train
collision, did not map onto the way respective events are described in
newspaper articles).

Table 2
Choice Accuracy and Item Difficulty (i.e., Median Ratio of More Frequent to Less Frequent Risk) in the Assorted Set, the Cancer Set,
and the Infection Set

Percentage correct

Study 1 Study 2

Assorted set
(n � 45)

Cancer set
(n � 35)

Infection set
(n � 30)

Cancer set
(n � 40)

Infection set
(n � 40)

M 71.2 68.2 80.6 62.8 62.1
Mdn 72.6 68.9 79.8 63.8 63.6
Range 58.5–78.3 48.9–82.2 55.6–91.7 51.5–72.1 48.2–74.3
SD 4.7 8.6 8.1 5.1 5.7
Item difficulty (Mdn ratio) 10.9 3.5 72.4 3.2 37.4
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than the other two mechanisms, except in the cancer set, in which
the fluency mechanism performed best.

In sum, we examined which mechanism explained choice data
best across various sets of risk. Two criteria of goodness-of-fit—
RMSD and Spearman rank correlations between predicted and
actual choice proportions—favored the regressed-frequency and
the availability-by-recall mechanisms. Although the fluency mech-
anism fared well in the cancer set, it did not fit the data in the other
two sets. Finally, the risk-category mechanism achieved the worst
fit across three sets.

Study 2: A Second Test Involving Individual Responses
and Another Definition of Fluency

The poor performance of the fluency mechanism in Study 1
came as a surprise to us. In line with the common wisdom that
media coverage shapes people’s risk perception (see also Combs &
Slovic, 1979), we counted the frequency of occurrences of words
in print media and used such environmental frequencies to define
fluency. Of course, this definition of fluency as environmental
statistics is only one possible measure of retrieval fluency. More-
over, it could be objected that this measure does not take into
account interindividual differences in exposure to occurrences of
the terms in the print media. Both of these may be reasons for the
inferior performance of the fluency mechanism.

Study 2 was designed to examine the robustness of results of
Study 1 by examining an alternative definition of fluency. Specif-
ically, we defined fluency in terms of the speed with which an
individual person would recognize the name of, say, a type of
cancer or an infection (see also Schooler & Hertwig, in press). For
illustration, readers may notice that when they read the terms
breast cancer and hepatic cancer, they are likely to immediately
recognize breast cancer but take a moment to recognize hepatic
cancer, if they recognize it at all. The new definition of the fluency

mechanism took advantage of this difference in recognition time.
It assumed that people could capitalize on such differences in
recognition times and that the recognition times would be indica-
tive of the ease with which additional retrieval processes—for
instance, bringing instances or occurrences of the event in question
to mind—could occur. In the interest of psychological plausibility,
however, we assumed limits on people’s ability to discriminate
between recognition times. Rather than assuming that a person
could discriminate between minute differences in any two times,
we assumed that if the recognition times of the two risks were less
than a just-noticeable difference apart, then the system must guess.
Guided by Fraisse’s (1984) conclusion on the basis of an extensive
literature review that durations of less than 100 ms are perceived
as instantaneous, we set the just-noticeable difference to 100 ms
(see also Schooler & Hertwig, in press). We do not claim, how-
ever, that this value captured people’s actual thresholds exactly.

A desirable side effect of this definition of fluency was that the
mechanism could now also be tested against individual responses.
Specifically, the fluency mechanism assumes that if a person
recognizes the name of one of two diseases more quickly, then he
or she can infer that this disease has a higher incidence rate. To
exploit this potential for tests of individual responses, we also
derived individual-specific predictions for the other mechanisms:
In the case of the availability-by-recall mechanism, we assumed
that if a person recalls more instances of one of two diseases
among his or her social circle, then he or she can infer that this
disease also has a higher population incidence rate. For the
regressed-frequency mechanism, we assumed that a person re-
trieves the regressed value of the actual frequencies of both dis-
eases and rests his or her inference on this information. Naturally,
in tests of individual responses, the regressed-frequency mecha-

Figure 2. Choice proportion and item difficulty: percentage of partici-
pants who correctly identified the more frequent of two risks as a function
of the ratio of more frequent to less frequent risk in the assorted set (empty
circles), the cancer set (filled circles), and the infection set (triangles). We
excluded 28 of the 106 pair comparisons from the assorted set because the
actual mortality rate of at least one event was zero.

Figure 3. Which mechanism predicted choices best? Root-mean-square
deviations (RMSDs) between predictions derived from the four mecha-
nisms and actual choice proportions in the assorted set, the cancer set, and
the infection set of Study 1 and the cancer set and the infection set of
Study 2. The dotted lines represent the RMSD level under the assumption
of random choice between both risks (per comparison). Note that the
risk-category mechanism equals chance performance in the cancer and
infection sets.
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nism is handicapped as it predicts the same choice across all
participants for any given pair of diseases.

Study 2 also rendered it possible to examine how robust the
good performance of the regressed-frequency and the availability-
by-recall mechanisms would be when tested against new samples
of items from the same risk environments. In Study 2, we used all
24 elements in the cancer set and the infection set (see Table 1) and
generated all 276 possible pairs per set. In the case of the infection
set, this procedure markedly increased the item difficulty (as
suggested by the median ratio of more frequent to less frequent
risk; see Table 2). Would the results obtained in Study 1 hold up
when mechanisms were tested against these encompassing sets of
comparisons?

Method

Participants and design. Eighty students participated in the study,
which was conducted at the Max Planck Institute for Human Development.
Two groups of participants (each n � 40) were presented with pairs of
types of cancer and pairs of infectious diseases, respectively. Using the
instructions employed in Study 1 (see previous Method section), partici-
pants were asked to choose the disease with the higher incidence rate. Half
of the participants in the cancer group and the infectious disease group
were paid a flat fee of €12 ($15.07 U.S.). The other half received a flat fee
of €9 ($11.30 U.S.) and, in addition, performance-contingent payments.
They earned 4¢ (5¢ U.S.) for each correct answer and lost 4¢ for each
wrong answer. As in Study 1, the provision of performance-contingent
payment did not have an effect.

Materials. Both the order in which the 276 pairs of types of either
cancer or infections appeared and the elements within each pair were
determined at random. We did not include the assorted set because pre-
liminary tests revealed that some rather long terms (e.g., motor vehicle–
train collision, poisoning by solid or fluid, and pregnancy, childbirth, and
abortion) and some rather short terms (e.g., flood, lightning) produced
extremely uneven response times, thus making a stringent test of the new
fluency mechanism difficult. As it had fared badly in Study 1, we did not
examine the risk-category mechanism.

Procedure. Prior to their choices, participants were presented with the
24 types of either cancer or infectious diseases (see Table 1) on a computer
screen. The names of the diseases were presented in random order and one
at a time. Participants were asked to decide whether they had heard of this
type of cancer or infectious disease before and to express their positive or
negative answer by pressing one of two keys. They were instructed to keep
the index fingers of the right and the left hands positioned on the yes and
no keys, respectively, for the entire duration of this task and were encour-
aged to respond as quickly and accurately as possible. The time that
elapsed between the presentation of the name and their keystroke was

measured. Note that we collected the recognition judgments prior to the
choices because we were concerned that the reverse order might conflate
the recognition judgments. Of course, asking for recognition judgments at
the outset may have primed people to rely on recognition or lack thereof in
the choice task. We deemed this possibility, however, less problematic
because it would work in favor of the fluency mechanism, and Study 2’s
goal was to give the fluency mechanism a second chance. Finally, as in
Study 1, after having completed the choice task, participants indicated for
each of the types of cancers or infectious diseases the number of instances
they could recall from their social network.

Results

Before we turn to the test of the mechanisms, we first describe
the obtained choices in more detail. On average, participants
scored 62.8% and 62.1% correct in the cancer and infection sets,
respectively (see Table 2 for more detailed information). The level
of accuracy in the infection set was lower than that achieved in
Study 1 (62.1% vs. 80.6%). Item difficulty, measured in terms of
the ratio between the more frequent and the less frequent risk
elements, provides a partial explanation for the decline in accu-
racy: On average, pair comparisons in the infection set were
markedly more difficult in Study 2 than in Study 1 (37.4 vs. 72.4;
see Table 2).

Which mechanism predicted individual choices best? Figure 4
plots, for each mechanism, how often it rendered possible a pre-
diction per person. Across the total of 552 items (276 items from
each set), the availability-by-recall mechanism discriminated on
average in only 132 cases (24%); discriminated here means that
the mechanism arrived at an unambiguous prediction (i.e., pre-
dicted either Risk a or Risk b to be the disease with the higher
incidence rate). The low discrimination rate was due to the fact that
many participants could not recall any occurrence of the diseases
in question within their social circle. Rather than having the
mechanism guess, we excluded the respective comparisons from
the test set. The fluency and the regressed-frequency mechanisms,
in contrast, discriminated on average in 426 (77.1%) and in 552
(100%) cases, respectively. In the case of the fluency mechanism,
we included all cases in which one risk was recognized and the
other was not, as well as those cases in which both risks were
recognized and their respective recognition times differed by at
least 100 ms.

Next, we turn to how often the predicted choice matched the
actual choice. Figure 5 plots the percentage of correctly predicted
actual choices (within the set of comparisons in which a mecha-

Table 3
Spearman Rank Correlation Coefficients Between Actual and Predicted Choice Proportions

Mechanism

Study 1 Study 2

Assorted set Cancer set Infection set Cancer set Infection set

Regressed frequency .67 .66 .49 .34 .61
Availability by recall .67 .64 .40 .77 .67
Fluency (media) .43 .80 �.25 .79 .29
Fluency (speed) .28 �.11
Risk category .21 — — — —

Note. For the risk-category mechanism, no correlation could be calculated for the cancer and infection sets.
There are no fluency (speed) values for Study 1 because it was not tested in that study. Except for the negatives,
all correlations are statistically significant ( p � .05, two-tailed).
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nism discriminated). In the infection set (Figure 5, top panel), the
availability-by-recall and the regressed-frequency mechanisms
competed best— 62.7% and 62.1% correct predictions, re-
spectively—and predicted the actual choices markedly better than
the fluency mechanism (56.6%). In the cancer set (Figure 5,
bottom panel), in contrast, the availability-by-recall mechanism
(78% correct predictions) clearly outperformed the other two
mechanisms, whereas the fluency mechanism (69.8%) performed
about seven percentage points better than the regressed-frequency
mechanism (62.8%).

As pointed out, the mechanisms’ discrimination rates (see
Figure 4) differed extremely. To level the playing field, we next
turned to a different kind of analysis. Specifically, we compared
the three mechanisms using critical items. Critical items are
pairs in which two mechanisms discriminate but make a differ-
ent prediction. For each individual participant, we determined
the mechanism that correctly predicted the majority of such
critical cases in each of the two contests with the respective
competitors. In the cancer set, the availability-by-recall mech-

anism thus explained 22 participants (out of 31; 9 participants
remained unclassified). The fluency and regressed-frequency
mechanisms lagged far behind, with 7 and 2 explained partic-
ipants, respectively. In the infection set, in contrast, the
regressed-frequency mechanism explained 17 participants (out
of 26; 14 remained unclassified), whereas the availability-by-
recall and the fluency mechanisms explained 5 and 4 partici-
pants, respectively.

Which mechanism performed best on an aggregate level? Still
another way to address the mechanisms’ widely different discrim-
ination rates would be to analyze the data on the aggregate level,
as in Study 1 (see the Predictions section, above).11 Such an
analysis would have the additional benefit of allowing us to
compare results across studies. We used the same goodness-of-fit

11 Both definitions of fluency were used. For the definition in terms of
recognition speed, we used the median recognition time (RT), and the predic-
tions were determined by Choice proportionRisk a � RTRisk b / (RTRisk a

	 RT
Risk b

) (cf. Sedlmeier et al., 1998).

Figure 4. How often did the mechanisms make a prediction? Discrimi-
nation rates (for each of the 40 participants) for the availability-by-recall,
regressed-frequency, and fluency mechanisms for the infection set (top)
and the cancer set (bottom).

Figure 5. How often did the mechanisms make the correct prediction?
Proportions of correctly predicted actual choices (within the set of com-
parisons in which a mechanism discriminated) for the infection set (top)
and the cancer set (bottom).
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criteria as in Study 1. As Figure 3 shows, the RMSDs in the cancer
set were smallest for the availability-by-recall and the fluency
mechanisms. In the infection set, in contrast, the regressed-
frequency mechanism performed best, closely followed by the
availability-by-recall mechanism. The fluency mechanism (both
definitions) clearly fell behind. The second goodness-of-fit crite-
rion—Spearman rank correlations between predicted and actual
choice proportions—corroborated this picture (see Table 3). Thus,
by and large, the analysis on the aggregate level mirrored the
results obtained for individual responses.

Summary of Studies 1 and 2

We conducted two studies with a total of about 30,000
individual choices. In Study 1, we defined the notion of fluency
in terms of number of mentions of a risk in print media. Both
criteria of goodness of fit favored the availability-by-recall and
the regressed-frequency mechanisms (see Table 3 and Figure
3). In Study 2, we defined fluency in terms of the time it took
to decide whether one recognized the name of a health risk. In
addition, Study 2 tested the mechanisms’ predictions against
individual responses and against aggregate data. Across the four
criteria of goodness of fit—percentage of correct predictions,
analysis of critical items, RMSD, and Spearman rank correla-
tion—we found that the availability-by-recall mechanism and
the regressed-frequencies mechanism performed equally well in
the infection set. In the cancer set, in contrast, availability by
recall outperformed the regressed-frequency mechanism and
the fluency mechanism (speed) when tested against individual
data (see Figure 5, bottom panel) and was close to the fluency
mechanism (media) when tested on the aggregated level (see
Table 3 and Figure 3).

On the basis of Studies 1 and 2, we conclude that regardless
of whether fluency is defined in terms of word frequency or
recognition speed, its predictive power is limited. Across the
two studies, different goodness-of-fit criteria, and different test
sets, there was a total of 14 contests between the candidate
mechanisms. Of these, the fluency mechanism won only 3 of
the 14 tests. The availability-by-recall mechanism and the
regressed-frequency mechanism each won 5 tests and were tied
on 1.12 This simple counting exercise of tests is admittedly
coarse, but the resulting picture is the same for two independent
studies: Of the examined mechanisms, the two most promising
mechanisms are the availability-by-recall and the regressed-
frequency mechanisms.

Study 3: Can the Candidate Mechanisms Also Model
Absolute Estimates of Risk Frequencies?

Most people know that, in comparison with most other modes
of transportation, it is safer to fly. Yet, to feel really safe,
sometimes they would like to know how few people’s lives
have actually been claimed by plane crashes. Often, such a
question comes to mind just after they have buckled themselves
into an airplane seat. In this and many other situations, all they
can do is to estimate this number. Can the candidate mecha-
nisms account for such absolute estimates of risk frequencies?
Applying the four mechanisms to quantitative estimates, how-

ever, is not trivial because only two of them lend themselves to
predicting absolute quantities: The regressed-frequency mech-
anism predicts that the estimated number of lives that are taken
by, for instance, breast cancer corresponds to the regressed
actual mortality rate of breast cancer. The risk-category mech-
anism predicts that the estimated mortality rate for breast cancer
equals the (regressed) average frequency within the category of
all diseases. Despite Lichtenstein et al.’s (1978) proposal of the
availability heuristic as a possible mechanism for absolute
estimates of mortality rates, it does not lend itself directly to
predictions of quantitative estimates. A person cannot simply
take the recalled number of deaths from, say, breast cancer
(experienced in the person’s social circle) as an estimate of the
population mortality rate. Instead, he or she would need to, for
instance, estimate how large his or her social circle is in relation
to the total population and then adjust the frequency estimates
accordingly.

Even without such an intermediate step of extrapolation, how-
ever, the availability-by-recall mechanism can be used to predict
what Brown and Siegler (1993) referred to as mapping knowledge.
Mapping knowledge refers to how well people’s estimates map
onto the ranking of objects according to their actual frequencies.
Such a mapping is one property of accurate quantitative estima-
tion. In what follows, we describe how we tested which of the
candidate mechanisms could account for mapping properties of
frequency estimates.

Method

One-hundred sixty-four students participated in the study, which was
conducted at the Max Planck Institute for Human Development (these
were the same participants who partook in Study 1). Three groups of
participants were presented with the assorted set (n � 45), the cancer
set (n � 59), and the infection set (n � 60), respectively. Each
participant was paid a flat fee of €10 ($12.56 U.S.), and half of the
participants also received performance-contingent payment (according
to the scheme described in Study 1; instructions explained the concept
of mean absolute deviation between predicted and actual frequency and
told participants to attempt to minimize this deviation measure). As
previously, the provision of financial incentives did not affect the
results. Participants were presented with a randomly ordered list of the
risks and asked to estimate the annual mortality rate (assorted set) or the
incidence rate (cancer set and infection set). To give participants a sense
of the frequency metric, they were told that the total number of deaths
in a typical year in Germany is around 850,000 (assorted set). Those
who judged types of cancer and infections learned that the annual
incidence rate in Germany is about 325,000 and 245,000, respectively.
As in Study 1, botulism (in the infection set) was excluded from the
final analysis (see footnote 9, above).

Results

Before we turn to the candidate mechanisms, let us describe
the estimates and their accuracy in more detail. The median
estimates for the three risk sets are reported in Table 1 (median
estimates as they are not unduly influenced by outliers). Figure

12 That is, they both had the same Spearman rank correlation in the
assorted set in Study 1 (see Table 3).
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6 shows the median estimates plotted against the actual fre-
quencies in the assorted set. As did Lichtenstein et al. (1978),
we observed what seems like overestimation of rare risks and
underestimation of common risks.

In evaluating the accuracy of quantitative estimates, Brown
and Siegler (1993) proposed to distinguish between two com-
ponents. Mapping knowledge refers to how well the estimates
capture the actual ranking of objects. Metric knowledge, in
contrast, focuses on how well the estimates capture the statis-
tical properties of the frequency distribution of a domain (such
as the mean, median, and variance). Knowing such properties
helps people to make estimates in the right ballpark. To mea-
sure metric knowledge, Brown and Siegler used the order of
magnitude error (OME) measure. OME quantifies the discrep-
ancy between true and estimated values and converts the esti-
mation error to a proportion of an order of magnitude (Brown,
Cui, & Gordon, 2002; Brown & Siegler, 1993; see also Nick-
erson, 1981). The absolute OME was computed according to the
following formula:

|log10(estimated value/true value)|.

Table 4 reports the mean absolute OME (with standard errors).
How appropriate were people’s estimates according to this mea-
sure? When evaluating the estimates, it is instructive to compare
our results with those obtained by Brown et al. (2002). In people’s
estimates of the population size of 112 nations with 4 million or
more people, they found a mean absolute OME of .49. Averaged
across all three sets, we found exactly the same mean absolute
OME (see Table 4). This suggests that estimates of health risk
frequencies are as accurate as estimates in other knowledge do-
mains. Moreover, we found that accuracy was markedly lower in

the infection set than in the assorted set and cancer set. Why? One
likely reason is that the infection set included numerous very rare
events. In fact, a third of all infections have an annual incidence
rate of 10 and smaller. Because the incidence rates cannot be
negative, people are more likely to err on the high side when
estimating the frequencies of infection that are small but con-
strained to be nonnegative (see also Benjamin et al., 2001). For an
infection with an incidence of, say, 1 (e.g., diphtheria; see Table
1), a deviation of .77 of an order of magnitude would lead to
modestly deviating estimates of 5.89 and 0.17 on the high and low
sides, respectively.

To evaluate people’s mapping knowledge, Brown and Siegler
(1993) proposed the Spearman rank correlation. Table 4 shows
these results (the correlation between the median estimate for
each risk and its absolute frequency and the median of the
individual participants’ correlations). Unlike in the OME mea-
sure, the mapping accuracy is comparable in the cancer and
infection sets, thus suggesting that how accurate people’s esti-
mates are depends on the measure one uses to evaluate them
(see also Brown & Siegler, 1993). Across all sets, we found that
the median of the individual participants’ rank-order correla-
tions is of the same magnitude that Brown et al. (2002) and
Brown and Siegler (1993) reported for other domains, namely,
around .50, another indication that estimates of health risk
frequencies appear not to be different in nature than estimates in
other knowledge domains.

Which mechanism fit estimates best? The availability-by-
recall and the fluency mechanisms render possible predictions
regarding the mapping component of estimates but not predictions
regarding the metric component. We therefore examined the mech-
anisms’ ability to predict to what extent the estimated values

Figure 6. Estimates of risk frequencies: relationship between estimated and actual number of deaths per year
for 41 causes of death in the assorted set. Each point represents the median estimate of 45 participants. The
curved line is the best fitting quadratic regression line: Log median � 1.291 	 0.118 � log actual frequency 	
0.098 � log actual frequency2. Vertical bars depict the 25th and 75th percentiles of individual estimates for
firearm accident, diabetes, and all cancer.
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followed the predicted values monotonically.13 We used contrast
analysis as the measure for the covariation of predictions and
estimates (Rosenthal & Rosnow, 1985; Sedlmeier et al., 1998).
Table 5 shows the results of the contrast analysis (MScontrast,
MSerror, dferror, and F value).

Table 5 also shows the effect size r associated with the four
mechanisms (Rosenthal & Rosnow, 1985).14 The larger the (pos-
itive) r, the more the data monotonically follow the predictions of
the mechanisms. On this measure, the regressed-frequency and the
availability-by-recall mechanisms fit the data best across all three
sets. The effect sizes for both hypotheses ranged between .74 and
.50, corresponding to (very) large effect sizes (J. Cohen, 1988).
Although the fluency mechanism fared well in the cancer set (as it
did in Studies 1 and 2), it fell behind in the assorted set and the
infection set. The risk-category mechanism competed well in the
assorted set; however, it could not be tested in the other two sets
because it would have predicted that within one category, each
element would receive the same value (i.e., the weights for con-
trasts would thus be identical). This prediction would clearly be
wrong.

So how did the mechanisms perform here? As was the case for
judgments of which of two risks is more frequent (Studies 1 and 2),
the availability-by-recall and the regressed-frequency mechanisms
outperformed the fluency and the risk-category mechanisms in
accounting for absolute estimates.

General Discussion

In what follows, we describe the main results and discuss their
implications. Furthermore, we use the data we obtained to recon-
sider some of the conclusions drawn by Lichtenstein et al. (1978).

What We Have Learned

We proposed and tested four mechanisms of judgments of
relative and absolute risk frequencies: two versions of the avail-
ability heuristic and two versions of the view that event frequen-
cies are directly encoded and that tallies of environmental frequen-
cies can be retrieved as desired. Two of the four mechanisms
received little support. The risk-category mechanism, according to
which people’s knowledge is limited to a sense of the average
frequency in the category, failed most undoubtedly: Out of all four
mechanisms, it achieved the worst fit in the assorted set. In
addition, it severely underestimated the amount of knowledge that

people command about frequencies of infections and types of
cancer.

The second account that received at best mixed evidence is the
fluency mechanism. Although it competed well with the other
mechanisms in the cancer set, it fared badly in the assorted and the
infection sets (see Table 5 and Figure 3). Ease of retrieval—the
notion that Tversky and Kahneman (1973) proposed as one inter-
pretation of availability—is not precisely defined. To turn it into a
measurable quantity, we linked ease with the notion of fluency.
We measured fluency in two different ways—in terms of environ-
mental statistics (i.e., frequency of mentions in print media) and in
terms of recognition speed (i.e., how quickly people were able to
assess whether they had heard of the word in question). The two
measures are clearly but not perfectly correlated (Spearman rank
correlation between mention frequency and median recognition
speed was r � �.42 and r � �.47 in the cancer and infection sets,
respectively). Both measures yielded comparatively good results
only in the cancer set. By and large, the results across all three
studies do not support the ease interpretation of the availability
heuristic. Of course, we cannot exclude the possibility that other
definitions of ease, such as number of memory traces and resulting
memory strength (instantiated in MINERVA-DM; Dougherty,
Gettys, & Ogden, 1999), would have fared better. Our results,
however, speak against two quite precise and distinct definitions of
ease.

Across different sets of risks, different levels of item difficulty,
different kinds of inferences, and different levels of judgmental
accuracy, people’s inferences conformed best to the predictions of
the availability-by-recall and the regressed-frequency mechanisms.
Indeed, across all 736 pair comparisons of Studies 1 and 2, the
RMSDs for the availability-by-recall and regressed-frequency
mechanisms were nearly identical, with values (averaged across
the sets) of 19.8 and 20.5, respectively. The fluency and the
risk-category mechanisms, by comparison, performed clearly
worse, with RMSDs of 26.6 and 29.2, respectively.

Similarly, in Study 3, availability by recall and regressed fre-
quency showed the largest effect sizes except in the cancer set (in
which the fluency mechanism reached, by a small margin, the
highest effect size). One way of directly comparing the two mech-
anisms would be to quantify their difference by comparing the
respective contrast weights (Rosnow & Rosenthal, 1996, p. 256;
see also Sedlmeier et al., 1998, footnote 9) across all three sets.
This comparison resulted in a weighted (by df) mean effect size of

13 We tested both definitions of the fluency mechanism, one in terms of
environmental frequencies and one in terms of recognition speed. Because
it yielded the better results, we report the results for only the environmental
frequency definition. To specify the predictions for availability by recall,
we computed the sum of the number of recalled instances for each risk
across participants in the pilot study (see Prediction section).

14 The mechanisms’ predictions for each individual risk were used to
determine the lambda weights, against which people’s estimates were
contrasted. Weights for contrasts add up to 0. For the calculation of the
weights, first, the average of the predictions for a given set and mechanism
were calculated. Then, the deviation of the prediction for a single risk from
the respective average was used as the weight for that risk. MScontrast (�
SScontrast, because dfcontrast is always 1) is calculated as L2/n
�2, where the
�s are the derived weights, n is the number of estimates given for each risk,
and L is the sum of all weighted (by �) totals for a given risk.

Table 4
Order of Magnitude Error (OME; Mean Absolute OME,
Standard Error), Rank Correlation Between Median Estimated
and Actual Frequencies (rs), and Median of the Individual
Rank Correlations (and Their Ranges) Between Estimated
and Actual Frequencies

Accuracy
measure

Collapsed
(N � 164)

Assorted set
(n � 45)

Cancer set
(n � 59)

Infection set
(n � 60)

M absolute OME .49 .48 .23 .77
SE .04 .06 .03 .07
rs .86 .93 .55 .63
Mdn individual rs .50 .81 .39 .42
Range �.15–.92 .58–.92 .01–.68 �.15–.75
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r � .0001 (see Table 6). The differences are thus negligible. It
seems fair to conclude that the availability-by-recall and the
regressed-frequency mechanisms achieve nearly identical predic-
tive accuracy in modeling people’s estimates.

However, the fact that their mean accuracy in modeling people’s
choices and estimates is indistinguishable does not mean that the
mechanisms’ predictions are indistinguishable. Take, for instance,
the correlation between the predictions of the regressed-frequency
and the availability-by-recall mechanisms: although, in both Study
1 and Study 2, the correlations are significant in all sets, they are
far from perfect, that is, rs � .71, .87 (Study 2: .62), and .41 (Study
2: .26) for the assorted set, the infection set, and the cancer set,
respectively. Another example refers to the prediction of inaccu-
rate choices. In 199 of the 736 pair comparisons (27%) of Studies
1 and 2, the majority of participants selected the less frequent
event. Using regressed values of the objective frequencies, the
regressed-frequency mechanism could not predict choice propor-
tions smaller than 50%; thus, it fared relatively badly in predicting

those 199 choices. In contrast, the availability-by-recall mecha-
nism correctly predicted 162 of those 199 items’ choice propor-
tions lower than 50%. However, it also predicted choice propor-
tions lower than 50% in 74 pairs in which the actual choice
proportion was above 50%. In other words, there are clusters of
items favoring the regressed-frequency mechanism, and others
favoring the availability-by-recall mechanism. In addition, Fig-
ure 5 shows that the availability-by-recall mechanism predicted the
choices of some participants very well (e.g., for 22 participants, it
correctly predicted more than 80% of inferences) but failed in
explaining others.

We take these findings to suggest that people have a toolbox of
different strategies and, in addition, that they can switch back and
forth between different kinds of information (Betsch, Siebler,
Marz, Hormuth, & Dickenberger, 1999; Brown, 2002a; Payne,
Bettman, & Johnson, 1993). Thus, the same person is not likely to
use the same mechanism for each single inference. For instance, if
a person cannot retrieve any episode within his or her social circle,

Table 5
Outcome of the Contrast Analysis

Set of risks and
mechanism MScontrast MSerror dferror F

r
(effect
size)

Assorted set
Regressed frequency 7,138,608,833,270 46,894,211,008 123.299 152.23 .74
Availability by recall 6,813,457,518,861 46,894,211,008 123.299 145.29 .74
Fluency (media) 1,453,400,797,263 46,894,211,008 123.299 30.99 .45
Risk category 6,894,559,098,174 46,894,211,008 123.299 147.02 .74

Cancer set
Regressed frequency 72,594,923,710 547,497,314 396.85 132.59 .50
Availability by recall 78,736,346,647 547,497,314 396.85 143.81 .52
Fluency (media) 94,283,416,385 547,497,314 396.85 172.21 .55

Infection set
Regressed frequency 82,373,753,373 758,308,716 196.57 108.63 .60
Availability by recall 84,141,982,299 758,308,716 196.57 110.96 .60
Fluency (media) 9,545,564,615 758,308,716 196.57 12.59 .25

Note. Because, within a set of risks, each participant gave frequency judgments repeatedly for the different risks within a set and thus contributed
several scores, the MSerror and dferror were determined by a repeated measures analysis of variance (instead of a between-groups analysis of variance;
see Rosenthal & Rosnow, 1985, p. 12). In all three sets (assorted, cancer, infection), Mauchley’s test indicated that the assumption of sphericity was
violated. Therefore, the corrected values produced by the Greenhouse–Geisser estimate were used, which produced the fraction numbers for the
dferror. We did not test the risk-category mechanism in the cancer and infection sets because it would have predicted that each element within a set
would receive the same estimate.

Table 6
Predictive Power of the Contrasts for the Availability-by-Recall Mechanism Relative to Those
for the Regressed-Frequency Mechanism

Set MSerror dferror

Regressed frequency

MScontrast r

Assorted 46,894,211,008 123.299 14,434,049,726 �.0025
Cancer 547,497,314 396.85 218,893,629.8 .001
Infection 1,269,020,591 196.589 55,938,612.24 .0002
Weighted M (by df) .0001

Note. New contrasts were created out of the differences between the original contrast weights (see Rosnow &
Rosenthal, 1996). Results are based on the estimation task of Study 3. The F value can be calculated by dividing
MScontrast by MSerror. The correlation coefficient r as a measure of effect size is calculated by the formula r �
[F/(F 	 dferror)]

1/2 (e.g., Rosenthal & Rosnow, 1991).
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he or she may attempt to rely on a sense of fluency or frequency.
The likely fact that a person has a repertoire of strategies and can
discount a previously used dimension of information (Oppenhei-
mer, 2004) may be key to understanding why the fit for any single
strategy is far from perfect in our analysis.

Are Misjudgments the Result of a Systematic Bias?

Slovic et al. (1982) summarized the results of the Lichtenstein
et al. (1978) study as follows: “Judgments were moderately accu-
rate in a global sense: People usually knew which were the most
and least frequently lethal events. Within this global picture,
however, people made serious misjudgments, many of which
seemed to reflect the influence of availability” (Slovic et al., 1982,
p. 466).

Many later authors have taken Lichtenstein et al.’s (1978)
results to show that people are plainly incapable of accurately
judging risk frequencies. One representative voice is that of
Sunstein (2002), who asked, “Do people know which risks lead
to many deaths and which risks lead to few? They do not. In
fact, they make huge blunders” (p. 1126; for similar conclu-
sions, see Baron, 2000; Fischhoff, Bostrom, & Quadrel, 1993;
Frost, Frank, & Maibach, 1997; Harding, Eiser, & Kristiansen,
1982; Lundborg & Lindgren, 2002; Toth & Daniels, 2002). Yet
deviations from correct response can occur through factors
other than systematic biases. In the following, we consider one
such source and explore to what extent the inaccuracies we
observed in Studies 1 and 3 can be accounted for by unsystem-
atic variance.

One of the misjudgments that Lichtenstein et al. (1978) identi-
fied was the primary bias, according to which rare causes of death
are overestimated and common causes of death are underesti-

mated. Recently, Gigerenzer and Fiedler (2004) have suggested
that the pattern of over- and underestimation as displayed in
Figure 1 can be deduced from the existence of unsystematic
conditional variability and that the assumption of a systematic bias
would be unnecessary. Instead, the pattern can be explained as a
consequence of regression toward the mean (for a similar argu-
ment in the context of overconfidence research, see Erev et al.,
1994; for a debate on their argument, see Brenner, 2000, and
Wallsten, Erev, & Budescu, 2000).

The crucial implication of this argument (a more detailed de-
piction of Gigerenzer and Fiedler’s, 2004, point can be found in
the Appendix) is that the specific pattern of over- and underesti-
mation found should depend on how the data are grouped or
conditioned. In Figure 7, two regression lines are plotted for the
estimates of the assorted set in Study 3. When one predicts the
estimated data from the actual frequencies—the first regression
curve—it seems that rare risks are overestimated and common
risks are underestimated, the original primary bias.15 In contrast,
when one predicts the actual data from the estimated frequencies—
the second regression curve—the pattern is reversed. Now, rare
risks are underestimated, and common risks are overestimated, the
opposite of the primary bias. In other words, as a function of
different conditioning and plotting of the data, one observes mu-
tually exclusive phenomena.

A second consequence of unsystematic variance is that there is
an expected proportion of errors (the less frequent risk judged to be
the more frequent risk) in the choice task, again without having to

15 Note that the regression line looks slightly different from that in
Figure 4, as now individual estimates, rather than the median estimates, are
being used.

Figure 7. The primary bias and its reversal. The data and both best fitting quadratic regression lines
are shown. Log estimated frequency � 1.5 	 0.057 � log actual frequency 	 0.099 � log ac-
tual frequency2. Log actual frequency � 1.27 	 0.47 � log estimated frequency 	 0.045 � log
estimated frequency2. One regression line suggests the primary bias; the other regression line suggests its
reversal.
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assume a systematic bias. To explore to what extent unsystematic
variance could account for the errors we obtained for the choices
in the assorted set in Study 1, we took advantage of Study 3’s
estimates and their interindividual variability.16 Specifically, we
used them to predict the probability that the rarer risk would be
falsely considered to be more frequent (see the Appendix for how
we determined the expected proportion of choices for the less
frequent risk). Figure 8 plots for all 106 pairs in Study 1’s assorted
set the predicted and the actual proportions of people who falsely
judged the rarer risk to be the more frequent risk. The Pearson
correlation between predicted and actual proportions amounts to
r � .84. In addition, for 77% (82 of the 106 pairs) of all compar-
isons, the predicted proportion of participants judging the less
frequent cause of death to be more frequent was even larger than
the actual proportion, whereas for 23% (18 of 106), the actual
proportion was larger.

To conclude, a substantial proportion of the deviation between
the environmental and the judged frequencies can be explained in
terms of unsystematic variance. Admittedly, this variance did not
drive all of the error in people’s judgments. For instance, the two
resulting regression lines in Figure 7 are not completely symmet-
rical to the identity line, as would be expected if the phenomenon
were to be totally accounted for by regression toward the mean.
Yet even this lack of complete symmetry need not indicate a
cognitive bias. It may simply reflect a tendency not to use very
high numbers in estimates of quantities. Alternatively, it may
result from inferring actual rates through a shrinkage estimation
procedure, which, in turn, has a Bayesian justification (see Stigler,
1990).

Retrieving Episodes From One’s Social Circle: An
Ecologically Valid Cue

Two seemingly quite dissimilar mechanisms conform best to
people’s judgments of relative and absolute risk frequencies.

The availability-by-recall mechanism assumes that people draw
samples of the events in question and then use the sample
frequencies to estimate the criterion. In contrast, the regressed-
frequency mechanism assumes that people automatically en-
code event frequencies and thus are able to produce accurate
(albeit regressed) judgments of relative and absolute risk fre-
quencies. That the two mechanisms are close competitors in
explaining people’s judgments is surprising: Whereas the latter
ascribes knowledge of actual (regressed) frequencies to people,
the former has typically been invoked to explain inaccurate
judgments.

Indeed, we are not aware of a single experimental or theo-
retical attempt to demonstrate how the availability heuristic
enables successful inferences. This need not have been so. In
their initial framing of the availability heuristic, Tversky and
Kahneman (1973) stressed that “availability is an ecologically
valid clue for the judgment of frequency because, in general,
frequent events are easier to recall or imagine than infrequent
ones” (p. 209). That the frequency of recalled instances can be
a valid cue for the actual frequencies is exactly what we have
found: The Pearson correlations (Spearman rank correlations)
between the number of recalled cases and their actual frequen-
cies in Study 1 were r � .87 (.77), r � .72 (.61), and r � .66
(.43) in the assorted set, the cancer set, and the infection set,
respectively; in Study 2, the respective correlations were r �
.59 (.46) and r � .98 (.36) in the cancer set and infection set,
respectively.

Why is the recalled content a relatively valid predictor for the
actual frequencies even though availability is often equated with
biased frequency judgments? We suggest that one reason is the
space in memory that the availability-by-recall mechanism can

16 We are grateful to Thomas Wallsten, who suggested this analysis
to us.

Figure 8. Incorrect choice and unsystematic variance: actual and predicted proportions of participants who
selected the less frequent cause of death (assorted set) to be the more frequent one.
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search. By requiring participants to recall personally experienced
instances of death and illness, we defined the search space as that
of the social circle of a person, that is, his or her family, friends,
and acquaintances. In contrast, those who have argued that distor-
tions in estimates of risk frequencies are caused by media coverage
seemed to assume that the search space in memory extends far
beyond a person’s social circle and includes a virtual circle, that is,
his or her encounters with death and diseases that are conveyed
through mass media (e.g., Lichtenstein et al., 1978). In fact, had
people searched in their virtual circle and used this information as
a proxy for the actual frequencies, their estimates would more
likely have been distorted. The frequency of mentions in print
media is a poorer predictor for actual frequency than are the recall
data: The Pearson correlations (Spearman rank correlations) be-
tween the number of mentions and the actual frequencies were r �
.43 (.74), r � .59 (.44), and r � .21 (.23) in the assorted set, the
cancer set, and the infection set, respectively (see also Burger,
1984; Combs & Slovic, 1979; Frost et al., 1997; and Kristiansen,
1983).

Clearly, augmenting the search space in memory by one’s
virtual circle comes at the price of systematic error. Because of
fierce competition for patronage, potential news items are
screened for their ability to captivate an audience; thus, the
media focus on and amplify certain aspects of reality while
scaling down others (Meyer, 1990). As a consequence, event
frequencies in the virtual world and the real world can system-
atically diverge. Thus, if one samples from the virtual world,
one would likely arrive at sample statistics that deviate from
population statistics. It is, however, not the sampling process
that is distorted but the reference class from which one sam-
ples.17 In contrast, sampling within one’s social circle guards
against the media’s selection of rare, vivid, dramatic, emo-
tional, and sensational events. Fortunately, in a person’s limited
social circle, death is sufficiently rare and dramatic that, in all
likelihood, each instance would be retrieved regardless of
whether a family member died in a plane crash or from a heart
attack.

The Impact of Financial Incentives

Researchers have drawn far-reaching conclusions about peo-
ple’s lack of competence to judge the likelihood of risks. In light
of these conclusions, a surprising divergence between the experi-
mental practices of psychologists working in the field of behav-
ioral decision making and those of experimental economists be-
comes relevant (see Hertwig & Ortmann, 2001, 2003). The latter
treat the use of financial incentives as de rigueur (see Camerer &
Hogarth, 1999). Arguably, the most important reason for econo-
mists’ strict norm is their belief that if nothing is at stake in an
experimental setting, participants may not bother to think carefully
about the problem and therefore may respond in an offhand,
unreliable fashion. In contrast, if appropriately paid, people’s
performance data are more likely to converge toward the perfor-
mance criteria and are less variable (Smith & Walker, 1993). To
the extent that this argument applies to judgments of risk frequen-
cies, it provides another reason for why people’s judgments of risk
frequencies, at least in the eyes of some researchers, are quite
poor—not because of lack of competence but because of lack of
cognitive effort.

Only a few studies have examined the impact of financial
incentives on the accuracy of risk frequency judgments (e.g.,
Harrison & Rutström, in press).18 When evidence regarding the
impact of financial incentives is lacking, Hertwig and Ortmann
(2001) recommended that researchers use a simple do-it-both-
ways rule, that is, they should examine incentive and nonincentive
conditions, thus contributing to a growing knowledge of when and
why incentives affect performance. Across all three studies, we
examined people’s risk judgments in incentive and no-incentive
conditions and consistently obtained the same result: People’s
choices and estimates were not altered as a function of the pres-
ence or absence of financial incentives. As Tables 7 and 8 show,
there were no marked differences as a function of incentives—
neither in terms of measures of accuracy nor in terms of measures
of variability. Using a ranking task (participants ranked various
causes of death according to their actual frequencies), Harrison and
Rutström (in press) also found no discernible difference between
rankings with and without incentives. In our studies, in addition,
financial incentives did not affect which candidate mechanisms
explained people’s choices best: As Table 7 shows, the magnitudes
of the RMSDs between data and predictions were surprisingly
similar in the incentive and no-incentive conditions.

Why did financial incentives not matter? Currently, we can only
speculate about possible reasons. Here are three. First, retrieval
processes involving recall and recognition may not require much
cognitive effort (a view for which there is a growing body of
evidence; e.g., Craik, Naveh-Benjamin, Ishaik, & Anderson,
2000). Second, the payoff decrement that participants accepted
by not investing cognitive effort may have been too small to
be considered meaningful. Although we cannot exclude this
possibility, we took measures to ensure that people did not
perceive the chance of getting financial incentives to be too slim
to bother trying (in groups of four people, three received incen-
tives). In addition, the income difference between the person who
performed best and the one who performed worst was significant
(i.e., amounted to 30% of the total payment). A final reason relates
to the robust observation that simple choice and estimation strat-
egies can do surprisingly well and even compete with strategies
that demand more computation and information (Gigerenzer,
Todd, & the ABC Research Group, 1999; Hertwig, Hoffrage, &
Martignon, 1999). If so, then people who invest more cognitive

17 This is different from other illustrations of availability in which the
sampling process itself is biased. In the letter study, Kahneman and
Tversky (1973) assumed that the process of sampling exemplars, that is,
words with the letter r in the first and the third positions, is distorted
because it is more difficult to retrieve words with r in the third position. It
is interesting to note that Sedlmeier et al. (1998, pp. 756–758) found little
evidence for this assumption.

18 However, there are studies that have examined the accuracy of
frequency judgments as a function of incentives. Wright and Aboul-Ezz
(1988), for instance, found that the squared error (between actual vs.
estimated frequency) was lower in the incentive condition compared
with a condition in which students received a flat fee only. The
difference was of medium to large effect size (� � .38; see J. Cohen,
1988). Eta is identical to the Pearson product–moment correlation
coefficient when df � 1.
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effort (due to financial incentives) may not achieve a higher level
of accuracy than decision makers who rely on computationally
much humbler strategies. From this view, more cognitive effort
may not necessarily result in more accurate outcomes (Hertwig &
Todd, 2004).

Conclusion

If indeed humankind is about to enter, as Glasser (2004) con-
jectured, the age of new plagues, in which factors such as over-
population, poverty, and global climate change pave the way for
new health risks, it becomes even more important to better under-
stand how the public perceives and judges risks. The public’s
perception plays a key role in the political discourse about how a
society ought to respond to emerging risks to public health and
well-being—as the global debates on how to respond to the risk of
terror or new viral illnesses such as SARS amply demonstrate. We
see our investigations as another step toward developing more
precise models of the cognitive underpinning of inferences about
the environmental statistics of risks. We also hope to have ad-
vanced the debate over whether people’s imperfect judgments
reflect systematically biased information processing or are the
natural consequence of their uncertainty about environmental
statistics.
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Appendix

The Primary Bias Explained in Terms of Regression Toward
the Mean (Gigerenzer & Fiedler, 2004)

Assume two variables X (e.g., actual frequencies) and Y (estimated
mortality rates) that are bivariately normally distributed and have zero
means, common variance �2, and correlation � (see Furby, 1973; Stigler,
1999). The expectation of Y given X � x is

E(Y |X � x) � �x, (1)

and the expectation of X given Y � y is

E�X |Y � y� � �y. (2)

Only if � is perfect (i.e., –1.0 or 1.0) will there be no regression toward the
mean. Otherwise, the expected value (e.g., Y) will be closer to the mean
than the predictor (e.g., x). Furthermore, because the conditional variance
(e.g., the variance of Y given X � x) is related to � by

Var�Y |X � x� � Var�X |Y � y� � �1 � �2��2, (3)

it follows that if the conditional variance is larger than zero, � will be
imperfect, and regression toward the mean will occur. It is important to
note that a less than perfect correlation between X and Y could be, for
instance, due to unsystematic cognitive factors such as information loss
during memory storage (Fiedler & Armbruster, 1994) or due to environ-
mental factors (i.e., ups and downs in death statistics across time).

Calculation of the Expected Errors in the Choice Task

Assuming the estimates for the more frequent Risk a and the less
frequent Risk b as random variables that are independentA1 and normally
distributed, we can also represent the difference between the distributions
of a and b as a normally distributed random variable (Ross, 2000, p. 68),
N(ea � eb, �2

a 	 �2
b), with M � (ea � eb) and

SD � ��a
2	�b

2.

The probability that the rarer Event b is falsely judged to be more frequent
than Event a equals the probability that the standard normal distribution
N(0, 1) obtains a value smaller than

� �
� ea	eb

��a
2	�b

2 .

A1 Admittedly, this is a simplifying assumption, as each participant
provided estimates for all events.
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