
Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform
Guodong Rong† Tiow-Seng Tan†

School of Computing, National University of Singapore

Figure 1: With the eight seeds (highlighted and shown in different colors) in a 64×64 grid on the leftmost picture, the progress of each round of the jump
flooding algorithm is shown in the other six pictures, with the rightmost being the computed Voronoi diagram.

Abstract
This paper studies jump flooding as an algorithmic paradigm

in the general purpose computation with GPU. As an example
application of jump flooding, the paper discusses a constant time
algorithm on GPU to compute an approximation to the Voronoi
diagram of a given set of seeds in a 2D grid. The errors due to the
differences between the approximation and the actual Voronoi
diagram are hardly noticeable to the naked eye in all our
experiments. The same approach can also compute in constant
time an approximation to the distance transform of a set of seeds
in a 2D grid. In practice, such constant time algorithm is useful to
many interactive applications involving, for example, rendering
and image processing. Besides the experimental evidences, this
paper also confirms quantitatively the effectiveness of jump
flooding by analyzing the occurrences of errors. The analysis is a
showcase of insights to the jump flooding paradigm, and may be
of independent interests to other applications of jump flooding.
CR Categories: I.3.1 [Computer Graphics]: Hardware Architecture –
Graphics Processors; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – Geometric algorithms, languages, and
systems; I.4.1 [Image Processing and Computer Vision]: Digitization and
Image Capture – Image Geometry.
Keywords: Digital geometry, Interactive application, Programmable
graphics hardware.

1. Introduction
The rapid advances in computational power and

programmable capability of GPU in PC have prompted many
research works in using GPU for general purpose computations.
In these works, the parallel nature of GPU computation is
exploited to gain huge speedup at a low cost; see [Owens et al.
2005]. In essence, one utilizes texture units in GPU like memory
units in CPU to facilitate computations, while achieving speedup
from working with texels (texture elements) in parallel via
multiple fragment processors in GPU. In another view, the
speedup with GPU computation is a result of the communications,
i.e. passing of data, in parallel among texels. To date, speedup is
mainly achieved with simple patterns of communication; little is
known on quantifying computational capability with different
patterns of communication. This paper studies a novel pattern of
communication called jump flooding with its applications to
computing Voronoi diagram and distance transform.

 †{rongguod | tants}@comp.nus.edu.sg

Let G be a space consisting of a set of points, and S be a
subset of points in G that are designated as seeds. A Voronoi
diagram of S is defined to be a partition of G into subspaces,
called Voronoi cells, where each subspace corresponds to one seed
s and contains all points of G that are closer to the corresponding
seed s than to any other seed, with respect to some fixed distance
function. For simplicity, points of G that are of equal distance to
two or more seeds are assigned arbitrarily to any of these seeds. A
point of G that is closest to three or more seeds is a Voronoi vertex
of these seeds.

In this paper, G is a discrete space that can be stored in a
texture unit in the GPU. For example, G is a 2D grid of 512×512
grid points where each is a texel. As G is a discrete space, there
may be none or more than one grid point with equal (closest)
distance to three or more seeds. So, we adapt the usual definition
of a Voronoi vertex to refer to any grid point whose (at most eight)
neighboring grid points (that sharing a side or a corner with the
grid point) belong to two or more other Voronoi cells.

Voronoi diagram is known for a long time due to its various
applications in geometric and graphics problems among others;
see [Aurenhammer 1991; Okabe et al. 1999]. A closely related
notion called distance transform was introduced by Rosenfeld and
Pfaltz [1966] for image processing applications. Distance
transform is an operation that takes a binary image to compute a
grayscale output image. The pixels in the binary image with value
0 are seeds, and 1 are background; the pixels in the output image
have real values where each indicates the distance from the pixel
to its closest seed.

To date, distance transform has found many uses in
applications beyond image processing such as in computer
graphics, pattern recognition, etc. Some example applications are:
skeleton computation [Montanari 1968; Danielsson 1980],
mathematical morphology operation [Ragnemalm 1992a], and
displacement mapping [Wang et al. 2003; Donnelly 2005].
Though there are already many approaches to compute distance
transform [Cuisenaire 1999], there are still unresolved issues:
many approaches compute only an approximation to the distance
transform in order to be efficient in applications, and they are
sequential in nature that have no good avenue for speedup with
parallel computation. All these limit their uses in, for example,
interactive applications that require real-time responses. The
major contributions of this paper are thus:

1. Presenting jump flooding as an efficient and effective
computational paradigm for GPU; and

2. Proposing, for an input set of seeds in a 2D grid, the first
parallel algorithm in GPU to compute in constant time (i.e.
independent of the number of seeds) a highly accurate
Voronoi diagram and distance transform.

The rest of the paper is organized as follows. Section 2
reviews related work in computing Voronoi diagram and distance
transform. Section 3 presents our jump flooding algorithm and its

dcstants
Text Box
In 2006 ACM Symposium on Interactive 3D Graphics and Games, 14-17 March, Redwood City,CA, USA, pp. 109-116, pp. 228.

variants to computing (an approximation to) Voronoi diagrams.
These algorithms with minor adjustment can also compute
distance transform. Section 4 analyses paths (patterns of
communication) in jump flooding due to a single seed, and
Section 5 quantifies grid points with errors (i.e. grid points where
our computed Voronoi diagram and the actual one have different
values) due to many seeds working in parallel during jump
flooding. Section 6 describes our experimental results to confirm
the effectiveness of jump flooding in computing Voronoi diagram
as well as distance transform. To illustrate the potential of the
jump flooding in higher dimensions, Section 7 presents our
simulation results of computing 3D Voronoi diagram. Finally,
Section 8 concludes the paper with potential future works.

The video accompanying this paper can be obtained from our
project webpage at: http://www.comp.nus.edu.sg/~tants/jfa.html.

2. Related Work
For our case of working with grid and GPU, it is

straightforward to obtain distance transform through Voronoi
diagram. In the following, we present the previous works as they
were originally discussed either for Voronoi diagram or distance
transform. On the former, we discuss in Section 2.1 known
approaches using GPU to compute Voronoi diagram in linear time.
These are to compare with our proposed algorithms that run in
constant time once the input seeds are stored in a texture unit. On
the latter, we outline in Section 2.2 the development of
fast-approximate to slow-exact distance transform algorithms, and
some conventional approaches adapted to parallelize these
sequential algorithms. A comprehensive survey on the distance
transform approaches can be found in [Cuisenaire 1999].

2.1. Voronoi Diagrams
Hoff et al. [1999] computes a 2D Voronoi diagram by

drawing (right-angle) cones with their apexes at the positions of
seeds. The image of the cones as viewed orthogonally from the
space of the seeds is a Voronoi diagram of the set of seeds. The
algorithm thus relies on the GPU to efficiently rasterize the cones
in time linear to the total number of triangles used to represent the
cones. As mentioned in [Denny 2003], one needs many more
triangles per cone than suggested in [Hoff et al. 1999] to compute
the correct Voronoi diagram in some extreme case. This is not
favorable for a large number of seeds. Denny [2003] presents a
variant of the above algorithm by drawing a quad with depth
texture, instead of cone, at each seed; see also [Strzodka and Telea
2004] for a similar method. This approach is faster but still
remains in time linear to the number of seeds.

The above approaches require to know the nature of each
seed, such as line segment or curve (not just regarded as a
collection of points) to construct quads or cones. They can be
cumbersome in processing general seeds that are complex objects
as these must first be discretized. Also, they cannot work directly
with inputs that are images as they must first extract the “seeds”
in the images to construct quads or cones. This limits their uses in
many image processing applications.

2.2. Distance Transforms
The algorithms for distance transform (DT) can be divided

into two categories: approximate DT algorithms and exact DT
algorithms. Generally, approximate DT algorithms, while having
some errors in the results, are much faster than exact DT
algorithms.

Approximate DT algorithms are usually using scan schemes
to achieve computational costs linear to the number of pixels (or
grid points). Two widely used methods are Chamfer distance
transform [Borgefors 1984] and sequential Euclidean distance
mapping [Danielsson 1980]. Both of these use a mask to perform

two passes scanning over the grid points of the image. In the first
pass, the mask moves from left to right, top to bottom. In the
second pass, the mask moves recessively from right to left,
bottom to top. When the center of the mask passes through a pixel,
the corresponding value of the pixel is updated.

There are many kinds of exact DT algorithms, such as
storing and sorting the front of the propagation [Ragnemalm
1992b; Eggers 1998], storing several closest seeds instead of just
storing the closest one [Mullikin 1992], using big mask
[Cuisenaire 1999] etc. All the above algorithms are sequential in
nature and rely on the order of the scanning where the value of a
pixel is determined by the value of those scanned before. They are
thus difficult to be parallelized.

Another kind of exact DT algorithm repeatedly applies a
mask on every pixel until no pixel has changed its value [Yamada
1984; Shih and Mitchell 1992; Huang and Mitchell 1994]. This
kind of algorithm may be executed on all the pixels in parallel, but
is not computationally efficient.

A parallel method proposed by Embrechts and Roose [1996]
divides the screen into several sub-regions and then uses
multi-processor computers to process them simultaneously. This
algorithm needs to address the influence due to neighboring
sub-regions. As it is not parallel on the pixel level, it is not
suitable for GPU.

Interestingly, a truly massively parallel algorithm on distance
transform was mentioned by Danielsson [1980]. At that time, no
practical hardware was available to execute the presented
algorithm. Though our proposed algorithms are the same in spirit
to that proposed by Danielsson, they were discovered independent
of the work of Danielsson as we were researching on parallel
computation for Voronoi diagram on GPU. Danielsson stated in
his paper that the work was merely a curiosity with no practical
use at that time, whereas we have in this paper advanced the
understanding and feasibility of jump flooding in GPU.

3. Flooding in Logarithmic Steps
To compute the Voronoi diagram for a 2D grid of size n×n

with a given set of seeds at some grid points, we are interested to
propagate the content (in particular, position information) of each
seed s to each grid point so that each grid point can decide which
seed is its closest one.

To achieve this for s, one standard algorithm is to flood the
content in increasing distance from s outward, similar to a ripple
effect starting at s. In the first round (of flood), we pass the
content of s to its (maximum) eight neighboring grid points. From
the second round onward, we pass on the content to grid points
neighboring those which have just received the content in the
previous round. This is repeated, in the number of rounds linear to
n, till all grid points have received the content.

The above algorithm does not flood efficiently, with the
currently available GPUs, as each grid point participates in just
one round of passing on (non-repeating) content throughout the
process. Section 3.1 discusses our proposed Voronoi diagram
algorithm that avoids the above inefficiency. Section 3.2 provides
some details on implementing our algorithm with GPU, and
Section 3.3 presents more variations to the basic algorithm in
Section 3.1.

3.1. Jump Flooding Algorithm
The above flooding can be seen as one where each round is a

flood of step length of 1, i.e. each grid point (x, y) passes on its
content to other grid points at (x+i, y+j) where i, j∈ {–1, 0, 1}. In
contrast, Figure 2 shows two efficient ways one can flood the
content of a seed (shown shaded) in logn rounds to all the other
grid points, by varying the step length in each round, either
doubling as in Figure 2(a) or halving as in Figure 2(b). Formally,

a flood of step length of k in a round, or simply a round with step
length of k, is such that the grid point (x, y) passes on its content to
other grid points at (x+i, y+j) where i, j∈ {–k, 0, k}. It is easy to
show that (see Section 4) the content of a seed can reach all other
grid points in such a jump flooding scheme of logn rounds.

With the above process on a single seed, we can extend it
straightforwardly to design an algorithm, called jump flooding
algorithm (JFA) to compute the Voronoi diagram for a given set of
seeds in an n×n grid as follows. Without loss of generality, we can
assume n is a power of 2.

There are logn rounds of flood with step lengths of n/2,
n/4, …, 1. At the beginning, each grid point with a seed s records
〈s, position(s)〉 to indicate its closest seed found so far is s at the
indicated position (which is itself), whereas the other each records
〈nil, nil〉. In a round with step length of k, each grid point (x, y)
passes its closest seed to other grid points at (x+i, y+j) where i,
j∈ {–k, 0, k}. In a symmetrical view, each grid point (x’, y’)
receives (a maximum of) eight seeds (plus its current closest seed)
from grid points at (x’+i, y’+j) where i, j∈ {–k, 0, k}. Among
those received, grid point (x’, y’) decides which seed, say s’, is its
closest found so far, and updates 〈s’, position(s’)〉, if needed.
Figure 1 shows the progress of the six rounds of flood to obtain a
Voronoi diagram for a 64×64 grid with eight seeds.

A few notes are in order here. First, for a grid point sk to
record a seed s0 as its closest seed found (at the end of some
particular round of flood), the information of 〈s0, position(s0)〉 has
traveled through a sequence of grid points s1 s2 … sk where each is
from a different round of flood of progressively smaller step
length and si passes 〈s0, position(s0)〉 to si+1 till it reaches sk. Such a
sequence forms a path from s0 to sk. We note that at any one round,
there can be more than one grid point passing the same
information of 〈s0, position(s0)〉 to another grid point si+1; such
case results in more than one path from s0 to si+1.

Second, as stated before, the JFA does not always compute
the correct Voronoi diagram. In other words, some grid points do
not record the actual closest seeds. Figure 3 is an example where
grid point p does not record the closest seed r but g (or b). This is
because for r to reach p, we need a path to pass through either p’
at (10, 6) or p” at (10, 8), but both do not record r as its closest
seed and thus such a path does not exist. However, in practice (see
Section 5 and Section 6), JFA with Euclidean distance metric
makes very few and only very special errors and thus remains
very attractive to many applications.

Third, Figure 2(a) alludes to an alternative to JFA as a jump
flooding starting with step length of 1 and then doubling the step
length in each round. This alternative, however, does not work as
well as JFA; it generates many more errors in recording the
closest seeds (see, for example, Figure 4). This can be explained
qualitatively as follows.

For a grid point p to record the correct seed s, there must
exist a path from s to p passing through a sequence of grid points
p’ such that each p’ must regard s as the closest seed so far when
it receives s as a seed. This is, however, very demanding as many
grid points (especially those closer to seeds and possibly our
required p’) already recorded the correct seeds in some early
rounds and thus do not permit other seeds (such as s) from passing
on to other grid points. In contrast, our proposed JFA tends not to
finalize the closest seeds for all grid points until much later rounds.
This means each grid point permits many other seeds to
temporarily be its closest seeds in order to pass on to other grid
points, and JFA thus makes less number of errors.

3.2. Jump Flooding Algorithm in GPU
It is straightforward to implement JFA using OpenGL with

fragment program support. A typical implementation for a given
input set of seeds to output the results on the screen is as follows.

Let T1 be a texture with resolution n×n that is equal to the
resolution of the output grid. First, we draw the seeds into T1
using its red and green channels to record the coordinates of the
seeds. Second, we execute the logn rounds of JFA with step
lengths of n/2, n/4, …, 1. For each round with step length of k, we
draw a screen-size quad to activate the execution of a fragment
program on every pixel (i.e., grid point). In the fragment program
for a pixel at (x, y), we refer to textures T1 to gather the
(maximum) nine seeds stored with pixels (x+i, y+j) where i,
j∈ {–k, 0, k} to decide which is the closest seed known so far to
the pixel. The closest seed found for each pixel is written into T1
for the next round. Note that T1 is implemented as a so-called
ping-pong buffer with two buffers alternating as input and output
in consecutive rounds.

At the end of logn rounds, T1 has the closest seed for each
grid point. To generate the Voronoi diagram of the seeds, we need
another texture T2 to record the colors of the seeds. For efficiency,
T2 is written together with T1 at the first step using
ARB_draw_buffers extension. With this, we can use the
coordinates stored in T1 to refer to T2 to obtain the color for each
grid point. At the same time, the distance transform, if needed, can
be calculated by the fragment program for each pixel.

3.3. Variants to Jumping Flooding Algorithm
As mentioned, JFA may not produce correct closest seeds for

all grid points. We summarize in this subsection variants to JFA to
further reduce the occurrences of errors, at the expense of more
computational time.

3.3.1. Additional Rounds
We observe in our experiments that most grid points with

errors are grid points clustered around Voronoi vertices, or around Figure 3: An example where a grid point p does not receive the correct
closest seed r with jump flooding algorithm.

g

b

r

18

10

2

6

8

10

12

14

16

0 4 6 8 12 14

 p’

 p”
 p

(a)

(b)

k=4 k=1 k=2

k=1 k=2 k=4

Figure 2: Jump flooding to propagate the content of a seed at the lowest
left corner by (a) doubling step length, and (b) halving step length.

(b)(a)
Figure 4: Jump flooding results of ten seeds with (a) no error when
halving step length in each round, and (b) many errors when doubling step
length in each round.

Voronoi edges intersecting the boundary of the grid. Moreover,
many grid points with errors are each a single error and itself a
Voronoi vertex. As such, a simple yet effective way to remove
many errors is to execute JFA for one additional round with step
length of 1, i.e. a total of (logn)+1 rounds where both of the last
two rounds are with step length of 1. We call this variant JFA+1.

It is easy to realize that one can then use JFA+2 which is the
usual JFA plus two additional rounds, with step length of 2 and 1
respectively. Likewise, one can do as many additional rounds as
needed to achieve good accuracy (while converging to no better
than the standard flood). We have also used JFA plus logn
additional rounds, i.e. JFA+logn or simply JFA2. Our experiments
as reported in Section 6 confirm the effectiveness of these variants.
In particular, JFA2 produces correct results in most cases, though
it fails for the difficult case as shown in Figure 5. (This is also a
case where [Borgefors 1984] cannot correctly handle with a 3×3
mask.) In this case, if the center grid point p is incorrect at the end
of JFA, it will still remain incorrect at the end of JFA2. This is so
as the Voronoi cell (shown as a wedge) does not “cover” any grid
points along the dotted lines that p refers to during the additional
logn rounds, i.e. p thus never receives the correct seed from any
grid points of its Voronoi cell.

3.3.2. Additional Information on Seeds
As noted from Figure 3, the problem that r did not reach p is

because p’ and p” did not record r as their closest seeds. On the
other hand, r is indeed the second closest seed to p’ and p”. Thus,
if we keep both the closest and the second closest seeds at each
grid point, the above problem can be avoided. This is at the
expense of additional texture memory and GPU computational
time as we now need to examine a maximum of 18 values to
identify the two closest seeds. We call this variant JFA2Seed.
Similarly, we can have JFA3Seed, JFA4Seed etc. However, our
experiments as reported in Section 6 indicate that this type of
variants is inferior to that discussed in Section 3.3.1.

4. Paths in Jump Flooding
This section discusses properties of paths for a single seed s

in an n×n grid due to jump flooding. These are exploited in JFA
and are of independent interests possibly to other algorithms
adapting jump flooding concept.

Property 1. Regardless of the position of s in the grid, JFA fills the

grid with s.

Proof. In the following, we discuss a constructive proof (that can
be extended to show the validity of Property 2).

Without loss of generality, let s be located at the grid point
with coordinate (0, 0). We want to show that s can reach another
grid point p at integer coordinate (px, py). Let us first suppose px
and py are both positive integers. Let (xm–1 xm–2 …x0)2 be the
binary form of px and (ym–1 ym–2 …y0)2 of py. Then, a path from s
to p is obtained as follows: At step length of l (where l is either
n/2, n/4, …, or 1) of JFA, we set k=logl, and

move the path diagonally up right if xk=1 and yk=1, or
move the path horizontally right if xk=1 and yk=0, or
move the path vertically up if xk=0 and yk=1, or
do not move the path if xk=0 and yk=0.
It is clear that each move arrives at a grid point s’ closer to p,

and we can pretend s’ is our new s in the next move. Thus a path
from s to p is constructed incrementally. If the above px and py are
negative integers, we can modify the above rules to obtain a path
from s to p analogously (with left in place of right, down in place
of up etc.). Similarly, when only px or py (but not both) are
negative integers, we modify only the relevant part of the rules
involving px or py respectively. □

Property 2. Let s be a seed at (x, y), and p be a grid point. Suppose
there exists another grid point s’ at (x’, y’) where | x – x’ | = 2l
and | y – y’ | = 2l for some l, and p lies within the square 2l×2l
with s and s’ as its two (out of four) vertices. Then, JFA
generates more than one path from s to p.

Proof. Without loss of generality, we assume s is at (x, y) = (0, 0)
and s’ at (–2l, –2l). That is, p is at the third quadrant with respect
to the x and y axes. It suffices to construct another path from s to p
that is different from that already provided in the argument of
Property 1. A path from s to p can first make a move to s’ via the
round with step length of 2l in JFA. That is, s’ is such that p is in
the first quadrant with respect to the vertical and horizontal lines
passing through s’. This reduces the problem to finding a path
from s’ to p, with step lengths less than 2l. For this, we re-use the
argument for Property 1, and we are done.

In fact, in the above argument, we have many other choices
of the first move and thus many other paths. The first move can be
to (–2m, 0), (0, –2m), or (–2m, –2m) for any m ≥ l as long as the
move stays within the grid. Also, the above argument can be
repeated analogously for p at the other quadrants. □

We note that the above property can be strengthened to cases

where s and s’ define a rectangle with one side of 2l grid points. In
the following, we classify each path from s to p into three types
according to the second last vertex p’ (i.e. the vertex before p) in
the path. A type-v path is one where p’ has the same x coordinate
as p (i.e. reaching p vertically), a type-h path the same y
coordinate (i.e. reaching p horizontally), and a type-d path
otherwise (i.e. reaching p diagonally). See Figure 6 for an
illustration.

Property 3. The paths JFA can generate from s to a grid point p

are all type-v, or all type-h, or all type-d (i.e. never a mixture
of any two or more types).

Proof. The progress of JFA can be visualized as follows. It first
partitions the given grid with vertical and horizontal lines into
n/2×n/2 square grids with the exception at the boundary of the
given grid that may be incomplete n/2×n/2 square grids. At this
point, information of 〈s, position(s)〉 is known to grid points at the
junctions of the vertical and horizontal lines. Subsequently, each
square grid (and incomplete square grid) is further partitioned by
vertical and horizontal lines into four smaller square grids each
having half of the side length than before, and so on. As always,
〈s, position(s)〉 is known at the junctions of the vertical and
horizontal lines.

So, with respect to a grid point p, it receives 〈s, position(s)〉 if,
and only if, it becomes a junction of a vertical and horizontal line.
There are three possibilities at the round before it becomes a

p

Figure 5: A Voronoi cell shown partially as a wedge can “steal” a center
pixel p without including any of the eight neighboring pixels. Such a
Voronoi cell looks disconnected when displayed on screen.

type-dtype-v type-h
Figure 6: Three types of paths (only the last step is shown).

junction. First, p is on some vertical line, and the grid point
passing it the information is on the same vertical line. As such, the
resulting paths from s to p are of type-v. Second, similarly, if p is
on some horizontal line, the paths from s to p are of type-h. Third,
p is at the center of some square grid, and the paths from s to p are
of type-d.

Note that once p receives the information of 〈s, position(s)〉, it
cannot receive in subsequent rounds the same information. This is
because the subsequent rounds are with smaller step lengths and p
thus does not refer to any junctions that have the information.
Thus, no new type of paths from s other than those mentioned in
the previous paragraph can reach p, and thus all paths from s
reaching p are of the same type. □

Let i (and j, respectively) be the first bit position, starting
from the least significant bit, where the x-coordinates (and
y-coordinates, respectively) of grid points s and p have different
bit values. We define order(s, p) to be the minimum of i–1 and j–1.
For example, with s at (0, 0) = (0000, 0000)2 and p at (12, 14) =
(1100, 1110)2, we have i = 3, j = 2, and order(s, p) = 1.

Property 4. All the paths generated by JFA from a seed s to a grid
point p reaches p at the round with step length of 2l where
l=order(s, p).

Proof. Let us visualize the progress of JFA as in the proof of
Property 3. Completing the round with step length of 2l, JFA
partitions the original grid with vertical and horizontal lines into
2l×2l square grids. That is to say that any two adjacent vertical
lines are separated with distance 2l. So, the x-coordinates of these
vertical lines have the same last l least significant bits, and
alternate between 0 and 1 for their (l+1)th least significant bit.
Similar statement holds for the y-coordinates of the horizontal
lines. We note again that paths from s reach p if, and only if, when
the grid is partitioned by vertical and horizontal lines such that p
is on a junction. This thus happens when both the l least
significant bits of the x- and y-coordinates of s and p are the same,
and thus at the round with step length of 2l where l=order(s, p). □

5. Errors in Jump Flooding
We now consider the consequence of jump flooding of many

seeds at each round. Recall when two or more seeds arrive at a
grid point p’, JFA keeps only one piece (or finite amount) of
information of a seed, say s, at p’. As such, some seeds do not
survive or flood beyond and onto p’ (i.e. paths from such seeds do
not extend till and beyond p’), they are said to be killed at p’ by s
as of this round. As a result, a grid point may not receive, at the
completion of JFA, information of all seeds. So, when a grid point
p does not receive and thus cannot record its closest seed as this
seed was killed at other grid points in some earlier round, we
count this as an error (at p) with JFA. This section analyzes the
extent of errors with JFA.

From our experiments on many runs of JFA with different
number of seeds, we observe all errors occurring mainly along the
boundaries of Voronoi cells. More specifically, for Voronoi cells
along the boundary of the grid, grid points with errors can cluster
around Voronoi edges; for the other Voronoi cells, all grid points
with errors, with one exception out of millions of runs, are
Voronoi vertices or cluster around Voronoi vertices. This is
fortunate as all computed Voronoi diagrams do not have
unpleasant looks of “holes” within any Voronoi cells. Additionally,
this indicates the importance to analyze errors due to Voronoi
vertices. To this end, we have worked out Property 5 to Property 7
as follows.

Property 5. If an error occurs at p but not at any of its neighboring

grid points, then p is a Voronoi vertex.

Proof. Let r be the closest seed to p but not recorded by p at the
end of JFA. From Property 3, we consider three scenarios. First,
all paths from r to p (when there is no other seeds involved in JFA)
are type-v as shown in Figure 7(a), reaching grid point p’ or p”
before p. Since error occurred at p, r must have been killed at or
before p’ and p” while traveling towards p.

Notice that r is not the closest seed of both p’ and p”;
otherwise, errors occur at all grid points along p’ and p”
(inclusive of themselves, p and those neighboring grid points of p),
which contradicts to the given condition. Then, let g and b,
respectively, be the closest seeds of p’ and p”, respectively. As the
perpendicular bisector between r and g must intersect p’p” below
p, and that between r and b above p, we must have two distinct
bisectors and thus g and b are also distinct.

So, all three grid points p, p’, and p” have distinct closest
seeds. If there are no other grid points between p’p”, p is naturally
a Voronoi vertex as required. Also, if there are other grid points
along p’p”, none of them can have r as their closest seed by the
given condition, p is thus a Voronoi vertex by definition.

Similarly, when all paths to p from r are of type-h, we adapt
the above argument to show that p is still a Voronoi vertex. Lastly,
when all paths to p from r are type-d as in Figure 7(b), we also
adapt the above argument with the minor adjustment that r is not
the closest seed to the four grid points to the left and to the right
(as in the orientation given by Figure 7(b)) of p. □

Note first that we ignore the technicality in the above proof

where p can be a grid point on the boundary of the given grid
when p’ or p” (but not both) does not exist in the grid. Note
second that our experiments (in Section 6) report over 90% of
errors are single errors, which are at Voronoi vertices according to
Property 5. This percentage is increasing with the increase in the
number of seeds.

The next two properties attempt to provide some insights on
the probability of errors due to Voronoi vertices. Suppose there
are only three seeds r, g, and b in the n×n grid. To possibly do any
analysis with calculus, we approximate the discrete world of the
grid by a continuous one of a real plane.

Property 6. Let grid point o be a Voronoi vertex of seeds r, g, and

b with r as its closest seed. The probability of error at o when
all paths from r to o are of type-v or type-h is:

(log) 2
3(1)

1 2 2
0

1 2 22 4
3

n
k

k
E

R Rπ π

−
− +

=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑

 where R is the distance from r to o.

Proof. We just need to prove the property for E1/2 when all paths
from r to o are of type-v; similar argument applies to the case of
type-h.

r

g

b

p

p”

p’

r
gb

p

(a) (b)
Figure 7: The grid point p has r as a closest seed but records instead either
g or b as its closest seed.

Refer to Figure 8(a). By assumption, r, g and b lie on a circle
with center at o. The figure also indicates r’ as the mirror grid
point of r along the y-axis; r and r’ separate the circle into two
arcs, called them major arc and minor arc for simplicity.

We consider the conditions for error to occur at o. All paths
from r to o must pass through o1 or o2 just before reaching o.
From Property 4, the step length from o1 or o2 to reach o is 2k
where k = order(r, o). We consider each k ranges from 0, 1, 2, …,
(logn) – 2 to obtain the summation needed in this property. (Notice
that order(r, o) = (logn) – 1 is the case where r = o1 or r = o2 and
no error occur at o.)

First, the probability of the path from r to o is type-v and
with order(r, o) = k is equal to 4–k × ¾ × ⅓ = 4–(k+1). The first term
4–k is the probability of order(r, o) ≥ k. The second term ¾ is the
probability of r and o having different (k+1)th least significant bit
for their x- and y-coordinates. (These first two terms together give
the probability of order(r, o) = k.) The third term ⅓ is the
probability of the path being a type-v among the three types of
path.

Second, we must have g and b killing r at o1 and o2 at the
rounds with step lengths ≥ 2k+1. That is, order(r, g) ≥ k+1 and
order(r, b) ≥ k+1, and g must lie on the minor arc (or major arc,
respectively) and b on the major arc (or minor arc, respectively)
so that each is closer to o1 and o2 than r is. The former occurs with
probability 4–(k+1) × 4–(k+1), and the latter with

2 2

1 2 2 .
3

F
R Rπ π

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

To calculate F as shown in the above, we first define a probability
density function f of α as follows:

2 2 2 2 2 2()
2 2 2

R R Rf
R R

α π αα
π π π

− − −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

where the 2 in the first term (i.e. 2/(2π)) represents the
interchanging of g’s and b’s position over the full circle of 2π, the
second term for one seed at the minor arc (notice the “– 2” term is
to exclude grid points r and r’), and the third term for the other on
the major arc. So integrating f(α) from 0 to 2π (alternatively, by
integrating from 0 to π/2 then multiplying by 4) gives the required
F. □

Property 7. Let grid point o be a Voronoi vertex of seeds r, g, and

b with r as its closest seed. The probability of error at o when
all paths from r to o are of type-d is:

(log) 2
3(1)

2 2 2
0

1 1 2 4
12

n
k

k
E

R Rπ π

−
− +

=

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑

 where R is the distance from r to o.

Proof. The same essence of the proof of Property 6 appears here.
Thus, we only need to indicate the corresponding f(α) and F here
for the argument to hold. Refer to Figure 8(b). In the figure, r’ is
the mirror image of r along y x= , and r” that of r along y x= − .
Note that g and b are such that one lies in the minor arc rr’ and
the other in the minor arc rr”. So, the corresponding f and F are as
follows:

2 2 2 2
2 2 2()

2 2 2

R R
f

R R

π πα α
α

π π π

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟=

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and 2 2

1 1 2 .
12

F
R Rπ π

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 □

Notice we do integration around a circle in the proof of the
above two properties. This is to sum up all the contribution of
type-v, type-h or type-d paths from r, but assume only one type of
paths throughout the different grid points r on the circle. This is
obviously not true in reality. To put some confidence into the
above analysis, we write a program to do explicit counting as
follows. We draw different sizes of digital circles with radius of 5
to 256 pixels. For each circle, we go around each pixel on its
circumference to check the coordinate of the pixel in order to
mark which type of paths the pixel can generate towards the
center. We find the percentages in all types of paths are quite
balance for radius larger than ten pixels. This is comforting to the
analysis.

For an n×n grid with m > 3 seeds, there are (2m – h – 2)
Voronoi vertices where h is the number of Voronoi cells on the
boundary of the grid. If we assume the errors at Voronoi vertices
are independent to each other and there is an estimate on R for all
Voronoi cells, then from Property 6 and Property 7, we have the
number of errors at Voronoi vertices estimated at:

()
()

1 2

1 2

(log) 2
3(1)

2 2
0

when is small

(2 2)

 2

9 5 6 2 4
12

n
k

k

h

E m h E E

m E E

m
R Rπ π

−
− +

=

= − − +

≈ +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑

Note that E is a lower bound estimate on the number of
errors at grid points. This is because E does not account for errors
near the boundary of the grids (where some seed can be killed by
the boundary rather than by other seed) and also errors at clusters
of grid points (not necessarily involving Voronoi vertices). For the
latter grid points, errors actually happen mostly because Voronoi
vertices have errors at the rounds with step lengths ≥ 21 and then
propagate the errors to them in subsequent rounds. However, we
note that such errors occur very rarely as indicated by the
probabilities in Property 6 and Property 7 with k ≥ 1. We have
also verified experimentally (Section 6) that E can be a good
estimate on the number of errors due to JFA. This means that
JFA+1, JFA+2 and JFA2 are efficient algorithms in computing
Voronoi diagrams with near to 100% accuracy.

6. Experimental Results
We have implemented JFA and its variants using Visual

C++.net 2003 and Cg 1.3. The hardware platform is Pentium IV
3.0GHz, 1G DDR2 RAM and nVidia GeForce 6800 GT PCI-X
with 256M DDR3 video memory. For each run of our experiment,
we randomly generate input seeds for a grid of 512×512. The
number of seeds ranges from 100 to 1000 in increment of a
hundred, and 1000 to 10000 in increment of a thousand. To obtain
an exact Voronoi diagram to count the number of grid points with
errors in JFA, we adapt the algorithm of [Denny 2003].

Figure 8: (a) Type-v. The red dashed curve indicates the circle with the
center at o1 and passing through point r and r’. (b) Type-d. The red
dashed curve indicates the circle with the center at o1 and passing through
point r and r’. The green dashed curve indicates the circle with the center
at o2 and passing through point r and r”.

o1 α

r r’

o x

o2

y

(a)

α

r

r’

o
o1 xo2

r”

y

(b)

Each value in our following charts is obtained through
averaging 10000 runs of random inputs.

Efficiency. The speed of JFA is compared with the popular
algorithm by [Hoff et al. 1999]. We note that their algorithm,
though linear in complexity to the number of seeds, decreases
rapidly in frame rate as more and more seeds are used. On the
contrary, the frame rates of our JFA implementation maintain
quite consistent for different number of seeds. The result is shown
in Figure 9. The black curve is for Hoff’s algorithm. The red
curve is for JFA, JFA+1 and JFA+2; all our three algorithms
achieve about the same frame rates in our experiments. As for
JFA2, we see that it is still much faster than Hoff’s algorithm for
large number of seeds.

In another view, JFA is output sensitive where its running
time is mainly depending on the output resolution (if no time is
charged to put the seeds into a texture, as in the case of an input is
already a texture).

Errors in JFA. The solid curves in Figure 10 (with y-axis on the
left) refer to the average number of errors in JFA for different
number of seeds. The blue curve counts each error at grid point as
1 to get the total number of errors, whereas the red curve counts a
cluster of connected grid points with errors as 1. Each data point
has a very small variance over the 10000 runs. The blue curve and
the red curve do not deviate much; this is a testimony to the
importance of counting errors due to Voronoi vertices as done in
Section 5.

In another view, the dashed curves in Figure 10 (with y-axis
on the right) show that the ratio of the average number of total
errors to the total number of seeds decreases with increasing
number of seeds. This phenomenon is also captured in E of
Section 5 – when there are many seeds, the value of R decreases
as each Voronoi cell decreases in size, and E/m thus decreases too.
This underscores the robustness of JFA in dealing with large
number of seeds.

Our estimate of errors with E is also plotted as the black
curve in Figure 10. To do that, we need to estimate R for each case
of different number of seeds. For that, we can either take the total
area of the grid divided by the number of Delaunay triangles to
estimate the radius R of the circumcircle, or take the average from
the actual experiments too. We use the former but verify to be
consistent with the experiments too.

The black curve compares very well to the actual errors as
shown by the blue curve and red curve. This is particularly so for
the number of seeds below 3000. The not-so-good estimate for the
number of seeds above 3000 is because E is rather sensitive to
changes in R of small value (of less than 5 pixels) as in this case
with a large number of seeds.

Effectiveness of JFA Variants. As we observe, most errors in JFA
are single Voronoi vertices or small clusters of grid points around

Voronoi vertices. The variants of JFA as JFA+1 or JFA+2 can
indeed greatly decrease the total number of errors as shown in
Figure 11. The error rates of JFA+1 are just a few grid points,
which are good news to most applications of Voronoi diagram or
distance transform. At the extreme, JFA2 has close to zero errors
in all the 10000 runs. The main errors of JFA2 are as shown in
Figure 5 where no number of additional rounds to JFA can correct
the errors. In between, the result of JFA+2 is also interesting – for
large numbers of seeds, JFA+2 has very good results that
approach those of JFA2. Also, we notice in Figure 9 that JFA+2 is
as efficient as JFA and it is thus the best compromised among all.

On the other hand, the error of JFA2Seed as shown in Figure
11 is comparable to (but slightly worse than) the other variants.
However, its large penalty in frame rate as shown in Figure 9 does
not warrant its use.

Generalized Voronoi Diagram. The seeds of the Voronoi diagram
can be generalized to line segments or even curves or areas. Such
generalized cases can also be computed by our algorithms; see,
for example, Figure 12. Though we do not have an analysis of
errors for such cases, we expect good results with little errors too.
This is because our algorithms treat such generalized seeds as
collections of point seeds and thus expect to inherit the good
performance obtained for point seeds.

Figure 12: Applying JFA on (a) the input image, we have (b) the result of
the generalized Voronoi diagram of the seven area seeds.

7. Jump Flooding in Higher Dimensions
The proposed JFA and its variants are applicable to

computing higher dimensional Voronoi diagrams. However, the
current GPU cannot write data into 3D textures as needed by JFA.
Though one can pack and simulate a 3D texture with a 2D texture
[Harris 2003], such packing currently works mainly for a small
3D texture and is thus not very useful when we need jump
flooding in a large 3D space. So, to assess the effectiveness of our
proposed algorithms for higher dimensions, we perform CPU
simulation of JFA and its variants. In this paper, we only present
the 3D case.

In our experiment, we randomly generate input seeds for a
grid of 512×512×512. The number of seeds ranges from 100 to
1000 in increment of a hundred, 1000 to 10000 in increment of a
thousand, and 10000 to 30000 in increment of ten thousand. Each
size of seeds is performed 100 runs to obtain an average on the
number of grid points with errors. We do not attempt larger

(a) (b)

0 2000 4000 6000 8000 10000

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

er

ro
rs

seeds

 JFA+1
 JFA+2
 JFA2

 JFA2Seed

Figure 11: Errors in JFA+1, JFA+2, JFA2

and JFA2Seed.

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40
fr

am
e

pe
r s

ec
on

d

seeds

 H off's algorithm
 JFA , JFA +1, JFA +2
 JFA 2

 JFA 2Seed

Figure 9: The comparisons of frame rates of
our algorithms and Hoff’s algorithm.

Figure 10: The actual and estimated errors in
JFA.

0 2000 4000 6000 8000 10000

0

20

40

60

80

100

120

140

160

0.008

0.012

0.016

0.020

0.024

0.028

0.032

0.036

0.040

0.044

er

ro
rs

seeds

 theoretical estimation
 count cluster as 1 error
 count all errors

er

ro
rs

 /

se
ed

s

number of runs because for a large number of seeds even 100 runs
already take several days to complete.

Figure 13 shows the simulation results for JFA, JFA+1,
JFA+2 and JFA2 in 3D. The ratio of the average number of total
errors to the total number of seeds for JFA is also shown as the
black dashed curve. Quantitatively, JFA and its variants perform
very well in generating close to the exact Voronoi diagram of a set
of seeds. The percentage of grid points with errors is close to zero.
We expect that JFA and its variants in 3D are even more effective
than their counterparts in 2D. This is because there are many more
paths from a seed to each grid points in 3D, and it becomes much
harder to kill all paths to a grid point generated by its closest seed.
Thus, the probability of a grid point not receiving its closest seed
becomes very low.

0 5000 10000 15000 20000 25000 30000

0

500

1000

1500

2000

2500

3000

3500

4000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

er

ro
rs

seeds

 JFA
 JFA+1
 JFA+2
 JFA2

er

ro
rs

 /

se
ed

s

Figure 13: Errors in JFA, JFA+1, JFA+2 and JFA2 in a 512×512×512 grid.

8. Conclusion and Future Work
This paper studies the jump flooding algorithm (JFA) for the

current GPU. This is probably the first of its kind of analysis on
the propagation of computation in GPU. The paper has good
insights to analyzing propagation that can be useful to other
studies of GPU computation.

In this work, we implement JFA and its variants for the 2D
case where input is either a set of seeds or an image texture to
efficiently compute Voronoi diagram and distance transform. We
have also performed CPU simulation of JFA and its variants in 3D
to demonstrate the effectiveness of JFA in higher dimensions in
computing Voronoi diagram and distance transform.

One possible future work is to investigate the feasibility of
JFA on different kinds of Voronoi diagrams. There are many
distance metrics other than Euclidean metric, such as Manhattan
distance, chess-board distance, and more generally the Minkowski
norm, and many kinds of weighting on seeds such as
multiplicative and additive.

Our JFA algorithm is a new parallel computation scheme on
GPU. It may have many applications in various areas. We are
currently investigating the usefulness of JFA to real-time soft
shadow generation.

Acknowledgements
We would like to thank Franco Preparata and Edwin Zeng for

fruitful discussions and helpful comments on this paper. This
research is supported by the National University of Singapore
under grants R-252-000-181-112 and R-252-000-216-112.

References
AURENHAMMER, F. 1991. Voronoi Diagrams–A Survey of a

Fundamental Geometric Data Structure. ACM Computing
Surveys 23, 3, 345–405.

BORGEFORS, G. 1984. Distance Transformations in Arbitrary
Dimensions. Computer Vision, Graphics, and Image
Processing 27, 321–345.

CUISENAIRE, O. 1999. Distance Transformations: Fast Algorithms

and Applications to Medical Image Processing. PhD Thesis,
Université catholique de Louvain.

DANIELSSON, P.-E. 1980. Euclidean Distance Mapping. Computer
Graphics and Image Processing 14, 227–248.

DENNY, M. O. 2003. Algorithmic Geometry via Graphics
Hardware. PhD Thesis. Universität des Saarlandes.

DONNELLY, W. 2005. Per-Pixel Displacement Mapping with
Distance Functions. GPU Gems 2: Programming Techniques
for High Performance Graphics and General-Purpose
Computation. Edited by M. Pharr and R. Fernando,
Addison-Wesley, 123–136.

EGGERS, H. 1998. Two Fast Euclidean Distance Transformations
in Z2 Based on Sufficient Propagation. Computer Vision and
Image Understanding 69, 1, 106–116.

EMBRECHTS, H. and ROOSE, D. 1996. A Parallel Euclidean
Distance Transformation Algorithm. Computer Vision and
Image Understanding 63, 1, 15–26.

HARRIS, M. J. 2003. Real-time Cloud Simulation and Rendering.
PhD Thesis. University of North Carolina at Chapel Hill.

HOFF, K. E., KEYSER, J., LIN, M., MANOCHA, D. and CULVER, T.
1999. Fast Computation of Generalized Voronoi Diagrams
Using Graphics Hardware. In Proceedings of ACM
SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, New
York. Computer Graphics Proceedings, Annual Conference
Series, ACM, 277–286.

HUANG, C. T. and MITCHELL, O. R. 1994. A Euclidean Distance
Transform Using Grayscale Morphology Decomposition.
IEEE Transaction on Pattern Analysis and Machine
Intelligence 16, 4, 443–448.

MONTANARI, U. 1968. A Method for Obtaining Skeletons Using a
Quasi-Euclidean Distance. Journal of the Association for
Computing Machinery 15, 4, 600–624.

MULLIKIN, J. C. 1992. The Vector Distance Transform in Two and
Three Dimensions. Graphical Models and Image Processing
54, 6, 526–535.

OKABE, A., BOOTS, B., SUGIHARA, K. and CHIU, S. N. 1999.
Spatial Tessellations: Concepts and Applications of Voronoi
Diagrams. John Wiley & Sons Ltd.

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRÜGER, J., LEFOHN, A. E. and PURCELL, T. J. 2005. A
Survey of General-Purpose Computation on Graphics
Hardware. Eurographics 2005, 21–51.

RAGNEMALM, I. 1992a. Fast Erosion and Dilation by Contour
Processing and Thresholding of Distance Maps. Pattern
Recognition Letters 13, 3, 161–166.

RAGNEMALM, I. 1992b. Neighborhoods for Distance
Transformations Using Ordered Propagation. CVGIP: Image
Understanding 56, 3, 399–409.

ROSENFELD, A. and PFALTZ, J. L. 1966. Sequential Operations in
Digital Picture Processing. Journal of the Association for
Computing Machinery 13, 4, 471–494.

SHIH, F. Y.-C. and MITCHELL, O. R. 1992. A Mathematical
Morphology Approach to Euclidean Distance Transformation.
IEEE Transaction on Image Processing 1, 2, 197–204.

STRZODKA, R. and TELEA, A. 2004. Generalized Distance
Transforms and Skeletons in Graphics Hardware.
Proceedings of EG/IEEE TCVG Symposium on Visualization,
221–230.

WANG, L., WANG, X., TONG, X., LIN, S., HU, S., GUO, B. and
SHUM, H. Y. 2003. View-dependent Displacement Mapping.
ACM Transactions on Graphics. 22, 3, 334–339.

YAMADA, H. 1984. Complete Euclidean Distance Transformation
by Parallel Operation. 7th International Conference on
Pattern Recognition, Montreal, Canada, 336–338.

