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Jump Bidding Strategies in Internet Auctions 

 

Abstract 

A bidding strategy commonly observed in Internet auctions is that of “jump bidding,” or entering 

a bid larger than what is necessary to be a currently winning bidder.  In this paper, we argue that 

the cost associated with entering on-line bids and the uncertainty about future entry –both of 

which distinguish Internet from live auctions– can explain this behavior.  We present a simple 

theoretical model that includes the preceding characteristics, and derive the conditions under 

which jump bidding arises in a format commonly used for on-line trading, the ascending-price 

auction.  We also present evidence recorded from hundreds of Internet auctions that is consistent 

with some of the basic predictions from our model.  We find that jump bidding is more likely 

earlier in an auction, when jumping has a larger strategic value, and that the incentives to jump 

bid increase as competition increases.  Our results also indicate that jump bidding is effective: 

jump bidders place fewer bids overall, and increased early jump bidding deters entry later in the 

auction.  We also discuss possible means of reducing bidding costs, and evidence that Internet 

auctioneers are pursuing this goal. 

 

1. Introduction 

The last few years have witnessed a tremendous proliferation of various forms of electronic 

transactions.  Recent estimates place the number of U.S. households that shop on line at about 35 

Million in 2003, compared to fewer than 10 Million in 1998.  Although the majority of electronic 

transactions are based on posted-prices, auctions have become a popular means of selling 

commodities on the Internet.  Lucking-Reiley (2000) reports that about $1 Billion worth of 
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goods were sold in Internet auctions in 1998, and this figure has grown exponentially.  Estimates 

for 2003 are in the order of $37 Billion. 1  The spectrum of goods sold at these auctions has 

increased considerably, and includes computers and electronics (new and refurbished), 

collectibles, toys, trading cards, books, music, and many other items.  Large merchandisers, like 

Amazon.com and Sam’s Club have opened auction sites where a broad range of consumer 

products is offered every day. 

Internet auction sites can be classified in three groups: business-to-business (B2B), 

business-to-consumer (B2C), and consumer-to-consumer (C2C).  Although B2B auction sites 

have become increasingly popular in the last few years, we do not address them here due to 

inaccessibility of auction data for non-registered users. In B2C auction sites, or merchant sites 

(e.g., uBid, Egghead), the items offered come directly from manufacturers.  Here, the auction site 

plays the role that a retailer would play.  Typically, these sites offer more than one unit of the 

same item for sale in a single auction.  In contrast, C2C sites, or listing sites (e.g., eBay, Yahoo! 

Auctions), facilitate person-to-person transactions by creating virtual marketplaces where private 

bidders and sellers can get together.  Most auctions in listing sites are for single items. 

A popular format in all of the merchant sites is the “Yankee Auction.” 2  This format is 

a variation of the multi-unit ascending (or "progressive") auction described by Vickrey (1962), 

                                                 
1 Authors’ calculations based on eBay’s reported gross merchandise sales for 2003, and an eBay 

Internet auction market share of about 65% (as reported by the Nielsen Net ratings).  

2 This name was an originally trademark of Onsale.com.  In the summer of 1999, Onsale.com 

merged with Egghead.com, which retained Onsale auctions as part of its business. 
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and Ortega-Reichert (1968). 3  Its characteristics are: (a) there are several identical units for sale; 

(b) each bidder may purchase more than one unit, but all units must be demanded at the same 

price; (c) bidding takes place progressively until a predetermined time expires; 4 (d) all winning 

bidders pay their own prices; and (e) ties are broken on a quantity first then time basis. 5  Each 

auction specifies minimum starting bids and bid increments. 

An important feature of Yankee-type auctions, and most other Internet auctions, is that 

the cost of participating is different from its counterpart in live auctions.  In live auctions, there 

may be a fixed cost of participating (opportunity cost of time plus possible entry fees), but once a 

bidder is at the auction the cost of entering each bid is zero.  On the other hand, Internet auctions 

take place over a longer period, and bidders are likely to incur a cost every time they place a bid.  

This is because (a) there is an Internet connection cost, and (b) there is an opportunity cost 

associated with logging on to the site, filling out the bidding form (and confirming it), and 

                                                 
3 Yankee-type auctions are most commonly encountered in B2C auctions.  EBay, the dominant 

site in C2C auctions, uses a different format, that of “automatic bidding.”  See Roth and 

Ockenfels (2002) for details on how the eBay format works. 

    
4 This is typically at least 24 hours.  Some sites have soft deadlines and apply an activity rule 

after the posted end of the auction.  This rule usually states that the auction will be closed after 

five or ten minutes have gone by since the last bid was made. 

5 This means that if two bidders enter the same bid price, the one that bids for more units ranks 

higher.  If both bidders bid for the same number of units, the one that placed the earliest first bid 

ranks higher. 
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preparing and entering the bid itself. 6  Auction sites spare participating bidders monitoring costs 

by sending e-mail or pager notices when their bid is displaced from the current winning set. 

Some sites (e.g., eBay and Yahoo! Auctions) allow bidders to privately enter their 

reservation price, or maximum willingness to pay, into a “proxy” or automatic bidding program.  

This automatic bidder will set the bid at the minimum level needed to outbid the next higher 

bidder, and based on this rule, raise the bid up to the reservation price if necessary.  

Traditionally, this strategy, also known as the “ratchet” strategy, has been shown to be part of an 

equilibrium in ascending auctions with no bidding costs and smooth exogenous bid increments. 7   

In this paper we develop a simple model where the presence of bidding costs may induce 

bidders to move away from ratchet strategies in Yankee-type auctions with private values. 8  We 

derive conditions under which bidders enter jump bids (bid increments that are larger than the 

minimum) in an equilibrium of the model.  Bidders use these jump bids to credibly signal their 

valuations to potential subsequent bidders in the auction.  These signaling bids 9 are credible 

because low-valuing bidders would find it too costly to signal high values even if that would 

mean others would interpret them as high-valuing. 

                                                 
6 Depending on site congestion and connection speed, it may take several minutes to complete 

the process of logging-on, signing-in, and entering and confirming a single bid. 

7 See for instance Vickrey (1962).  This version of the ascending auction is known as the English 

“clock” auction.  Isaac et. al. (2002) show that the ratchet strategy is not necessarily part of a 

Nash equilibrium in non-clock (or field) implementations of the ascending auction. 

   
8 A private value is one that is idiosyncratic to each bidder.  For modeling purposes, each bidder 

is assumed to know her value but faces uncertainty about other bidders’ values.  

9 Hereafter, the terms signaling bid and jump bid are used interchangeably. 
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Our model is closely related to that of Daniel and Hirshleifer (1998) –henceforth D&H– 

who present an exhaustive equilibrium analysis of a costly sequential bidding model with two 

bidders.  Using takeover bidding as a motivation, they establish that the presence of bidding 

costs 10 may induce bidding delays and jump bids in “spontaneous” ascending auctions, i.e., 

auctions without a predetermined bidding increment.  While our approach borrows significantly 

from theirs, their focus is on the effect of bidding costs on the participation decision and bidding 

delays.  Instead, we focus on explaining what auction and bidder characteristics influence the 

bidders' decisions to enter jump bids in a possible equilibrium of the auction. 

We present a number of testable predictions compatible with the model, and use bidding 

data from 236 Internet auctions to analyze these predictions.  Our data indicate that jump bidding 

is very common.  Of the 11120 bidders in our sample, 33.6% (3731) place jump bids, with 

32.3% (3595) of first bids placed as jump bids.  Given that the bulk of prior work on ascending 

auctions has focused on ratchet bidding, this alone underscores the need for a modeling approach 

that accommodates jump bidding as a feasible strategy.  Among our findings are that jump bids 

are directly related to the extent of expected competition, and that jump bidding is more likely 

earlier in an auction, when it has greater strategic value.  Although we cannot empirically capture 

the act of a potential bidder being deterred by a jump bid, we find indirect evidence of such 

effect.  Jump bidding activity early in an auction reduces the number of bids placed in the 

auction, and bidders whose first bid is a jump bid are less likely to place any subsequent bids. 

                                                 
10 Bidding costs in the D&H model mainly arise from preparing and announcing a bid.  

However, their formulation is general enough to accommodate any form of transaction cost. 
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Avery (1998), in a related model, shows that strong bidders can effectively use jump bids 

as signals in auctions with affiliated values. 11  Such signals let weak bidders know that entering 

the bidding contest may result in a high probability of incurring the winner’s curse.  Because of 

value affiliation, jump bidding is admissible even in the absence of bidding costs, and repeated 

jumps are possible in sequential contests, which stands in contrast to the costly bidding case, 

where jump bidders bid only once. 12  Our data are broadly consistent with the costly bidding 

model, as 3515 (94.2%) jump bidders jump once per auction.  The remaining 216 jump bidders 

are divided between 170 (4.6%) who jump twice, and 46 (1.2%) who jump more than twice. 13 

A number of recent papers have studied bidding at eBay, the major listing site for C2C 

auctions. 14  However, because of eBay’s automatic bidding format, none of these studies is able 

to examine jump bidding.  Bapna et. al. (2001) classify jump bidders as “evaluators,” and we 

present a theoretical rationale for the behaviors associated with this type, as well as further 

                                                 
11 Affiliation is a property closely related to correlation.  Two values are affiliated if a bidder 

drawing a high value makes it more likely (or at least not less likely) that another bidder also 

draws a high value.  In an affiliated value auction, if a bidder wins the auction but overestimates 

the object’s true value, that bidder has fallen prey to the “winner’s curse.” 

12 Avery's model also yields one jump bid per bidder in the presence of costly bidding. 

13  69 % of bidders in the sample bid in only one auction.  An additional 15% bid in two 

auctions, and 99% of bidders bid in 8 or fewer auctions in the sample. 

14 Bajari and Hortaçsu (2003), find that costly entry is important to understanding bidding 

behavior in these auctions.  Roth and Ockenfels (2002) study the strategic issues associated with 

"last minute" bidding at both eBay and Amazon.com auctions.  Finally, Wilcox (2000) finds that 

experienced bidders behave in ways that are more consistent with traditional auction theory. 
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empirical evidence of the existence of such bidders.  We present the model in Section 2, our data 

in Section 3, the empirical analysis in Section 4, and conclude in Section 5. 

 

 

2. Model 

There are two identical risk-neutral bidders who will potentially compete to buy one unit at an 

ascending Internet auction. 15  The minimum bid is b, and each bidder holds a non-negative 

private valuation for the unit denoted vi (i=1,2).  Both bidders draw their valuation independently 

from the distribution f(•) with support [v,  v< ], where v<     >b.  Bids can be any number ≥b. 

There is demand uncertainty in the following sense:  The first or “early” bidder (B1) 

arrives to the auction site for sure, and the second or “late” bidder (B2) arrives with an 

exogenous and commonly known probability (1-q). 16  If the second bidder finds the auction she 

endogenously decides whether to enter a bid or not based on the current information available at 

the auction site, which includes the first bidder’s bid.  We assume that bidder arrival is 

predetermined, and that each bidder knows their order of arrival.  The value of each bidder’s 

current high bid is denoted bi (i=1,2), and the highest bidder at the end of the auction will take 

the object.  Because bidders draw their valuations from a continuous distribution, equal 

valuations occur with probability zero. 

Every time a bidder signs-in to the site, places, and confirms a bid, she incurs a cost c≥0.  

This transaction cost, which we may interpret as an opportunity cost of time and/or connectivity 

                                                 
15 A model with three bidders and two units yields qualitatively comparable predictions. 

16 For a general formulation of an auction model with a stochastic number of bidders, see 

McAfee and McMillan (1987). 
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cost, is common to both bidders, and does not change as the auction progresses.  Bidders are free 

to revise their bids as many times as they want, consistent with a “soft” bidding deadline in an 

Internet auction. 17  Once bidders find the auction and place a bid, the auction site will notify 

them via e-mail or pager if outbid later in the auction.  Since this notification includes the value 

of the new high bid, early bidders do not incur a cost to gather further bid information as the 

auction progresses.  Thus our bidding cost arises solely from the bidding process, i.e., it is a pure 

transaction cost. 

Our model is a variation of D&H, in which the demand uncertainty creates an asymmetry 

in the distributions from which the bidders draw their private valuations.  In fact, we could 

simply view B2 as drawing a valuation equal to v with probability q, and equal to v2 with 

probability 1-q.  Since D&H's model accommodates asymmetric bidders, with the appropriate 

modifications, most of their basic results will apply to our case as well.    

D&H consider a possible preamble to the actual bidding by allowing relatively low-

valuing bidders to "pass" if it is not ex ante profitable for them to participate given the available 

information.  If a passing bidder then observes her opponent passing as well, she will use that 

information to update her prior beliefs about the opponent's value, re-evaluate her expected 

profitability from participating, and potentially enter a bid later in the auction.   However, in an 

Internet auction, a low-valuing bidder who passes with the intent of coming back periodically to 

gather information about the auction, stands to incur search costs which directly relate to her 

potential participation and bidding decision, and thus are not sunk.  As such, unlike the D&H 

model, this form of passing is costly, and a preamble where low-valuing bidders repeatedly 

                                                 
17 In practice, this is an activity-based rule.  Typically, after the posted close of the auction, 

bidding remains open as long as someone has placed a bid within the last five or ten minutes.   
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reconnect prior to actually bidding is highly implausible and would most likely result in wasteful 

outcomes.  Thus, we simply assume that if a potential bidder does not find it profitable to enter a 

bid at the outset, she walks away from the auction and attains some non-negative and exogenous 

reservation utility denoted uo. 
18  The bidding process is illustrated in Figure 1. 

 (Figure 1 about here) 

2.1.   Ratchet Solution 

As shown in many previous studies, if bidding costs are negligible, i.e., c=0, the equilibrium in 

the auction we just described is the same as that of an ordinary progressive auction (Vickrey, 

1962).  In our model, if only the first bidder enters the auction, she will take the unit at the 

minimum price b.  Alternatively, if both bidders enter, bidding will progress smoothly until the 

price reaches the valuation of the lowest-valuing bidder. 19   

2.2. Jump bidding Solution 

If bidders incur a positive cost each time they bid, it may not be optimal for them to use the 

ratchet strategy.  Consider first B1’s decision.  Upon arriving at the auction site, he first faces the 

choice of participating or not.  If he decides to participate, he must then choose to (a) enter a low 

bid and possibly have to bid again (and incur further costs) later in the presence of competition, 

or (b) enter a bid higher than necessary to be a current winner (i.e., a jump bid) and possibly save 

                                                 
18 This could arise from the utility associated with other Internet browsing activities. 
  
19 Isaac et. al. (2002) discuss possible conditions under which ratchet (or “straightforward”) 

bidding may not necessarily be part of equilibria of auctions with non-costly bidding.  Generally 

speaking, jumps may occur in this case if (a) bidders are impatient (i.e., want to end the auction 

early), or (b) bid increments are predetermined and coarse.  Both of these conditions are absent 

in our theoretical model. 
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bidding costs later in the auction.  After B1 has made a decision, B2 arrives, with probability (1-

q), and considering the information displayed at the site (which may include B1’s bid), decides 

(a) whether to place a bid or not, and (b) what the level of that bid should be.  Our Proposition 

establishes the conditions under which each bidder participates, and what the equilibrium bid of 

each participating bidder is for any positive bidding cost: 20 

 

PROPOSITION.  For any c>0, q∈[0,1], and uo≥0,  let v* satisfy: 

o.uc)]q)F(v*(1q)[b*(v =−−+−  

There exists a perfect Bayesian equilibrium such that:  

(i) If v1≥v* 

(a) B1 bids according to the truthfully signaling schedule 

( ) ( )[ ] ( )ds],sfsq)(1q)F(v*))(1(qb[
vq)F(1q

1vb
1

*

v

1
11 ∫−+−+

−+
=

v
    (1)  

(b) If B2 finds the auction, she correctly infers v1 from (1), bids v1-c if v2>v1, and 

refrains from bidding otherwise. 

(c) This is supported by the out-of-equilibrium belief that if B2 submits a bid b2<v1-c, 

B1 believes that B2's valuation is arbitrarily close to b2+c, and thus revises his bid 

to just above b2. 

(ii) If v1<v*,  

(a) B1 refrains from bidding, 

(b) If B2 finds the auction, she bids b if v2-(b+c)≥uo, and refrains from bidding 

otherwise. 

                                                 
20 D&H demonstrate that jump bidding is also a weakly dominated equilibrium if c=0. 
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PROOF:  Follows from Proposition 3 of Daniel and Hirshleifer (1998) with two modifications:   

(I) B2's valuation equals v with probability q and is distributed according to f(•) with probability 

1-q, and (II) Each bidder's alternative to entering an initial bid is to walk away and receive non-

negative reservation utility equal to uo.  See Appendix A for details.  

 

The expression in (1) is the standard equilibrium bid function for a single-unit sealed-bid 

auction adjusted by two factors: demand uncertainty and costly bidding. 21  Demand uncertainty 

causes a bidder to bid less aggressively than in a standard auction, as there is positive probability 

that the competitor's effective valuation will be v.  Costly bidding, on the other hand, truncates 

the set of bidder types choosing to participate, and shuts out all potential bidders whose 

valuations fall in the interval [v, v1
* ].  Observe that if q=c=uo=0 (which implies v1

* =v), (1) is 

identical to the equilibrium strategy in a first-price auction with minimum bid equal to b. 

When B1 places a jump bid, a positive and a negative effect are induced.  On the plus 

side, a subset of B2 types (those with valuations lower than the signaled v1) will be deterred from 

placing a bid at all, thus eliminating the need to bid again and minimizing B1's expected bidding 

costs.  On the minus side, a jump bid necessarily implies that, should B1 be the eventual winner, 

he will leave some money on the table, regardless of whether his bid had a deterrent effect or not. 

The proposition implies that, for any positive cost, the positive effect outweighs the negative 

                                                 
21 In fact, a very interesting feature of this auction is that, adjusting for the bidding cost and 

demand uncertainty, B1 places the same exact bid he would place in a first price auction, while 

B2 places the same exact bid she would pay in an English auction.  
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effect for all those B1 types choosing to participate. 22  Intuitively, this arises from the fact that if 

B1 wins with a signaling bid, on average, he will pay the same price he would pay should he win 

in an English auction.  However, while he pays the bidding cost once in the jump bidding 

equilibrium, he does it more than once if he uses a ratchet strategy. 23  

2.3.1 Predictions from the Costly Bidding Model 

Taking the costly bidding model as a benchmark, we now present some basic predictions we will 

empirically test in subsequent sections.  Although our model is single-unit, as shown elsewhere 

(Vickrey 1962, Ortega-Reichert 1968), the main results extend to multi-unit auctions with single-

unit demands.  In general, more bidders or fewer units make the environment more competitive, 

which increases the equilibrium level of the signaling bid.  

  

(a)  A bidder enters a higher jump bid as he anticipates more competition in the auction. 

This is because a higher probability of no further entry effectively reduces the extent of potential 

competition.  As a result, the level of the signaling bid required to exercise deterrence goes 

down.  In terms of our model: 

 

         (2) 

 

                                                 
22 Thus, although the down side of jump bidding is potentially larger in our model (because of 

demand uncertainty), D&H's claim that very small costs may result in large jumps, extends to the 

similar auction we study here.   
23 We thank an anonymous referee for suggesting this insight. 
 

0
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As the probability of no further entry approaches one, the size of the jump nears zero (i.e., 

b1|q=1=b).  This prediction extends to multiple units and bidders since, in each case the signal 

would be targeted to the bidder that would just be excluded from the set of winners, i.e., the 

order statistic of the highest rejected bid. 

 

(b) The size of the jump is inversely related to the minimum starting bid. 

Because all jumps are measured relative to the minimum bid, a higher minimum starting bid will 

truncate the distribution of jump bids from below.  In terms of the model:      

 

         (3) 

This prediction is not affected by the number of bidders or items, since it depends only on the 

value of the minimum bid relative to the distribution f(•). 

 

(c) A bidder who jumps on the first bid is more likely to place no additional bids than one who 

does not. 

In the equilibrium of our model, when c>0, any participating B1 bids once and only once, and 

that bid is a jump bid (as long as B2 adheres to her best response strategy). Thus, hypothesis (c) 

does not strictly follow from the model. On the other hand, if c=0, B1 will likely engage in 

ratchet bidding, and continue to submit ratchet bids as in a standard ascending auction. Thus, 

extending our model to include a mix of bidders with zero entry costs and with positive entry 

01
)q)F(v(1q
)q)F(v*-(1q

b
)bb(

1

1 <−
−+

+
=

∂
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costs can be expected to generate the pattern hypothesized in (c). 24  This is because B1 who 

jump bids must have c>0, and therefore will not bid again, while any B1 who does not jump bid 

may possibly bid again later.  Prediction (c) hinges solely on the presence of bidding costs, so 

that it holds for multiple units and bidders as well. 

 

(d) For a given level of potential competition, an auction with larger early jump bids will have 

fewer bids placed overall. 

Since an early bidder places a jump bid with the intent of deterring subsequent bidders from 

entering, given a probability of further entry, the extent of this deterrence will be proportional to 

the level of the initial bid.  In terms of the model, by monotonicity of the bid function, for a 

given q, the higher B1’s valuation the more B2 types will be deterred, and the higher the 

probability that we will observe only one bid placed in the auction. 25  This argument extends to 

                                                 
24 Developing a model that has bidders with c=0 and with c>0 coexisting is beyond the scope of 

this paper. Therefore, we base this prediction on nesting the results of the two different types of 

equilibria arising from our simple model. 

 
25 In the model, the probability that the second bidder will enter is (1-q)(1-F(v1)), and thus as 

B2’s entry becomes more likely (i.e., lower q), the probability of a second bidder increases. 

However, that increase is entirely through q, and it is not affected by F(v1).  Thus, a higher initial 

jump bid implies fewer subsequent bids only if the higher jump bid is due to v1 being higher, 

because then more B2’s are deterred from bidding.  But it could mean more subsequent bids if 

the higher jump bid is because, for a fixed v1, B1 bids higher because q is lower.  In this case B2 

shows up more frequently, and is not deterred more often by the higher bid by B1, with the 

overall result that subsequent bids tend to increase. Thus we are careful in stating this prediction 
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multiple units and bidders, as the higher early bids will deter a larger subset of potential 

competitors given any number of units sold. 

This prediction does not imply that bidders who (jump) bid early are more likely to win the 

auction than bidders who would bid late, since those deterred from entry are deterred precisely 

because their valuation is lower than that one signaled by the jump bid.  When effective, 

signaling excludes bidders with lower valuations, and thus does not affect the initial bidder’s 

probability of winning. 

 

(e) A bidder that bids early in the auction enters a higher jump bid than one bidding later in the 

auction. 

This prediction does not follow from the model under general conditions, but we explore it given 

its intuitive appeal and the nature of the bidding data we use.  As discussed before, an early 

bidder choosing to participate places a jump bid.  If a later bidder is not deterred by this initial 

jump bid, she will (correctly) infer the valuation signaled by the early bidder and place a bid to 

just preempt further bids from the initial bidder.  We can show that for a family of parameter 

configurations, the jump implied by the late preemptive bid is smaller than that of the initial bid 

relative to b. 26 

                                                                                                                                                             
on the condition that q is fixed, and as such we must adequately control for this variable in the 

empirical analysis.  We thank an Associate Editor for bringing this point to our attention. 

26 A necessary and sufficient condition for this to hold is that, on average, for all B1’s choosing 

to participate, 2b1(v1)-v1 exceeds b-c.  This holds for certain combinations of valuation densities, 

minimum bids, and bidding costs.  For instance a uniform value distribution, a zero starting bid 

and any positive bidding costs validate this condition. 
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3.   Data 

We recorded data from multi-item auctions at two different Internet auction sites, Onsale.com 

and uBid.com, using a computer program that ran continuously.  The two auction sites specialize 

to a large extent in consumer electronic and computer products, and offered both new and 

refurbished items, usually with the item’s manufacturer as the seller.  Since the items were 

auctioned for original manufacturers or distributors, and not for individuals, any effect of 

uncertainty about delivery and warranty on prices is minimal. 

 All auctions in our sample ran approximately 24 hours.  The data collection program 

recorded the current winning bid information for each auction every 15 minutes until the final 

half-hour before the posted closing time of the auction.  During this final period, when bidding 

activity typically accelerates, the program collected this information every few minutes until the 

auction finally closed, following activity-based closing rules.  On both sites this rule specified 

that, after the posted closing of the auction, bidding would stop when no bid had been received in 

the last five (Onsale) or ten (uBid) minutes.  We compared each new set of bid data to the 

previous round to see if any change had occurred in bid values or currently winning bidders.  If 

so, we kept the data, and if not, we discarded it as redundant.  On average, we discarded 77% of 

the collected data for this reason.  We then examined the auction data for any gaps in recorded 

bidding activity 27 by tracking the position of the highest bidder in subsequent rounds.  With 

multi-item auctions, the highest bidder cannot be eliminated from the posted currently winning 

                                                 
27 In general, any gaps in recording resulted from interruption of the Internet connection or 

related technical problems. 
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bids by a single new bid.  We eliminated auctions with missing bid data; that is auctions with 

gaps in recorded bidding activity during which the highest bidder was displaced.  

 Table 1 presents descriptive statistics for the 236 auctions that remain in our sample.  On 

average, an auction would offer 11 units, with 55 bids placed by 47 bidders.  The mean, taken 

across all auctions, of the per-auction average price paid for each item by a winning bidder, was 

$682. The difference between average price paid and starting bid, in bid increments (not shown 

in table), has a mean of 43, a median of 23, and a maximum of 270.  Posted list prices were 

available for all uBid auctions (where it is called “maximum bid price”), and for about 25% of 

the Onsale auctions (where it was an optional item) in the sample.  For this subset of 159 

auctions, the average posted list price of the items was $1735, and the highest average winning 

bid observed, as a percent of list price was 58%.  Minimum (i.e., starting) bid values were 

generally low, but range as high as $249, and are positively correlated with average winning bid 

(corr=0.48) and list price (corr=0.12). 28  Minimum bid increment values, ranging from $3 to 

$20, are also positively correlated with average winning bid (corr=0.33), and list price 

(corr=0.48).   

(Table 1 about here) 

In 58% (138) of the auctions in the sample, each bidder bid just once.  In a typical 

example of this type, five Compaq Pentium II computers, with posted list price of $4899 and a 

$20 bid increment, attracted 75 bidders, who placed 75 bids, reaching a final selling price 

ranging from $2047 - $2067.  At the low extreme of bidding activity, an auction of 17 units of a 

pager attracted only 3 bidders, each winning one unit at the minimum starting price of $29.  The 

                                                 
28 The low correlation of minimum bid and list price is due to the concentration of list price data 

in uBid auctions, where minimum bids are generally fixed at $7. 
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largest auction, in terms of number of units, was for 61 palm pilots, with no posted list price and 

a $10 bid increment, attracting 173 bidders who placed 210 bids, with a final selling price from 

$239 to $299.   

For the entire sample of auctions, the average of all winning bids exceeds the average of 

those winning bids at the minimum winning price 29 by an average of $5.40 per auction.  On a 

percentage basis, this excess averages 0.8% across all auctions in the sample, thus providing an 

indication of the economic consequences from jump bidding.  However we cannot empirically 

ascertain whether this constitutes a positive or negative revenue effect, since the extent of entry 

deterrence due to costs and jump bidding is not observable. 

 

4.   Empirical Analysis 

We perform a series of ordinary least squares (OLS) and logistic regressions to test our 

predictions over the appropriate data sets for each. 30  All results reported in section 4.2 below 

are for the subset of auction data (159 auctions, 8631 bids, 8015 bidders) for which we have an 

exogenous item value measure – the list price – available as a control variable. The results over 

the full data set are generally consistent with the results reported, with differences noted as 

                                                 
29  We define this as the average of winning bids at the lowest winning bid plus those bids one 

increment above the lowest, due to application of the time-of-first-bid rule, which we discuss 

further in section 4.1. 

30 We do not test “expedience” jump bidding, i.e., that arising from the desire to save one’s 

bidding costs with no signaling motive.  As stated before, Isaac et. al. (2002) show that jump 

bidding may occur if bidders want to end the auction early or because of coarse bid increments.  

While the former is not possible in the auctions in our sample, we empirically address the latter.     
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appropriate.  We describe the dependent, independent and control variables used in these 

analyses in the following section, and report results for the subset of data with the exogenous 

item value measure in the subsequent section.   

4.1. Definition of Variables 

We use two different dependent variables to test two interpretations of predictions (a), (b) and 

(e).  The first measures the magnitude of the bid gap and the second one is a binary dependent 

variable that flags whether a bid is a jump bid or not.  The magnitude of the bid gap is simply the 

number of bid increments by which a new bid exceeds the minimum posted winning bid at the 

time of the bid. This value could be 0 if the number of bidders is less than the number of items at 

the time the bid is placed, or if the time-of-first-bid rule breaks a tie in favor of the new bid.  

Because tie-breaking rules favor the bidder who placed her first bid earlier, in some cases a tying 

bid will win.  

Although the predictions concern the magnitude of jump bids, because we measure jump 

bidding in terms of bid increments, it is possible that in some instances jump bids may not be 

detected in the data.  Thus we explore alternatives to predictions (a), (b), and (e) accounting for 

the fact that the larger a jump bid is, the higher the probability it will be statistically detected as a 

jump for any given bid increment.  To implement this alternative we create a logistic dependent 

variable that is related to the magnitude of the bid gap as follows:  Zero (not a jump) if the 

magnitude of the bid gap is 0 or 1, and One (a jump bid) if this magnitude is greater than 1.  In 

constructing this variable we ignore the time-of-first-bid tie-breaking rule in identifying jump 

bids, and consider a bid gap of magnitude 1 to be a ratchet bid.  31  This will slightly undercount 

                                                                                                                                                             
 
31 In addition to only affecting a small percentage of bids in the sample, it is likely that many 

bidders ignore this rule.  Neither auction site in the study uses this rule in posting a minimum bid 
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jump bids, but given that 85% (11120 of 13080) of bids in the full sample are first bids (where 

time-of-first-bid rules could not favor the new bid), this makes little difference in the analysis, 

with any resulting bias providing a more conservative measure of jump bidding. 

 To test prediction (c), we again use two dependent variables, the total number of bids per 

bidder, and a binary version of this variable indicating whether the bidder entered more than one 

bid.  We perform this analysis on the 8631 bidders who place bids in the subset of recorded 

auctions with list price data available.  Finally, unlike the previous cases, we test prediction (d) at 

the auction level, with the total number of bids placed per auction as the dependent variable. 

All auctions in the sample were 24-hour listings, and the data include the exact time each 

bid is placed.  The average auction duration in the sample, measuring from first recorded bid to 

last recorded bid, was 23.5 hours, with a variance of 2.5 hours.  The variance was due both to 

time passing prior to the first recorded bid, and extension of the bidding past the posted close due 

to activity-based closing rules.  Auctions in the sample ended between 0 and 147 minutes past 

the posted closing time, with an average extension of 23 minutes.  Table 2 shows the distribution 

of bids across auction time, measuring from the close of the auction. Approximately one third of 

bids occur during the first six hours of an auction, one fourth during the last 90 minutes, and 

most remaining bids early on the closing day rather than the night before.  To control for 

variance in auction duration, the independent variable, Percent Time of Bid, is the time the bid is 

placed expressed as a percentage of elapsed auction time, with a value of 0 indicating the start of 

the auction and 100 the end of the auction. 

                                                                                                                                                             
needed to win.  Instead, uBid posts a single value that ignores the time-based rule as well as the 

quantity-based rule, and Onsale posts the range of currently winning bids.  We do not consider 

bid quantity in defining jump bids. 
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(Table 2 about here) 

 The independent variable Number of Bidders is the number of bidders who enter bids in 

the auction. This value is unknown to bidders during the auction, except approximately or in 

expectation, and with decreasing uncertainty as the auction progresses.  We are not able to 

capture the act of a potential bidder examining posted currently winning bids, and then declining 

to bid.  Though this would clearly be useful in establishing bid deterrence, this data would only 

be available to the site running the auction, and then only if they chose to record it. 32 

 The auctions often attracted bidders interested in a large number of units, who were often 

judged to be dealers by other bidders, based on posted optional comments attached to their bids. 

Frequently, these bidders would appear early in an auction, and then disappear as bid levels 

increased.  To control for any distortion the presence of such bidders might produce, we label an 

auction where some bidders place more than two-unit bids as having “dealer presence.” 33  We 

                                                 
32 Throughout most of the analysis we use actual number of bidders as a proxy for potential 

number of bidders.  Although the use of this proxy is potentially subject to endogeneity 

problems, we believe this is a reasonable proxy because it just signals that auctions with many 

participating bidders (i.e., large auctions) tend to attract a larger set of potential bidders.  Because 

actual number of bidders is only a subset of potential number of bidders, our results are 

conservative: since this proxy is an independent variable, our results are likely weaker than they 

would be if we used the – unobservable – potential competition. 

33 There are some possible distortions.  First, the presence of multi-unit demand bidders may 

introduce asymmetries into the auction.  Second, if these bidders are dealers, because of a resale 

motive, their values are more likely to have a common or correlated element.  Finally, since 



 22

base our decision to mark bids for three or more items as dealer bids on the distribution of 

maximum quantities requested per auction, shown in Table 3, as well as on the plausibility of 

buying two of an item for personal use.  This results in the labeling of 70 auctions, or 29.7% of 

the auctions in the sample, as having dealer presence.  In our analysis, the control variable for 

dealer presence never attains significance, and “dealers” tend to enter jump bids with 

approximately the same frequency as other bidders. 34 

(Table 3 about here) 

 To control for item value we performed the analysis over the subset of auctions for which 

we have posted list price information, as described in the previous section.  We also used the 

average of all winning bids to control for item value in the analysis over the whole data set.  

Since the average winning bid is not fully exogenous, we performed the latter analysis mainly as 

a robustness test.  In fact, both the list price and average winning bid are strongly correlated.  In 

the sub-sample of 8631 bids entered in 159 auctions with list price information, the correlation 

coefficient between these two variables is approximately 0.9.  We express both the list price and 

the average winning bid in terms of bid increments.  

The remaining control variables are Units Available and Minimum Bid in Increments.  

The former is simply the number of units available in the auction.  We classify this as low (2-5 

copies of the item), medium (6-11) or high (12-61), and enter it as a series of dummy variables 

for the medium and high state (a continuous version of this variable yields similar results).  The 

                                                                                                                                                             
these bidders’ have positive valuations for several units, demand-reduction strategies may be 

admissible (see Ausubel and Cramton 1998, Tenorio 1997).  

34 Dealers are about 5% more likely, on average, to place their first bid as a jump bid (33.3%, 

versus 31.7% for other bidders).  Dealer bids overall are about 1% more likely to be jump bids. 
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latter is the posted minimum (starting) bid, expressed in bid increments to maintain consistency 

with the normalization of the two item-value measures discussed above.  We do not include Bid 

Increment itself as a control variable because we use it to normalize other variables. 

4.2.   Results 

Table 4 presents the results of two regression analyses, testing slightly different interpretations of 

the first two predictions.  Prediction (a) concerns the effect of anticipated level of competition on 

both the probability of jump bidding and on the size of the jump bid.  The coefficients for 

Number of Bidders in Table 4 are positive and significant for both regressions.  The logistic 

regression results suggest that the marginal effect of increasing the number of bidders drives the 

probability of jump bidding up from 31% with just 3 bidders, to 42% with 253 bidders.  The 

OLS regression results are consistent with these results, showing the magnitude of bid gap 

increasing in the number of bidders.  As we stated before, the observed number of bidders is a 

conservative measure of competition, since the true number of bidders (including those who 

arrived but were deterred from bidding) would be weakly larger.  It is interesting to note that 

although the expected number of bidders is not known, bidders appear to be able to form 

reasonable predictions of this value.  In fact, we observe that in all auctions (8 of 236) where the 

number of bidders is ex post lower than the number of units, jump bidding does not occur at all. 

(Table 4 about here) 

 Prediction (b) suggests that a higher minimum bid should result in smaller jump bids.  

This is supported by the results, which show a significant and negative marginal effect of 

increasing minimum bids on both the probability and size of jump bids.  This is the only result 

reported that differs over the full data set, where the coefficient remains negative, but is no 
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longer statistically significant.  Obviously, controlling for list price, which is not possible for the 

full data set, is important in gauging the effect of the minimum bid. 

Prediction (e) represents an interesting alternative to prediction (a), since it addresses two 

potential concerns: first that the number of bidders is itself affected by the presence of jump bids, 

and second that the number of bidders is an imperfect measure of the potential competition in an 

auction, since it is measured ex post and is not known to the bidder at the time a bid is placed 

(although that uncertainty decreases as the end of the auction nears).  An alternative is to 

interpret the amount of time remaining in the auction as a proxy for the expected level of 

competition.  Under this interpretation, we omit Number of Bidders as an independent variable, 

since we simply assume that the level of competition declines as the auction progresses.  Table 5 

presents the same analysis that is conducted in Table 4 but omitting Number of Bidders.  On both 

tables, on both regressions, the coefficient for Percent Time of Bid is negative and statistically 

significant.  The logistic regression results imply that the marginal effect of moving from the 

beginning to the end of the auction drives the probability of entering a jump bid down from 31% 

to 8%.  The OLS regression results indicate that as time passes, the expected magnitude of the 

bid gap registered with a new bid will decrease, consistent with the reduced probability of 

entering a jump bid. 35 

(Table 5 about here) 

 In general the results in Tables 4 and 5 are quite consistent.  For example, the effect of 

the minimum bid is negative and significant in both cases.  The largest exception to this is that 

the Units Available dummy variable coefficients, though positive in both tables, vary in 

statistical significance.  In both cases the coefficients for List Price are positive and significant, 

                                                 
35 This also holds conditional on observing a jump bid.  See Appendix B. 
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indicating that both the magnitude of the bid gap, and the probability of entering a jump bid, 

increase with item value.  This is not surprising for a number of reasons, the simplest being that a 

jump bid is more easily detected – and therefore signaling is more effective – with higher-valued 

items.  Bid increments are not observed to be larger than $20, thus a jump bid is also less likely 

to round to a single bid increment with higher-valued items.  The Dealer Presence variable is 

never significant across any of our analyses, indicating that bids for large quantities, while 

eliciting occasional anti-dealer comments, do not appear to affect jump bidding behavior. 

 Although the data support the basic predictions concerning the incentives for jump 

bidding, the question remains whether jump bidding has the intended effect when bidders 

employ it.  First, does a bidder who places a jump bid actually reduce her cost of bidding by 

placing fewer bids?  Table 6 presents the results of analysis over the set of all bidders who 

participated in auctions for which we have list price information.  The dependent variables here 

are a flag indicating whether the bidder placed more than one bid, and the number of bids placed 

by an individual bidder.  We also introduce a new independent dummy variable indicating 

whether that bidder jumped on her first bid or not.  The coefficients in both regressions for the 

Jump on First Bid variable are statistically significant and negative. This indicates that the 

marginal effect of jumping on the first bid leads to a reduced total number of bids placed, and to 

a reduced probability of bidding more than once, thus lending support to prediction (c).   

(Table 6 about here) 

Prediction (d) makes a related point for auctions rather than bidders.  If signaling bids are 

effective, then, for a given probability of further entry, larger signaling bids early in an auction 
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should lead to fewer overall bids. 36  In the analysis presented in Table 7, we regress the total 

number of bids at an auction on the average magnitude of jump bids, measured in bid 

increments, over the first 10% of elapsed auction time, for the list price data subset. 37  Since the 

average magnitude of jump bids may be related to the list price of the item, we also consider an 

alternative model including the interaction of both variables (see Panel 2 of Table 7).  Because 

the average jump and the interaction term are highly correlated (ρ = 0.86), the interaction term, 

although statistically insignificant, lowers the significance of the average jump variable (to a 

10% level) and adds nothing to the model’s explanatory power.  In fact, because of the high 

collinearity between these two variables, one can almost perfectly substitute for the other in our 

regression model (see Panel 3 of Table 7).  Overall, the results indicate that stronger signaling 

bids early in the auction lead to a lower number of bids for the entire auction, thereby providing 

some indirect evidence of bid deterrence.  

(Table 7 about here) 

5. Discussion and Conclusions 

In this paper we have presented simple theoretical arguments to explain why bidders may choose 

to follow jump bidding strategies in auctions with bidding costs.  Using an uncertain demand 

extension of a model by Daniel and Hirshleifer (1998) we showed that jump bids may play a 

signaling role in auctions where it is costly for bidders to place their bids.  Our model 

                                                 
36 Like before, we attempt to control for potential competition by including the number of 

bidders on the right hand side.  The use of this proxy is subject to caveat on footnote 32.  

37 The same analysis with average magnitude of jump bids measured over the first 25% of 

elapsed auction time yields nearly identical results. 
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demonstrates that any positive bidding cost leads to jump bids by bidders choosing to enter, and 

the size of these jump bids is related to the auction’s competitive conditions. 

We have also presented extensive evidence from a sample of ascending Internet auctions 

that supports these theoretical predictions.  Our analysis shows that a very large fraction of 

bidders at these auctions enter jump bids and that these bids are mostly entered early in the 

auction, when they have greater strategic value.  We also show that jump bidding is more likely 

in auctions where bidder competition is more intense.  Finally we provide evidence that jump 

bidding strategies, when used, do lower the number of bids, both at the auction level, and for an 

individual bidder, consistent with a deterrence and cost-saving effect of jump bids. 

There are a number of interesting questions that remain open, both on the bidder and 

seller side of auctions with costly bidding.  For instance, on the bidder side we assumed that 

bidders arrive to the auction site on a predetermined basis.  As such, timing is not part of the 

bidding strategy.  Yet, one may argue that a strategy of waiting to bid until the final minutes of 

the auction may be advantageous. 38  A formal analysis of this claim would probably require an 

asymmetric model, where higher-cost bidders self-select to bid earlier in the auction and are 

more likely to enter jump bids.  Conversely, bidders with lower costs could afford to keep track 

of the bidding more closely and be active at the specific times of the day when the auctions are 

set to end.  The downside of these timing strategies would be that if the site is very congested at 

the end of an auction, one may miss the chance to bid altogether.  Other extensions may include 

more bidders or items, richer structures of uncertainty and valuations, and multi-unit demands. 

                                                 
38 In fact a large amount of bidding activity is usually observed during the closing minutes of 

each auction, as seen in Table 2, and as documented by Roth & Ockenfels (2002). 
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There are many issues that remain unexplored on the seller side as well.  For instance, 

D&H show that seller expected revenue in auctions with costly bidding is smaller than its 

costless counterpart by a factor related to the expected bidding costs.  As such, it is in the seller’s 

best interest to undertake actions that will reduce the cost of bidding.  It seems that real-life 

Internet auctioneers are aware of this phenomenon.  We have found that sellers have introduced 

two practices that reduce bidding costs:  automatic or "proxy" bidding, and "quick" auctions. 

With proxy bidding, 39 bidders may privately provide their maximum possible bid 

(reservation price) to a secure computer program, which will update their current high bid to the 

minimum necessary for that bidder to be included in the set of winners.  In other words, this 

mechanism seeks to turn these auctions into Vickrey-like auctions and eliminate the potential 

costs a bidder will incur when revising her bid.  A curious phenomenon is that although many 

auction sites offer this service as an option, not all bidders choose to use it.  Among other 

reasons, this may be originate in bidders not fully understanding (or trusting) the way the 

computer program works, or perhaps they may like to retain the flexibility to revise their 

reservation price if value correlation exists.  An additional complication introduced by proxy 

bidding is the introduction of heterogeneity.  How should non-proxy bidders bid against proxy 

bidders?  Is jump bidding more or less likely in these cases?  These are interesting questions for 

future research. 

The second bid-cost reducing seller practice is “quick auctions,” also known as “flash 

auctions” or “express auctions.”  These are auctions where all of the bidding takes place within a 

short time period, usually a half-hour or an hour, so they have a bidding cost structure more 

similar to live auctions, with a higher fixed cost of attending, and a lower per bid cost.  

                                                 
39 Also known as “bid agents”, “bid-makers”, “bid elves”, or “bid butlers.”  
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Presumably, what auctioneers intend to do with these auctions is to attract bidders with a low 

opportunity cost for their time, i.e., bidders that can afford to be in front of their computers for 

the duration of the auction.  Our preliminary analysis of a sample of these auctions reveals that 

no meaningful jump bidding occurs in them, i.e., they are more like live auctions.  Although it is 

clear that low-cost bidders should be typically attracted to these auctions, the net effect over the 

auctioneer’s revenue would ultimately depend on whether these bidders hold some other special 

characteristics that could affect the revenue in a well-defined way.  For instance, are these 

bidders more likely to have lower values than the rest of the bidder population?  If so, quick 

auction revenues could actually be negatively affected by bidder selectivity.  We intend to 

examine this as well as other related issues in future projects. 
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Appendix A:  Outline of Proof of Proposition 
 
Since our model is a variation of Daniel and Hirschleifer (1998), we will just outline the main 

steps involved in proving the proposition, and refer the reader to their original proof for details. 

 

-Point (i) specifies optimal behavior for both bidders (and the beliefs that support this behavior) 

when the first bidder participates in the auction.  For any c>0 and uo≥0, there will be a non-

empty range of B1 values that would enjoy a non-negative expected surplus from bidding.  To 

establish this range, observe that the weakest possible B1 to participate can enter a bid equal to b, 

and that he would be indifferent between doing so and walking away from the auction and 

receiving uo.  This indifference establishes the condition that v* must satisfy. 

To establish the bidding schedule in (1), notice that given B2's optimal response, B1's bidding 

problem is: 

 

         (A1) 

where ν(•) is the inverse of B1's equilibrium bid function.  (A1) is equivalent to a bidder's 

problem in a first price sealed bid auction.  Thus, solving the above problem and using the initial 

condition that the lowest-valuing B1 entering a bid is v*, i.e., b1(v*)=b, yields the equilibrium 

bid function (1).  Given that B1 signals truthfully, if v2>v1, B2 preempts B1 from bidding again 

by entering a bid equal to v1-c.    

The above argument presumes that B1 will find it optimal to bid once and only once while 

truthfully signaling her valuation in the process.  A possible defection from this strategy involves 

submitting a low bid (one that signals a lower valuation), then wait and see if B2 enters and 

submits a bid, and possibly revise the initial low bid later in the auction.  In fact, it is within 

1
1 1 1

b
Max (v b )[q (1 q)F(ν(b ))] c,− + − −
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one’s strategy set to bid low and revise this bid many times (perhaps even infinite) in response to 

later bidders entering the auction.  D&H show that such defection is never profitable on average, 

as the expected bidding cost(s) one would incur by having to possibly re-bid, outweighs the 

potential benefit arising from gaining information about B2's value by shading one's bid below 

the truthfully signaling level.  See D&H, Section (IV.C) for details. 

 

-Points (ii.a) and (ii.b) specify optimal behavior for both bidders when the first bidder does not 

participate in the auction.  Condition (a) is obvious.  Condition (b) follows from the fact that in 

B1’s absence, B2 could either incur the cost c and take the object at the minimum price b, or 

walk away and get u0.  Indifference between these two alternatives establishes the lowest-valuing 

B2 that would choose to participate in this case.  This completes the outline of the proof.   

 
Appendix B:  Further Tests 

Table A1 shows that, even conditional on a jump bid, the magnitude of the jump bid is 

decreasing over the course of the auction, whether or not the Number of Bidders is included as 

an explanatory variable. 

(Table A1 about here) 
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Table 1 Selected Summary Statistics for Sample of 236 Auctions 
Variable  Minimum Maximum Mean Total 
Posted List Price a 120 7999 1735 - 
Average Winning Bid b 29 3583 682 - 
Minimum Bid c 7 249 38 - 
Avg. Winning Bid as % of List Price a,d 18 58 39 - 
Bid Increment 3 20 15 - 
Number of Bidders 3 253 47 11120 
Units Available 2 61 11 2635 
Number of Bids 3 254 55 13080 
a Posted List Price is available for only 159 of the 236 auctions.   
b The Average Winning Bid for the list-price data subset is 689. 
c For uBid, the highest Minimum Bid was 99, with a mean of 9, for Onsale the lowest 
was 9, with a mean of 137. 
d Values for Maximum Bid as % of List Price are 20, 60, and 41 respectively. 
 
 
 
 
Table 2 Distribution of Bids by Time of Bid, Measured from Close of Auction 

Time of Bid, from Close of Auction a Number of Bids Percent of Bids 
last 90 minutes 3245 24.8 
1.5 – 10 hours 3993 30.5 
10 – 18 hours 1452 11.1 

> 18 hours 4390 33.6 
a 95% of auction closings occurred between noon and 9 p.m. PST, so the 10-hour 
cutoff tends to fall during nighttime and morning hours, a bit later in the East. 
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Table 3 Distribution of Auctions by 

Maximum Number of Items 
Requested in any Bid 

Maximum 
Requested Frequency Cumulative 

Percentage 
1  99 41.9 
2  67 70.3 
3  21 79.2 
4  21 88.1 
5  7 91.1 
6  6 93.6 

More  15 100 
 
 
 
 
Table 4 Logistic Regression of Jump Bid Flag and OLS Regression of 

Magnitude of Bid Increase 

Logistic Regression OLS Regression  
Coefficients p-value Coefficients p-value 

Intercept -0.8058 0 1.7877 0 
Percent Time of Bid -0.0164 0 -0.0208 0 
Number of Bidders 0.0019 0.0004 0.0053 0 
List Price in Increments 0.0039 0 0.0054 0 
Minimum Bid In Increments -0.0174 0.0005 -0.0182 0.0009 
6-11 Units Availablea 0.1570 0.1213 0.1125 0.3150 
12-61 Units Availablea 0.2648 0.0223 0.0337 0.7941 
Dealer Presence -0.0403 0.4714 0.0019 0.9768 
a For 2-5 Units Available both dummy variables = 0. 
Logistic regression pseudo R-squared = 0.086, OLS regression adjusted R-
squared = 0.115, p-values are two-tailed tests, n = 8631. 
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Table 5 Logistic Regression of Jump Bid Flag and OLS Regression of 

Magnitude of Bid Increase 
Logistic Regression OLS Regression  

Coefficients p-value Coefficients p-value 
Intercept -0.8275 0 1.7346 0 
Percent Time of Bid -0.0163 -0.0206 0 
List Price in Increments 0.0044 0 0.0069 0 
Minimum Bid In Increments -0.0249 0 -0.0367 0 
6-11 Units Availablea 0.2001 0.0468 0.2286 0.0403 
12-61 Units Availablea 0.4659 0 0.5680 0 
Dealer Presence 0.0014 0.9795 0.1103 0.0790 
a For 2-5 Units Available both dummy variables = 0. 
Logistic regression pseudo R-squared = 0.084, OLS regression adjusted R-
squared = 0.108, p-values are two-tailed tests, n = 8631. 
 
 
 
 
Table 6 Logistic Regression of More Than One Jump Bid per Bidder, 

and OLS Regression of Total Number of Bids per Bidder 

Logistic Regression OLS Regression  
Coefficients p-value Coefficients p-value 

Intercept -5.0054 0 0.8724 0 
Jump on First Bid -0.9794 0 -0.0453 0.0002 
Percent Time of Bid -0.0143 0 -0.0006 0 
Number of Bidders -0.0040 0.0041 -0.0009 0 
List Price in Increments 0.0024 0.0005 0.0016 0 
Minimum Bid In Increments 0.1376 0 0.0258 0 
6-11 Units Availablea 1.6160 0 0.0784 0 
12-61 Units Availablea 2.5739 0 0.1481 0 
Dealer Presence 0.1317 0.3059 -0.0013 0.9126 
a For 2-5 Units Available both dummy variables = 0. 
Logistic regression pseudo R-squared = 0.089, OLS regression adjusted R-
squared = 0.147, p-values are two-tailed tests, n = 8015. 
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Table 7 OLS Regression of Total Number of Bids per Auction 

Panel 1 
No Interaction Term

Panel 2 
With Interaction Term

Panel 3 
No Avg. Jump Term 

 

Coefficients p-value Coefficients p-value Coefficients p-value
Intercept -9.6555 0 -11.8170 0 -14.1217 0
Avg. Magnitude of Jump 
Bids in Increments a -2.7880 0 -1.7164 0.1066 - -

Number of Bidders 1.0412 0 1.0335 0 1.0164 0
List Price in Increments 0.1242 0 0.1416 0 .1497 0
Min. Bid In Increments 0.9893 0 0.9872 0 1.0138 0
6-11 Units Available b 3.9782 0.1042 3.5627 0.1480 2.8870 0.2362
12-61 Units Available b 6.3039 0.0396 6.8032 0.0274 7.3359 0.0175
Dealer Presence 0.3382 0.8766 0.5459 0.8022 .7936 0.7165
Avg. Mag. of Jump Bids  
x List Price in Increments - - -0.0057 0.2014 -.0115 0
a Average Magnitude of Jump Bids is taken over the first 10% of elapsed auction time.  
b For 2-5 Units Available both dummy variables = 0. 
Adjusted R-squared = 0.938 for all three models, p-values are two-tailed tests, n = 159. 
 
 
 
 
 
Table A1 OLS Regression of Magnitude of Bid Increase, Conditional 

on a Jump Bid Being Observed 

Full Model Without N Bidders  
Coefficients p-value Coefficients p-value 

Intercept 4.1670 0 4.0205 0 
Percent Time of Bid -0.0369 0 -0.0367 0 
Number of Bidders 0.0107 0 - - 
List Price in Increments 0.0093 0 0.0125 0 
Minimum Bid In Increments 0.0029 0.8290 -0.0386 0.0017 
6-11 Units Availablea -0.2425 0.4393 0.0153 0.9612 
12-61 Units Availablea -0.9307 0.0086 0.2350 0.4511 
Dealer Presence 0.0776 0.6433 0.3269 0.0476 
a For 2-5 Units Available both dummy variables = 0. 
Adjusted R-squared = 0.163 for full model, 0.149 for reduced model,  
p-values are two-tailed tests, n = 2531. 
 
 
 


