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Abstract. Taking into account the pressure anisotropy in the
solar wind, we study the magnetic field and plasma param-
eters downstream of a fast shock, as functions of upstream
parameters and downstream pressure anisotropy. In our the-
oretical approach, we model two cases: a) the perpendicular
shock and b) the oblique shock. We use two threshold condi-
tions of plasma instabilities as additional equations to bound
the range of pressure anisotropy. The criterion of the mirror
instability is used for pressure anisotropyp⊥/p‖ > 1. Anal-
ogously, the criterion of the fire-hose instability is taken into
account for pressure anisotropyp⊥/p‖ < 1. We found that
the variations of the parallel pressure, the parallel tempera-
ture, and the tangential component of the velocity are most
sensitive to the pressure anisotropy downstream of the shock.
Finally, we compare our theory with plasma and magnetic
field parameters measured by the WIND spacecraft.

1 Introduction

For a collisionless magnetoplasma, Chew, Goldberger, and
Low (1956) derived the quasi-magnetohydrodynamic equa-
tions with an anisotropic pressure tensor. This pressure ten-
sor is characterized by two scalar pressures, i.e.

Pik = p⊥δik + (p‖ − p⊥)BiBk/B
2, (1)

wherep⊥ andp‖ are the pressures perpendicular and paral-
lel with respect to the magnetic field, respectively. For the
strong magnetic field approximation, the two pressures are
related to the plasma density and the magnetic field strength
by two adiabatic equations,
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This approach is known as the double adiabatic theory.
The general jump conditions for discontinuities in a col-

lisionless anisotropic magnetoplasma in the Chew-Goldber-
ger-Low approximation were derived by Abraham-Shrauner
(1967). Lynn (1967) made a qualitative analysis of the
jump conditions for the change of plasma parameters be-
tween two stationary, uniform plasma regions and specified
them as contact, tangential, rotational discontinuities, and
compressible shocks. For the latter, the coplanarity theo-
rem was taken into account. Neubauer (1970) obtained so-
lutions of the jump relations for shocks moving into a col-
lisionless anisotropic magnetized plasma under the assump-
tion of isotropic conditions downstream of the shock front.
Furthermore, Hudson (1970) discussed the types of discon-
tinuities in a magnetohydrodynamic fluid with anisotropic
plasma pressure and gave rules based on their identification
in the solar wind.

Evidence for pressure anisotropy in the solar wind comes
from spacecraft measurements. The Ames Research Center
(ARC) plasma probe on Pioneer 6 showed that the thermal
anisotropy, in general, hasT‖ > T⊥. A possible explanation
on this special feature of the solar wind is discussed by Scarf
et al. (1967), taking into account the conservation of the first
adiabatic invariant. The opposite case,T‖ < T⊥, is related
to strong local ion heating by macroscale compressions or
plasma instabilities (Bame et al., 1975).

Experimental data aspects were further included in the
work by Chao et al. (1995). They analyzed the Rank-
ine Hugoniot equations for the so-called quasi-perpendicular
shock for low plasma beta and isotropic conditions(T⊥ =

T‖) upstream of the shock. Using AMPTE/IRM spacecraft
data, they obtained the pressure anisotropy rate downstream
of the shock, as a function of the plasma betas and the ratio
of the magnetic field strengths across the shock. However,
their approach is not suitable for predicting magnetosheath
parameters as functions of the upstream solar wind param-
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eters, since their solutions are only applicable for concrete
local data analysis at the shock.

To solve the jump equations for anisotropic plasma con-
ditions upstream and downstream of the shock, one has to
use an additional equation, since the set of equations is un-
derdetermined. Therefore, experimental studies of the ther-
mal behaviour of the magnetosheath, the region between the
bow shock and the magnetopause, might be taken into ac-
count. Using data from the AMPTE/IRM spacecraft, Hill et
al. (1995) have shown that the double adiabatic equations
do not hold in the magnetosheath. Moreover, the thermal be-
haviour of the magnetosheath is studied by Phan et al. (1996)
using WIND spacecraft data. They report that most parts of
the magnetosheath are marginally mirror unstable.

Erkaev et al. (2000) solved the set of jump equations
for perpendicular and oblique shocks for arbitrary pressure
anisotropy downstream of the shock. In their analysis, mag-
netosheath parameters, as functions of upstream solar wind
parameters, are obtained in a wide range of Alfvén Mach
numbers (3≤ MA ≤ 10) without any restrictions on the
Rankine Hugoniot equations. It is important to note that their
calculations are applicable for a wide range of plasma betas,
various pressure anisotropy rates, and different shock geome-
tries upstream of the fast shock wave. Furthermore, Erkaev
et al. (2000) used the criteria of the fire-hose and mirror
instability as additional equations to determine the pressure
anisotropy downstream of the shock. These two threshold
conditions give some additional restrictions to the behaviour
of the plasma upstream and downstream of the shock wave
and therefore, the anisotropy rate cannot be outside of the in-
terval determined by the threshold of these two plasma insta-
bilities. Since the Rankine Hugoniot equations can only be
applied to regions close to the shock wave, the use of these
plasma instabilities, which are identified by spacecraft mis-
sions (e.g. Hill et al., 1995; Phan et al., 1996), gives some
boundaries for the pressure anisotropy for either side of the
shock. Different pressure anisotropy rates in the solar wind
were examined by Biernat et al. (2000), Kiendl et al. (2000)
and Vogl et al. (2000).

This paper is organized as follows: in the next section, we
discuss the basic equations and specify the input parameters.
What follows is the study of the variations of the plasma pa-
rameters and the magnetic field strength from upstream to
downstream for the perpendicular and the oblique shock fol-
lowing the technique performed by Erkaev et al. (2000). In
Sect. 4, we use a data example from the WIND spacecraft
to determine the input parameters, solve the set of equations,
and compare our theoretical results with the measurements.

2 Basic equations

The general jump conditions for a discontinuity in an aniso-
tropic magnetoplasma are given by (Hudson, 1970)[[
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whereρ is the mass density,v andB are the velocity and
magnetic field strength. Subscriptst andn indicate tangen-
tial and normal components with respect to the discontinuity.
Quantitiesp⊥ andp‖ are the elements of the plasma pressure
tensor perpendicular and parallel with respect to the magnetic
field. QuantityE is the internal energy,E = p⊥ + p‖/2, and
[[Q]] = Q2 − Q1, where subscripts 1 and 2 signify the quan-
tity Q upstream and downstream of the discontinuity.

As mentioned above, we use the mirror instability criterion
as an additional relation to determine the pressure anisotropy
downstream of the shock (Hasegawa, 1975),

1 +

∑
species

β⊥

(
1 −

β⊥

β‖

)
< 0. (9)

In our calculations, we deal with two dimensionless parame-
ters,AS andAM , which are determined for upstream condi-
tions asAS = p⊥1/(ρ1v

2
1) andAM = 1/M2

A, whereMA is
the Alfvén Mach number. Furthermore, we introduce a co-
ordinate system to determine the components of the velocity
and the magnetic field strength upstream of the shock with re-
spect to the discontinuity (see Fig. 1). For shocks, the tangen-
tial components of the electric and magnetic fields are copla-
nar. Thus, the components of the magnetic field upstream of
the shock are given asBn1 = B1 cosγ andBt1 = B1 sinγ ,
whereγ is the angle between the magnetic field vector and
the vector normal to the discontinuity. Similarly, the compo-
nents of the bulk velocity upstream of the shock are chosen
as vn1 = v1 cosα and vt1 = v1 sinα, whereα the angle
between the bulk velocity and the normal component of the
velocity. Furthermore, we introduce a parameterλ = p⊥/p‖

which determines the pressure anisotropy. Using this param-
eter, we are able to express the parallel pressure upstream of
the shock asp‖1 = p⊥1/λ1. From the conservation of mass,
we definey = ρ1/ρ2 andBn1 = Bn2 is taken into account.

3 Results

3.1 Solution for the perpendicular shock

First, we study the more simple particular case of the so-
called perpendicular shock, whereBn = 0. Thus, Eqs. (4) to
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Fig. 1. Sketch for the geometric situation of the problem.
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The quantities downstream of the discontinuity are

Bt2 = xBt1, (15)

vt2 = vt1, (16)

p⊥2 = p⊥1 +
B2

t1

8π
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2
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1
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)
. (17)

Substituting Eqs. (15)–(17) into the energy Eq. (14), leads
to

2λ1(3λ2 + 1)y3
− λ1(4λ2 + 1)(2AS + AM + 2)y2

+ λ2[2λ1(4AS + 1 + 2AM) + 2AS]y + AMλ1 = 0, (18)

wherey = 1/x.
Figure 2 shows, from top to bottom, the variations of the

plasma density, the velocity, the pressures and the tempera-
tures perpendicular and parallel to the magnetic field down-
stream of the shock as functions of the anisotropy parame-
ter, λ2, for different Alfvén Mach numbers varying from 2
to 10. For all panelsAS = 0.01 andλ1 = 0.25 is used.

Fig. 2. Plasma parameters as functions of the anisotropy rate down-
stream of the perpendicular shock forAS = 0.01 andλ1 = 0.25.

The thick line appearing in each panel represents the mir-
ror criterion which divides all panels into stable (left side)
and unstable (right side) regions. All curves are monotonic
functions of the anisotropy rate,λ2, and the maximum of
the anisotropy parameter, bounded by the mirror instability,
increases substantially asMA decreases. As seen from the
figure, the changes of all parameters from upstream to down-
stream are strongly influenced by the Alfvén Mach number.
High Alfv én Mach numbers correspond to stronger changes
in the plasma parameters than low Alfvén Mach numbers.
Figure 3 shows the same quantities as seen in Fig. 2, but for
AS = 0.04. In Fig. 4, we show the plasma parameters as
functions of the Alfv́en Mach number for different values of
AS , AS = 0.01 andAS = 0.04.
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Fig. 3. Plasma parameters as functions of the anisotropy rate down-
stream of the perpendicular shock forAS = 0.04 andλ1 = 0.25.

3.2 Solution for the oblique shock

In this section, we derive the jump equation for the case of
an oblique shock. Solving the set of Eqs. (4–8), we introduce
the parameter,ε,

ε = 1 −
4π(p‖ − p⊥)

B2
2

(19)

and obtain two equations which have to be solved simultane-
ously (Erkaev et al., 2000),
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2
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where the coefficients are given as

A4 = 64π3(1 + 3λ2),

Fig. 4. Plasma parameters as functions of the Alfvén Mach number
for the perpendicular shock for two different values ofAS .
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Fig. 5. Plasma parameters and magnetic field strength as functions
of the anisotropy rate downstream of the oblique shock forAS =

0.01,λ1 = 0.25, andγ = 45◦.

D0 = 64π3y2(1 − λ2)(y − I1) + 16π2B2
n1y

2

+ 8π2(1 + λ2)(J1Bn1 + H1)
2.

Here,H1 is the tangential component of the electric field,I1
is the normal component of the momentum flux,J1 is the tan-
gential component of momentum flux, andW1 is the energy
flux upstream of the shock,
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In Fig. 5 we show the variations of the plasma density, the
normal and tangential components of the velocity and the
tangential component of the magnetic field strength as func-
tions of the pressure anisotropy downstream of the shock in
the case of an oblique shock for different Alfvén Mach num-
bers,MA = 3, 5, 8, 10 and a fixed parameterAS = 0.01.
The angle between the normal vector of the discontinuity and
the magnetic field upstream of the shock,γ , is chosen to be
45◦. For the same shock, Fig. 6 shows the variations of the

Fig. 6. Thermal plasma parameters as functions of the anisotropy
rate downstream of the oblique shock forAS = 0.01, λ1 = 0.25,
andγ = 45◦.

thermal quantities, i.e. the perpendicular and parallel pres-
sures and temperatures, as functions of the anisotropy rate,
p⊥2/p‖2. On the left side in each panel, all curves start from
the points corresponding to the criterion of the fire-hose in-
stability, β‖ > 2 + β⊥. Similar to Figs. 2 and 3, the thick
solid line appearing in each panel corresponds to the crite-
rion of the mirror instability separating into stable (left side)
and unstable (right side) regions. Figures 7 and 8 are similar
to Figs. 5 and 6, but all calculations are done forAS = 0.04.

3.2.1 Entropy across the shock

In this paragraph, we concentrate on the change of the to-
tal entropy through the shock wave. For the thermody-
namic reversible process, the entropy variation is related to
the heat flux,δQ, and defined asdS = (δQ)/T , whereas
for the irreversible thermodynamic process, the inequality
dS > (δQ)/T holds. In the case of pressure anisotropy,
two degrees of freedom (perpendicular and parallel) are not
in thermal equilibrium and hence, two adiabatic laws and two
entropy functions are considered,

S⊥ = kB ln

(
p⊥

ρB

)
and S‖ =

kB

2
ln

(
p‖B

2

ρ3

)
, (26)

wherekB is the Boltzmann constant. Inside the shock front,
the kinetic energy is converted into thermal energy and the
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Fig. 7. Plasma parameters and magnetic field strength as functions
of the anisotropy rate downstream of the oblique shock forAS =

0.04,λ1 = 0.25, andγ = 45◦.

variations of the entropy functions are caused by heat fluxes,

T⊥dS⊥ = −q + q2 and T‖dS‖ = q + q1. (27)

Here,q1 andq2 are the positive external heat fluxes, andq

is the exchange heat flux between perpendicular and parallel
degrees of freedom. Summing up the Eqs. (27), one obtains
the differential of the total entropy,dS,

dS =
q(T⊥ − T‖)

T⊥T‖

+
q1

T‖

+
q2

T⊥

> 0, (28)

where

S = S⊥ + S‖ =
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2
ln

(
p2

⊥
p‖

ρ5

)
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In the right side of Eq. (28), the second term is obviously
positive because it is proportional to the heat flux related to
the dissipation of kinetic energy of the plasma flow. The first
term is proportional to the heat flux, which goes from the
perpendicular to the parallel energy. From thermodynamics,
it follows that this heat flux must be positive whenT⊥ > T‖,
and negative, whenT⊥ < T‖. Therefore, in all cases, the first
term in Eq. (28) must be positive, and hence, the variation

Fig. 8. Thermal plasma parameters as functions of the anisotropy
rate downstream of the oblique shock forAS = 0.04, λ1 = 0.25,
andγ = 45◦.

of the total entropy through the shock front must be positive.
The increase of total entropy is due to two sources: a) dissi-
pation processes in plasma and b) energy exchange between
the parallel and perpendicular degrees of freedom. In the
limit case of isotropy, the total entropy defined by Eq. (29)
becomes equal to the usual entropy expression for the ideal
gas with the polytropic index 5/3.

Figure 9 shows the total entropy difference at the fast shock
as function of the pressure anisotropy for different Alfvén
Mach numbers (MA = 3, 5, 8, 10), as obtained from our cal-
culations. Panel a) and b) correspond to different parame-
ters, i.e.AS=0.01, andAS=0.04. As seen from the figure, all
curves indicate the positive difference of the total entropy, as
required by (29).

4 Comparison with a data example

For comparing our theory with spacecraft data, we use
plasma and magnetic field observations made by the WIND
spacecraft for the time period from 19:00 UT until 20:00 UT
on 30 November 1994. The data are shown as the dots in
Fig. 10. They are measured during a subsolar pass of the
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Fig. 9. Total entropy difference as function of the anisotropy rate
downstream of the shock for different Alfvén Mach numbers: a)
corresponds toAS= 0.01 and b) corresponds toAS=0.04.

Earth’s magnetosheath. Figure 10 shows, from top to bottom,
the plasma density, the velocity, the magnetic field strength
and the perpendicular and parallel pressures and tempera-
tures with respect to the magnetic field. As seen from the fig-
ure, WIND crossed the Earth’s bow shock at approximately
19:20 UT.

From the solar wind measurements (time period from
19:00 UT until 19:20 UT), we obtain the following input pa-
rameters for our theoretical analysis:

– normal vector:nx = 0.99,ny = 0.10,nz = −0.04;

– dimensionless parameters:AS = 0.0055,AM = 0.017,
andλ1=0.25;

– angles:α = 9.47◦ andγ = 53.44◦.

where the coplanarity theorem of the velocity

n̂ =
v2 − v1

|v2 − v1|
(30)

is used to calculate the normal vector of the discontinuity
(Abraham-Shrauner and Yun, 1976). We note that these input
parameters represent a four point averaging of the solar wind
data close to the shock.

As seen from the figure, the shock shows an overshoot
region, where the plasma density and the magnetic field
strength have bigger values than the following data points
(on average). In obtaining the input parameters using the

Fig. 10. Comparison of theoretical results with plasma parame-
ters and magnetic field strength made by WIND spacecraft on 30
November 1994.

experimental data set, we do not take into account this over-
shoot region and consider only the points after it. As a next
step, we use these input parameters to calculate the varia-
tions of the plasma parameters and magnetic field strength
from upstream to downstream, as functions of the pressure
anisotropy rate downstream of the shock. Then, we use
the spacecraft observations to obtain the pressure anisotropy
downstream of the shock, which isλ2 = 1.65. Finally, we
calculate the variations of the physical quantities across the
shock with the above mentioned input parameters with the
specific value ofλ2. The thick line appearing in each panel
corresponds to our theoretical calculations. As seen from the
figure, our theory fits the spacecraft data well; the averaged
density jump from the data analysis is aboutρ2/ρ1 ∼= 3.17,
whereas our theory givesρ2/ρ1 ∼= 3.13.
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5 Discussion and conclusion

We have reported on the analysis of the perpendicular and
oblique fast shock for arbitrary pressure anisotropy upstream
and downstream of the discontinuity. For solving the jump
equations for an anisotropic magnetoplasma, the criteria of
the mirror and fire-hose instability have been taken into ac-
count as additional equations and restrictions to the magne-
toplasma on both sides of the shock. We analyzed all plasma
parameters and the magnetic field strength downstream of
the shock as functions of the anisotropy rate for different di-
mensionless parameters,AM andAS , and a given pressure
anisotropy rate upstream of the shock. Our results are use-
ful for analyzing magnetosheath parameters for given solar
wind conditions and are obtained without any assumptions
regarding the Rankine Hugoniot jump equations.

For the perpendicular shock, the fire-hose instability plays
no role as a bounding factor for low anisotropy rate. When
the anisotropy parameter,λ2, goes to zero, the density, paral-
lel pressure, and parallel temperature strongly increase espe-
cially for high Alfvén Mach numbers.

Furthermore, we examined the solution for an oblique
shock, which has an angle of 45◦ between the magnetic field
and the normal vector of the discontinuity. Some parameters
have relatively small variations as functions of the anisotropy
parameterλ2. These parameters are density, normal compo-
nent of the velocity, tangential component of the magnetic
field, perpendicular pressure, and perpendicular temperature.
Variations of other parameters, such as parallel pressure, par-
allel temperature, and the tangential component of the veloc-
ity are much more pronounced as functions of the anisotropy
rate downstream of the shock. The total entropy was shown
to increase through the fast shock front for a whole range of
Alfv én Mach numbers.

In the last section, we compared experimental spacecraft
data with our theory. The solar wind parameters were used as
input parameters for our theoretical calculations. We further
use this data set to obtain the pressure anisotropy downstream
of the shock and calculate the variations of the plasma param-
eters, as well as the magnetic field strength for this specific
value, which isλ2 = 1.65. The difference between theory
and observations turns out to be small, e.g. the averaged ob-
served jump of the density isρ2/ρ1 ∼= 3.17, whereas our
theoretical calculations givesρ2/ρ1 ∼= 3.13.
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