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Abstract 

The jump condition at a possibly non-material interface for geometrically-necessary dislocation density in Field 
Dislocation Mechanics (FDM) and its averaged approximation, Phenomenological Mesoscopic FDM (PMFDM), is 
derived. In the context of grain boundaries, the condition implies a tensorial constraint on all five grain boundary 
parameters, slip transmission at the boundary, possible grain boundary motion, and dislocation 
nucleation/annihilation at the grain boundary.  The jump condition is physically interpreted in special cases, and the 
importance of  understanding dislocation motion at a boundary/interface as a flux across curves, and not surfaces, is 
emphasized. 
 

1. Introduction 

The implication of balance of Burgers vector content for arbitrary area patches in a finitely 
deforming body, in the limit when such patches contract to curves on a moving surface of 
discontinuity in the material, is the focus of this paper. The result expresses a certain equality of 
generalized slipping rates, evaluated on either side of the interface. The basic areal balance 
statements belong to the theories of FDM [1] and PMFDM [2]; for kinematics in bulk regions 
with smooth fields, FDM borrows the fundamentals deduced in [3].  

For other theories of slip transmission conditions at grain boundaries that do not migrate with 
respect to the material, we refer to [4], [5], [6], and [7]. Experimental work relevant to GND in 
relation to grain boundaries are [8], [9], [10].  

2. Notation 

The symbol ∀  is shorthand for ‘for all’; ∪  stands for ‘union of’(sets of points), and ⇒  for 
‘implies’. A superposed dot on a symbol represents a material time derivative. The statement 

:a b=  is meant to indicate that a is being defined to be equal to b . We denote by Ab  the action 
of the second-order tensor A  on the vector b , producing a vector. A ⋅  represents the inner 
product of two vectors. The symbol AB  represents tensor multiplication of the second-order 
tensors A  and B . 

All spatial derivative operators involve differentiation with respect to the current 
configuration. The curl operation on the current configuration and the cross product of a second-
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order tensor and a vector are defined in analogy with the vectorial case and the divergence ( div ) 
of a second-order tensor on the current configuration: for a second-order tensor A , a vector v , 
and a spatially constant vector field c , 

 
( ) ( )
( ) ( ) .

T T

T Tcurl curl

× = × ∀

= ∀

A v c A c v c

A c A c c
 (1) 

In rectangular Cartesian components, 

 
( )
( ) , ,

mjk ij kim

mjk ik jim

e A v

curl e A

×A v =

A =
 (2) 

where mjke  is a component of the third-order alternating tensor and the spatial derivative, for the 

component representation, being with respect to rectangular Cartesian coordinates on the current 
configuration. For all manipulations with components, we shall always use such rectangular 
Cartesian coordinates and spatial fields will be thought of as depending upon these coordinates 
as well as t , as is customary in an Eulerian setting. 

Given a (unit) normal direction N  (vector) and a second order tensor A , we refer to 

 
tan

,N

N

= ⊗

= −

A AN N
A A A

 (3) 

as the normal and tangential actions of the tensor Α . For a vector v we also define 

 ( )tan = − ⋅v v v N N  (4) 

3. The Conservation Law for Burgers vector content 

Two conservation laws of similar type are considered. The first corresponds to a theory that is 
assumed to be valid for the situation where all dislocations, described by a density function, are 
being resolved (i.e. a very fine scale of resolution). The corresponding statement for 
conservation of Burgers vector content is [1] 

 
a c a

d da d da
dt

=− × +∫ ∫ ∫α αn V x sn   ∀  a , (5) 

where a is any arbitrary material surface patch with boundary c , i.e. a bounded surface 
consisting of the same material particles, and n  is the unit normal field on a . In (5), α  is the 
two-point tensor of dislocation density, between the current configuration and the 
‘intermediate’/lattice configuration, V  is the dislocation velocity vector relative to the material, 
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and s  is the nucleation rate tensor. In regions of the body where all fields are smooth, the local 
form of (5) is given by [1] 

 
( ) ( )

( )

: ,

: ,

T

T

div curl

div

+ − = =− × +

= + −

α α α α α

α α α α

v L V s

v L
 (6) 

where v is the material velocity field and : grad=L v is the velocity gradient. It is shown in [1] 

that due to the fact that α  is a solenoidal field, i.e. divergence-free, the nucleation rate field s  
also has to be solenoidal and we can express s  as a curl locally. Hence we choose to write (6)1  

as 

 ( )curl curl=− × +α α ΩV , (7) 

for some second-order tensor-valued nucleation rate potential fieldΩ , and (5) may alternatively 
be written as 

 ( )
a c a

d da d curl da
dt

=− × +∫ ∫ ∫α α Ωn V x n  ∀  a . (8) 

Now 

 ( ){ } , , , ,
T

ik t ik j j ik j j ij k jik
ik

div v v vα α α α
⎛ ⎞⎟⎜ = + − = + + −⎟⎜ ⎟⎜⎝ ⎠
α α α αv L , (9) 

and since , 0ij jα = , 

 ( ), ,
.ik t ik j ij k j

ik

v vα α α
⎛ ⎞⎟⎜ = + −⎟⎜ ⎟⎜⎝ ⎠
α  (10) 

If we define a second-order tensor p  by the relation 

 :kjm im ik j ij ke p v vα α= − , (11) 

it follows that 

 ( )1 ,
2

.

ir kjr ik j ij k rkj ik jp e v v e vα α α= − =

⇒ = ×αp v
 (12) 

Hence (7) may be expressed as the following field equation in the Eulerian setting: 

 ( ){ }curl curl
t

∂
=− × + +

∂
α α ΩV v . (13) 

To get an idea of the type of equation that running space-time averages of the field α  might 
satisfy, we consider (13) to be defined in all of space and use the following averaging operator 
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(cf. [2]): For a microscopic field f  given as a function of space and time, we define the 
mesoscopic space-time averaged field f  as follows: 

 ( )
( )

( )( )

( ) ( )
3

1, : , ,
I t

f t w t t f x t d dt
w t t d dt Ε

Ω

ℑ
′ ′ ′ ′ ′ ′= − −

′ ′ ′ ′− −
∫ ∫

∫ ∫ x

x x x , x
x x , x

 (14) 

where 3Ε  is all of space and ℑ  a sufficiently large interval of time. In the above, ( )Ω x  is a 

bounded region around the point x  with linear dimension of the order of the spatial resolution of 
the macroscopic model we seek, and ( )I t  is a bounded interval in ℑ  containing t . The averaged 

field f  is simply a weighted, space-time, running average of the microscopic field f . The 
weighting function w  is non-dimensional, assumed to be smooth in the variables , , ,t t′ ′x x  and, 
for fixed x  and t , have support (i.e. to be non-zero) only in ( ) ( )I tΩ ×x  when viewed as a 

function of ( ), t′ ′x . Applying this operator to both sides of (13), and under the assumption that 

 ≈v v  (15) 

implying that the fluctuations in the material velocity field are negligible (which may be justified 
in a setting where material-inertia forces are neglected), we obtain the equation (cf. [1]) 

 ( ) ( )pcurl curl curl
t

∂
= + × =− × + +

∂
αα α α Ωv V L , (16) 

where 

 ( ) ( ) ( ) ( ) ( ) ( ), : , , , ,p t t t t t= − × = × − ×α α α αL x V x V x x V x , (17) 

and α  is defined as in (7) for the tensor α . Physically, pL  is representative of a portion of the 
average slip strain rate produced by the ‘microscopic’ dislocation density; in particular, it can be 
non-vanishing even when =α 0  and, as such, it is to be physically interpreted as the strain-rate 
produced by so-called ‘statistically-stored dislocations’ (SSD), as is also indicated by the 
extreme right-hand side of (17). The variable V  has the obvious physical meaning of being a 
space-time average of the pointwise, microscopic dislocation velocity (relative to the material). It 
should be noted that only spatial gradients (in particular, the curl ) of the SSD slipping rate 
affect the generation of GNDs, consistent with the physical interpretation of a dislocation being 
the boundary between differently slipped regions. 

In a phenomenological approach to closure, the physical quantities V  and pL  have to be 
constitutively specified. Due to the physical interpretation of pL  as the slipping produced by 
SSDs within the averaging domain, it is natural to expect that it must depend weakly on α , if at 
all; as it  represents the total plastic shearing produced by spatially unresolved loops within the 
averaging volume, conventional plasticity representations of sums of  simple shearings on 
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individual slip systems driven by stress and resisted by strength would be appropriate as a first-
order approximation. On the other hand, accepting (5) as a fundamental balance law along with 
the averaging operator (14) does not naturally allow for the definition of slip-system averaged 
GND densities and corresponding velocities. It should be noted, however, that the latter fact does 
not prevent slip system like behavior to be displayed, e.g. consider a fine scale α  distribution of 
the same sign on a single slip system. Then, by definition α  would mimic the characteristics of 
the fine-scale distribution, as it should. 

If we now imagine a body moving with a material velocity field v  and for regions within the 
body where all fields are smooth, (16) may alternatively be written as 

 ( ) ( )p

a c a

d da d curl da
dt

=− × + +∫ ∫ ∫α α Ωn V L x n    ∀  a , (18) 

where a  is any material surface patch in the region of smoothness.  
We now postulate that, regardless of smoothness, (18) is the conservation law for 

conservation of Burgers vector content in the averaged theory. 
Thus, in view of (8) and (18), and dropping overhead bars for convenience, we are faced with 

the task of deducing jump conditions at a surface of discontinuity in the body for an equation of 
the type 

 ( )
a c a

d da d curl da
dt

= +∫ ∫ ∫α Ωn f x n   ∀  a  (bounded by c ), (19) 

where f  is an appropriate second-order tensor field characterizing the flux of Burgers vector 

(per unit length,  per unit time) across arbitrary curves defined by  

 ( )   PMFDM
 

  FDM.

p⎧⎪− × +⎪=⎨⎪− ×⎪⎩

α

α

V L
f

V
 (20) 

In the following, we shall refer to ×f N  as the flow of f  at a surface with unit normal field 

N . The flow physically characterizes the flux of Burgers vector carried by dislocation lines (per 
unit length per unit time) across any curve on the surface described by N , as is shown in 
Section 5. In addition, the flow needs to be specified at (parts of) the boundary of 3-d spatial 
domains on which (16) is solved. 

4. The jump condition 

The jump condition is derived using established methods of continuum mechanics (see, e.g., Sec. 
192, [11]). To the author’s knowledge, there are three different techniques by which the same 
jump condition may be derived. The first is the method employed in this paper, working directly 
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with the 3-d conservation law in integral form. The second is to use a weak formulation of the 
governing differential equation on arbitrary 4-d domains, along with some assumptions about the 
geometric structure of space-time; we do not prefer this here, as the hypothesis of the weak 
statement being valid on arbitrary domains (possibly containing a surface of discontinuity)  as 
well as the geometric assumptions appear to be extraneous. A possible third method involves 
conservation laws in space-time  within the framework of world-invariant kinematics ([11], Secs. 
152, 273, 277, 278), again requiring added geometric assumptions about the structure of 4-d 
Euclidean space-time. 

With reference to Fig. 1, we consider a moving surface of discontinuity s  with unit normal 
field N , traversing through a pill box volume of fixed material particles deforming and moving 
with the material velocity field v . The velocity field u  of the surface of discontinuity is defined 
as 

 : Nu=u N , (21) 

where Nu  is the normal speed of the interface. 
The material volume ( )V t  is the union of two generally non-material volumes ( )1V t  and 

( )2V t  separated by ( )s t . This is because the interface moves relative to the material. By a non-

material volume we mean a (generally time-varying) set of points in space that does not consist 
of the same material particles with the progress of time. Similarly, ( )a t  is an arbitrarily oriented, 

materially deforming, area patch contained in ( )V t , consisting of an identical set of material 

particles with the progress of time. The intersection of ( )a t  and ( )s t  is denoted by the curve 

( )c t  that forms the boundary of the non-material area patches ( )1a t  and ( )2a t , for all instants in 

at least some interval of time. At any instant in this interval, the union of the non-material area 
patches 1a  and 2a  is the  material area patch a . 

Let n  be the unit normal field on a . Then 

 
( ) ( ) ( )1 2a t a t a t

d dda da da
dt dt

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫ ∫α α αn n n . (22) 

We now consider the time-varying, non-material volumes ( )1V t  and ( )2V t  to be configurations 
at the time t  of fictitious motions of fixed (in time) reference volumes 1RV  and 2RV . This implies 

that ( ) ( )( )1 2a t a t  maps to a fixed area patch ( )1 2R Ra a  contained in ( )1 2R RV V . Also, for such 

motions, say ( )1 2
∗ ∗m m  that maps ( )1 2R RV V  to ( )1 2V V , the velocity field of the points of 

( ) ( )( )1 2V t V t  coincident with ( )s t  is u  and those coincident with the top (bottom) of the pill box 

is ( )tv . Let the velocity field corresponding to the motion ( )1 2
∗ ∗m m  be denoted by ( )1 2

∗ ∗v v . A 

term like 
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( )1a t

d da
dt ∫ αn  (23) 

may now be evaluated by transforming the area integral to an integral over 1Ra , pushing the time 

derivative inside the integral, performing the time derivative, and then transforming the resulting 
integral back to an integral over 1a [1]; the result, for the 1 side, is 

 
( ) ( )1 1

1

a t a t

d da da
dt

∗

=∫ ∫α αn n  (24) 

where 

 ( )
1

1: curl
t

∗
∗∂

= + ×
∂
αα α v . (25) 

We now define the limits of fields approaching s  from the top of the pill box with a subscript 
1 and limits of fields approaching s  from the bottom with a subscript 2 . Equation (19) may be 
expressed as 

 
( ) ( )

( ) ( ) ( )
1 2 1 2

1 2

1 2

2 1     = ,

a a a a

a a a c

da da curl da curl da
t t

d curl da curl da d

∗ ∗

∂

∂ ∂
+ + × + ×

∂ ∂

+ + + −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

α α α α

Ω Ω Ω Ω

n n v n v n

f x n n x
 (26) 

where a∂  is the boundary of the area patch a , and we have assumed that the field Ω  is the 
possibly discontinuous limit of a sequence of differentiable functions, with discontinuity 
concentrated on s . We also have 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

a c l c r

a c r c l

curl da d d d d

curl da d d d d

∗ ∗ ∗

∗ ∗ ∗

× = × + × + × + ×

× = × + × − × + ×

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

α α α α α

α α α α α

v n v x v x u x v x,

v n v x v x u x v x.
 (27) 

Applying (26) to progressively thinner pill boxes, we observe that in the limit of the pill box 
collapsing on to s  and then shrinking the curve c  to a point we obtain the relationship 

 { }d× − × − − =α α Ωv u f x 0 , (28) 

where 2 1:z z z= − , and since the area patch could have been oriented arbitrarily, (28) must hold 

for all tangent directions dx  on the surface s . An alternative way of stating the same fact is 

 ( ){ }× − − − × =α Ωv u f N 0 , (29) 

and we obtain  

 ( ) ( )N Nu u− ⋅ = × + × − ⊗ −α Ω αv N f N Ν N v N . (30) 
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Hence, the jump condition for GND evolution is given by 

 ( )tan tanNu× = − ⋅ + ⊗ − ×α α Ωf N v N N v Ν . (31) 

It is interesting to note that the jump condition does not involve, and hence leaves unconstrained, 
the normal actions 

N
f , 

N
Ω . 

5. Some physical implications 

For practical purposes, the jump condition (31) is to be interpreted as specifying the Burgers 
vector flow on one (arbitrarily chosen) side of the interface. The application of the condition 
admits (requires) constitutive equations for the relative interface velocity Nu − ⋅v N  and for 
dislocation nucleation/annihilation rate at the interface characterized by Ω . We now consider 

some simple cases to gain physical insight. 
Case 1: 0Nu = , =v 0 , =Ω 0 , i.e. no interface or material motion and no dislocation 

nucleation at the interface. In this case the jump condition reduces to 

 × =f N 0 . (32) 

It suffices to consider the PMFDM case as the FDM case is similar (and simpler). Let pL  be of 
the form [2] 

 1
0 0

p eκ κ κ

κ

γ −= ⊗∑L m n F , (33) 

where eF  is the elastic distortion tensor, slip systems are indexed by κ  with unstretched unit 
slip direction 0

κm  and unit slip plane normal 0
κn , and κγ  is the scalar slipping-rate on the system 

κ . The slipping rates are constitutively specified, e.g. standard power-law relationships based on 
slip system resolved shear stress and strength. Thus, in the case where the interface is a grain 
boundary, 

 ( ) 1
tan tan 0 0

eκ κ κ

κ

γ −− ⋅ + ⊗ + ⊗ × =∑α αV N N V m n F N 0 , (34) 

and the fact that the slip system vectors on both sides of the interface as well as the interface 
normal appear in the jump condition implies that all five grain boundary parameters affect slip 
transmission at the boundary along with the GND content and the GND velocity one either side 
of the boundary. 

Clearly, if ≠Ω 0 , then dislocation nucleation would also affect the slip transmission. As a 

practical matter, say for computation, (34) would be utilized to set boundary conditions as 
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 ( ) 1
2 tan tan 0 0

eκ κ κ

κ

γ −
⎧ ⎫⎪ ⎪⎪ ⎪× = − ⋅ + ⊗ + ⊗ ×⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∑α α
1

f N V N N V m n F N . (35) 

Case 2: =v 0 , =Ω 0 , i.e. no material motion and no dislocation nucleation at the 

interface. Following similar arguments as in Case 1, the flow on the 2 -side of the interface is 
given by 

 ( ) 1
2 tan tan 0 0 tan

e
Nuκ κ κ

κ

γ −
⎧ ⎫⎪ ⎪⎪ ⎪× = − ⋅ + ⊗ + ⊗ × +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∑α α α
1

f N V N N V m n F N . (36) 

Assuming the moving surface of discontinuity to be a moving grain boundary, this suggests that 
the flow on one side of the grain boundary is equal to its value on the other side plus a flow 
arising due to the motion of the grain boundary relative to the material and the presence of a 
discontinuity in the tangential action of the dislocation density tensor across the interface. The 
jump in tanα  may be visualized as a virtual dislocation density situated on the moving boundary; 

since there is no material motion, this virtual dislocation density travels across material curves 
instantaneously coincident with the boundary, and this corresponds to a flux. 

Allowing for the presence of dislocation nucleation and non-vanishing material velocity, this 
case may relate to a polycrystalline material under extreme shock loading. 

Case 3: FDM, =v 0 , 0Nu > , 1 ,  0= ⊗ ⋅ =α b t N t , 2 =α 0 , 1 Nu⋅ =V N , =Ω 0 . This case 

represents a straight dislocation on the 1 side with line direction parallel to the interface, moving 
with identical velocity to the interface (e.g. a grain boundary traversing the material with a 
dislocation at fixed distance form it following it with identical velocity). There is also no 
material deformation. We assume N  points from the 1 to the 2  side, without loss of generality. 
In this case, 

 ( ) ( )2 1 1 1 2 1 1N N Nu u u× + × × =− ⇒ × =− − − =α α α αf N V N f N 0 . (37) 

Recalling the physical meaning of df x  as a flux of Burgers vector per unit time carried by 

dislocation lines across material curves, this result makes sense since the persistent value of 
2 df x  obtained from (37) refers to the flux across different material curves (parallel to the 

interface) on the 2-side on which no dislocations exist. Even though the dislocation on the 1-side 
makes forward progress, it is only by the same amount as the interface so that the curves on the 
2 -side on which we probe 2α  and 2f  maintain a fixed distance from the moving dislocation. 
Were 2 df x  to be the flux across a  fixed  material curve on the 2 -side, then, of course, there 

would be a non-vanishing flux across such a curve once the dislocation from the 1-side arrived 
on it. Likewise, even though the physical picture following the interface is static, there is a non-
zero flux across the moving non-material curve on which the dislocation resides on the 1-side, 
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since the velocity of the material particles instantaneously coincident with this curve at all times 
is zero. 

Case 4: Nu = ⋅ ⇒ ⋅v N v N  is continuous; =Ω 0 ; =αN 0 ; tan ≠v 0 . This is the case 

where the normal action of the dislocation density tensor is continuous across the interface and 
the material motion corresponds to a contact discontinuity at the interface (e.g. idealized grain 
boundary sliding). For simplicity, we also assume 1 2= = ⊗α α b N . In this case, 

 2 1 tan× = × + ⊗f N f N b v , (38) 

Assuming b  to be parallel to the interface so that an edge dislocation runs perpendicular 
through the interface, the existence of a contact discontinuity implies the production of a screw 
density at the interface. This is reasonable if one assumes the relative lattice displacement across 
the interface is of the same type as the discontinuity in the material deformation. 

Case 5: Finally, we end by considering the physical interpretation of the dislocation flow at a 
boundary/interface given by 

 ( )× ×α V N . (39) 

Here V  is the dislocation velocity and N  the unit outward normal to the body. Now, the flow 
may be decomposed as 

 ( ) ( )tan tan× × =− ⋅ + ⊗α α αV N V N N V . (40) 

In the first instance, consider α  at the boundary to be of the form = ⊗α b t , with t  parallel to 
the boundary and V  parallel to N so that tan=α α , N =α 0 . Fig. 2 (a) shows that in this case 

(39) may be interpreted both as a flux into the body  through the surface s , as well as a flux into 
the area a  through the curve c . 

Next consider = ⊗α b t , with t  parallel to N  and V  parallel to the boundary, i.e. 
0⋅ =V N , so that N=α α , tan =α 0 . In this case, the flow cannot be considered as a flux 

into/out of the body through s ; however, it is a flux through the boundary curve c  into some 
surface patch in the body like a , as shown in Fig. 2(b), and hence it is not surprising that it 
appears in the jump condition. 
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Fig. 2. Kinematics of dislocation motion at a boundary/interface. 
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