
Jumble Java Byte Code to Measure the Effectiveness of Unit Tests

Sean A. Irvine+, Tin Pavlinic+*, Leonard Trigg+, John G. Cleary+*, Stuart Inglis+, Mark Utting*

Reel Two Ltd. +, University of Waikato*,
Hamilton, New Zealand

{sean,tin,len,jcleary,stuart}@reeltwo.com, jcleary@cs.waikato.ac.nz

Abstract

Jumble is a byte code level mutation testing tool for

Java which inter-operates with JUnit. It has been
designed to operate in an industrial setting with large
projects. Heuristics have been included to speed the
checking of mutations, for example, noting which test
fails for each mutation and running this first in
subsequent mutation checks. Significant effort has been
put into ensuring that it can test code which uses
custom class loading and reflection. This requires
careful attention to class path handling and co-
existence with foreign class-loaders. Jumble is
currently used on a continuous basis within an agile
programming environment with approximately 370,000
lines of Java code under source control. This checks
out project code every fifteen minutes and runs an
incremental set of unit tests and mutation tests for
modified classes. Jumble is being made available as
open source.

1. Introduction

The motivation for this work was very practical.
Reel Two had made a commitment to using agile
development methodologies [1, 2] and as a
consequence had invested heavily in writing JUnit [3]
tests for a significant body of code. However, we had
no real measure of the quality of that test code. We
were attracted to the use of mutation testing because
once a mutation system was available no further
programmer effort was forced on us except insofar as
deficiencies were found in the unit tests. We could
leverage directly off our existing investments in unit
testing.

There were, however, stringent performance
requirements. Our development environment checks
out code every 15 minutes, then compiles and unit tests
it. We did not want to compromise on this fast
feedback cycle. A survey of existing tools showed that
either the mutation testing was too slow, it did not

inter-operate with JUnit, or source code was
unavailable for further development and adaptation to
our environment.

We considered using a simple coverage tool rather
than full mutation testing but examination of our unit
tests showed that it was easy to exercise code without
picking up errors in its execution.

We decided to write our own system. From the start
it was clear that the mutation needed to be at the
bytecode level to get sufficient speed. Other challenges
became apparent as we gained experience. We will
describe below the significant issues that arose and
how the system meets them. We also give a description
of our experience in using Jumble and of future work
that is needed.

Jumble has now been made available as an open-
source project on SourceForge at
http://jumble.sourceforge.net/ [4]

2. Existing Mutation Testing Systems

Several mutation testing systems exist. Three of
them will be briefly described, along with their
advantages and disadvantages.

2.1 Mothra

Mothra [5] is a mutation testing environment
developed in the eighties for use with Fortran 77.
While it cannot be used with Java software, it is the
first fully featured mutation testing system and a large
proportion of research on mutation testing described in
the literature is based on it [6, 7, 8]. Mothra’s mutation
operators are the basis of what is done in Jumble.

2.2 MuJava

MuJava [8] is a mutation testing system developed
for the testing of Java programs. Its primary purpose
has been to investigate mutation operators specific to
object-oriented programming languages like Java. The

prospect of using MuJava in a large-scale software
development setting is an attractive one, as its mutation
operators represent the state of the art in mutation
testing research. However, as it is an experimental
system, the extent to which it is scalable is unclear.
The source code for MuJava is not publicly available,
so its modification for improved scalability is difficult
from a legal and practical point of view. Furthermore
its test format is not JUnit. It was infeasible for us to
port our large legacy set of JUnit tests.

2.3 Jester

Jester [9] is a simple open-source mutation testing
system for Java. It was designed to integrate with JUnit
unit tests and performs simple mutation operators on
Java source code. Source code mutation requires
recompilation of the mutated class for each mutation
point, which is time-consuming. Additionally,
applying mutations to directly to source code is error-
prone (we encountered cases where Jester generated
mutations within comments). Jester does not apply any
sophisticated algorithms developed for mutation testing
to speed up the process and is therefore very slow.
Furthermore, its range of mutations is limited and it
offers little advantage over code coverage tools. It was
found that Jester was limited, inefficient and infeasible
for use with large systems (at the present time, Reel
Two has approximately 370,000 lines of system code
and 190,000 lines of test code under source control).
These issues motivated the development of Jumble.

3. Running Jumble

The primary entry point to Jumble is a single Java
class that takes as parameters a class to be mutation
tested and one or more JUnit test classes. The output is
a simple textual summary of running the tests. This is
in the style of JUnit test output and includes an overall
score of how many mutations were successfully caught
as well as details about those mutations that are not.
This includes the source line and the mutation
performed. Variants of the output include a version
compatible with Java development in emacs where it is
possible to click on the line and go to the source line
containing the mutation point.

A plugin for the Eclipse IDE [10] has been
provided. Currently it permits only jumbling of a single
class.

When running the mutation tests a separate JVM
[11] is used to prevent runaway or system-exiting code
disturbing the testing process. It is given a number
which specifies the mutation to start at and it continues
until all mutations have been tested or some

catastrophic failure occurs. It has been very important
to separate the test execution in this way for reasons
discussed below. If a failure occurs in one mutation
then the child JVM can be restarted and testing
continues with the next mutation.

Before running the mutation tests, a full run is done
of the unit tests both to ensure that they all pass, to
ensure that there are no environmental problems when
running the tests in this way and to collect timing
information to later detect mutations that lead to
infinite loops.

At Reel Two, Jumble is integrated with an internal
continual integration system, on several source code
repositories. Every fifteen minutes this checks out all
the source code, clean compiles it and then runs all the
unit tests for packages that have been modified. It also
places all modified classes on a queue to be mutation
tested. After the unit testing has been done, Jumble is
used to test classes until the fifteen minute time limit is
exceeded. Overnight more time is dedicated to
mutation testing so that any tests that have been
accumulated during the day can be cleared.

The results of the Jumble tests for a project are
presented in a web interface. These give results for
individual classes and accumulate results over the
package hierarchy. The web interface permits a manual
override of the test queuing so that classes which have
not been modified can be retested. This is sometimes
necessary when the Jumble code itself has been
modified or when a class needs to be retested because
of changes in other classes that it interacts with.

In summary we typically use three different ways of
running Jumble:

• directly from the command line where the
class com.reeltwo.jumble.Jumble
is provided with the name of the class to be
tested and the class(es) which test it
(among many other options). Executing
directly from the distributed
jumble.jar will achieve the same
effect.

• from the Eclipse IDE where there is a
menu item for a class which runs Jumble
on that class (it is possible to configure
other options for such runs)

• as part of a web based system where all
classes are tested incrementally as they are
committed and results accumulated in a set
of webpages.

4. Jumble System

In this section we discuss individual parts of the
Jumble system and the issues that arose in

implementing them.

4.1 Bytecode Mutation

Jumble performs its mutations by directly
modifying Java bytecodes using the BCEL package
[12]. This allows the mutation testing to be done with
no compilations. The bytecode translation approach
has been used before. Mothra used an intermediate
code form to store and execute mutants. The
intermediate form was not a standard code form,
however, and was directly designed to represent
mutations, which were still done by analyzing source
code. MuJava also used bytecode translation for
structural mutations. Behavioural mutations however
are still done with source code analysis using the MSG
method [6]. The reason for this is that the behavioral
mutations in MuJava were intended to be the same
mutations as those implemented in Mothra. Thus,
while MuJava manages to avoid multiple compilations,
it still requires source code analysis to perform the
mutations. As mentioned above, Jester does not use
any sophisticated techniques and performs a
compilation for every mutation.

Basing the mutations entirely on bytecode also
simplifies the implementation of Jumble and allows
code to be tested even when the source code is not
available.

Jumble mutates all the Java bytecode instructions
that can be mutated safely in a context-free way. That
is, each instruction eligible for mutation is replaced by
another instruction independently of the instructions
around it. An instruction A can be replaced by an
instruction B if A and B operate on the operand stack
in the same way – they expect the same number and
type of arguments on the stack before the operation and
leave the same number and type of arguments on the
stack after operation. For example, the iadd (integer
addition) instruction can be replaced by the isub
(integer subtraction), since both pop the top two
operands from the top of the stack and push the result
of the computation (respectively the sum and
difference of the two operands) onto the stack.
Particularly helpful is BCEL’s ability to generate
bytecode for the negation of arbitrary conditionals.

A wide range of bytecode instructions are mutated
including conditionals, arithmetic operations including
increments and decrements, and switch statements. As
well inline constants, class pool constants, and return
values are mutated. More details can be found in the
“Mutations” link in [4]. The mutations are all
implemented using the facilities of BCEL and within
the limitations of BCEL’s facilities the addition of new
mutations is straightforward.

Care needs to be taken to avoid mutating
instructions in some parts of the code. For example, it
makes no sense to mutate assertion statements.
Detection of assertion statements is done by their
reference to the class level flag which indicates when
assertions are enabled. The pattern of code generated
by the compiler is then used to detect the end of the
assertion. Unfortunately such patterns are compiler
dependent and care is needed when moving to new
compilers and new JDK releases. Other code that needs
to be excluded are conditionals generated when class
constants are accessed, lengths for certain array
allocations, and switch code generated for
enumerations.

A facility is provided to globally exclude certain
named methods from mutation. In practice this is used
to exclude main methods (this is coupled with a coding
standard that main methods should be as short as
possible and that they should call another method with
such things as input and output files as parameters).
Also excluded are “integrity” methods which can be
called on a class to check that its internal state is
currently consistent. These effectively function as post-
conditions and like assertions should be excluded.
Jumble also mutates constants, both those that occur
inline and those that occur in the constant pool. An
integer constant x is transformed to (-x + 1) which
works correctly even when the integer represents a
boolean. In Java boolean, short, and char datatypes, are
implemented in bytecode as 32-bit ints. Consequently,
Jumble cannot readily discriminate among these types.

Constants in the constant pool (such as String
literals) are also mutated. The constant pool for a class
often contains entries not referenced by any line of
code or only referenced by unmutateable code such as
assertions. Care is taken not to modify such literals.

4.2 Class Loader

One feature of the BCEL which has been extremely
useful in the development of Jumble is its customizable
class loader. It allows classes to be modified as they
are loaded into the JVM. The process is much simpler
than creating a class loader from scratch, as the
processing of the actual class file is done by the BCEL
and the user only has to implement a modifyClass
method to perform bytecode modifications on the fly.

The Jumble class loader is derived from the BCEL
class loader. Given the name of the class to modify (the
target class) and the mutation number, it loads the class
with the mutation inserted. All classes other than the
target class are loaded normally with no modifications.

The Jumble test suite is an extension of the JUnit
test suite. It runs a JUnit test in a way suitable for

Jumble testing, by running the tests until one fails. A
“PASS” message is returned at that stage and no
further tests are run. If no tests fail, a “FAIL” message
is returned. The Jumble test suite is given the name of
the test to run as a string and loads the test class
dynamically (using Class.forName). The Jumble
test suite is intended to be loaded in the Jumble class
loader so that the tests are run with a mutated class.

When running several mutations inside a single
JVM, a separate class loader must be used for each
mutated version of the class being tested. To ensure
independence between mutation tests, the entire set of
(non-system) classes are reloaded in each class loader,
and the classes being tested are not available directly
from the system class loader.

 Heavy usage of class loaders in this way can use a
lot of memory in the permgen space in the JVM,
particularly for classes that make use of many third-
party libraries. In practice it has been difficult to
prevent increasing usage of the permgen space as the
tests are run. This is dealt with in two ways. Firstly the
child JVM that is used to run the tests is given
additional permgen space when it is started. Secondly
after each test is run a check is done to see if the
available permgen space is nearly exhausted, if so the
child process is terminated and restarted (it will then
start at the next mutation).

Some code remains difficult to run within the
Jumble environment. Typically this involves code that
attempts to directly access the system class loader
(such code is usually incorrectly written, and unlikely
to function when run in similar environments, such as
within the Tomcat servlet container).

4.3 Detecting and Terminating Infinite Loops

Some mutations become stuck in an infinite loop. It
is reasonable to consider an infinite loop as a failed test
and hence mutation points which cause infinite loops
can be considered tested. Thus Jumble needs to be able
to detect infinite loops caused by mutations and
terminate them.

Infinite loops are detected by timing the original test
running on a class without any mutations. Timing
measurements are made using the System.
currentTimeMillis method. This introduces two
difficulties. Firstly, the granularity of the value
returned from the method is dependent on the
underlying operating system. Secondly, the value
returned is a measure of elapsed time, not CPU time
allocated to the current process. Thus, the time
measures obtained are somewhat imprecise and non-
deterministic. This is not a problem as long as the non-
determinism is accounted for.

Each mutated test run can then be timed and the
runtime can be periodically compared against a
runtime limit and an infinite loop is considered
detected if the limit is exceeded. The formula for the
runtime limit is:

RUNTIME LIMIT = 10 x ORIGINAL RUNTIME + 2 s
This formula is somewhat arbitrary but works

reasonably well in practice. The most difficult situation
is when a test is the first to be run, then effects such as
classes being loaded and static code being executed
can increase the apparent execution time.

Once an infinite loop is detected, it needs to be
terminated. One option is to run the mutation testing in
a separate Java thread, and terminate the thread when
an infinite loop is detected. The problem with this
approach is that there is no inherently safe way of
terminating a Java thread while being guaranteed to
leave the rest of the system in a consistent state. Use of
the Thread.stop() method is strongly
discouraged.

The method used in Jumble is to terminate the child
JVM that is running the tests and for it to note that the
test has been successful. Then the child JVM is
restarted at the next mutation.

4.4 Applicability and Limitations

The Jumble system will run with code generated for
Java 1.3 to 1.6. It has been run on code that uses
multi-threading and concurrent processes. The biggest
difficulties have been with systems that implement
their own class loaders (see discussion above) and with
variations of different compilers. The greatest
difficulties with compilers is in detecting code such as
assertions where the patterns may differ from compiler
to compiler. Jumble has been successfully used with
javac, jikes and the Java compiler in the Eclipse IDE
[10].

5. Performance Issues

The expectation for Jumble is that it would be run
frequently as code was committed to a common
repository. However, mutation testing can be
computationally expensive. All tests must be run for
every mutation point. One approach to reducing this
cost is to use 'weak mutation' [13], where a mutation is
killed if a test case causes the mutated expression to
produce a different value. This can be more efficient,
because one test run can kill many mutants. But it is
weaker, because even if a JUnit test uses a value that
causes a mutated expression to return a different value,
there is no guarantee that the JUnit test will detect that

different value. For this reason, Jumble uses strong
mutation testing rather than weak.

 This project has focused on reducing overheads
associated with running tests and reducing the number
of tests which need to be run before a mutation fails.
One issue which seems not to have been addressed in
the literature is modifying the order in which tests are
run to avoid having to run unnecessary tests.

Mutation testing usually executes multiple test cases
for each mutation. As soon as one test case fails for the
mutation, the remaining test cases do not need to be
run as it is already known that the mutation point is
covered by a test case. An interesting question arises:
Is it possible to automatically determine the order in
which to run the test cases so that a test fails as soon as
possible?

This section describes three heuristics used by
Jumble to try to make sure that failures happen as soon
as possible. Note that these heuristics can only give
performance improvements for relatively well tested
code. If a mutation has not been covered by a test, all
the test cases must be run in order to show this and the
order is irrelevant. Hence, the heuristics will not
produce performance improvements for poorly tested
code.

5.1 Timing Order (Heuristic 1)

Test cases often vary in their runtimes. Some appear

to take negligible time while others can be very
complex and take several minutes to complete. It is the
long tests that take up the most time in mutation
testing. This first heuristic attempts to avoid running
the longest tests, if possible. First, the tests are run
without any mutations and their runtimes are recorded.
During mutation testing, the tests are sorted in order of
runtime so that the shortest tests run first. It is hoped
that one of the short tests fails before the long ones are
attempted. That way the long tests are only run when
there is no shorter test that has covered the mutation.

5.2 Remembering the Test Case for Each
Method (Heuristic 2)

JUnit examples suggest the convention that a

separate test case should be developed for every
method being tested. Sometimes this is hard to do, as
there are methods which are never used in isolation,
but only in conjunction with other methods. Anecdotal
evidence shows however, that in most cases, a method
is tested by only one test case. During mutation testing,
once a test case has been identified as the test for a
given mutation point, it seems reasonable to run that
test case for each mutation point inside the same

method before trying the other test cases. The second
heuristic does precisely that. Once a failure is detected,
the test case is remembered and run first for every
other mutation point inside the method. Often, this test
case will fail for most mutation points inside the
method.

5.3 Remembering the Last Failure (Heuristic
3)

The third heuristic, closely related to the second

heuristic above applies when Jumble is run subsequent
times. When Jumble is run on code a second time, the
code may have been unchanged, or changes could have
been made to the code itself or to the tests. If only
small changes were made before re-running the tests,
as advocated by Extreme Programming, most of the
Jumble results will stay the same. Specifically,
modified mutation points will be detected by the same
test as before. Hence, for each mutation point first try
the test case that failed last time. This heuristic stores
the test case which fails for each mutation point in a
cache file. On subsequent Jumble runs, the cache file is
loaded and for each mutation point, the test that failed
the last time is executed first.

5.4 Combination of Heuristics

Jumble uses a combination of the three heuristics to

determine its test order. First, if the cache file exists,
the test that failed last time is run. Next, the last test
which failed with the mutation in the current method is
run. Finally, the remaining tests are run in increasing
runtime order.

This combination allows the most effective heuristic

to take precedence, depending on the stage that the
Jumble testing is currently at and the information
available. When the testing begins, no information
about the appropriate test order is known so the tests
are run in runtime order, according to Heuristic 1. As
the testing proceeds, more information about method -
test case correspondence is known so Heuristic 2 is
used first. Finally, after the testing is finished, the
failing test case is known for every mutation point so
the next time Jumble is run, Heuristic 3 applies first.

6. Evaluation and Experience

6.1 Developer Experience and Acceptance

Jumble is being used for several different projects

within Reel Two. These range in size from 2,500 lines

of code and 500 lines of unit tests to 310,000 lines of
code and 150,000 lines of tests. It has now been used
continuously for over a year and is fully integrated into
the software development process.

The developers using it are all committed to agile
development techniques and have found the presence
of a score for their unit tests a strong incentive to
improve them. In general most of the programmers
were surprised at how poor their scores were for their
normal testing practices. The scores also provide a
strong management tool for assessing the state and
quality of software. All the scores are available to
everyone in the development group and can be seen by
the programmers, their peers and their managers. This
provides strong incentives not to let quality drop.

It has proved feasible in most cases to obtain scores
over 95% although the last 10% of this often requires
checking back against the mutation failures. Such post-
hoc testing is less valuable than blind testing. The
Jumble scores are computed only on a sample of all
possible mutations. Tests which take cognizance of the
actual mutations can say less about the other
unsampled mutations.

The reasons for being unable to achieve 100%
scores are mainly environmental or timing related. It
can be impossible or very inconvenient to test external
situations – for example invalid database states or
extreme situations such as attempting to allocate large
arrays. Another problem is with conditional code
which is present solely for performance reasons where
mutating a conditional to its negation has no effect on
the results. The inconsistency and variability of timing
make it infeasible to test such cases.

As a rule of thumb it has been found that the Jumble
scores get above 95% when there is approximately as
much test code as original code.

Jumble has also been used in a group software
engineering project course at the University of
Waikato. It was found that the feedback of a score was
a strong motivator for students to write and improve
their unit tests. It was also invaluable when assessing
the quality of the students code and tests.

6.2 System and Performance

The single most important decision about the

system architecture was ensuring that all tests were run
in a separate JVM. This significantly improved
execution speeds, gave greater control over the
environment the tests ran in, and gave reliable recovery
from errors and infinite loops.

The time to do a mutation test of a class varies
widely, both with the size of the class and with its
complexity. The most time consuming code is heavily

numeric code with a high density of conditionals and a
complex flow control.

The general experience is that the mutation testing
queuing system keeps up with the demand with tests
seldom needing to be held over for more than a few 15
minute check out cycles.

The mutation of string literals has been
controversial. Such mutations imply that all results in
exception messages and the details of all output strings
including warnings and internal logging messages need
to be checked. Some projects have elected to turn off
these mutations (there is a command line parameter in
Jumble for this).

The performance heuristics that were implemented
as part of Jumble were somewhat disappointing in the
extent to which they sped up testing. Detailed results
are given by T. Pavlinic in [14] which show that
Heuristic 2 improved testing time by up to 68% in
some cases but that in general performance was
improved by only 5% to 10%. The major practical
speedups were obtained through the careful use of a
child JVM to execute multiple tests in one run and
management of a queue of pending tests.

7. Future Work

7.1 System and Performance

Our experience with the speedup and heuristics for

performance indicates that one further speedup
technique may be worthwhile. That is to do a coverage
analysis when initially running the unit tests. This
would record which tests actually passed through
which mutation points. Then at mutation test time only
the subset of tests which actually exercise the mutation
need be run. This technique will be of greatest benefit
in cases where the Jumble scores are low. That is,
there are few unit tests and usually all of them will
need to be run before discovering that none of them
fail. In the case of high Jumble scores the heuristic that
remembers the test that failed on the last run may be
more valuable.

It seems likely that more mutations could be added
to the system. In particular permuting the actual
parameters in a method call would be valuable. This
would be done only for parameters with the same
formal parameter type. One advantage is that it would
go someway to exercising the usage of code from
external packages.

Currently the test class(es) associated with a class
are automatically determined by a simple naming
convention where the test class name has “Test”
appended to it together with a crude global list which
allows the test classes to be explicitly listed for a

particular class. This is insufficiently flexible for some
cases. For example abstract classes would be well
served by having the test classes for all their concrete
subclasses associated with them. We also intend to
replace the global test list with an annotation based
system to allow more explicit assignment of classes to
their tests.

7.2 Interoperability

It would be of significant utility if the Jumble

system could inter-operate with other unit testing
environments such as testNG and JUnit 4. Both in
order to use their more sophisticated facilities and to
make it easier to retro-fit Jumble to code brought in
from external sources.

Also keeping Jumble current is a burden. Changes
in compilers and Java system releases often require
updates to the system because of changes in the
sequences for assertions and other automatically
generated code.

These issues have all motivated the move to make
Jumble available as open source.

7.3 Model Based Testing

Jumble measures the effectiveness of a test suite, so

is a natural complement to model-based testing [15],
which generates test suites. Model-based testing is
typically used to generate system tests, but recent tools
like ModelJUnit [15, 16] have also used it to generate
unit tests for Java classes. In the future, we want to
experiment with using Jumble as a feedback
mechanism for ModelJUnit, to tell the tester how well
his model and test generation choices are testing the
current class.

8. Acknowledgements

We would like to thank the programmers at Reel
Two for patience during the development of Jumble.
Tin Pavlinic would like to thank the University of
Waikato Department of Computer Science and the
New Zealand Energy Education Trust for financial
support.

9. References

[1] K. Beck and C. Andres, "Extreme programming
explained: embrace change," 2nd ed. Boston, MA: Addison-
Wesley, 2004.
[2] F. Maurer and D. Wells, Extreme programming and agile
methods : XP/Agile Universe 2003 : third XP Agile Universe
Conference, New Orleans, LA, USA, August 10-13, 2003 :
proceedings. Berlin ; New York: Springer, 2003.
[3] E. Gamma and K. Beck, "JUnit." Retrieved March 2005
from http://www.junit. org
[4] "Jumble." Retrieved June 2007 from
http://jumble.sourceforge.net/
[5] R. A. DeMillo and E. H. Spafford, "The Mothra software
testing environment," presented at The 11th NASA Software
Engineering Laboratory Workshop, Goddard Space Center,
1986.
[6] J. Offutt and R. H. Untch, " Mutation 2000: Uniting the
Orthogonal," in Mutation 2000: Mutation Testing in the
Twentieth and the Twenty First Centuries. San Jose, CA,
2000, pp. 45-55.
[7] J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C.
Zapf, " An Experimental Determination of Sufficient Mutant
Operators," ACM Transactions on Software Engineering
Methodology, vol. 5, pp. 99-118, 1996.
[8] J. Offutt, Y.-S. Ma, and Y. R. Kwon, " MuJava : An
Automated Class Mutation System," Software Testing,
Verification and Reliability, vol. 15, pp. 97-133, 2005.
[9] I. Moore, "Jester – a JUnit Test Tester," presented at
eXtreme Programming and Flexible Processes in Software
Engineering - XP2000, 2000.
[10] S. Shavor, J. D'Anjou, S. Fairbrother, D. Kehn, J.
Kellerman, and P. McCarthy, The Java Developer's Guide to
Eclipse: Addison-Wesley, 2003.
[11] T. Lindholm and F. Yellin, The Java virtual machine
specification, 2nd ed. Reading, MA: Addison-Wesley, 1999.
[12] Apache Software Foundation, "Byte Code Engineering
Library," 2003. Retrieved March 2005 from
http://jakarta.apache.org/bcel/
[13] J. Offutt, and S. Lee. “How strong is weak mutation?” In
Proceedings of the Symposium on Testing, Analysis, and
Verification. ACM Press, New York. 1991
[14] T. Pavlinic, “Jumble: A practical mutation testing tool
for Java”, Dept. of Computer Science, University of Waikato,
Hamilton, New Zealand, 2005.
[15] M. Utting and B. Legeard. "Practical Model-Based
Testing: A Tools Approach", Morgan-Kaufmann 2007.
[16] Mark. Utting. ModelJUnit web site,
http://www.cs.waikato.ac.nz/mbt/modeljunit Accessed on 17
April 2007.

