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Abstract 

 
Jumble is a byte code level mutation testing tool for 

Java which inter-operates with JUnit. It has been 
designed to operate in an industrial setting with large 
projects. Heuristics have been included to speed the 
checking of mutations, for example, noting which test 
fails for each mutation and running this first in 
subsequent mutation checks. Significant effort has been 
put into ensuring that it can test code which uses 
custom class loading and reflection. This requires 
careful attention to class path handling and co-
existence with foreign class-loaders. Jumble is 
currently used on a continuous basis within an agile 
programming environment with approximately 370,000 
lines of Java code under source control. This checks 
out project code every fifteen minutes and runs an 
incremental set of unit tests and mutation tests for 
modified classes. Jumble is being made available as 
open source. 
 
1. Introduction 
 

The motivation for this work was very practical. 
Reel Two had made a commitment to using agile 
development methodologies [1, 2] and as a 
consequence had invested heavily in writing JUnit [3] 
tests for a significant body of code. However, we had 
no real measure of the quality of that test code. We 
were attracted to the use of mutation testing because 
once a mutation system was available no further 
programmer effort was forced on us except insofar as 
deficiencies were found in the unit tests. We could 
leverage directly off our existing investments in unit 
testing.  

There were, however, stringent performance 
requirements. Our development environment checks 
out code every 15 minutes, then compiles and unit tests 
it. We did not want to compromise on this fast 
feedback cycle. A survey of existing tools showed that 
either the mutation testing was too slow, it did not 

inter-operate with JUnit, or source code was 
unavailable for further development and adaptation to 
our environment. 

We considered using a simple coverage tool rather 
than full mutation testing but examination of our unit 
tests showed that it was easy to exercise code without 
picking up errors in its execution. 

We decided to write our own system. From the start 
it was clear that the mutation needed to be at the 
bytecode level to get sufficient speed. Other challenges 
became apparent as we gained experience. We will 
describe below the significant issues that arose and 
how the system meets them. We also give a description 
of our experience in using Jumble and of future work 
that is needed. 

Jumble has now been made available as an open-
source project on SourceForge at 
http://jumble.sourceforge.net/ [4] 
 
2. Existing Mutation Testing Systems 
 

Several mutation testing systems exist. Three of 
them will be briefly described, along with their 
advantages and disadvantages.  
 
2.1 Mothra 
 
Mothra [5] is a mutation testing environment 
developed in the eighties for use with Fortran 77. 
While it cannot be used with Java software, it is the 
first fully featured mutation testing system and a large 
proportion of research on mutation testing described in 
the literature is based on it [6, 7, 8]. Mothra’s mutation 
operators are the basis of what is done in Jumble. 
 

2.2 MuJava 
 

MuJava [8] is a mutation testing system developed 
for the testing of Java programs. Its primary purpose 
has been to investigate mutation operators specific to 
object-oriented programming languages like Java. The 



prospect of using MuJava in a large-scale software 
development setting is an attractive one, as its mutation 
operators represent the state of the art in mutation 
testing research. However, as it is an experimental 
system, the extent to which it is scalable is unclear. 
The source code for MuJava is not publicly available, 
so its modification for improved scalability is difficult 
from a legal and practical point of view. Furthermore 
its test format is not JUnit. It was infeasible for us to 
port our large legacy set of JUnit tests. 
 
2.3 Jester 
 

Jester [9] is a simple open-source mutation testing 
system for Java. It was designed to integrate with JUnit 
unit tests and performs simple mutation operators on 
Java source code. Source code mutation requires 
recompilation of the mutated class for each mutation 
point, which is time-consuming.  Additionally, 
applying mutations to directly to source code is error-
prone (we encountered cases where Jester generated 
mutations within comments).  Jester does not apply any 
sophisticated algorithms developed for mutation testing 
to speed up the process and is therefore very slow. 
Furthermore, its range of mutations is limited and it 
offers little advantage over code coverage tools. It was 
found that Jester was limited,  inefficient and infeasible 
for use with large systems (at the present time, Reel 
Two has approximately 370,000 lines of system code 
and 190,000 lines of test code under source control). 
These issues motivated the development of Jumble. 
 
3. Running Jumble 
 

The primary entry point to Jumble is a single Java 
class that takes as parameters a class to be mutation 
tested and one or more JUnit test classes. The output is 
a simple textual summary of running the tests. This is 
in the style of JUnit test output and includes an overall 
score of how many mutations were successfully caught 
as well as details about those mutations that are not. 
This includes the source line and the mutation 
performed. Variants of the output include a version 
compatible with Java development in emacs where it is 
possible to click on the line and go to the source line 
containing the mutation point. 

A plugin for the Eclipse IDE [10] has been 
provided. Currently it permits only jumbling of a single 
class.  

When running the mutation tests a separate JVM 
[11] is used to prevent runaway or system-exiting code 
disturbing the testing process. It is given a number 
which specifies the mutation to start at and it continues 
until all mutations have been tested or some 

catastrophic failure occurs. It has been very important 
to separate the test execution in this way for reasons 
discussed below. If a failure occurs in one mutation 
then the child JVM can be restarted and testing 
continues with the next mutation. 

Before running the mutation tests, a full run is done 
of the unit tests both to ensure that they all pass, to 
ensure that there are no environmental problems when 
running the tests in this way and to collect timing 
information to later detect mutations that lead to 
infinite loops. 

At Reel Two, Jumble is integrated with an internal 
continual integration system, on several source code 
repositories. Every fifteen minutes this checks out all 
the source code, clean compiles it and then runs all the 
unit tests for packages that have been modified. It also 
places all modified classes on a queue to be mutation 
tested. After the unit testing has been done, Jumble is 
used to test classes until the fifteen minute time limit is 
exceeded. Overnight more time is dedicated to 
mutation testing so that any tests that have been 
accumulated during the day can be cleared. 

The results of the Jumble tests for a project are 
presented in a web interface. These give results for 
individual classes and accumulate results over the 
package hierarchy. The web interface permits a manual 
override of the test queuing so that classes which have 
not been modified can be retested. This is sometimes 
necessary when the Jumble code itself has been 
modified or when a class needs to be retested because 
of changes in other classes that it interacts with. 

In summary we typically use three different ways of 
running Jumble: 

• directly from the command line where the 
class com.reeltwo.jumble.Jumble 
is provided with the name of the class to be 
tested and the class(es) which test it 
(among many other options). Executing 
directly from the distributed 
jumble.jar will achieve the same 
effect.  

• from the Eclipse IDE where there is a 
menu item for a class which runs Jumble 
on that class (it is possible to configure 
other options for such runs) 

• as part of a web based system where all 
classes are tested incrementally as they are 
committed and results accumulated in a set 
of webpages. 

 
4. Jumble System 
 
In this section we discuss individual parts of the 
Jumble system and the issues that arose in 



implementing them. 
 
4.1 Bytecode Mutation 
 

Jumble performs its mutations by directly 
modifying Java bytecodes using the BCEL package 
[12]. This allows the mutation testing to be done with 
no compilations. The bytecode translation approach 
has been used before. Mothra  used an intermediate 
code form to store and execute mutants. The 
intermediate form was not a standard code form, 
however, and was directly designed to represent 
mutations, which were still done by analyzing source 
code. MuJava  also used bytecode translation for 
structural mutations. Behavioural mutations however 
are still done with source code analysis using the MSG 
method [6]. The reason for this is that the behavioral 
mutations in MuJava were intended to be the same 
mutations as those implemented in Mothra. Thus, 
while MuJava manages to avoid multiple compilations, 
it still requires source code analysis to perform the 
mutations. As mentioned above, Jester does not use 
any sophisticated techniques and performs a 
compilation for every mutation. 

Basing the mutations entirely on bytecode also 
simplifies the implementation of Jumble and allows 
code to be tested even when the source code is not 
available. 

Jumble mutates all the Java bytecode instructions  
that can be mutated safely in a context-free way. That 
is, each instruction eligible for mutation is replaced by 
another instruction independently of the instructions 
around it. An instruction A can be replaced by an 
instruction B if A and B operate on the operand stack  
in the same way – they expect the same number and 
type of arguments on the stack before the operation and 
leave the same number and type of arguments on the 
stack after operation. For example, the iadd (integer 
addition) instruction can be replaced by the isub 
(integer subtraction), since both pop the top two 
operands from the top of the stack and push the result 
of the computation (respectively the sum and 
difference of the two operands) onto the stack. 
Particularly helpful is BCEL’s ability to generate 
bytecode for the negation of arbitrary conditionals. 

A wide range of bytecode instructions are mutated 
including conditionals, arithmetic operations including 
increments and decrements, and switch statements. As 
well inline constants, class pool constants, and return 
values are mutated. More details can be found in the 
“Mutations” link in [4]. The mutations are all 
implemented using the facilities of BCEL and within 
the limitations of BCEL’s facilities the addition of new 
mutations is straightforward. 

Care needs to be taken to avoid mutating 
instructions in some parts of the code. For example, it 
makes no sense to mutate assertion statements. 
Detection of assertion statements is done by their 
reference to the class level flag which indicates when 
assertions are enabled. The pattern of code generated 
by the compiler is then used to detect the end of the 
assertion. Unfortunately such patterns are compiler 
dependent and care is needed when moving to new 
compilers and new JDK releases. Other code that needs 
to be excluded are conditionals generated when class 
constants are accessed, lengths for certain array 
allocations, and switch code generated for 
enumerations. 

A facility is provided to globally exclude certain 
named methods from mutation. In practice this is used 
to exclude main methods (this is coupled with a coding 
standard that main methods should be as short as 
possible and that they should call another method with 
such things as input and output files as parameters). 
Also excluded are “integrity” methods which can be 
called on a class to check that its internal state is 
currently consistent. These effectively function as post-
conditions and like assertions should be excluded. 
Jumble also mutates constants, both those that occur 
inline and those that occur in the constant pool. An 
integer constant x is transformed to (-x + 1) which 
works correctly even when the integer represents a 
boolean. In Java boolean, short, and char datatypes, are 
implemented in bytecode as 32-bit ints. Consequently, 
Jumble cannot readily discriminate among these types. 

Constants in the constant pool (such as String 
literals) are also mutated. The constant pool for a class 
often contains entries not referenced by any line of 
code or only referenced by unmutateable code such as 
assertions. Care is taken not to modify such literals.  
 
4.2 Class Loader 
 

One feature of the BCEL which has been extremely 
useful in the development of Jumble is its customizable 
class loader. It allows classes to be modified as they 
are loaded into the JVM. The process is much simpler 
than creating a class loader from scratch, as the 
processing of the actual class file is done by the BCEL 
and the user only has to implement a modifyClass 
method to perform bytecode modifications on the fly. 

The Jumble class loader is derived from the BCEL 
class loader. Given the name of the class to modify (the 
target class) and the mutation number, it loads the class 
with the mutation inserted. All classes other than the 
target class are loaded normally with no modifications. 

The Jumble test suite is an extension of the JUnit  
test suite. It runs a JUnit test in a way suitable for 



Jumble testing, by running the tests until one fails. A 
“PASS” message is returned at that stage and no 
further tests are run. If no tests fail, a “FAIL” message 
is returned. The Jumble test suite is given the name of 
the test to run as a string and loads the test class 
dynamically (using Class.forName). The Jumble 
test suite is intended to be loaded in the Jumble class 
loader so that the tests are run with a mutated class. 

When running several mutations inside a single 
JVM, a separate class loader must be used for each 
mutated version of the class being tested. To ensure 
independence between mutation tests, the entire set of 
(non-system) classes are reloaded in each class loader, 
and the classes being tested are not available directly 
from the system class loader.   

 Heavy usage of class loaders in this way can use a 
lot of memory in the permgen space in the JVM, 
particularly for classes that make use of many third-
party libraries. In practice it has been difficult to 
prevent increasing usage of the permgen space as the 
tests are run. This is dealt with in two ways. Firstly the 
child JVM that is used to run the tests is given 
additional permgen space when it is started. Secondly 
after each test is run a check is done to see if the 
available permgen space is nearly exhausted, if so the 
child process is terminated and restarted (it will then 
start at the next mutation). 

Some code remains difficult to run within the 
Jumble environment.  Typically this involves code that 
attempts to directly access the system class loader 
(such code is usually incorrectly written, and unlikely 
to function when run in similar environments, such as 
within the Tomcat servlet container). 

 
4.3 Detecting and Terminating Infinite Loops 
 

Some mutations become stuck in an infinite loop. It 
is reasonable to consider an infinite loop as a failed test 
and hence mutation points which cause infinite loops 
can be considered tested. Thus Jumble needs to be able 
to detect infinite loops caused by mutations and 
terminate them. 

Infinite loops are detected by timing the original test 
running on a class without any mutations. Timing 
measurements are made using the System. 
currentTimeMillis method. This introduces two 
difficulties. Firstly, the granularity of the value 
returned from the method is dependent on the 
underlying operating system. Secondly, the value 
returned is a measure of elapsed time, not CPU time 
allocated to the current process. Thus, the time 
measures obtained are somewhat imprecise and non-
deterministic. This is not a problem as long as the non-
determinism is accounted for. 

Each mutated test run can then be timed and the 
runtime can be periodically compared against a 
runtime limit and an infinite loop is considered 
detected if the limit is exceeded. The formula for the 
runtime limit is: 

RUNTIME LIMIT = 10 x ORIGINAL RUNTIME + 2 s 
This formula is somewhat arbitrary but works 

reasonably well in practice. The most difficult situation 
is when a test is the first to be run, then effects such as 
classes being loaded and static code being executed 
can increase the apparent execution time.  

Once an infinite loop is detected, it needs to be 
terminated. One option is to run the mutation testing in 
a separate Java thread, and terminate the thread when 
an infinite loop is detected. The problem with this 
approach is that there is no inherently safe way of 
terminating a Java thread while being guaranteed to 
leave the rest of the system in a consistent state. Use of 
the Thread.stop() method is strongly 
discouraged. 

The method used in Jumble is to terminate the child 
JVM that is running the tests and for it to note that the 
test has been successful. Then the child JVM is 
restarted at the next mutation. 

 
4.4 Applicability and Limitations 
 
The Jumble system will run with code generated for 
Java 1.3 to 1.6.  It has been run on code that uses 
multi-threading and concurrent processes. The biggest 
difficulties have been with systems that implement 
their own class loaders (see discussion above) and with 
variations of different compilers. The greatest 
difficulties with compilers is in detecting code such as 
assertions where the patterns may differ from compiler 
to compiler. Jumble has been successfully used with 
javac, jikes and the Java compiler in the Eclipse IDE 
[10]. 
 
5. Performance Issues 
 
The expectation for Jumble is that it would be run 
frequently as code was committed to a common 
repository. However, mutation testing can be 
computationally expensive. All tests must be run for 
every mutation point. One approach to reducing this 
cost is to use 'weak mutation' [13], where a mutation is 
killed if a test case causes the mutated expression to 
produce a different value.  This can be more efficient, 
because one test run can kill many mutants.  But it is 
weaker, because even if a JUnit test uses a value that 
causes a mutated expression to return a different value, 
there is no guarantee that the JUnit test will detect that 



different value.  For this reason, Jumble uses strong 
mutation testing rather than weak. 

 This project has focused on reducing overheads 
associated with running tests and reducing the number 
of tests which need to be run before a mutation fails. 
One issue which seems not to have been addressed in 
the literature is modifying the order in which tests are 
run to avoid having to run unnecessary tests. 

Mutation testing usually executes multiple test cases 
for each mutation. As soon as one test case fails for the 
mutation, the remaining test cases do not need to be 
run as it is already known that the mutation point is 
covered by a test case. An interesting question arises: 
Is it possible to automatically determine the order in 
which to run the test cases so that a test fails as soon as 
possible? 

This section describes three heuristics used by 
Jumble to try to make sure that failures happen as soon 
as possible. Note that these heuristics can only give 
performance improvements for relatively well tested 
code. If a mutation has not been covered by a test, all 
the test cases must be run in order to show this and the 
order is irrelevant. Hence, the heuristics will not 
produce performance improvements for poorly tested 
code. 

 
5.1 Timing Order (Heuristic 1) 

 
Test cases often vary in their runtimes. Some appear 

to take negligible time while others can be very 
complex and take several minutes to complete. It is the 
long tests that take up the most time in mutation 
testing. This first heuristic attempts to avoid running 
the longest tests, if possible. First, the tests are run 
without any mutations and their runtimes are recorded. 
During mutation testing, the tests are sorted in order of 
runtime so that the shortest tests run first. It is hoped 
that one of the short tests fails before the long ones are 
attempted. That way the long tests are only run when 
there is no shorter test that has covered the mutation. 

 
5.2 Remembering the Test Case for Each 
Method (Heuristic 2) 

 
JUnit examples  suggest the convention that a 

separate test case should be developed for every 
method being tested. Sometimes this is hard to do, as 
there are methods which are never used in isolation, 
but only in conjunction with other methods. Anecdotal 
evidence shows however, that in most cases, a method 
is tested by only one test case. During mutation testing, 
once a test case has been identified as the test for a 
given mutation point, it seems reasonable to run that 
test case for each mutation point inside the same 

method before trying the other test cases. The second 
heuristic does precisely that. Once a failure is detected, 
the test case is remembered and run first for every 
other mutation point inside the method. Often, this test 
case will fail for most mutation points inside the 
method.  

 
5.3 Remembering the Last Failure (Heuristic 
3) 

 
The third heuristic, closely related to the second 

heuristic above applies when Jumble is run subsequent 
times. When Jumble is run on code a second time, the 
code may have been unchanged, or changes could have 
been made to the code itself or to the tests. If only 
small changes were made before re-running the tests, 
as advocated by Extreme Programming, most of the 
Jumble results will stay the same. Specifically, 
modified mutation points will be detected by the same 
test as before. Hence, for each mutation point first try 
the test case that failed last time. This heuristic stores 
the test case which fails for each mutation point in a 
cache file. On subsequent Jumble runs, the cache file is 
loaded and for each mutation point, the test that failed 
the last time is executed first. 

 
5.4 Combination of Heuristics 

 
Jumble uses a combination of the three heuristics to 

determine its test order. First, if the cache file exists, 
the test that failed last time is run. Next, the last test 
which failed with the mutation in the current method is 
run. Finally, the remaining tests are run in increasing 
runtime order. 

 
This combination allows the most effective heuristic 

to take precedence, depending on the stage that the 
Jumble testing is currently at and the information 
available. When the testing begins, no information 
about the appropriate test order is known so the tests 
are run in runtime order, according to Heuristic 1. As 
the testing proceeds, more information about method - 
test case correspondence is known so Heuristic 2 is 
used first. Finally, after the testing is finished, the 
failing test case is known for every mutation point so 
the next time Jumble is run, Heuristic 3 applies first. 

 
 
6. Evaluation and Experience 
 
6.1 Developer Experience and Acceptance 

 
Jumble is being used for several different projects 

within Reel Two. These range in size from 2,500 lines 



of code and 500 lines of unit tests to 310,000 lines of 
code and 150,000 lines of tests. It has now been used 
continuously for over a year and is fully integrated into 
the software development process.  

The developers using it are all committed to agile 
development techniques and have found the presence 
of a score for their unit tests a strong incentive to 
improve them. In general most of the programmers 
were surprised at how poor their scores were for their 
normal testing practices. The scores also provide a 
strong management tool for assessing the state and 
quality of software. All the scores are available to 
everyone in the development group and can be seen by 
the programmers, their peers and their managers. This 
provides strong incentives not to let quality drop. 

It has proved feasible in most cases to obtain scores 
over 95% although the last 10% of this often requires 
checking back against the mutation failures. Such post-
hoc testing is less valuable than blind testing. The 
Jumble scores are computed only on a sample of all 
possible mutations. Tests which take cognizance of the 
actual mutations can say less about the other 
unsampled mutations. 

The reasons for being unable to achieve 100% 
scores are mainly environmental or timing related. It 
can be impossible or very inconvenient to test external 
situations – for example invalid database states or 
extreme situations such as attempting to allocate large 
arrays. Another problem is with conditional code 
which is present solely for performance reasons where 
mutating a conditional to its negation has no effect on 
the results. The inconsistency and variability of timing 
make it infeasible to test such cases. 

As a rule of thumb it has been found that the Jumble 
scores get above 95% when there is approximately as 
much test code as original code. 

Jumble has also been used in a group software 
engineering project course at the University of 
Waikato. It was found that the feedback of a score was 
a strong motivator for students to write and improve 
their unit tests. It was also invaluable when assessing 
the quality of the students code and tests. 

 
6.2 System and Performance 

 
The single most important decision about the 

system architecture was ensuring that all tests were run 
in a separate JVM. This significantly improved 
execution speeds, gave greater control over the 
environment the tests ran in, and gave reliable recovery 
from errors and infinite loops. 

The time to do a mutation test of a class varies 
widely, both with the size of the class and with its 
complexity. The most time consuming code is heavily 

numeric code with a high density of conditionals and a 
complex flow control.  

The general experience is that the mutation testing 
queuing system keeps up with the demand with tests 
seldom needing to be held over for more than a few 15 
minute check out cycles.  

The mutation of string literals has been 
controversial. Such mutations imply that all results in 
exception messages and the details of all output strings 
including warnings and internal logging messages need 
to be checked. Some projects have elected to turn off 
these mutations (there is a command line parameter in 
Jumble for this). 

The performance heuristics that were implemented 
as part of Jumble were somewhat disappointing in the 
extent to which they sped up testing. Detailed results 
are given by T. Pavlinic  in [14] which show that 
Heuristic 2 improved testing time by up to 68% in 
some cases but that in general performance was 
improved by only 5% to 10%. The major practical 
speedups were obtained through the careful use of a 
child JVM to execute multiple tests in one run and 
management of a queue of pending tests. 
 
7. Future Work 
 
7.1 System and Performance 

 
Our experience with the speedup and heuristics for 

performance indicates that one further speedup 
technique may be worthwhile. That is to do a coverage 
analysis when initially running the unit tests. This 
would record which tests actually passed through 
which mutation points. Then at mutation test time only 
the subset of tests which actually exercise the mutation 
need be run. This  technique will be of greatest benefit 
in cases where the Jumble scores are low. That is,  
there are few unit tests and usually all of them will 
need to be run before discovering that none of them 
fail. In the case of high Jumble scores the heuristic that 
remembers the test that failed on the last run may be 
more valuable. 

It seems likely that more mutations could be added 
to the system. In particular permuting the actual 
parameters in a method call would be valuable. This 
would be done only for parameters with the same 
formal parameter type. One advantage is that it would 
go someway to exercising the usage of code from 
external packages.  

Currently the test class(es) associated with a class 
are automatically determined by a simple naming 
convention where the test class name has “Test” 
appended to it together with a crude global list which 
allows the test classes to be explicitly listed for a 



particular class. This is insufficiently flexible for some 
cases. For example abstract classes would be well 
served by having the test classes for all their concrete 
subclasses associated with them. We also intend to 
replace the global test list with an annotation based 
system to allow more explicit assignment of classes to 
their tests. 

 
7.2 Interoperability 

 
It would be of significant utility if  the Jumble 

system could inter-operate with other unit testing 
environments such as testNG and JUnit 4. Both in 
order to use their more sophisticated facilities and to 
make it easier to retro-fit Jumble to code brought in 
from external sources.  

Also keeping Jumble current is a burden. Changes 
in compilers and Java system releases often require 
updates to the system because of changes in the 
sequences for assertions and other automatically 
generated code. 

These issues have all motivated the move to make 
Jumble available as open source. 

 
7.3 Model Based Testing 

 
Jumble measures the effectiveness of a test suite, so 

is a natural complement to model-based testing [15], 
which generates test suites.  Model-based testing is 
typically used to generate system tests, but recent tools 
like ModelJUnit [15, 16] have also used it to generate 
unit tests for Java classes.  In the future, we want to 
experiment with using Jumble as a feedback 
mechanism for ModelJUnit, to tell the tester how well 
his model and test generation choices are testing the 
current class. 
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