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JUHL’S FORMULAE FOR GJMS OPERATORS

AND Q-CURVATURES

CHARLES FEFFERMAN AND C. ROBIN GRAHAM

1. Introduction

GJMS operators and Q-curvatures are important objects in conformal geometry
which have been studied intensely during the past decade. The GJMS operators are
conformally invariant scalar differential operators whose principal part is a power
of the Laplacian. They generalize the Yamabe operator P2 = Δ − n−2

4(n−1)R (also

called the conformal Laplacian). They arise naturally in a number of situations,
for instance, in the sharp Moser-Trudinger inequality. The Q-curvatures are the
zeroth order terms of the GJMS operators. Their importance was emphasized by
Branson. They too arise in many circumstances, for instance, in the consideration
of anomalies for functional determinants.

In [J2], [J3], building on previous work beginning with [J1], Juhl has derived re-
markable formulae for GJMS operators and Q-curvatures, which reveal unexpected
algebraic structure. In this paper we give direct proofs of Juhl’s formulae starting
from the original construction of [GJMS].

Juhl’s formulae are expressed in terms of quantities arising in the expansion
of a Poincaré metric, or equivalently an ambient metric, associated to a given
pseudo-Riemannian metric. Let g be a pseudo-Riemannian metric of signature
(p, q), p + q = n ≥ 3, on an n-dimensional manifold M . A Poincaré metric in
normal form relative to g is a metric g+ on M × (0, ε) of the form

g+ = r−2
(
dr2 + hr

)
,

where hr is a smooth 1-parameter family of metrics on M satisfying h0 = g, for
which Ric(g+) + ng+ = 0 in the following asymptotic sense. If n is odd, then
Ric(g+)+ng+ = O(r∞), while if n is even, then Ric(g+)+ng+ = O(rn−2) and the
tangential trace of r2−n (Ric(g+) + ng+) vanishes at r = 0. Set

V (r) =

√
dethr

deth0

and W (r) =
√
V (r). Let δ denote the divergence operator on vector fields with

respect to g, given by δϕ = ∇iϕ
i. Define a 1-parameter family M(r) of second

order differential operators on M by

(1.1) M(r) = δ(h−1
r d)− U(r),
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where

U(r) =

[
∂2
r − (n− 1)r−1∂r + δ(h−1

r d)
]
W (r)

W (r)

acts as a zeroth order term. (We write U(r) in the form given in v1 of [J3]. v2 of
[J3] expresses it in a different form; see Lemma 8.1 of v2.) UseM(r) as a generating
function for second order differential operators M2N on M defined for N ≥ 1 (and
N ≤ n/2 if n is even) by

(1.2) M(r) =
∑
N≥1

M2N
1

(N − 1)!2

(
r2

4

)N−1

.

The M2N are natural scalar differential operators. Natural scalar invariants W2N

are defined by

(1.3) W (r) = 1 +
∑
N≥1

W2Nr2N

for N ≥ 1 (and N ≤ n/2 if n is even).
Juhl’s formulae involve constants nI , mI which are parametrized by ordered lists

I = (I1, . . . , Ir) of positive integers. I is referred to as a composition of the sum
|I| = I1 + I2 + · · · + Ir. Sometimes compositions are written in the form (I, a)
singling out the last entry. In this case the convention is that I is allowed to be
empty but a > 0. The constants appearing in Juhl’s formulae are

nI = (|I| − 1)!2
r∏

j=1

1

(Ij − 1)!2

r−1∏
j=1

1(∑j
k=1 Ik

)(∑r
k=j+1 Ik

) ,
mI = (−1)r+1|I|!(|I| − 1)!

r∏
j=1

1

Ij !(Ij − 1)!

r−1∏
j=1

1

Ij + Ij+1
.

(1.4)

Empty products are always interpreted as 1. Observe when r = 1 that n(N) =
m(N) = 1. Although it will not be important for us, we remark that all nI and mI

are integers. For the nI , this follows from the fact that each nI can be rewritten as
a product of binomial coefficients; see (2.2), (2.3) of [J3]. For the mI , it follows from
the fact that each mI can be written as a polynomial in the nJ with integer coef-
ficients. This is a consequence of the characterization of the mI as the coefficients
in polynomial relations which are inverse to lower-triangular polynomial relations
with coefficients the nJ . (See the first paragraph of §4.)

Let P2N denote the GJMS operators, with sign convention determined by P2N =
ΔN + . . . with Δ = δ(g−1d). These are defined for all N ≥ 1 for n odd and for
1 ≤ N ≤ n/2 for n even. Iterated compositions of the P2N and the M2N are
denoted by P2I = P2I1 ◦ · · · ◦ P2Ir and M2I = M2I1 ◦ · · · ◦M2Ir .

Juhl proves four formulae: an explicit formula and a recursive formula each
for GJMS operators and for Q-curvatures. All four formulae are universal in the
dimension.

Theorem 1.1 (Explicit formula for GJMS operators). For N ≥ 1 (and N ≤ n/2
if n is even),

(1.5) P2N =
∑

|I|=N

nIM2I .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



JUHL’S FORMULAE 1193

Theorem 1.2 (Recursive formula for GJMS operators). For N ≥ 1 (and N ≤ n/2
if n is even),

(1.6) P2N = −
∑

|I|=N
I �=(N)

mIP2I +M2N .

Clearly the explicit formula expresses P2N in terms of the second order building
blocks M2M , M ≤ N . The recursive formula expresses each P2N as a sum of
compositions of lower order GJMS operators, modulo the second order term M2N .
For N = 1 both formulae state that M2 = P2, the Yamabe operator. For N = 2
the formulae express the Paneitz operator as P4 = M2

2 + M4 = P 2
2 + M4. The

principal part of M2N for N > 1 involves curvature, and M2N = 0 for N > 1 if g
is flat. Further discussion and specializations of the formulae may be found in [J3].

The Q-curvatures are defined in terms of the zeroth order terms of the GJMS
operators:

(1.7) P2N (1) = (−1)N
(n
2
−N

)
Q2N .

Q2N is defined for all N ≥ 1 if n is odd and for 1 ≤ N ≤ n/2 if n is even. For
n even, both sides vanish in the critical case N = n/2 and Qn is defined by an
analytic continuation.

Theorem 1.3 (Explicit formula for Q-curvatures). For N ≥ 1 (and N ≤ n/2 if n
is even),

(1.8) (−1)NQ2N =
∑

|(I,a)|=N

n(I,a)a!(a− 1)!22aM2I(W2a).

Theorem 1.4 (Recursive formula for Q-curvatures). For N ≥ 1 (and N ≤ n/2 if
n is even),

(1.9) (−1)NQ2N = −
∑

|(I,a)|=N
a<N

m(I,a)(−1)aP2I(Q2a) +N !(N − 1)!22NW2N .

The explicit formula expresses Q2N in terms of the operators M2M and the
coefficients W2a. The recursive formula expresses Q2N in terms of GJMS operators
applied to Q2a with a < N , modulo the multiple of W2N . Observe that the factor
n/2 − N in the definition which vanished in the critical case no longer appears.
So the Q-curvature formulae do not follow immediately from the GJMS operator
formulae just by taking constant terms.

If g is Einstein or locally conformally flat, then there is an invariantly defined
Poincaré metric to infinite order also if n is even. It can be written explicitly; see
[FG]. In these cases, P2N and Q2N are invariantly defined for all N ≥ 1 also for n
even. For such g, Juhl’s formulae and our proofs are valid for all N .

The GJMS operators are known to be self-adjoint. This is exhibited by the
formulae (1.5) and (1.6), since M(r) is evidently self-adjoint with respect to g for
each r so that the M2N are all self-adjoint and since nI = nI−1 and mI = mI−1

where I−1 = (Ir, . . . , I1). However, the self-adjointness is not obvious from the
original GJMS construction. If one desires to understand Juhl’s formulae in terms
of the original construction, it is reasonable to start by asking the modest question of
how to see the self-adjointness from that derivation. It turns out that understanding
this is the key to unlocking the mysteries of Juhl’s formulae.
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The operators P2N were derived in [GJMS] via the Laplacian of the ambient
metric associated to g. In normal form, this is the metric

(1.10) g̃ = 2ρdt2 + 2tdtdρ+ t2gρ

on R+ ×M × (−ε, ε), where t ∈ R+, ρ ∈ (−ε, ε), and gρ = hr with ρ = −r2/2. The
asymptotic vanishing of Ric(g+)+ng+ at r = 0 translates into asymptotic vanishing

of Ric(g̃) at ρ = 0. See [FG] for details. If f ∈ C∞(M) and f̃ ∈ C∞(M × (−ε, ε))

satisfies f̃(x, 0) = f , then the GJMS definition is

(1.11) P2Nf = Δ̃N (tN−n/2f̃)|ρ=0,t=1

where Δ̃ denotes the Laplacian in the metric g̃. The right-hand side is shown to be

independent of the choice of f̃ extending f .

It is straightforward to calculate the Laplacian Δ̃ of a metric of the form (1.10).
Evidently there is a term involving the Laplacian Δgρ in the metric gρ for fixed ρ
acting in the M factor (see (2.1) below). This term is not self-adjoint with respect

to g = g0, so P2N obtained by iterating Δ̃ and restricting to ρ = 0 does not appear
to be self-adjoint either. This is the reason that self-adjointness of the P2N is not
apparent from this construction. However, if we set

(1.12) v(ρ) =

√
det gρ
det g0

(so that v(ρ) = V (r) with ρ = −r2/2), then multiplying the volume form for g by
v(ρ) gives the volume form for gρ. It follows that for each ρ the operator v(ρ)Δgρ

is self-adjoint with respect to g. Pre- and post-composing a self-adjoint operator
with multiplication by a smooth real function gives another self-adjoint operator.
Therefore the operator v1/2 ◦Δgρ ◦ v−1/2 is also self-adjoint with respect to g. This
motivates consideration of

Δ̃v := v1/2 ◦ Δ̃ ◦ v−1/2,

as we are guaranteed that the operator acting along M when Δ̃v is written out

will be self-adjoint with respect to g. Moreover, Δ̃N
v = v1/2 ◦ Δ̃N ◦ v−1/2 since the

middle factors of v±1/2 cancel. The pre- and post-multiplications by v±1/2 affect
neither the extension property nor the restriction back to ρ = 0 since v = 1 at
ρ = 0. Hence (1.11) can be rewritten as

(1.13) P2Nf = Δ̃N
v (tN−n/2f̃)|ρ=0,t=1.

Now a direct calculation which we carry out in §2 shows that

(1.14) Δ̃v(t
γ f̃) = tγ−2

[
−2ρ∂2

ρ + (2γ + n− 2)∂ρ + M̃(ρ)
]
f̃ ,

where M̃(ρ) = M(r), ρ = −r2/2. This is the key identity. It explains the previously

mysterious appearance of bothW =
√
V and the generating functionM(r) in Juhl’s

theory. Since
[
−2ρ∂2

ρ + (2γ + n− 2)∂ρ
]
ρk = ck,γ,nρ

k−1 for constants ck,γ,n, upon

choosing f̃ to be independent of ρ we see that iterating (1.14) and restricting to
ρ = 0, t = 1 gives a formula for P2N as a linear combination of compositions of

the Taylor coefficients of M̃(ρ), i.e. of the M2I . Showing that the coefficients in
the linear combination are the nI reduces to a (rather nontrivial) combinatorial
identity which we derive in §3. This proves Theorem 1.1. Theorem 1.3 reduces
to an equivalent combinatorial identity upon calculating P2N1 using (1.13), (1.14)
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and taking the extension f̃ to be v1/2 rather than 1. This reduction is included in
§2 and the proof of the relevant combinatorial identity in §3.

Theorem 1.2 can be derived from Theorem 1.1 by inverting (1.5), viewed as a
formal transformation law from the M2N to the P2N . A proof in the opposite
direction due to Krattenthaler was presented in §2 of [J3] and immediately implies
the direction we need here. Likewise, Theorem 1.4 follows from Theorem 1.3 upon
inverting (1.8), viewed as a formal transformation from the W2N to the Q2N . In
§4 we review Krattenthaler’s proof of the inversion for the operators following the
presentation in [J3] and then present the similar but more complicated proof for
the Q-curvatures.

It is also possible to prove both the explicit and recursive formulae for Q-
curvatures by taking the constant term in the corresponding formula for the GJMS
operators and then rewriting by deriving and substituting expressions for the
M2N (1). This approach is closely related to arguments in [J3], where the scalar
invariants M2N (1) play a prominent role.

We still find these formulae to be quite astonishing. Juhl deserves great credit
for their discovery as subtle consequences of the recursive structure of his residue
families. Even though we now see that this theory of residue families and their
factorization identities is not required for their proofs, this theory, linking ideas
from conformal geometry, representation theory and spectral theory, appears deep
and fascinating and deserves further exploration.

2. Explicit formulae

In this section we give the details of the argument outlined in the introduction
which reduces Theorem 1.1 to a combinatorial identity and then we show how
similar reasoning reduces Theorem 1.3 to an equivalent combinatorial identity.

The first task is to establish (1.14) by direct calculation. The inverse of the
metric (1.10) is

g̃IJ =

⎛⎝ 0 0 t−1

0 t−2gijρ 0
t−1 0 −2ρt−2

⎞⎠ ,

where the blocks correspond to (t, xi, ρ) ∈ R+ × M × (−ε, ε). Thus
√
| det g̃| =

tn+1
√
| det gρ|. Using this in

Δ̃ =
1√

| det g̃|
∂I

(
g̃IJ
√
| det g̃|∂J

)
gives

(2.1) Δ̃(tγϕ) = tγ−2
[
−2ρϕ′′ + (2γ + n− 2− 2ρv′/v)ϕ′ + (Δgρ + γv′/v)ϕ

]
(cf. (3.5) of [GJMS]). Here v is given by (1.12), ′ denotes ∂ρ, and ϕ is independent

of t. Set w = v1/2 and ϕ = w−1ψ. Then v′/v = 2w′/w and

ϕ′ = w−1ψ′ − w−2w′ψ,

ϕ′′ = w−1ψ′′ − 2w−2w′ψ′ + (2w−3w′2 − w−2w′′)ψ.

Substituting and simplifying gives

w
[
− 2ρϕ′′+(2γ + n− 2− 2ρv′/v)ϕ′ + γ(v′/v)ϕ

]
=− 2ρψ′′ + (2γ + n− 2)ψ′ + w−1

[
2ρw′′ − (n− 2)w′]ψ.(2.2)
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For the remaining term in (2.1) we have

Lemma 2.1.

(2.3) w ◦Δgρ ◦ w−1 = δ(g−1
ρ d)− w−1δ(g−1

ρ dw).

(Recall that δ denotes the divergence operator with respect to g = g0.) The second
term on the right-hand side acts as a zeroth order operator.

Proof. For fixed ρ it is clear that w ◦ Δgρ ◦ w−1 and δ(g−1
ρ d) are second order

differential operators whose principal parts agree. We observed in the introduction
that the first is self-adjoint with respect to g, and clearly this is the case for the
second. So their difference is zeroth order. Evaluating on w identifies the zeroth
order term. �

Multiplying (2.1) by w and then substituting (2.2) and (2.3) yields

(2.4) wΔ̃(tγw−1ψ) = tγ−2
[
−2ρψ′′ + (2γ + n− 2)ψ′ +

(
δ(g−1

ρ d)− Ũ(ρ)
)
ψ
]

where

Ũ(ρ) =

[
−2ρ∂2

ρ + (n− 2)∂ρ + δ(g−1
ρ d)

]
w(ρ)

w(ρ)
.

The chain rule with ρ = −r2/2 shows that Ũ(ρ) = U(r) so that δ(g−1
ρ d)− Ũ(ρ) =

M̃(ρ). Hence (2.4) becomes (1.14). This completes the derivation of (1.14).
Set

Rk = −2ρ∂2
ρ + 2k∂ρ + M̃(ρ)

and note that (1.2) becomes

M̃(ρ) =
∑
N≥1

M2N
1

(N − 1)!2

(
−ρ

2

)N−1

.

Iterating (1.14) gives

Δ̃N
v (tN−n/2f̃) = t−N−n/2R1−NR3−N · · ·RN−3RN−1f̃ ,

so we deduce that R1−NR3−N · · ·RN−3RN−1f̃ |ρ=0 depends only on f̃ |ρ=0. Tak-

ing f̃ to be independent of ρ, it follows upon expanding the right-hand side that
R1−NR3−N · · · RN−3RN−1|ρ=0 is a linear combination of the compositions M2I .
In the next section we will prove the combinatorial identity

(2.5) R1−NR3−N · · · RN−3RN−1|ρ=0 =
∑

|I|=N

nIM2I ,

which identifies the constants in the linear combination. Theorem 1.1 then follows
via (1.13).

We next show that Theorem 1.3, the explicit formula for Q-curvatures, reduces to
a similar combinatorial identity, which we will see in the next section is equivalent to
(2.5). By definition we have (−1)N (n/2−N)Q2N = P2N1. Use (1.13) to calculate

P2N1, taking f̃ = v1/2 to be the extension of f = 1. Thus

(−1)N (n/2−N)Q2N = Δ̃N−1
v

(
v1/2Δ̃(tN−n/2)

)
|ρ=0,t=1.

Equation (2.1) gives

Δ̃(tN−n/2) = tN−n/2−2(N − n/2)v′/v = 2tN−n/2−2(N − n/2)w′/w.
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The factors of (N − n/2) cancel, and it follows that

(2.6) (−1)NQ2N = −2Δ̃N−1
v (tN−n/2−2w′)|ρ=0,t=1.

Iterating (1.14) gives

(2.7) (−1)NQ2N = −2R1−NR3−N · · ·RN−3(w
′)|ρ=0.

Now w = 1 +
∑

a≥1 W2a(−2ρ)a, so

(2.8) w′ =
∑
a≥1

a(−2)aW2aρ
a−1.

As will be shown in the next section, the following is equivalent to (2.5).

Proposition 2.2. Let 1 ≤ a ≤ N and let f be a function on M (i.e. independent
of ρ). Then

(2.9) R1−NR3−N · · ·RN−3(fρ
a−1)|ρ=0 =

∑
|I|=N−a

n(I,a)(a− 1)!2(−2)a−1M2I(f).

Substituting (2.8) into (2.7) and then applying (2.9) termwise gives

(−1)NQ2N =
∑

(I,a)=N

n(I,a)a!(a− 1)!22aM2I(W2a),

which is the explicit formula for Q2N .
For n even, the above argument applies also for the critical case N = n/2 since

Qn is defined by removing the factor of n/2 − N . The critical case may also be
deduced without this argument of analytic continuation in the dimension by using
the realization

(−1)n/2Qn = −Δ̃n/2(log t)|ρ=0,t=1

derived in [FH]. First write

Δ̃n/2(log t)|ρ=0,t=1 = Δ̃n/2−1
v

(
wΔ̃(log t)

)
|ρ=0,t=1.

Direct calculation gives wΔ̃(log t) = 2t−2w′. So we recover (2.6), and the argument
proceeds as above.

3. Combinatorial identities

In this section we derive the combinatorial identities (2.5) and (2.9) to which
Theorems 1.1 and 1.3 were reduced above. Begin with (2.5). First change variables
by setting

(3.1) s = −ρ

2
, xN =

M2N

(N − 1)!2
, X(s) = M̃(ρ) =

∞∑
N=0

xN+1s
N .

As far as this identity is concerned, x1, x2, . . . can simply be regarded as noncom-
muting variables, all of which commute with s. In the new variables, theRk become
the differential operators

Lk = s
d2

ds2
− k

d

ds
+X(s),
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where X(s) acts as a zeroth order multiplication operator. We only have to verify
the constant term in ∂ρ of (2.5), which becomes

Theorem 3.1. Let N ≥ 1. Then

(3.2) L1−NL3−N · · · LN−3LN−11|s=0 =
∑

|I|=N

n̄I xI1xI2 · · ·xIr ,

where

n̄I =
(N − 1)!2∏r−1

k=1

(∑k
j=1 Ij

)(∑r
j=k+1 Ij

) .
Set L̄j = LN+1−2j so that L1−NL3−N · · · LN−3LN−1 = L̄N L̄N−1 · · · L̄2L̄1. Since

n̄I = n̄I−1 , (3.2) can be rewritten as

(3.3) L̄N L̄N−1 · · · L̄2L̄11|s=0 =
∑

|I|=N

n̄I xIrxIr−1
· · ·xI1 .

Fix positive integers I1, . . . , Ir, where r ≥ 1. We will prove (3.3) by verifying the
coefficient of xIrxIr−1

· · ·xI1 in L̄N L̄N−1 · · · L̄2L̄11|s=0 for each choice of I1, . . . , Ir.
For 1 ≤ l ≤ r, set

μl = I1 + I2 + · · ·+ Il

so that 1 ≤ μ1 < μ2 < · · · < μr−1 < μr. Consider the calculation of L̄N L̄N−1 · · ·
L̄2L̄11 by successive multiplication from the left. For 1 ≤ j ≤ N , L̄jL̄j−1 · · · L̄11
is a formal power series in s whose coefficients are polynomials in the x’s. The
only monomials in the x’s appearing in L̄jL̄j−1 · · · L̄11 which can ultimately con-
tribute to the coefficient of xIrxIr−1

· · ·xI1 in L̄N L̄N−1 · · · L̄2L̄11 are of the form
xIlxIl−1

· · ·xI1 for some l, 1 ≤ l ≤ r. The term sd2/ds2 − (N + 1− 2k)d/ds in one

of the factors L̄k reduces the power of s by 1 and multiplies by a constant. The
term X(s) is linear in the x’s. So in order for a monomial xIlxIl−1

· · ·xI1 to appear

in the expansion of L̄jL̄j−1 · · · L̄11, it must be that the zeroth order term X(s)
has contributed in exactly l of these L̄k. Thus the differentiation in s terms have
contributed in exactly j − l of the L̄k. It follows that the power of s multiplying
xIlxIl−1

· · ·xI1 is sμl−l−(j−l) = sμl−j . Hence we have

(3.4) L̄jL̄j−1 · · · L̄11 =

min(j,r)∑
l=1

cj,l xIlxIl−1
· · ·xI1s

μl−j + . . .

for some constants cj,l, where . . . indicates terms involving monomials in the x’s
which cannot contribute in the end. The cj,l are defined for 1 ≤ j ≤ N , 1 ≤ l ≤
min(j, r), and we have c1,1 = 1 and cj,l = 0 if μl < j ≤ N .

From (3.4) it follows first that the coefficient of xIr · · ·xI1 in L̄N L̄N−1 · · ·
L̄2L̄11|s=0 is zero unless |I| = N . In fact, taking j = N , the term xIr · · ·xI1 on the
right-hand side is multiplied by sμr−N . This vanishes at s = 0 unless μr = N , i.e.
|I| = N . Theorem 3.1 therefore reduces to the statement that cN,r = n̄I if |I| = N .
We assume henceforth that |I| = N , i.e. μr = N .

Extend the definition of the cj,l to 0 ≤ j ≤ N , 0 ≤ l ≤ r by defining c0,0 = 1 and
cj,l = 0 if 0 ≤ j < l ≤ r or if l = 0 and 1 ≤ j ≤ N . We claim that these constants
satisfy the recursion relation

(3.5) cj+1,l = −(μl − j)(N − μl − j)cj,l + cj,l−1
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for 0 ≤ j ≤ N − 1, 1 ≤ l ≤ r. For 1 ≤ j ≤ N − 1 and 1 ≤ l ≤ min(j + 1, r), this
follows by applying L̄j+1 to (3.4). For j = 0, l = 1, both sides are 1, and for all
the other values both sides vanish. Now extend the definition of the cj,l to j > N ,
0 ≤ l ≤ r by setting cj,0 = 0 for j > N and by requiring that (3.5) hold for j ≥ N ,
1 ≤ l ≤ r. The resulting cj,l are defined for j ≥ 0, 0 ≤ l ≤ r, and (3.5) holds for
j ≥ 0, 1 ≤ l ≤ r.

Define generating functions

Fl(y) =

∞∑
j=0

cj,l
(j!)2

yj , 0 ≤ l ≤ r.

The definitions of the cj,0 and c0,l show that

(3.6) F0 = 1 and Fl(0) = 0, 1 ≤ l ≤ r.

The recursion (3.5) turns into a differential equation relating Fl and Fl−1. For a
fixed positive integer N as above, define ordinary differential operators

Dμ = y(1 + y)
d2

dy2
+ [1− (N − 1)y]

d

dy
+ μ(N − μ).

Lemma 3.2. Let

(3.7) u =

∞∑
j=0

uj

(j!)2
yj , f =

∞∑
j=0

fj
(j!)2

yj

be formal power series. Then Dμu = f if and only if

(3.8) uj+1 = −(μ− j)(N − μ− j)uj + fj , j ≥ 0.

The proof is to substitute the expansions into the equation and to compare co-
efficients of like powers of y. Comparing (3.5) and (3.8) then gives immediately
that

(3.9) Dμl
Fl = Fl−1, 1 ≤ l ≤ r.

Now Dμ has a regular singularity at y = 0 with indicial root 0 of multiplicity 2.
By general Frobenius theory or just by staring at (3.8), there exists a unique formal
power series solution of Dμu = 0 with u(0) = 1. Also, for any formal power series f
there exists a unique formal power series solution u to Dμu = f with u(0) = 0. In
particular, (3.6) and (3.9) together characterize the functions Fl. Combining the
solutions of the homogeneous and inhomogeneous problems shows that for any f
there is a unique solution u to Dμu = f with u(0) any prescribed value.

Since the yN coefficient of Fr(y) is cN,r/(N !)2, the above considerations show
that the statement cN,r = n̄I to which Theorem 3.1 reduced is a consequence of
the following.

Proposition 3.3. Let r ≥ 1 and 1 ≤ μ1 < μ2 < · · · < μr = N , μl ∈ N. Define
formal power series Fl(y) for 0 ≤ l ≤ r by (3.6) and (3.9). Then Fr is a polynomial
of degree N and its yN coefficient is[

N2
r−1∏
l=1

μl(N − μl)

]−1

.
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Remarks. It follows easily from the discussion below (or from the definition of the
cj,l) that Fl is a polynomial with degFl ≤ μl. For l < r it often happens that
degFl < μl. It is easily seen from the definition of the cj,l (or from (3.5)) that the
lowest power of y occurring in Fl with nonzero coefficient is yl, and its coefficient
is 1.

We prove Proposition 3.3 by expressing the Fl(y) in terms of special solutions of
the differential equations. Let Pμ denote the formal power series defined by

DμPμ = 0, Pμ(0) = 1.

Then Pμ = PN−μ since Dμ = DN−μ. Clearly P0(y) = 1. We claim that if μ is an
integer satisfying 0 ≤ μ ≤ N , then Pμ is a polynomial with degPμ = min(μ,N−μ).
This is clear from (3.8) with f = 0 since the multiplicative factor first vanishes when
j = min(μ,N−μ). Up to a simple linear change of independent variable and overall
multiplicative factor, the Pμ are particular instances of Jacobi polynomials.

Next observe that the same reasoning applies if f is a polynomial with deg f <
min(μ,N−μ): the unique solution u with u(0) any prescribed value is a polynomial
with deg u ≤ min(μ,N−μ). The multiplicative factor (μ−j)(N−μ−j) also vanishes
for j = max(μ,N − μ). Again the same reasoning shows that if f is a polynomial
with deg f < max(μ,N − μ), then u is a polynomial with deg u ≤ max(μ,N − μ).
In particular, if μ �= N/2, the conditions

DμQμ = Pμ, Qμ(0) = 0

uniquely determine a polynomial Qμ with degQμ ≤ max(μ,N − μ). Again Qμ =
QN−μ. In the special case μ = 0, we have

Lemma 3.4. The yN coefficient of Q0 is N−2.

Proof. We have P0 = 1. So (3.8) with j = 0 and u0 = 0 gives u1 = 1. Setting μ = 0
and iterating (3.8) for higher j gives

uj = (j − 1)!(N − j + 1)(N − j + 2) · · · (N − 1).

Hence uN = (N − 1)!2. The result now follows from (3.7). �
Proof of Proposition 3.3. Begin by observing that the definition of the Fl and the
conclusion both remain unchanged if any μl is replaced by N − μl. We use this
observation to redefine some of the μl. Namely, if 1 ≤ l ≤ r− 1 and μl satisfies the
two conditions that μl > N/2 and for no k is it the case that μk = N − μl, then
we replace μl by N −μl. The new sequence of μl need no longer be increasing, but
that will be irrelevant; it suffices to prove the statement of the theorem with the Fl

defined using these μl. It is still the case that all μl are distinct, and we now have
the property that if for some l one has μl > N/2, then necessarily there is k < l for
which N − μl = μk.

For convenience, let us set μ0 = 0 and enlarge the set of μ’s to include μ0. Then
μ0 = 0 and μr = N are both in our enlarged set of μ’s, and now the property stated
above that if μl > N/2, then there is k < l for which N − μl = μk holds also for
l = r.

Define polynomials pl, 0 ≤ l ≤ r, as follows:

pl = Pμl
if μl ≤ N/2,

pl = Qμl
if μl > N/2.

Clearly deg pl ≤ μl.
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Claim. There are constants aj,l for 0 ≤ l ≤ r, 0 ≤ j ≤ l, satisfying

(3.10) Fl =
l∑

j=0

aj,lpj , 0 ≤ l ≤ r,

(3.11) a0,l =

⎡⎣ l∏
j=1

μj(N − μj)

⎤⎦−1

, 0 ≤ l ≤ r − 1,

(3.12) ar,r =

[
r−1∏
l=1

μl(N − μl)

]−1

.

In (3.11) and (3.12) an empty product is interpreted as 1.
Proposition 3.3 follows immediately from the Claim. In fact, deg pj < N for

0 ≤ j ≤ r − 1 and deg pr = degQ0 = N by Lemma 3.4. Thus (3.10) for l = r,
together with (3.12), shows that degFr = N . Only pr = Q0 contributes to its yN

coefficient, which by Lemma 3.4 is N−2ar,r.
The Claim is proved by induction on l. It is clear for l = 0 since F0 = p0 = 1.

Suppose that the Claim is established for l − 1 and assume first that l < r. The
argument is slightly different for the last induction step passing from l = r − 1 to
l = r.

Now Fl is defined by

Dμl
Fl = Fl−1 =

l−1∑
j=0

aj,l−1pj , Fl(0) = 0.

For each j, 0 ≤ j ≤ l − 1, we will solve Dμl
uj = pj , uj(0) = 0, with uj a linear

combination of the pk, 0 ≤ k ≤ l. Then Fl =
∑l−1

j=0 aj,l−1uj is of the desired form.
The construction of the uj ’s is based on the observation that

(3.13) Dμl
= Dμj

+ [μl(N − μl)− μj(N − μj)].

Consider different cases for j. If μj ≤ N/2 and μj(N − μj) �= μl(N − μl), then
pj = Pμj

solves Dμj
pj = 0. Hence (3.13) gives

Dμl

(
[μl(N − μl)− μj(N − μj)]

−1pj
)
= pj .

Correct the value at y = 0 by subtracting a multiple of the solution of the homo-
geneous equation. Set

uj = [μl(N − μl)− μj(N − μj)]
−1(pj − Pμl

).

Clearly uj solves the equation and the initial condition. Now Pμl
is of the form

pk for some k with 1 ≤ k ≤ l: if μl ≤ N/2, then Pμl
= pl, while if μl > N/2,

then Pμl
= pk, where k < l is the index such that N − μl = μk. Thus we have

constructed uj of the desired form in this case. Note that if j = 0, then μj = 0 and
our solution is u0 = [μl(N−μl)]

−1(p0−Pμl
). The coefficient of p0 is [μl(N−μl)]

−1,
and p0 has coefficient zero when any of the uj with j > 0 is expressed as a linear
combination of the p’s.

Next consider the construction of uj in case μj ≤ N/2 but μj(N −μj) = μl(N −
μl). This case might not occur at all, and if it does it can occur for only one j.
Since j < l we have μj �= μl, so it must be that μl > N/2 and μj = N − μl.
Therefore pj = Pμj

and pl = Qμl
. Since Dμl

Qμl
= Pμl

= Pμj
and Qμl

(0) = 0, we
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just take uj = Qμl
= pl. p0 does not occur in the expression of this uj as a linear

combination of the p’s.
The remaining possibility is μj > N/2. Now we need to solve Dμl

uj = pj = Qμj
.

Once again we apply (3.13) to conclude that

Dμl
Qμj

= Dμj
Qμj

+ [μl(N − μl)− μj(N − μj)]Qμj

= Pμj
+ [μl(N − μl)− μj(N − μj)]Qμj

.

Since j < l it is impossible that μl = N−μj . Therefore μl(N−μl)−μj(N−μj) �= 0.
Arguing exactly as in the first case above we conclude that we can solve Dμl

vj =
Pμj

, vj(0) = 0, with vj a linear combination of the pk for 1 ≤ k ≤ l. Then we take

uj = [μl(N − μl)− μj(N − μj)]
−1(Qμj

− vj)

= [μl(N − μl)− μj(N − μj)]
−1(pj − vj).

Once again, p0 has coefficient zero when uj is expressed as a linear combination of
the p’s.

This concludes the induction step for l < r: Fl =
∑l−1

j=0 aj,l−1uj is of the desired
form. Since p0 entered only in the construction of u0 and its coefficient in u0 was
[μl(N − μl)]

−1, we have

a0,l = [μl(N − μl)]
−1a0,l−1.

Thus (3.11) follows by induction as well.
Finally consider the last inductive step, passing from r− 1 to r. Now μl = N so

N − μl = μ0 = 0. We again divide {j : 0 ≤ j ≤ r − 1} into the same three cases
as above and solve for the uj using the same methods. The difference now is that
j = 0 occurs in the second case instead of the first, since μ0(N −μ0) = μr(N −μr).
So u0 = Q0 = pr. In no other uj does pr occur with nonzero coefficient. From

Fr =
∑r−1

j=0 aj,r−1uj we therefore deduce ar,r = a0,r−1, which gives (3.12). �

This completes the proof of Theorem 3.1 and thus of (2.5). It remains to prove
Proposition 2.2. It is evident upon expanding the Rk’s that the left-hand side of
(2.9) is a linear combination of M2I(f). Again make the change of variables (3.1).
Then (2.9) becomes

L1−NL3−N · · · LN−3(s
a−1)|s=0 =

∑
|I|=N−a

n(I,a)(a− 1)!2(I1 − 1)!2 · · · (Ir − 1)!2 xI

=
∑

|I|=N−a

n̄(I,a) xI .

But this is equivalent to (3.2), which stated that

L1−NL3−N · · · LN−3LN−11|s=0 =
∑

|J|=N

n̄J xJ =
∑

|(I,a)|=N

n̄(I,a) xIxa,

as one sees upon evaluating LN−11 = X(s) =
∑

a≥1 xas
a−1.

4. Recursive formulae

In this section we present the proofs of Theorems 1.2 and 1.4. First con-
sider Theorem 1.2. Since n(N) = 1, (1.5) can be written as P2N = M2N +∑

|I|=N,I �=(N) nIM2I . The second term on the right-hand side only involves M2M

with M < N . Thus this is a polynomial lower-triangular system, and it follows
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that there are constants aI determined inductively by inverting this relation so
that M2N = P2N +

∑
|I|=N,I �=(N) aIP2I . Observe that (1.6) is another relation of

this same form. §2 of [J3] presents a proof due to Krattenthaler that (1.5) and (1.6)
are inverse relations in the other direction. Specifically, Krattenthaler showed that
if M2N are defined by

(4.1) M2N =
∑

|I|=N

mIP2I ,

then

(4.2) P2N =
∑

|I|=N

nIM2I .

Our desired identity (1.6) follows from the uniqueness of the inverse. Concretely,
from (4.2) one deduces M2N = P2N +

∑
|I|=N,I �=(N) aIP2I by precisely the same

inductive inversion as for the M2N . Hence M2N = M2N , and (1.6) follows.
We review Krattenthaler’s proof of (4.2) as presented in §2 of [J3] as a warm-up

for the proof of Theorem 1.4. Substitution of (4.1) into (4.2) shows that (4.2) is
equivalent to

(4.3) P2N =
∑

|I|=N

∑
|J1|=I1,...,|Jr |=Ir

nImJ1
· · ·mJr

P2J1
· · ·P2Jr

.

The coefficient of P2N on the right-hand side is 1, so one is reduced to showing
that for K = (K1, . . . ,Ks) with s > 1, the coefficient of P2K in (4.3) vanishes.
Given K, the choice of J ’s corresponds to a choice of subset A = {a1, . . . , ar−1}
of [s− 1] = {1, . . . , s− 1} (including the empty set) of cardinality r − 1, which we
order by 1 ≤ a1 < a2 < · · · < ar−1 ≤ s− 1. The parameterization is

J1 = (K1, . . . ,Ka1
), J2 = (Ka1+1, . . . ,Ka2

), . . . ,

Jr−1 = (Kar−2+1, . . . ,Kar−1
), Jr = (Kar−1+1, . . . ,Ks).

(4.4)

The J ’s determine I by I = (|J1|, . . . , |Jr|). The coefficient of P2K1
· · ·P2Ks

is then

(4.5)
∑

A⊂[s−1]

nImJ1
· · ·mJr

,

so (4.2) reduces to showing that this vanishes for all (K1, . . . ,Ks) with s > 1.
Sums such as (4.5) can be evaluated using the following ingenious lemma of

Krattenthaler.

Lemma 4.1. Let s > 1 and let K1, . . . ,Ks ∈ N. Set |K| =
∑s

j=1 Kj. For A =

{a1, . . . , ar−1} ⊂ [s− 1], define J1, . . . , Jr and I as above. Then∑
A⊂[s−1]

(−1)rI1 · · · Ir−1(Ir +X) ·
∏

a∈A(Ka +Ka+1 + Y χ(a = s− 1))∏r−1
i=1 (

∑i
k=1 Ik)(

∑r
k=i+1 Ik)

=
X(|K| −Ks) + Y (Ks +X)

|K| −K1
.

(4.6)

Here χ(S) = 1 if S is true and χ(S) = 0 otherwise. X and Y are formal variables;
the identity holds as polynomials in X and Y .
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This is Lemma 2.1 in [J3]. The proof is by induction on s, decomposing the
family of subsets A ⊂ [s] according to their last element. The proof is not at all
obvious, but the real ingenuity was to introduce the variables X and Y and to
find the identity (4.6) amenable to a proof by induction. For the purposes of this
paper it suffices to know (4.6) in the case X = Y . An examination shows that
the proof by induction actually applies to this case directly; it is not necessary for
our purposes to introduce both independent variables X and Y . We rewrite the
identity for the case X = Y in the form we will need in the proof of Theorem 1.4.
Setting X = Y = −b and then replacing Ks by Ks + b in (4.6) gives

(4.7)
∑

A⊂[s−1]

(−1)rI1 · · · Ir
∏

a∈A(Ka +Ka+1)∏r−1
i=1 (

∑i
k=1 Ik)(

∑r
k=i+1 Ik + b)

= − b|K|
|K| −K1 + b

.

This holds also for s = 1, since in that case both sides are −K1. As usual, empty
products are interpreted as 1. The form (4.7) seems natural: the induction hypoth-
esis arises naturally in its proof by induction and the function χ(a = s − 1) does
not appear.

We use Lemma 4.1 to finish the proof of (4.2). Substitution of the definitions
(1.4) of nI and the mJi

into (4.5) shows that

∑
A⊂[s−1]

nImJ1
· · ·mJr

= (−1)s(|K| − 1)!2
s∏

j=1

1

Kj !(Kj − 1)!

s−1∏
j=1

1

Kj +Kj+1
· Σ,

where Σ is the expression occurring on the left-hand side of (4.6) with X = Y = 0.
Lemma 4.1 (or (4.7) with b = 0) shows that this vanishes. Thus (4.2) follows, and
hence also Theorem 1.2.

We turn now to the proof of Theorem 1.4. Recall that the scalar invariants W2N

are defined by (1.3). It will be convenient to introduce

W 2N = 22NN !(N − 1)!W2N , N ≥ 1,

so that (1.8) takes the form

(4.8) (−1)NQ2N =
∑

|(I,b)|=N

n(I,b)M2I(W 2b)

and (1.9) becomes

W 2N =
∑

|(L,d)|=N

m(L,d)(−1)dP2L(Q2d).

Substitution of (4.8) for each (−1)dQ2d shows that (1.9) is equivalent to

W 2N =
∑

|(L,d)|=N

∑
|(I,b)|=d

m(L,d)n(I,b)P2LM2I(W 2b).

The term on the right-hand side with L = I = ∅ is W 2N , so it suffices to prove∑
|(L,d)|=N

∑
|(I,b)|=d

m(L,d)n(I,b)P2LM2I = 0
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for each fixed b such that 1 ≤ b < N . Substitution of (1.6) for each M2Ij rewrites
this as
(4.9)∑

|(L,d)|=N

∑
|(I,b)|=d

∑
|J1|=I1,...,|Jr |=Ir

m(L,d)n(I,b)mJ1
· · ·mJr

P2LP2J1
· · ·P2Jr

= 0.

Fix K1, . . . ,Ks with s ≥ 1 and each Kj ≥ 1 and consider the coefficient of
P2K1

· · ·P2Ks
in (4.9). We must have L = (K1, . . . ,Kp) for some p, 0 ≤ p ≤ s.

Each Ji satisfies |Ji| ≥ 1, although r = 0 is allowed corresponding to p = s. For
p < s, the choice of J ’s corresponds to a choice of subset A = {a1, . . . , ar−1} of
[s− p− 1] = {1, . . . , s− p− 1} (including the empty set) of cardinality r− 1, which
we order by 1 ≤ a1 < a2 < · · · < ar−1 ≤ s− p− 1. Here

J1 = (Kp+1, . . . ,Kp+a1
), J2 = (Kp+a1+1, . . . ,Kp+a2

), . . . ,

Jr−1 = (Kp+ar−2+1, . . . ,Kp+ar−1
), Jr = (Kp+ar−1+1, . . . ,Ks).

(4.10)

For p = s− 1, the only possibility for A is the empty set, in which case J1 = (Ks).
The J ’s determine I by I = (|J1|, . . . , |Jr|) as above. The coefficient of P2K1

· · ·P2Ks

is then

(4.11) m(K,b) +
s−1∑
p=0

m(L,|K|−|L|+b)

∑
A⊂[s−p−1]

n(I,b)mJ1
· · ·mJr

.

So Theorem 1.4 reduces to showing that this vanishes for all b ≥ 1 and all (K1, . . . ,
Ks) with s ≥ 1.

We use Lemma 4.1 in the form (4.7) to evaluate the inner sum. Set K ′
j = Kp+j

for 1 ≤ j ≤ s− p. Substitution of (1.4) for n(I,b) and the mJi
shows that

∑
A⊂[s−p−1]

n(I,b)mJ1
· · ·mJr

= (−1)s−p (|K ′|+ b− 1)!2

|K ′| b! (b− 1)!

s−p∏
j=1

1

K ′
j !(K

′
j − 1)!

s−p−1∏
j=1

1

K ′
j +K ′

j+1

· Σ

(4.12)

where

Σ =
∑

A⊂[s−p−1]

(−1)rI1 · · · Ir
∏

a∈A(K
′
a +K ′

a+1)∏r−1
i=1 (

∑i
k=1 Ik)(

∑r
k=i+1 Ik + b)

.

Replacement of s by s− p and Kj by K ′
j in (4.7) shows that

(4.13) Σ = − b|K ′|
|K ′| −Kp+1 + b

.

Substitute (4.13) into (4.12) and multiply by m(L,|K|−|L|+b). One obtains

m(L,|K|−|L|+b)

∑

A⊂[s−p−1]

n(I,b)mJ1 · · ·mJr

= (−1)s+1 (|K|+ b)!(|K|+ b− 1)!

(b− 1)!2

s∏

j=1

1

Kj !(Kj − 1)!

s−1∏

j=1

1

Kj +Kj+1
·Rp

(4.14)
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where

Rp =
Kp +Kp+1

(
∑s

i=p Ki + b)(
∑s

i=p+1 Ki + b)(
∑s

i=p+2 Ki + b)
, 1 ≤ p ≤ s− 1,

and

R0 =
1

(
∑s

i=1 Ki + b)(
∑s

i=2 Ki + b)
.

Empty sums are interpreted as 0.
Set b = Ks+1 and substitute (4.14) into (4.11). After cancellation of factors in

common with m(K,b), one finds that the vanishing of (4.11) is equivalent to

s−1∑

p=1

Kp +Kp+1

(
∑s+1

i=p Ki)(
∑s+1

i=p+1 Ki)(
∑s+1

i=p+2 Ki)
=

1

Ks+1(Ks +Ks+1)
− 1

(
∑s+1

i=1 Ki)(
∑s+1

i=2 Ki)
.

This is proved by induction on s. For s = 1 the sum on the left-hand side is empty
and the right-hand side vanishes. Suppose the identity holds for s. Write

s∑

p=1

Kp +Kp+1

(
∑s+2

i=p Ki)(
∑s+2

i=p+1 Ki)(
∑s+2

i=p+2 Ki)
=

K1 +K2

(
∑s+2

i=1 Ki)(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)

+

s∑

p=2

Kp +Kp+1

(
∑s+2

i=p Ki)(
∑s+2

i=p+1 Ki)(
∑s+2

i=p+2 Ki)

and use the induction hypothesis on the second term on the right-hand side to
obtain that the above equals

K1 +K2

(
∑s+2

i=1 Ki)(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)
+

1

Ks+2(Ks+1 +Ks+2)
− 1

(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)

=
1

Ks+2(Ks+1 +Ks+2)
+

1

(
∑s+2

i=2 Ki)(
∑s+2

i=3 Ki)

(
K1 +K2∑s+2

i=1 Ki

− 1

)

=
1

Ks+2(Ks+1 +Ks+2)
− 1

(
∑s+2

i=1 Ki)(
∑s+2

i=2 Ki)
.

This completes the proof of the vanishing of (4.11) and thus also of Theorem 1.4.
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