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Abstract

This paper presents NetSieve, a system that aims to do

automated problem inference from network trouble tick-

ets. Network trouble tickets are diaries comprising fixed

fields and free-form text written by operators to docu-

ment the steps while troubleshooting a problem. Un-

fortunately, while tickets carry valuable information for

network management, analyzing them to do problem in-

ference is extremely difficult—fixed fields are often in-

accurate or incomplete, and the free-form text is mostly

written in natural language.

This paper takes a practical step towards automati-

cally analyzing natural language text in network tick-

ets to infer the problem symptoms, troubleshooting ac-

tivities and resolution actions. Our system, NetSieve,

combines statistical natural language processing (NLP),

knowledge representation, and ontology modeling to

achieve these goals. To cope with ambiguity in free-form

text, NetSieve leverages learning from human guidance

to improve its inference accuracy. We evaluate NetSieve

on 10K+ tickets from a large cloud provider, and com-

pare its accuracy using (a) an expert review, (b) a study

with operators, and (c) vendor data that tracks device re-

placement and repairs. Our results show that NetSieve

achieves 89%-100% accuracy and its inference output

is useful to learn global problem trends. We have used

NetSieve in several key network operations: analyzing

device failure trends, understanding why network redun-

dancy fails, and identifying device problem symptoms.

1 Introduction

Network failures are a significant contributor to system

downtime and service unavailability [12, 13, 47]. To

track network troubleshooting and maintenance, opera-

tors typically deploy a trouble ticket system which logs

all the steps from opening a ticket (e.g., customer com-

plaint, SNMP alarm) till its resolution [21]. Trouble tick-

ets comprise two types of fields: (a) structured data of-
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Ticket Title: Ticket #xxxxxx NetDevice; LoadBalancer Down 100%
Summary: Indicates that the root cause is a failed system

Problem Type Problem SubType Priority Created
Severity - 2 2: Medium

Operator 1: Both power supplies have been reseated
Operator 1: The device has been powered back up and it does not 
appear that it has come back online. Please advise.
Operator 2: Ok. Let me see what I can do.
--- Original Message ---
From: Vendor Support
Subject: Regarding Case Number #yyyyyy
Title: Device v9.4.5 continuously rebooting
As discussed, the device has bad memory chips as such we 
replace it. Please completely fill the RMA form below and return it.
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Figure 1: An example network trouble ticket.

ten generated automatically by alarm systems such as

ticket id, time of alert, and syslog error, and (b) free-

form text written by operators to record the diagnosis

steps and communication (e.g., via IM, email) with the

customer or other technicians while mitigating the prob-

lem. Even though the free-form field is less regular and

precise compared to the fixed text, it usually provides

a detailed view of the problem: what happened? what

troubleshooting was done? and what was the resolution?

Figure 1 shows a ticket describing continuous reboots

of a load balancer even after reseating its power supply

units; bad memory as the root cause; and memory re-

placement as the fix; which would be hard to infer from

coarse-grained fixed data.

Unfortunately, while tickets contain valuable informa-

tion to infer problem trends and improve network man-

agement, mining them automatically is extremely hard.

On one hand, the fixed fields are often inaccurate or

incomplete [36]. Our analysis (§2.1) on a large ticket

dataset shows that the designated problem type and sub-

type fields had incorrect or inconclusive information in

69% and 75% of the tickets, respectively. On the other

hand, since the free-form text is written in natural lan-

guage, it is often ambiguous and contains typos, gram-

matical errors, and words (e.g., “cable”, “line card”,

“power supply”) having domain-specific meanings dif-

ferent from the dictionary.

Given these fundamental challenges, it becomes diffi-

cult to automatically extractmeaning from raw ticket text

even with advanced NLP techniques, which are designed
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Table 1: Examples of network trouble tickets and their inference output from NetSieve.

Inference output from NetSieve

Ticket Title Problems Activities Actions

1 SNMPTrap LogAlert 100%: Internal link 4.8 is

unavailable.

link down, failover,

bad sectors

swap cable, upgrade fiber,

run fsck, verify HDD

replace cable, HDD

2 HSRPEndpoint SwitchOver 100%: The status of

HSRP endpoint has changed since last polling.

firmware error,

interface failure

verify and break-fix

supervisor engine

replace supervisor

engine, reboot switch

3 StandbyFail: Failover condition, this standby will

not be able to go active.

unexpected reboot,

performance degraded

verify load balancer, run

config script

rma power supply unit

4 The machine can no longer reach internet

resources. Gateway is set to load balancer float IP.

verify static route reboot server, invoke

failover, packet capture

rehome server, reboot

top-of-rack switch

5 Device console is generating a lot of log messages

and not authenticating users to login.

sync error, no

redundancy

power down device, verify

maintenance

replace load balancer

6 Kernel panic 100%: CPU context corrupt. load balancer reboot,

firmware bug

check performance,

break-fix upgrade

upgrade BIOS, reboot

load balancer

7 Content Delivery Network: Load balancer is in bad

state, failing majority of keep-alive requests.

standby dead,

misconfigured route

upgrade devices replace standby and

active, deploy hot-fix

8 OSPFNeighborRelationship Down 100%: This

OSPF link between neighboring endpoints is down.

connectivity failure,

packet errors

verify for known

maintenance

replace network card

9 HighErrorRate: Summary:

http://domain/characteristics.cgi?<device>.

packet errors verify interface cable and xenpak

module replaced

10 AllComponentsDown: Summary: Indicates that all

components in the redundancy group are down;

down alerts verify for decommissioned

devices

decommission load

balancer

to process well-written text (e.g., news articles) [33].

Most prior work on mining trouble tickets use either key-

word search and manual processing of free-form con-

tent [20, 27, 42], predefined rule set from ticket his-

tory [37], or document clustering based on manual key-

word selection [36]. While these approaches are sim-

ple to implement and can help narrow down the types

of problems to examine, they risk (1) inaccuracy as they

consider only the presence of a keyword regardless of

where it appears (e.g., “do not replace the cable” speci-

fies a negation) and its relationship to other words (e.g.,

“checking for maintenance” does not clarify whether the

ticket was actually due to maintenance), (2) a significant

human effort to build the keyword list and repeating the

process for new tickets, and (3) inflexibility due to pre-

defined rule sets as they do not cover unexpected inci-

dents or become outdated as the network evolves.

Our Contributions. This paper presents NetSieve, a

problem inference system that aims to automatically an-

alyze ticket text written in natural language to infer the

problem symptoms, troubleshooting activities, and res-

olution actions. Since it is nearly impractical to un-

derstand any arbitrary text, NetSieve adopts a domain-

specific approach to first build a knowledge base using

existing tickets, automatically to the extent possible, and

then use it to do problem inference. While a ticket may

contain multiple pieces of useful information, NetSieve

focuses on inferring three key features for summarization

as shown in Table 1:

1. Problems denote the network entity (e.g., router, link,

power supply unit) and its associated state, condition

or symptoms (e.g., crash, defective, reboot) as identi-

fied by an operator e.g., bad memory, line card failure,

crash of a load balancer.

2. Activities indicate the steps performed on the network

entity during troubleshooting e.g., clean and swap ca-

bles, verify hard disk drive, run configuration script.

3. Actions represent the resolution action(s) performed

on the network entity to mitigate the problem e.g., up-

grade BIOS, rehome servers, reseat power supply.

To achieve this functionality, NetSieve combines tech-

niques from several areas in a novel way to performprob-

lem inference over three phases. First, it constructs a

domain-specific knowledge base and an ontology model

to interpret the free-form text using pattern mining and

statistical NLP. In particular, it finds important domain-

specific words and phrases (e.g., ”supervisor engine”,

”kernel”, ”configuration”) and then maps them onto the

ontology model to specify relationships between them.

Second, it applies this knowledge base to infer problems,

activities and actions from tickets and exports the infer-

ence output for summarization and trend analysis. Third,

to improve the inference accuracy, NetSieve performs in-

cremental learning to incorporate human feedback.

Our evaluation on 10K+ network tickets from a large

cloud provider shows that NetSieve performs automated

problem inference with 89%-100% accuracy, and several

network teams in that cloud provider have used its infer-

ence output to learn global problem trends: (1) compare

device reliability across platforms and vendors, (2) ana-

lyze cases when network redundancy failover is ineffec-

tive, and (3) prioritize checking for the top-k problems
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and failing components during network troubleshooting.

This paper makes the following contributions:

• A large-scale measurement study (§2) to highlight the

challenges in analyzing structured data and free-form

text in network trouble tickets.

• Design and implementation (§3) of NetSieve, an auto-

mated inference system that analyzes free-form text in

tickets to extract the problem symptoms, troubleshoot-

ing activities and resolution actions.

• Evaluation (§4) of NetSieve using expert review, study

with network operators and vendor data, and showing

its applicability (§5) to improve network management.

Scope and Limitations: NetSieve is based on analyz-

ing free-form text written by operators. Thus, its accu-

racy is dependent on (a) fidelity of the operators’ input

and (b) tickets containing sufficient information for in-

ference. NetSieve leverages NLP techniques, and hence

is subject to their well-known limitations such as ambi-

guities caused by anaphoras (e.g., referring to a router

as this), complex negations (e.g., “device gets replaced”

but later in the ticket, the action is negated by the use of

an anaphora) and truth conditions (e.g., “please replace

the unit once you get more in stock” does not clarify

whether the unit has been replaced). NetSieve inference

rules may be specific to our ticket data and may not apply

to other networks. While we cannot establish represen-

tativeness, this concern is alleviated to some extent by

the size and diversity of our dataset. Finally, our ontol-

ogy model represents one way of building a knowledge

base, based on discussions with operators. Given that the

ticket system is subjective and domain-specific, alterna-

tive approaches may work better for other systems.

2 Measurement and Challenges

In this section, we present a measurement study to high-

light the key challenges in automated problem inference

from network tickets. The dataset comprises 10K+ (ab-

solute counts omitted due to confidentiality reasons) net-

work tickets logged during April 2010-2012 from a large

cloud provider. Next, we describe the challenges in ana-

lyzing fixed fields and free-form text in trouble tickets.

2.1 Challenges: Analyzing Fixed Fields

C1: Coarse granularity. The fixed fields in tickets con-

tain attributes such as ‘ProblemType’ and ‘ProblemSub-

Type’, which are either pre-populated by alarm systems

or filled in by operators. Figure 2 shows the top-10

problem types and sub-types along-with the fraction of
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Figure 2: Problem types and subtypes listed in the tickets.

tickets. Sev denotes problem severity assigned based on

SLAs with the customer. We observe that while problem

types such as Software, Hardware,Maintenance, and In-

cident provide coarse granularity information about the

problem type, other types e.g., Sev[1-5] are highly sub-

jective reflecting operator’s judgement and they account

for 68.8% of the tickets. As a result, these fields are not

useful to precisely infer the observed problems.

C2: Inaccuracy or Incompleteness. Figure 3 shows the

problem categorization for a randomly selected subset of

tickets labeled by a domain expert (top) and the field val-

ues from the tickets (bottom) for three different types of

devices: (1) Access Routers (AR), (2) Firewalls, and (3)

Load balancers (LB); the number of tickets is 300, 42,

and 299, respectively.

We make two key observations. First, the Problem

SubType field (in the bottom row) is Unknown in about

79%-87% of the tickets. As a result, we may incor-

rectly infer that devices failed due to unknown problems,

whereas the problems were precisely reported in the ex-

pert labeled set based on the same ticket data. Second,

the categories annotated by the expert and ticket fields

for each device type have little overlap, and even when

there is a common category, there is a significant differ-

ence in the fraction of tickets attributed to that category

e.g., ‘Cable’ accounts for 0.6% of the LB tickets whereas

the ground truth shows their contribution to be 9.7%.

The reason that these fields are inaccurate or incom-

plete is that operators work under a tight time sched-

ule, and they usually have a narrow focus of mitigating a

problem rather than analyzing failure trends. Thus, they

may not have the time, may not be motivated, or simply

forget to input precise data for these fields after closing

the tickets. Further, some fixed fields have a drop-down

menu of pre-defined labels and every problem may not

be easily described using them.

2.2 Challenges: Analyzing Free-form Text

In comparison to structured data, the free-form text in

network tickets is descriptive and ambiguous: it has
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Figure 3: Categorization of the ’Problem SubType’ field in tickets for (a) Access Routers (AR), (b) Firewalls, and (c) Load balancers

(LB). The top and bottom rows show the major problem subtypes as labeled by an expert and the ticket field, respectively.

domain-specific words and synonyms mixed with regu-

lar dictionary words, spelling and grammar errors, and

writings from different operators.

Specifically, we highlight the following challenges in

mining free-form text in trouble tickets:

C1: Diversity of content. A ticket may contain a variety

of semantic elements such as emails, IMs, device debug

logs, devices names, and operator notes.

C2: Domain-specific words. Without a prior list of

domain-specific keywords, training spell checkers can be

hard e.g., DMZ and DNS are both valid technical key-

words, but they cannot be found in the dictionary.

C3: Redundant text. Tickets often contain text frag-

ments that appear with high frequency. We observe three

types of frequently occurring fragments (see Figure 1):

templates, emails and device logs. Templates are text

fragments added by operators to meet triage guidelines,

but they often do not contain any problem-specific infor-

mation. Many emails are asynchronous replies to a pre-

vious message and thus, it may be hard to reconstruct the

message order for inference. Log messages are usually

appended to a ticket in progress. Therefore, text min-

ing using metrics such as term frequencymay incorrectly

give more weightage to terms that appear in these logs.

Overall, these challenges highlight the difficulty in au-

tomatically inferring problems from tickets. While we

studied only our ticket dataset, our conversation with op-

erators (having a broader industry view and some having

worked at other networks), suggests that these challenges

are similar to those of many other systems.

3 Design and Implementation

In this section, we first give an overview of NetSieve and

then describe its design and implementation.

3.1 Design Goals

To automatically analyze free-form text, NetSieve should

meet the following design goals:

1. Accuracy: The inference system needs to be accurate

as incorrect inference can lead to bad operator deci-

sions, and wasted time and effort in validating infer-

ence output for each ticket, thus limiting practicality.

2. Automation: Although we cannot completely elimi-

nate humans from the loop, the system should be able

to operate as autonomously as possible.

3. Adaptation: As the network evolves, the system should

be able to analyze new types of problems and leverage

human feedback to acquire new knowledge for contin-

uously improving the inference accuracy.

4. Scalability: The system should be scalable to process

a large number of tickets where each ticket may com-

prise up to a million characters, in a reasonable time.

5. Usability: The output from the inference system

should provide a user-friendly interface (e.g., visu-

alization, REST, plaintext) to allow the operator to

browse, filter and process the inference output.

3.2 Overview

NetSieve infers three key features from network trouble

tickets: (1) Problem symptoms indicating what problem

occurred, (2) Troubleshooting activities describing the

diagnostic steps, and (3) Resolution actions denoting the

fix applied to mitigate the problem.

Figure 4 shows an overview of the NetSieve architec-

ture. NetSieve operates in three phases. First, the knowl-

edge building phase constructs a domain-specific knowl-

edge base and an ontology model using existing tickets

and input from a domain-expert. Second, the operational
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Figure 4: NetSieve Architecture: The first phase builds a domain-specific knowledge base using existing tickets. The second phase

uses the knowledge base to make problem inference. The third phase leverages human guidance to improve the inference accuracy.

phase uses the knowledge base to make problem infer-

ence from tickets. Third, the incremental learning phase

improves the accuracy of knowledge base using human

guidance. We next give a brief description of each of

these phases.

Knowledge Building Phase: The goal of this phase is

to analyze free-form text to extract important domain-

specific phrases such as “power supply unit” and “load

balancer” using repeated pattern mining (§3.3.1) and sta-

tistical NLP (§3.3.2). These domain-specific phrases are

then mapped onto an ontology model (§3.3.3) that for-

mally represents the relationships between network enti-

ties and stores them in a knowledge base. This phase is

executed either when NetSieve is bootstrapped or to re-

train the system using expert feedback.

Operational Phase: The goal of this phase is to perform

problem inference (§3.4) from a ticket using the knowl-

edge base. To export the inference output, NetSieve sup-

ports SQL (through the Query Engine) and HTTP GET

requests (through a Query Interface such as REST [11])

and outputs results in a variety of data formats such as

XML/JSON, and through data visualization for ticket

summarization and trend analysis.

Incremental Learning Phase: To improve inference ac-

curacy, it is important to continuously update the knowl-

edge base to incorporate any new domain-specific ter-

minologies. NetSieve provides an interface to allow a

domain-expert to give feedback for improving the ontol-

ogy model, synonyms, blacklists and whitelists. After

each learning session, NetSieve performs problem infer-

ence using the updated knowledge base.

3.3 Knowledge Building Phase

Building a domain-specific knowledge phase requires

addressing three key questions. First, what type of in-

formation should be extracted from the free-form text to

enable problem inference? Second, how do we extract

this information in a scalable manner from a large ticket

corpus? Third, how do we model the relationships in the

extracted information to infer meaning from the ticket

content. Next we describe solutions to these questions.

3.3.1 Repeated Pattern Extraction

Intuitively, the phrases that would be most useful to

build a knowledge base should capture domain-specific

information and be related to hot (common) and im-

portant problem types. As mining arbitrary ticket text

is extremely hard (§2), we first extract hot phrases and

later apply filters (§3.3.2) to select the important ones.

DESIGN: To find the hot phrases from ticket text, we

initially applied conventional text mining techniques for

n-gram extraction. N-grams are arbitrary and recurrent

word combinations [4] that are repeated in a given con-

text [45]. Since network tickets have no inherent lin-

guistic model, we extracted n-grams of arbitrary length

for comprehensive analysis without limiting to bi-grams

or tri-grams. We implemented several advanced tech-

niques [9, 39, 45] from computational linguistics and

NLP, and observed the following challenges:

1. Extracting all possible n-grams can be computation-

ally expensive for a large n and is heavily dependent

on the size of the corpus. We investigated using a

popular technique by Nagao et al. [39] based on ex-

tracting word co-locations, implemented in C [56]. On

our dataset, this algorithm did not terminate on a 100K

word document after 36 hours of CPU time on a Xeon

2.67 GHz eight-core server with 48 GB RAM, as also

observed by others [52].

2. Determining and fine-tuning the numerous thresholds

and parameters used by statistical techniques [39, 45,



132  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13)	 USENIX Association

Tokenize into 
sentences

Word-Level LZW Compression

Construct Finite State Automaton 
for dictionary using a Trie

Aho-Corasick Pattern Matching

2 - Frequency Estimation of Repeated Patterns

1 - Repeated Pattern Extraction

TICKETS

Dictionary

PATTERNS + FREQUENCY

Word-Level LZW 
Compressor

Single pass over input for 
frequency estimation

Figure 5: Two Phase Pattern Extraction. First, NetSieve tok-

enizes input into sentences and applies WLZW to build a dic-

tionary of repeated patterns. Second, it uses the Aho-Corasick

pattern matching algorithm to calculate their frequency.
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Figure 6: Performance of WLZW (a): Optimized implementa-

tion using Cython gives a performance boost of up to 5x-20x

over a Python based solution as expected. Comparing NetSieve

with N-gram extraction of Nagao et al. [39] (b): NetSieve is

able to scale well beyond a million words in comparison to Na-

gao(f=10), where f is the phrase frequency.

55] is difficult when the corpus size is large.

3. Not all n-grams are useful due to their semantic con-

text. For instance, n-grams such as “showing green”

(LED status) and “unracking the” (unmounting the

server) occurred frequently together but they do not

contribute to the domain knowledge.

To address these challenges, we trade completeness in

n-gram extraction for scalability and speedup. Our idea

to extract hot patterns is to use a data compression algo-

rithm, typically used to compress files by finding recur-

ring patterns in the data and encoding them. A dictionary

is maintained to map the repeated patterns to their out-

put codes. Clearly, these dictionaries do not include all

possible n-grams, but they contain hot patterns that are

frequent enough to bootstrap the knowledge base.

Data compression algorithms typically operate at

a byte or character level, and they do not output the

frequency of patterns in their dictionary. To address

these issues, NetSieve performs pattern extraction in two

Table 2: Examples of phrases extracted using the Two Phase

Pattern Extraction algorithm.

Phrase Type Phrase Pattern

Frequent

messages

team this is to inform you that there has been a

device down alarm reported on

Debug

messages

errors 0 collisions 0 interface resets 0 babbles 0

late collision 0 deferred <device> sup 1a

Email snippets
if you need assistance outside of these hours

please call into the htts toll free number 1 800

phases (Figure 5). First, it tokenizes input into sentences

and leverages LZW [49] to develop a word-level LZW

encoder (WLZW) that builds a dictionary of repeated

patterns at the word-level. In the second phase, NetSieve

applies the Aho-Corasick algorithm [2] to output fre-

quency of the repeated phrases. Aho-Corasick is a string

matching algorithm that runs in a single-pass and has a

complexity linear in the pattern length, input size and

the number of output matches.

IMPLEMENTATION: We implemented the two phase

pattern extraction algorithm in Cython [3], that allows

translating Python into optimized C/C++ code. To op-

timize performance, we implemented the Aho-Corasick

algorithm using suffix-trees [48] as opposed to the con-

ventional suffix-arrays [30]. As expected, we achieved

a 5x-20x performance improvement using Cython com-

pared to a Python-based solution (Figure 6(a)).

Figure 6(b) shows the performance comparison of

WLZW to Nagao (f=10) [39] which extracts all n-grams

that occur at least 10 times. The latter terminated due

to insufficient memory for a million word document. In

comparison, NetSieve is able to process documents con-

taining 100 million words in under 2.7 hours.

Note that WLZW is one way to extract hot patterns;

we will explore other methods [16, 18, 52] in the future.

3.3.2 Knowledge Discovery

The goal of the knowledge discovery phase is to filter

important domain-specific patterns from the extracted set

in the previous phase; Table 2 shows examples of the

extracted phrases. We define a pattern as importantwhen

it contributes to understanding of the “central topic” in a

ticket. Consider the following excerpt from a ticket:

We found that the device <name> Power LED is amber and it is

in hung state. This device has silver power supply. We need to

change the silver power supply to black. We will let you know

once the power supply is changed.

The central topic of the above excerpt is “device failure

that requires a power supply unit to be changed” and the
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Phrase Length

Figure 7: Filtering phrases using phrase length and frequency.

phrases in bold are relevant. While the pattern extrac-

tor outputs these phrases as repeated patterns, the key

challenge is how to distinguish them from noisy patterns.

DESIGN: An intuitive method is to select the most

frequently occurring patterns as important. However,

we observed that many of them were warning messages

which did not contribute to the central topic. Therefore,

we apply a pipeline of three filters to identify the

important domain-specific patterns.

Phrase Length/Frequency Filter: The idea behind ap-

plying this filter is that both the length and frequency of

a phrase can act as good indicators of its importance. In-

tuitively, we are interested in phrases of short-length, but

having a high-frequency. The rationale is that the other

length-frequency combinations are either noise, occur

due to typos, or can be constructed using short phrases.

We did not use a spell checker because an un-

trained or an undertrained one may incorrectly modify

domain-specific words such as DNS and DMZ, and the

probability of an important domain-specific phrase hav-

ing typos in a large fraction of tickets is likely small. We

plot the distribution of length and frequency of phrases

(Figure 7) and then manually inspect a random subset

in each quartile to derive heuristics for threshold-based

filtering (Table 3).

Part-Of-Speech (PoS) Filter: The second filter is

based on the seminal work of Justeson et al. [23]. They

postulate that technical terms or domain-specific phrases

have no satisfactory formal definition and can only

be intuitively characterized: they generally occur only

in specialized types of usage and are often specific to

subsets of domains. Specifically, they conclude that

most technical phrases contain only nouns and adjectives

after analyzing four major technical dictionaries and

subsequently provide a set of seven patterns outlined

Table 3: Thresholds for Phrase Length/Frequency filter.

Filtering Rule Reason

Length > 20 words
Likely Templates (long repeated

patterns)

Single word phrases i.e.,

unigrams

Important unigrams occur as part of a

bi-gram or a tri-gram.

Frequency < 10 i.e.,

rare words or phrases

Likely an isolated incident and not a

frequently occurring problem trend

Contain numbers
Domain-specific phrases rarely

contain numbers

Table 4: NetSieve converts the Justeson-Katz PoS patterns to

Penn Treebank PoS patterns to filter technical phrases.

Justeson-Katz

Patterns

NetSieve Patterns Example

Adjective Noun JJ NN[PS]* mobile

network

Noun Noun NN[PS]* NN[PS]* demo phase

Adjective Adjective

Noun

JJ JJ NN[PS]* fast mobile

network

Adjective Noun

Noun

JJ NN[PS]* NN[PS]* accessible

device logs

Noun Adjective

Noun

NN[PS]* JJ NN[PS]* browser based

authentication

Noun Noun Noun NN[PS]* NN[PS]*

NN[PS]*

power supply

unit

Noun Preposition

Noun

NN[PS]* IN NN[PS]* device down

alert

JJ: Adjective; NN: Singular Noun; NNP: Proper singular

noun; NNPS: Proper plural noun; IN: Preposition

in Table 4. We build upon these patterns and map

them to state-of-the-art Penn Treebank tagset [34], a

simplified part-of-speech tagset for English, using regu-

lar expressions (Table 4). Further, this mapping allows

our implementation to leverage existing part-of-speech

taggers of natural language toolkits such as NLTK [29]

and SharpNLP [44]. Filtering takes place in two steps:

(1) each input phrase is tagged with its associated

part-of-speech tags, and (2) the part-of-speech pattern is

discarded if it fails to match a pattern.

Entropy Filter: The third filter uses information theory

to filter statistically insignificant phrases, and sorts them

based on importance to aid manual labeling. We achieve

this by computing two metrics for each phrase [52]:

1. Mutual Information (MI): MI(x,y) compares the

probability of observing word x and word y together

(the joint probability) with the probabilities of observ-

ing x and y independently. For a phrase pattern, MI is

computed by the following formula:

MI(xYz) = log

(

t f (xYz)∗ t f (Y )

t f (xY )∗ t f (Yz)

)

(1)

where xYz is a phrase pattern, x and z are a word/char-
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acter and Y is a sub-phrase or sub-string, t f denotes

the term-frequency of a word or phrase in the corpus.

2. Residual Inverse Document Frequency (RIDF):

RIDF is the difference between the observed IDF and

what would be expected under a Poisson model for

a random word or phrase with comparable frequency.

RIDF of a phrase is computed as follows:

RIDF =− log
(d f

D

)

+ log
(

1− exp(
−t f

D
)
)

(2)

where d f denotes the document-frequency (the num-

ber of tickets which contain the phrase) and D as the

total number of tickets.

Phrases with high RIDF or MI have distributions that

cannot be attributed to chance [52]. In particular, MI

aims to pick vocabulary expected in a dictionary, while

RIDF aims to select domain-specific keywords, not

likely to exist in a general dictionary. We investigated

both metrics as they are orthogonal and that each tends

to separately pick interesting phrases [52].

IMPLEMENTATION: The three filters are applied as

a sequential pipeline and are implemented in Python.

For PoS tagging, we utilize the Stanford Log-Linear PoS

Tagger [46] as an add-on module to the Natural Lan-

guage Toolkit [29] and implement a multi-threaded tag-

ger that uses the phrase length/frequency filter to first fil-

ter a list of candidate phrases for tagging.

After applying the threshold-based filtering and PoS

filters on the input 18.85M phrases, RIDF and MI are

computed for the remaining 187K phrases. This step sig-

nificantly reduced the computational cost compared to

prior work [9, 39, 45, 52], which aim to compute statis-

tics for all n-grams. Similar to [52], we did not ob-

serve strong correlation between RIDF and MI (Figure 8

(top)). We relied solely on RIDF because most phrases

with high MI were already filtered by RIDF and the re-

maining ones contained terms not useful in our context.

The bottom graph of Figure 8 shows the CCDF plot

of RIDF which can be used to set a threshold to narrow

down the phrase list for the next stage of human review.

Determining the threshold poses a trade off between the

completeness of the domain-dictionary and the human

effort required to analyze the extracted patterns. In our

prototype, we set the threshold based on RIDF such that

3% (5.6K) of the total phrases (187K) are preserved. Fur-

ther, we sort these phrase patterns based on RIDF for

expert review as phrases with higher values get labeled

quickly. An expert sifted through the 5.6K phrases (Fig-

ure 9) and selected 1.6K phrase patterns that we consider

as ground truth, in less than four hours. We observed that

Figure 8: Absence of correlation between RIDF and MI metrics

(top). Using a CCDF plot of RIDF to determine a threshold for

filtering the phrases for expert review (bottom).

All repeated phrase patterns with their frequencies
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Figure 9: The pipeline of filtering phrases to determine a list

of ground truth phrase patterns which are then split and tagged

manually with the NetSieve-Ontology classes.

most of the discarded patternswere redundant as they can

be constructed from the ground truth patterns.

While we leveragemanual review to obtain the ground

truth, this is a necessary step for any supervised tech-

nique. We plan to explore other techniques such as

Named-Entity Recognition [35] and using domain ex-

perts for crowdsourcing [26] to automate this step.

3.3.3 Ontology Modeling

The goal of building ontology models is to determine

semantic interpretation of important domain-specific

phrases generated by the knowledge discovery stage.

For instance, between the terms slot and memory slot,

we are looking for the latter term with high specificity.

Intuitively, we need to model an ontologywhere domain-

specific phrases have a concrete meaning and can be

combined together to enable semantic interpretation.

DESIGN: Developing an ontology model involves three

steps [17, 40]: (1) defining classes in the ontology, (2)

arranging the classes in a taxonomic (superclass, sub-

class) hierarchy and (3) defining interactions amongst the
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Table 5: Classes in the NetSieve-Ontology model

Class Sub-Class Interpretation Example

Entity

Replaceable Tangible object that can be created/destroyed/replaced Flash memory, Core router

Virtual Intangible object that can be created/destroyed/replaced Port channel, configuration

Maintenance Tangible object that can act upon other entities field engineer, technician

Action
Physical Requires creating/destroying an entity decommission, replace, rma

Maintenance Requires interacting with an entity and altering its state clean, deploy, validate, verify

Condition
Problem Describes condition that is known to have a negative effect inoperative, reboot loop

Maintenance Describes condition that describes maintenance break-fix

Incident
False Positive State known to not have any problems false positive, false alert

Error State known to cause a problem error, exception

Quantity

Low

Describes the quantity of an entity/action

low, minor

Medium medium

High high, major

Negation
Synthetic Uses verb or noun to negate a condition/incident/action absence of, declined, denied

Analytic Uses ’not’ to negate a condition/incident/action not

Sentiment

Positive

Adds strength/weakness to an action/incident

confirm, affirmative

Neutral not sure

Negative likely, potential

classes. Note that defining an ontology is highly domain-

specific and depends on extensions anticipated by the

domain-expert. We designed and embedded one such

ontology into NetSieve based on discussion with oper-

ators. Below, we discuss the design rationale behind the

classes, taxonomies and interactions in our model.

Classes and Taxonomies: A class describes a concept

in a given domain. For example, a class of entities can

represent all devices (e.g., routers, load balancers and

cables) and a class of conditions can represent all pos-

sible states of an entity (e.g., bad, flapping, faulty). A

domain-expert sifted through the 1.6K phrases from pre-

vious stage and after a few iterations, identified seven

classes to describe the phrases, shown in Table 5.

Taxonomic Hierarchy: To enable fine-grained problem

inference, Entity is divided into three sub-classes: Re-

placeable denoting entities that can be physically re-

placed, Virtual denoting entities that are intangible and

Maintenance denoting entities that can “act” upon other

entities. Actions are sub-classed in a similar way. The

rest of the classes can be considered as qualifiers for

Entities and Actions. Qualifiers, in general, act as ad-

jectives or adverbs and give useful information about an

Entity or Action. In the final iteration, our domain-expert

split each of the 1.6K long phrase patterns into their con-

stituent small phrase patterns and tagged them with the

most specific class that captured the phrase e.g.,

“and gbic replacement”→ [(and, OMIT WORD), (gbic,

ReplaceableEntity),(replacement, PhysicalAction)].

Most of these tagged phrases are domain-specific

multi-word phrases and are not found in a dictionary.

While the words describing Entities were not ambigu-

ous, we found a few cases where other classes were am-

biguous. For instance, phrases such as “power supply”

(hardware unit or power line), “bit errors” (memory or

COMPLEMENTS

DESCRIBES STATE

COUNTS

COMPLEMENTS

TAKEN ON

COUNTS

ATTACHES OPINION ATTACHES OPINION

OCCURS UPON

Negation

Sentiment

Quantity

Action ConditionConditionConditionIncident

Entity

COUNTS

Figure 10: Ontology Model depicting interactions amongst the

NetSieve-Ontology Classes.

network link), “port channel” (logical link bundling or

virtual link), “flash memory” (memory reset or type of

memory), “device reload” and “interface reset” (unex-

pected or planned), and “key corruption” (crypto-key or

license-key) were hard to understand without a proper

context. To address this ambiguity, we use the text sur-

rounding these phrases to infer their intent (§3.4).

Finally, using these mappings, NetSieve embeds a

ClassTagger module that given an input, outputs tags for

words that have an associated class mapping.

Interactions: An interaction describes relationships

amongst the various classes in the ontology model. For

instance, there are valid interactions (an Action can

be caused upon an Entity) and invalid interactions (an

Entity cannot describe a Sentiment). Figure 10 shows

our model comprising interactions amongst the classes.

IMPLEMENTATION: We obtained 0.6K phrases from

the 1.6K phrases in §3.3.2 categorized into the seven

classes. We implemented the ClassTagger using a trie

constructed using NetSieve knowledge base of domain-
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Table 6: Concepts for the NetSieve-Ontology

Concept Pattern Example

Problems [Replaceable — Virtual —

Maintenance] Entity

preceded/succeeded by

ProblemCondition

The (device) was

(faulty)

Activities [Replaceable — Virtual —

Maintenance] Entity

preceded/succeeded by

MaintenanceAction

(check) (device)

connectivity and

(clean) the (fiber)

Actions [Replaceable — Virtual —

Maintenance] Entity

preceded/succeeded by

PhysicalAction

An (RMA) was

initiated for the

(load balancer)

specific phrases, and a dictionary of their ontology map-

pings. The tagging procedure works in three steps. First,

the input is tokenized into sentences. Second, using

the trie, a search is performed for the longest match-

ing phrase in each sentence to build a list of domain-

specific keywords e.g., in the sentence “the power supply

is down”, both “supply” and “power supply” are valid

domain keywords, but the ClassTagger marks “power

supply” as the relevant word. Finally, these keywords

are mapped to their respective ontology classes using the

dictionary. For instance, given the snippet from §3.3.2,

the ClassTagger will produce the following output:

We found that the (device) / ReplaceableEntity <name> (Power

LED) /ReplaceableEntity is (amber) /Condition and it is in (hung

state) / ProblemCondition. This device has (silver) / Condition

(power supply) / ReplaceableEntity. We need to change the (sil-

ver) / Condition (power supply) / ReplaceableEntity to (black) /

Condition. We will let you know once the (power supply) / Re-

placeableEntity is (changed) / PhysicalAction.

3.4 Operational Phase

The goal of this phase is to leverage the knowledge

base to do automated problem inference on trouble

tickets. A key challenge to address is how to establish

a relationship between the ontology model and the

physical world. In particular, we want to map certain

interactions from our ontology model to concepts that

allow summarizing a given ticket.

DESIGN: Our discussion with operators revealed a com-

mon ask to answer three main questions: (1) What was

observed when a problem was logged?, (2) What activi-

ties were performed as part of troubleshooting? and (3)

What was the final action taken to resolve the problem?

Based on these requirements, we define three key con-

cepts that can be extracted using our ontologymodel (Ta-

ble 6): (1) Problems denote the state or condition of an

entity, (2) Activities describe the troubleshooting steps,

and (3) Actions capture the problem resolution.

The structure of concepts can be identified by sam-

pling tickets describing different types of problems. We

randomly sampled 500 tickets out of our expert-labeled

ground truth data describing problems related to differ-

ent device and link types. We pass these tickets through

NetSieve’s ClassTagger and get a total of 9.5K tagged

snippets. We observed a common linguistic structure in

them: in more than 90% of the cases, the action/condi-

tion that relates to an entity appears in the same sentence

i.e., information can be inferred about an entity based

on its neighboring words. Based on this observation, we

derived three patterns (Table 6) that capture all the cases

of interest. Intuitively, we are interested in finding in-

stances where an action or a condition precedes/succeeds

an entity. Based on the fine granularity of the sub-classes,

the utility of the concepts extracted increases i.e., Phys-

icalAction was taken on a ReplacableEntity is more im-

portant than Action was taken on an Entity.

This type of a proximity-search is performed once for

each of the three concepts. First, the ClassTagger pro-

duces a list of phrases along with their associated tags.

Second, we check to see if the list of tags contain an ac-

tion/condition. Once such a match is found in a sentence,

the phrase associated with the action/condition is added

to a dictionary as a key and all entities within its neigh-

borhood are added as corresponding values. We imple-

mented several additional features like negation detec-

tion [15] and synonym substitution to remove any ambi-

guities in the inference output.

EXAMPLE: “The load balancer was down. We checked the ca-

bles. This was due to a faulty power supply unit which was later re-

placed”, is tagged as “The (load balancer) / ReplaceableEntity was

(down) / ProblemCondition. We (checked) / MaintenanceAction the

(cables) / ReplaceableEntity. This was due to a (faulty) / Problem-

Condition (power supply unit) / ReplaceableEntity which was later

(replaced) / PhysicalAction”. Next, a dictionary is built for each

of the three concepts. Two classes are associated if they are direct

neighbors. In this example, the output is the following:

[+] Problems - {down: load balancer, power supply unit}
[+] Activities - {checked: cable}
[+] Actions - {replaced: power supply unit}
In the final stage, the word “replaced” is changed into “replace” and

“checked” into “check” using a dictionary of synonyms provided by

the domain-expert to remove any ambiguities.

IMPLEMENTATION: We implemented our inference

logic using Python. Each ticket is first tokenized into

sentences and each sentence is then used for concept in-

ference. After extracting the concepts and their associ-

ated entities, we store the results in a SQL table. Our im-

plementation is able to do problem inference at the rate

of 8 tickets/sec on average on our server, which scales

to 28,800 tickets/hour; note that this time depends on the

ticket size, and the overhead is mainly due to text pro-

cessing and part-of-speech tagging.
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Table 7: Evaluating NetSieve accuracy using different datasets. High F-scores are favorable.

Source Dataset Precision Recall F-Score Accuracy %

Devices # Tickets Problems Actions Problems Actions Problems Actions Problems Actions

Domain

Expert

LB-1 122 1 1 0.982 0.966 0.991 0.982 97.7 96.6

LB-2 62 1 1 1 1 1 1 100.0 100.0

LB-3 31 1 1 1 0.958 1 0.978 100.0 95.7

LB-4 36 1 1 1 1 1 1 100.0 100.0

FW 35 1 1 0.971 0.942 0.985 0.970 97.1 94.3

AR 410 1 1 0.964 0.951 0.981 0.974 96.4 95.1

Vendor
LB 78 1 1 0.973 0.986 0.986 0.993 97.3 98.7

CR 77 1 1 1 0.896 1 0.945 100.0 89.6

CR: Core Routers; LB[1-4]:Types of Load balancers; FW:Firewalls; AR: Access Routers

4 Experimental Results

For evaluation, we use two standard metrics from in-

formation retrieval: (1) Accuracy Percentage [31] com-

puted as TP+TN
TP+TN+FP+FN

and (2) F-Score [32] computed

as 2TP
2TP+FP+FN

, where TP, TN, FP, FN are true positives,

true negatives, false positives and false negatives, respec-

tively. F-Scores consider both precision and recall, and

its value of 1 indicates a perfect classifier. Precision is

defined as the ratio of TP and (TP+FP), and recall is de-

fined as the ratio of TP and (TP+FN).

4.1 Evaluating NetSieve Accuracy

To test NetSieve’s accuracy, we randomly divided our

two year ticket dataset into training and test data. The

test data consists of 155 tickets on device replacements

and repairs from two network vendors and 696 tickets

labeled by a domain expert while the training data com-

prises the rest of the tickets. We use the training data

to build NetSieve’s knowledge base. The domain ex-

pert read the original ticket to extract the ground truth

in terms of Problems and Actions, which was then com-

paredwith corresponding phrases in the inference output.

Table 7 shows the overall results by NetSieve on the

test dataset. On the expert labeled data, we observe the

precision of NetSieve to be 1, minimum recall value to

be 0.964 for Problems and 0.942 for Actions, F-score of

0.981-1 for Problems and 0.970-1 for Actions, and ac-

curacy percentage to be 96.4%-100% for Problems and

94.3%-100% for Actions. These results indicate that

NetSieve provides useful inference with reasonable ac-

curacy in analyzing network tickets.

Next, we validate the inference output against data

from two network device vendors that record the ground

truth based on the diagnosis of faulty devices or compo-

nents sent back to the vendor. Each vendor-summary re-

ported the root cause of the failure (similar to NetSieve’s

Problems) and what was done to fix the problem (sim-

ilar to NetSieve’s Actions). We obtained vendor data

corresponding to total 155 tickets on load balancers and

core routers from our dataset. Since the vocabulary in

the vendor data comprised new, vendor-specific words

and synonyms not present in our knowledge base (e.g.,

port interface mentioned as ’PME’), we asked a domain-

expert to validate if NetSieve’s inference summary cov-

ers the root cause and the resolution described in the ven-

dor data. For instance, if the vendor data denoted that a

router failed due to a faulty supervisor engine (SUP), the

expert checked if NetSieve captures “failed device” un-

der Problems and “replaced SUP” under Actions.

The accuracy of NetSieve on the vendor data is ob-

served to be 97.3%-100% for Problems and 89.6%-100%

for Actions. One reason for relatively lower accuracy for

Actions on this dataset is due to a small number of false

negatives: the corrective action applied at the vendor site

may differ from our ticket set as the vendor has the expert

knowledge to fix problems specific to their devices.

Overall, NetSieve has reasonable accuracy of 96.4%-

100% for Problems and 89.6%-100% for Actions, mea-

sured based on the labeled test dataset. We observed sim-

ilar results for Activities and thus omit them.

4.2 Evaluating Usability of NetSieve

We conducted a user study involving five operators to

evaluate the usability of NetSieve for automated problem

inference compared to the traditional method of manu-

ally analyzing tickets. Each operator was shown 20 tick-

ets selected at random from our dataset and asked to an-

alyze the type of problems observed, activities and ac-

tions. Then, the operator was shown NetSieve inference

summary of each ticket and asked to validate it against

their manually labeled ground truth. We measured the

accuracy, speed and user preference in the survey.

Figure 11 shows the accuracy and time to manually

read the ticket versus the NetSieve inference summary

across the operators. We observed average accuracy of

83%-100% and a significant decrease in time taken to

manually read the ticket from 95P of 480s to 95P of 22s

for NetSieve.
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Table 8: Top-3 Problems/Activities/Actions and Failing Components as obtained through NetSieve’s Trend Analysis

Device Problems Activities Actions Failing Components

AR
memory error, packet errors, illegal

frames

verify cable, reseat/clean cable,

upgrade OS

replace with

spare, rma, reboot

SUP engine, cables,

memory modules

AGG
device failure, packet errors, defective

N/W card

verify cable, upgrade N/W card, swap

cable

replace with

spare, reboot, rma

cables, N/W card,

SUP engine

CR
circuit failure, N/W card failure,

packet errors

verify cable, verify N/W card,

upgrade fiber

replace with

spare, reboot, rma

cables, N/W, memory

modules

ER
circuit failure, N/W card failure,

packet errors

verify cable, verify N/W card,

upgrade fiber

replace with

spare, rma, reboot

N/W card, chassis,

cables

LB
PSU failure, device rebooted, config

error
verify PSU, verify config, verify cable

replace with

spare, reboot, rma

PSU, HDD, memory

modules

ToR
connection failure, ARP conflict, SUP

engine failure

verify cable, power cycle blade, verify

PSU

reboot, replace

with spare, rma

cables, OS, SUP

engine

FW
connection failure, reboot loop, data

errors

verify config, verify connections,

verify PSU

reboot, replace

with spare, rma

cables, PSU, N/W

card

VPN
connection failure, config error,

defective memory

verify config, verify N/W card, deploy

N/W card

reboot, replace

with spare, rma

OS, SUP engine,

memory modules

AR: Access Routers, AGG: Aggregation Switch; [E/C]R: Edge/Core Router; LB: Load Balancer; ToR: Top-of-Rack Switch; FW: Firewall
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Figure 11: Accuracy obtained from the user survey (top). CDF

of time to read tickets and inference summaries (bottom).

5 Deployment and Impact

NetSieve has been deployed in the cloud provider we

studied to enable operators to understand global prob-

lem trends instead of making decisions based on isolated

incidents. Further, NetSieve complements existing tools

(e.g., inventory db) by correlating device replacements

with their failures and problem root causes. A simple

alternative to mining tickets using NetSieve is to ask op-

erators for explicit feedback e.g., to build Table 8, but it

will likely be biased by anecdotal or recent data.

Currently, our NetSieve prototype supports SQL-like

queries on the inference output. For instance, “SELECT

TOP 5 Problems FROM InferenceDB WHERE Device-

Type = ‘Load Balancer’ would output the top-5 fail-

ure problems observed across load balancers. Next,

we present how NetSieve has been used across different

teams to improve network management.

Network Architecture: This team used NetSieve to

compare device reliability across platforms and vendors.

In one instance, NetSieve showed that a new generation

of feature-rich, high capacity AR is half as reliable as its

predecessor. In another instance, it showed that software

bugs dominated failures in one type of load balancers.

Based on grouping tickets having Problem inference of

Switch Card Control Processor (SCCP) watchdog time-

out for LB-2, NetSieve showed that hundreds of devices

exhibited reboot loops due to a recurring software bug

and were RMAed in 88% of the tickets.

Capacity Planning: This team applied NetSieve to an-

alyze cases when network redundancy is ineffective in

masking failures. Specifically, for each network failure,

we evaluate if the redundancy failover was not success-

ful [13] and then select the corresponding tickets. These

tickets are then input to NetSieve to do problem inference

which output the following to be the dominant problems:

1. Faulty Cables: The main reason was that the cable

connected to the backup was faulty. Thus, when the

primary failed, it resulted in a high packet error rate.

2. Software Mismatch: When the primary and backup

had mismatched OS versions, protocol incompatibility

caused an unsuccessful failover.

3. Misconfiguration: Because operators usually config-

ure one device and then copy the configuration onto

the other, a typo in one script introduced the same bug

in the other and resulted in an unsuccessful failover.

4. Faulty Failovers: The primary device failed when the

backup was facing an unrelated problem such as soft-

ware upgrade, down for scheduled repairs, or while de-

ploying a new device into production.

Incident Management and Operations: The incident

management team used NetSieve to prioritize checking

for the top-k problems and failing components while
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troubleshooting devices. The operation team uses Net-

Sieve to determine if past repairs were effective and de-

cide whether to repair or replace the device. Table 8

shows NetSieve’s inference output across different de-

vice types.We observe that while Problems show a high

diversity across device types such as packet errors, line

card failures and defective memory, verifying cable con-

nectivity is a common troubleshooting activity, except

for Firewalls and VPNs where operators first verify de-

vice configuration. For Actions related to Firewalls,

VPNs and ToRs, the devices are first rebooted as a quick

fix even though the failing components are likely to be

bad cable or OS bugs. In many cases, we observe that a

failed device is RMAed (sent back to the vendor) which

implies that the network is operating at reduced or no

redundancy until the replacement arrives.

Complementary to the above scenarios, NetSieve in-

ference can be applied in several other ways: (1) priori-

tize troubleshooting steps based on frequently observed

problems on a given device, its platform, its datacenter,

or the hosted application, (b) identify the top-k failing

components in a device platform and resolving themwith

their vendors, and (c) decide whether to repair, replace or

even retire a particular device or platform by computing

a total cost-of-ownership (TCO) metric.

6 Related Work

Network Troubleshooting: There has been a significant

work in analyzing structured logs to learn statistical sig-

natures [1, 10], run-time states [54] or leveraging router

syslogs to infer problems [41]. Xu et al. [51] mine ma-

chine logs to detect runtime problems by leveraging the

source code that generated the logs. NetSieve comple-

ments these approaches to automate problem inference

from unstructured text. Expert systems [8, 25], on the

other hand, diagnose network faults based on a set of

pre-programmed rules. However, they lack generality as

they only diagnose faults in their ruleset and the ruleset

may become outdated as the system evolves. In compar-

ison, the incremental learning phase in NetSieve updates

the knowledge base to improve the inference accuracy.

Mining Network Logs: Prior efforts have focused on

automating mining of network failures from syslogs [41,

53] or network logs [28]. However, these studies do

not analyze free-form text in trouble tickets. Kandula et

al. [24] mine rules in edge networks based on traffic data.

Brauckhoff et al. [7] use association rule mining tech-

niques to extract anomalies in backbone networks. Net-

Sieve is complementary to these efforts in that their min-

ing methodologies can benefit from our domain-specific

knowledge base. TroubleMiner [36] selects keywords

manually from the first two sentences in tickets and then

performs clustering to group them.

Analyzing Bug Reports: There is a large body of work

in software engineering analyzing [19, 22], summariz-

ing [6] and clustering [5, 43] bug reports. Betternburg et

al. [6] rely on features found in bug reports such as stack

traces, source code, patches and enumerations and, hence

their approach is not directly applicable to network tick-

ets. Others [5, 43] use standard NLP techniques for the

task of clustering duplicate bug reports, but they suffer

from the same limitations as keyword based approaches.

In comparison, NetSieve aims to infer “meaning” from

the free-form content by building a knowledge base and

an ontology model to do problem inference.

Natural Language Processing: N-gram extraction tech-

niques [9, 39, 45, 52] focus on extracting all possible

n-grams thereby incurring a high computation cost for

large datasets (§3.3.1). NetSieve addresses this challenge

by trading completeness for scalability and uses the dic-

tionary built by its WLZW algorithm. Wu et al. [50]

detect frequently occurring text fragments that have a

high correlation with labels in large text corpora to de-

tect issues in customer feedback. Other efforts [14, 38]

achieve summarization via paragraph and sentence ex-

traction. Much research in this area deals with properly-

written regular text and is not directly applicable to our

domain. In contrast, NetSieve focuses on free-form text

in trouble tickets to do problem inference.

7 Conclusion

Network trouble tickets contain valuable information for

network management, yet they are extremely difficult to

analyze due to their free-form text. This paper takes a

practical approach towards automatically analyzing the

natural language text to do problem inference. We pre-

sented NetSieve that automatically analyzes ticket text to

infer the problems observed, troubleshooting steps, and

the resolution actions. Our results are encouraging: Net-

Sieve achieves reasonable accuracy, is considered useful

by operators and has been applied to answer several key

questions for network management.
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[16] GOYAL, A., DAUMÉ III, H., AND VENKATASUBRAMANIAN,

S. Streaming for large scale NLP: Language modeling. In An-

nual Conference of the Association for Computational Linguistics

(2009).

[17] GRUBER, T., ET AL. Toward principles for the design of ontolo-

gies used for knowledge sharing. International Journal of Human

Computer Studies (1995).

[18] HEAFIELD, K. Kenlm: Faster and smaller language model

queries. In Workshop on Statistical Machine Translation (2011).

[19] HOOIMEIJER, P., AND WEIMER, W. Modeling bug report qual-

ity. In IEEE/ACM International Conference on Automated Soft-

ware Engineering (2007).

[20] HUANG, Y., FEAMSTER, N., LAKHINA, A., AND XU, J. Diag-

nosing network disruptions with network-wide analysis. In ACM

SIGMETRICS Performance Evaluation Review (2007).

[21] JOHNSON, D. Noc internal integrated trouble ticket system.

http://goo.gl/eMZxX, January 1992.

[22] JUST, S., PREMRAJ, R., AND ZIMMERMANN, T. Towards the

next generation of bug tracking systems. In IEEE Symposium on

Visual Languages and Human-Centric Computing (2008).

[23] JUSTESON, J., AND KATZ, S. Technical terminology: some lin-

guistic properties and an algorithm for identification in text. Jour-

nal of Natural language engineering (1995).

[24] KANDULA, S., CHANDRA, R., AND KATABI, D. What’s go-

ing on?: learning communication rules in edge networks. ACM

SIGCOMM Computer Communication Review (2008).

[25] KHANNA, G., CHENG, M., VARADHARAJAN, P., BAGCHI, S.,
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