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Figure 1: With the eight seeds (highlighted and shown in different colors) in a 64×64 grid on the leftmost picture, the progress of each round of the jump 
flooding algorithm is shown in the other six pictures, with the rightmost being the computed Voronoi diagram.

Abstract  
This paper studies jump flooding as an algorithmic paradigm 

in the general purpose computation with GPU. As an example 
application of jump flooding, the paper discusses a constant time 
algorithm on GPU to compute an approximation to the Voronoi 
diagram of a given set of seeds in a 2D grid. The errors due to the 
differences between the approximation and the actual Voronoi 
diagram are hardly noticeable to the naked eye in all our 
experiments. The same approach can also compute in constant 
time an approximation to the distance transform of a set of seeds 
in a 2D grid. In practice, such constant time algorithm is useful to 
many interactive applications involving, for example, rendering 
and image processing. Besides the experimental evidences, this 
paper also confirms quantitatively the effectiveness of jump 
flooding by analyzing the occurrences of errors. The analysis is a 
showcase of insights to the jump flooding paradigm, and may be 
of independent interests to other applications of jump flooding.  
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Geometry and Object Modeling – Geometric algorithms, languages, and 
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1. Introduction 
The rapid advances in computational power and 

programmable capability of GPU in PC have prompted many 
research works in using GPU for general purpose computations. 
In these works, the parallel nature of GPU computation is 
exploited to gain huge speedup at a low cost; see [Owens et al. 
2005]. In essence, one utilizes texture units in GPU like memory 
units in CPU to facilitate computations, while achieving speedup 
from working with texels (texture elements) in parallel via 
multiple fragment processors in GPU. In another view, the 
speedup with GPU computation is a result of the communications, 
i.e. passing of data, in parallel among texels. To date, speedup is 
mainly achieved with simple patterns of communication; little is 
known on quantifying computational capability with different 
patterns of communication. This paper studies a novel pattern of 
communication called jump flooding with its applications to 
computing Voronoi diagram and distance transform. 
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Let G be a space consisting of a set of points, and S be a 
subset of points in G that are designated as seeds. A Voronoi 
diagram of S is defined to be a partition of G into subspaces, 
called Voronoi cells, where each subspace corresponds to one seed 
s and contains all points of G that are closer to the corresponding 
seed s than to any other seed, with respect to some fixed distance 
function. For simplicity, points of G that are of equal distance to 
two or more seeds are assigned arbitrarily to any of these seeds. A 
point of G that is closest to three or more seeds is a Voronoi vertex 
of these seeds. 

In this paper, G is a discrete space that can be stored in a 
texture unit in the GPU. For example, G is a 2D grid of 512×512 
grid points where each is a texel. As G is a discrete space, there 
may be none or more than one grid point with equal (closest) 
distance to three or more seeds. So, we adapt the usual definition 
of a Voronoi vertex to refer to any grid point whose (at most eight) 
neighboring grid points (that sharing a side or a corner with the 
grid point) belong to two or more other Voronoi cells. 

Voronoi diagram is known for a long time due to its various 
applications in geometric and graphics problems among others; 
see [Aurenhammer 1991; Okabe et al. 1999]. A closely related 
notion called distance transform was introduced by Rosenfeld and 
Pfaltz [1966] for image processing applications. Distance 
transform is an operation that takes a binary image to compute a 
grayscale output image. The pixels in the binary image with value 
0 are seeds, and 1 are background; the pixels in the output image 
have real values where each indicates the distance from the pixel 
to its closest seed. 

To date, distance transform has found many uses in 
applications beyond image processing such as in computer 
graphics, pattern recognition, etc. Some example applications are: 
skeleton computation [Montanari 1968; Danielsson 1980], 
mathematical morphology operation [Ragnemalm 1992a], and 
displacement mapping [Wang et al. 2003; Donnelly 2005]. 
Though there are already many approaches to compute distance 
transform [Cuisenaire 1999], there are still unresolved issues: 
many approaches compute only an approximation to the distance 
transform in order to be efficient in applications, and they are 
sequential in nature that have no good avenue for speedup with 
parallel computation. All these limit their uses in, for example, 
interactive applications that require real-time responses. The 
major contributions of this paper are thus: 

1. Presenting jump flooding as an efficient and effective 
computational paradigm for GPU; and  

2. Proposing, for an input set of seeds in a 2D grid, the first 
parallel algorithm in GPU to compute in constant time (i.e. 
independent of the number of seeds) a highly accurate 
Voronoi diagram and distance transform.    

The rest of the paper is organized as follows. Section 2 
reviews related work in computing Voronoi diagram and distance 
transform. Section 3 presents our jump flooding algorithm and its 
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variants to computing (an approximation to) Voronoi diagrams. 
These algorithms with minor adjustment can also compute 
distance transform. Section 4 analyses paths (patterns of 
communication) in jump flooding due to a single seed, and 
Section 5 quantifies grid points with errors (i.e. grid points where 
our computed Voronoi diagram and the actual one have different 
values) due to many seeds working in parallel during jump 
flooding. Section 6 describes our experimental results to confirm 
the effectiveness of jump flooding in computing Voronoi diagram 
as well as distance transform. To illustrate the potential of the 
jump flooding in higher dimensions, Section 7 presents our 
simulation results of computing 3D Voronoi diagram. Finally, 
Section 8 concludes the paper with potential future works.  

The video accompanying this paper can be obtained from our 
project webpage at: http://www.comp.nus.edu.sg/~tants/jfa.html. 

2. Related Work 
For our case of working with grid and GPU, it is 

straightforward to obtain distance transform through Voronoi 
diagram. In the following, we present the previous works as they 
were originally discussed either for Voronoi diagram or distance 
transform. On the former, we discuss in Section 2.1 known 
approaches using GPU to compute Voronoi diagram in linear time. 
These are to compare with our proposed algorithms that run in 
constant time once the input seeds are stored in a texture unit. On 
the latter, we outline in Section 2.2 the development of 
fast-approximate to slow-exact distance transform algorithms, and 
some conventional approaches adapted to parallelize these 
sequential algorithms. A comprehensive survey on the distance 
transform approaches can be found in [Cuisenaire 1999]. 

2.1. Voronoi Diagrams 
Hoff et al. [1999] computes a 2D Voronoi diagram by 

drawing (right-angle) cones with their apexes at the positions of 
seeds. The image of the cones as viewed orthogonally from the 
space of the seeds is a Voronoi diagram of the set of seeds. The 
algorithm thus relies on the GPU to efficiently rasterize the cones 
in time linear to the total number of triangles used to represent the 
cones. As mentioned in [Denny 2003], one needs many more 
triangles per cone than suggested in [Hoff et al. 1999] to compute 
the correct Voronoi diagram in some extreme case. This is not 
favorable for a large number of seeds. Denny [2003] presents a 
variant of the above algorithm by drawing a quad with depth 
texture, instead of cone, at each seed; see also [Strzodka and Telea 
2004] for a similar method. This approach is faster but still 
remains in time linear to the number of seeds. 

The above approaches require to know the nature of each 
seed, such as line segment or curve (not just regarded as a 
collection of points) to construct quads or cones. They can be 
cumbersome in processing general seeds that are complex objects 
as these must first be discretized. Also, they cannot work directly 
with inputs that are images as they must first extract the “seeds” 
in the images to construct quads or cones. This limits their uses in 
many image processing applications. 

2.2. Distance Transforms 
The algorithms for distance transform (DT) can be divided 

into two categories: approximate DT algorithms and exact DT 
algorithms. Generally, approximate DT algorithms, while having 
some errors in the results, are much faster than exact DT 
algorithms. 

Approximate DT algorithms are usually using scan schemes 
to achieve computational costs linear to the number of pixels (or 
grid points). Two widely used methods are Chamfer distance 
transform [Borgefors 1984] and sequential Euclidean distance 
mapping [Danielsson 1980]. Both of these use a mask to perform 

two passes scanning over the grid points of the image. In the first 
pass, the mask moves from left to right, top to bottom. In the 
second pass, the mask moves recessively from right to left, 
bottom to top. When the center of the mask passes through a pixel, 
the corresponding value of the pixel is updated. 

There are many kinds of exact DT algorithms, such as 
storing and sorting the front of the propagation [Ragnemalm 
1992b; Eggers 1998], storing several closest seeds instead of just 
storing the closest one [Mullikin 1992], using big mask 
[Cuisenaire 1999] etc. All the above algorithms are sequential in 
nature and rely on the order of the scanning where the value of a 
pixel is determined by the value of those scanned before. They are 
thus difficult to be parallelized. 

Another kind of exact DT algorithm repeatedly applies a 
mask on every pixel until no pixel has changed its value [Yamada 
1984; Shih and Mitchell 1992; Huang and Mitchell 1994]. This 
kind of algorithm may be executed on all the pixels in parallel, but 
is not computationally efficient. 

A parallel method proposed by Embrechts and Roose [1996] 
divides the screen into several sub-regions and then uses 
multi-processor computers to process them simultaneously. This 
algorithm needs to address the influence due to neighboring 
sub-regions. As it is not parallel on the pixel level, it is not 
suitable for GPU. 

Interestingly, a truly massively parallel algorithm on distance 
transform was mentioned by Danielsson [1980]. At that time, no 
practical hardware was available to execute the presented 
algorithm. Though our proposed algorithms are the same in spirit 
to that proposed by Danielsson, they were discovered independent 
of the work of Danielsson as we were researching on parallel 
computation for Voronoi diagram on GPU. Danielsson stated in 
his paper that the work was merely a curiosity with no practical 
use at that time, whereas we have in this paper advanced the 
understanding and feasibility of jump flooding in GPU.  

3. Flooding in Logarithmic Steps 
To compute the Voronoi diagram for a 2D grid of size n×n 

with a given set of seeds at some grid points, we are interested to 
propagate the content (in particular, position information) of each 
seed s to each grid point so that each grid point can decide which 
seed is its closest one.      

To achieve this for s, one standard algorithm is to flood the 
content in increasing distance from s outward, similar to a ripple 
effect starting at s. In the first round (of flood), we pass the 
content of s to its (maximum) eight neighboring grid points. From 
the second round onward, we pass on the content to grid points 
neighboring those which have just received the content in the 
previous round. This is repeated, in the number of rounds linear to 
n, till all grid points have received the content.     

The above algorithm does not flood efficiently, with the 
currently available GPUs, as each grid point participates in just 
one round of passing on (non-repeating) content throughout the 
process. Section 3.1 discusses our proposed Voronoi diagram 
algorithm that avoids the above inefficiency. Section 3.2 provides 
some details on implementing our algorithm with GPU, and 
Section 3.3 presents more variations to the basic algorithm in 
Section 3.1. 

3.1. Jump Flooding Algorithm  
The above flooding can be seen as one where each round is a 

flood of step length of 1, i.e. each grid point (x, y) passes on its 
content to other grid points at (x+i, y+j) where i, j∈ {–1, 0, 1}. In 
contrast, Figure 2 shows two efficient ways one can flood the 
content of a seed (shown shaded) in logn rounds to all the other 
grid points, by varying the step length in each round, either 
doubling as in Figure 2(a) or halving as in Figure 2(b). Formally, 



a flood of step length of k in a round, or simply a round with step 
length of k, is such that the grid point (x, y) passes on its content to 
other grid points at (x+i, y+j) where i, j∈ {–k, 0, k}. It is easy to 
show that (see Section 4) the content of a seed can reach all other 
grid points in such a jump flooding scheme of logn rounds.  

With the above process on a single seed, we can extend it 
straightforwardly to design an algorithm, called jump flooding 
algorithm (JFA) to compute the Voronoi diagram for a given set of 
seeds in an n×n grid as follows. Without loss of generality, we can 
assume n is a power of 2. 

There are logn rounds of flood with step lengths of n/2, 
n/4, …, 1. At the beginning, each grid point with a seed s records 
〈s, position(s)〉 to indicate its closest seed found so far is s at the 
indicated position (which is itself), whereas the other each records 
〈nil, nil〉. In a round with step length of k, each grid point (x, y) 
passes its closest seed to other grid points at (x+i, y+j) where i, 
j∈ {–k, 0, k}. In a symmetrical view, each grid point (x’, y’) 
receives (a maximum of) eight seeds (plus its current closest seed) 
from grid points at (x’+i, y’+j) where i, j∈ {–k, 0, k}. Among 
those received, grid point (x’, y’) decides which seed, say s’, is its 
closest found so far, and updates 〈s’, position(s’)〉, if needed. 
Figure 1 shows the progress of the six rounds of flood to obtain a 
Voronoi diagram for a 64×64 grid with eight seeds.  

A few notes are in order here. First, for a grid point sk to 
record a seed s0 as its closest seed found (at the end of some 
particular round of flood), the information of 〈s0, position(s0)〉 has 
traveled through a sequence of grid points s1 s2 … sk where each is 
from a different round of flood of progressively smaller step 
length and si passes 〈s0, position(s0)〉 to si+1 till it reaches sk. Such a 
sequence forms a path from s0 to sk. We note that at any one round, 
there can be more than one grid point passing the same 
information of 〈s0, position(s0)〉 to another grid point si+1; such 
case results in more than one path from s0 to si+1. 

Second, as stated before, the JFA does not always compute 
the correct Voronoi diagram. In other words, some grid points do 
not record the actual closest seeds. Figure 3 is an example where 
grid point p does not record the closest seed r but g (or b). This is 
because for r to reach p, we need a path to pass through either p’ 
at (10, 6) or p” at (10, 8), but both do not record r as its closest 
seed and thus such a path does not exist. However, in practice (see 
Section 5 and Section 6), JFA with Euclidean distance metric 
makes very few and only very special errors and thus remains 
very attractive to many applications. 

Third, Figure 2(a) alludes to an alternative to JFA as a jump 
flooding starting with step length of 1 and then doubling the step 
length in each round. This alternative, however, does not work as 
well as JFA; it generates many more errors in recording the 
closest seeds (see, for example, Figure 4). This can be explained 
qualitatively as follows.  

For a grid point p to record the correct seed s, there must 
exist a path from s to p passing through a sequence of grid points 
p’ such that each p’ must regard s as the closest seed so far when 
it receives s as a seed. This is, however, very demanding as many 
grid points (especially those closer to seeds and possibly our 
required p’) already recorded the correct seeds in some early 
rounds and thus do not permit other seeds (such as s) from passing 
on to other grid points. In contrast, our proposed JFA tends not to 
finalize the closest seeds for all grid points until much later rounds. 
This means each grid point permits many other seeds to 
temporarily be its closest seeds in order to pass on to other grid 
points, and JFA thus makes less number of errors. 

3.2. Jump Flooding Algorithm in GPU 
It is straightforward to implement JFA using OpenGL with 

fragment program support. A typical implementation for a given 
input set of seeds to output the results on the screen is as follows.  

Let T1 be a texture with resolution n×n that is equal to the 
resolution of the output grid. First, we draw the seeds into T1 
using its red and green channels to record the coordinates of the 
seeds. Second, we execute the logn rounds of JFA with step 
lengths of n/2, n/4, …, 1. For each round with step length of k, we 
draw a screen-size quad to activate the execution of a fragment 
program on every pixel (i.e., grid point). In the fragment program 
for a pixel at (x, y), we refer to textures T1 to gather the 
(maximum) nine seeds stored with pixels (x+i, y+j) where i, 
j∈ {–k, 0, k} to decide which is the closest seed known so far to 
the pixel. The closest seed found for each pixel is written into T1 
for the next round. Note that T1 is implemented as a so-called 
ping-pong buffer with two buffers alternating as input and output 
in consecutive rounds. 

At the end of logn rounds, T1 has the closest seed for each 
grid point. To generate the Voronoi diagram of the seeds, we need 
another texture T2 to record the colors of the seeds. For efficiency, 
T2 is written together with T1 at the first step using 
ARB_draw_buffers extension. With this, we can use the 
coordinates stored in T1 to refer to T2 to obtain the color for each 
grid point. At the same time, the distance transform, if needed, can 
be calculated by the fragment program for each pixel. 

3.3. Variants to Jumping Flooding Algorithm 
As mentioned, JFA may not produce correct closest seeds for 

all grid points. We summarize in this subsection variants to JFA to 
further reduce the occurrences of errors, at the expense of more 
computational time. 

3.3.1. Additional Rounds 
We observe in our experiments that most grid points with 

errors are grid points clustered around Voronoi vertices, or around Figure 3: An example where a grid point p does not receive the correct
closest seed r with jump flooding algorithm. 
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Figure 2: Jump flooding to propagate the content of a seed at the lowest
left corner by (a) doubling step length, and (b) halving step length.
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Figure 4: Jump flooding results of ten seeds with (a) no error when 
halving step length in each round, and (b) many errors when doubling step 
length in each round. 



Voronoi edges intersecting the boundary of the grid. Moreover, 
many grid points with errors are each a single error and itself a 
Voronoi vertex. As such, a simple yet effective way to remove 
many errors is to execute JFA for one additional round with step 
length of 1, i.e. a total of (logn)+1 rounds where both of the last 
two rounds are with step length of 1. We call this variant JFA+1.  

It is easy to realize that one can then use JFA+2 which is the 
usual JFA plus two additional rounds, with step length of 2 and 1 
respectively. Likewise, one can do as many additional rounds as 
needed to achieve good accuracy (while converging to no better 
than the standard flood). We have also used JFA plus logn 
additional rounds, i.e. JFA+logn or simply JFA2. Our experiments 
as reported in Section 6 confirm the effectiveness of these variants. 
In particular, JFA2 produces correct results in most cases, though 
it fails for the difficult case as shown in Figure 5. (This is also a 
case where [Borgefors 1984] cannot correctly handle with a 3×3 
mask.) In this case, if the center grid point p is incorrect at the end 
of JFA, it will still remain incorrect at the end of JFA2. This is so 
as the Voronoi cell (shown as a wedge) does not “cover” any grid 
points along the dotted lines that p refers to during the additional 
logn rounds, i.e. p thus never receives the correct seed from any 
grid points of its Voronoi cell.  

3.3.2. Additional Information on Seeds 
As noted from Figure 3, the problem that r did not reach p is 

because p’ and p” did not record r as their closest seeds. On the 
other hand, r is indeed the second closest seed to p’ and p”. Thus, 
if we keep both the closest and the second closest seeds at each 
grid point, the above problem can be avoided. This is at the 
expense of additional texture memory and GPU computational 
time as we now need to examine a maximum of 18 values to 
identify the two closest seeds. We call this variant JFA2Seed. 
Similarly, we can have JFA3Seed, JFA4Seed etc. However, our 
experiments as reported in Section 6 indicate that this type of 
variants is inferior to that discussed in Section 3.3.1. 

4. Paths in Jump Flooding  
This section discusses properties of paths for a single seed s 

in an n×n grid due to jump flooding. These are exploited in JFA 
and are of independent interests possibly to other algorithms 
adapting jump flooding concept. 

 
Property 1. Regardless of the position of s in the grid, JFA fills the 

grid with s. 
 
Proof. In the following, we discuss a constructive proof (that can 
be extended to show the validity of Property 2).  

Without loss of generality, let s be located at the grid point 
with coordinate (0, 0). We want to show that s can reach another 
grid point p at integer coordinate (px, py). Let us first suppose px 
and py are both positive integers. Let (xm–1 xm–2 …x0)2 be the 
binary form of px and (ym–1 ym–2 …y0)2 of py. Then, a path from s 
to p is obtained as follows: At step length of l (where l is either 
n/2, n/4, …, or 1) of JFA, we set k=logl, and  

move the path diagonally up right if xk=1 and yk=1, or 
move the path horizontally right if xk=1 and yk=0, or 
move the path vertically up if xk=0 and yk=1, or 
do not move the path if xk=0 and yk=0. 
It is clear that each move arrives at a grid point s’ closer to p, 

and we can pretend s’ is our new s in the next move. Thus a path 
from s to p is constructed incrementally. If the above px and py are 
negative integers, we can modify the above rules to obtain a path 
from s to p analogously (with left in place of right, down in place 
of up etc.). Similarly, when only px or py (but not both) are 
negative integers, we modify only the relevant part of the rules 
involving px or py respectively.                          □ 

Property 2. Let s be a seed at (x, y), and p be a grid point. Suppose 
there exists another grid point s’ at (x’, y’) where | x – x’ | = 2l 
and | y – y’ | = 2l for some l, and p lies within the square 2l×2l 
with s and s’ as its two (out of four) vertices. Then, JFA 
generates more than one path from s to p. 

 
Proof. Without loss of generality, we assume s is at (x, y) = (0, 0) 
and s’ at (–2l, –2l). That is, p is at the third quadrant with respect 
to the x and y axes. It suffices to construct another path from s to p 
that is different from that already provided in the argument of 
Property 1. A path from s to p can first make a move to s’ via the 
round with step length of 2l in JFA. That is, s’ is such that p is in 
the first quadrant with respect to the vertical and horizontal lines 
passing through s’. This reduces the problem to finding a path 
from s’ to p, with step lengths less than 2l. For this, we re-use the 
argument for Property 1, and we are done. 

In fact, in the above argument, we have many other choices 
of the first move and thus many other paths. The first move can be 
to (–2m, 0), (0, –2m), or (–2m, –2m) for any m ≥ l as long as the 
move stays within the grid. Also, the above argument can be 
repeated analogously for p at the other quadrants.           □    

   
We note that the above property can be strengthened to cases 

where s and s’ define a rectangle with one side of 2l grid points. In 
the following, we classify each path from s to p into three types 
according to the second last vertex p’ (i.e. the vertex before p) in 
the path. A type-v path is one where p’ has the same x coordinate 
as p (i.e. reaching p vertically), a type-h path the same y 
coordinate (i.e. reaching p horizontally), and a type-d path 
otherwise (i.e. reaching p diagonally). See Figure 6 for an 
illustration. 

 
Property 3. The paths JFA can generate from s to a grid point p 

are all type-v, or all type-h, or all type-d (i.e. never a mixture 
of any two or more types).   

Proof. The progress of JFA can be visualized as follows. It first 
partitions the given grid with vertical and horizontal lines into 
n/2×n/2 square grids with the exception at the boundary of the 
given grid that may be incomplete n/2×n/2 square grids. At this 
point, information of 〈s, position(s)〉 is known to grid points at the 
junctions of the vertical and horizontal lines. Subsequently, each 
square grid (and incomplete square grid) is further partitioned by 
vertical and horizontal lines into four smaller square grids each 
having half of the side length than before, and so on. As always, 
〈s, position(s)〉 is known at the junctions of the vertical and 
horizontal lines. 

So, with respect to a grid point p, it receives 〈s, position(s)〉 if, 
and only if, it becomes a junction of a vertical and horizontal line. 
There are three possibilities at the round before it becomes a 

p 

Figure 5: A Voronoi cell shown partially as a wedge can “steal” a center 
pixel p without including any of the eight neighboring pixels. Such a 
Voronoi cell looks disconnected when displayed on screen.

type-dtype-v type-h 
Figure 6: Three types of paths (only the last step is shown). 



junction. First, p is on some vertical line, and the grid point 
passing it the information is on the same vertical line. As such, the 
resulting paths from s to p are of type-v. Second, similarly, if p is 
on some horizontal line, the paths from s to p are of type-h. Third, 
p is at the center of some square grid, and the paths from s to p are 
of type-d.  

Note that once p receives the information of 〈s, position(s)〉, it 
cannot receive in subsequent rounds the same information. This is 
because the subsequent rounds are with smaller step lengths and p 
thus does not refer to any junctions that have the information. 
Thus, no new type of paths from s other than those mentioned in 
the previous paragraph can reach p, and thus all paths from s 
reaching p are of the same type.                         □ 

Let i (and j, respectively) be the first bit position, starting 
from the least significant bit, where the x-coordinates (and 
y-coordinates, respectively) of grid points s and p have different 
bit values. We define order(s, p) to be the minimum of i–1 and j–1. 
For example, with s at (0, 0) = (0000, 0000)2 and p at (12, 14) = 
(1100, 1110)2, we have i = 3, j = 2, and order(s, p) = 1. 

Property 4. All the paths generated by JFA from a seed s to a grid 
point p reaches p at the round with step length of 2l where 
l=order(s, p). 

Proof. Let us visualize the progress of JFA as in the proof of 
Property 3. Completing the round with step length of 2l, JFA 
partitions the original grid with vertical and horizontal lines into 
2l×2l square grids. That is to say that any two adjacent vertical 
lines are separated with distance 2l. So, the x-coordinates of these 
vertical lines have the same last l least significant bits, and 
alternate between 0 and 1 for their (l+1)th least significant bit. 
Similar statement holds for the y-coordinates of the horizontal 
lines. We note again that paths from s reach p if, and only if, when 
the grid is partitioned by vertical and horizontal lines such that p 
is on a junction. This thus happens when both the l least 
significant bits of the x- and y-coordinates of s and p are the same, 
and thus at the round with step length of 2l where l=order(s, p). □ 

5. Errors in Jump Flooding 
We now consider the consequence of jump flooding of many 

seeds at each round. Recall when two or more seeds arrive at a 
grid point p’, JFA keeps only one piece (or finite amount) of 
information of a seed, say s, at p’. As such, some seeds do not 
survive or flood beyond and onto p’ (i.e. paths from such seeds do 
not extend till and beyond p’), they are said to be killed at p’ by s 
as of this round. As a result, a grid point may not receive, at the 
completion of JFA, information of all seeds. So, when a grid point 
p does not receive and thus cannot record its closest seed as this 
seed was killed at other grid points in some earlier round, we 
count this as an error (at p) with JFA. This section analyzes the 
extent of errors with JFA.  

From our experiments on many runs of JFA with different 
number of seeds, we observe all errors occurring mainly along the 
boundaries of Voronoi cells. More specifically, for Voronoi cells 
along the boundary of the grid, grid points with errors can cluster 
around Voronoi edges; for the other Voronoi cells, all grid points 
with errors, with one exception out of millions of runs, are 
Voronoi vertices or cluster around Voronoi vertices. This is 
fortunate as all computed Voronoi diagrams do not have 
unpleasant looks of “holes” within any Voronoi cells. Additionally, 
this indicates the importance to analyze errors due to Voronoi 
vertices. To this end, we have worked out Property 5 to Property 7 
as follows. 

 
Property 5. If an error occurs at p but not at any of its neighboring 

grid points, then p is a Voronoi vertex. 

Proof. Let r be the closest seed to p but not recorded by p at the 
end of JFA. From Property 3, we consider three scenarios. First, 
all paths from r to p (when there is no other seeds involved in JFA) 
are type-v as shown in Figure 7(a), reaching grid point p’ or p” 
before p. Since error occurred at p, r must have been killed at or 
before p’ and p” while traveling towards p.  

Notice that r is not the closest seed of both p’ and p”; 
otherwise, errors occur at all grid points along p’ and p” 
(inclusive of themselves, p and those neighboring grid points of p), 
which contradicts to the given condition. Then, let g and b, 
respectively, be the closest seeds of p’ and p”, respectively. As the 
perpendicular bisector between r and g must intersect p’p” below 
p, and that between r and b above p, we must have two distinct 
bisectors and thus g and b are also distinct. 

So, all three grid points p, p’, and p” have distinct closest 
seeds. If there are no other grid points between p’p”, p is naturally 
a Voronoi vertex as required. Also, if there are other grid points 
along p’p”, none of them can have r as their closest seed by the 
given condition, p is thus a Voronoi vertex by definition.  

Similarly, when all paths to p from r are of type-h, we adapt 
the above argument to show that p is still a Voronoi vertex. Lastly, 
when all paths to p from r are type-d as in Figure 7(b), we also 
adapt the above argument with the minor adjustment that r is not 
the closest seed to the four grid points to the left and to the right 
(as in the orientation given by Figure 7(b)) of p.            □ 

 
Note first that we ignore the technicality in the above proof 

where p can be a grid point on the boundary of the given grid 
when p’ or p” (but not both) does not exist in the grid. Note 
second that our experiments (in Section 6) report over 90% of 
errors are single errors, which are at Voronoi vertices according to 
Property 5. This percentage is increasing with the increase in the 
number of seeds.  

The next two properties attempt to provide some insights on 
the probability of errors due to Voronoi vertices. Suppose there 
are only three seeds r, g, and b in the n×n grid. To possibly do any 
analysis with calculus, we approximate the discrete world of the 
grid by a continuous one of a real plane.    

 
Property 6. Let grid point o be a Voronoi vertex of seeds r, g, and 

b with r as its closest seed. The probability of error at o when 
all paths from r to o are of type-v or type-h is: 
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    where R is the distance from r to o. 
 

Proof. We just need to prove the property for E1/2 when all paths 
from r to o are of type-v; similar argument applies to the case of 
type-h.  

r 

g

b

p 

p” 

p’ 

r 
gb 

p

(a) (b)
Figure 7: The grid point p has r as a closest seed but records instead either 
g or b as its closest seed.  



Refer to Figure 8(a). By assumption, r, g and b lie on a circle 
with center at o. The figure also indicates r’ as the mirror grid 
point of r along the y-axis; r and r’ separate the circle into two 
arcs, called them major arc and minor arc for simplicity.  

We consider the conditions for error to occur at o. All paths 
from r to o must pass through o1 or o2 just before reaching o. 
From Property 4, the step length from o1 or o2 to reach o is 2k 
where k = order(r, o). We consider each k ranges from 0, 1, 2, …, 
(logn) – 2 to obtain the summation needed in this property. (Notice 
that order(r, o) = (logn) – 1 is the case where r = o1 or r = o2 and 
no error occur at o.) 

First, the probability of the path from r to o is type-v and 
with order(r, o) = k is equal to 4–k × ¾ × ⅓ = 4–(k+1). The first term 
4–k is the probability of order(r, o) ≥ k. The second term ¾ is the 
probability of r and o having different (k+1)th least significant bit 
for their x- and y-coordinates. (These first two terms together give 
the probability of order(r, o) = k.) The third term ⅓ is the 
probability of the path being a type-v among the three types of 
path. 

Second, we must have g and b killing r at o1 and o2 at the 
rounds with step lengths ≥ 2k+1. That is, order(r, g) ≥ k+1 and 
order(r, b) ≥ k+1, and g must lie on the minor arc (or major arc, 
respectively) and b on the major arc (or minor arc, respectively) 
so that each is closer to o1 and o2 than r is. The former occurs with 
probability 4–(k+1) × 4–(k+1), and the latter with 

2 2
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To calculate F as shown in the above, we first define a probability 
density function f of α as follows: 
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2 2 2

R R Rf
R R

α π αα
π π π

− − −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where the 2 in the first term (i.e. 2/(2π)) represents the 
interchanging of g’s and b’s position over the full circle of 2π, the 
second term for one seed at the minor arc (notice the “– 2” term is 
to exclude grid points r and r’), and the third term for the other on 
the major arc. So integrating f(α) from 0 to 2π (alternatively, by 
integrating from 0 to π/2 then multiplying by 4) gives the required 
F.                                                 □ 
 
Property 7. Let grid point o be a Voronoi vertex of seeds r, g, and 

b with r as its closest seed. The probability of error at o when 
all paths from r to o are of type-d is: 
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    where R is the distance from r to o. 

Proof. The same essence of the proof of Property 6 appears here. 
Thus, we only need to indicate the corresponding f(α) and F here 
for the argument to hold. Refer to Figure 8(b). In the figure, r’ is 
the mirror image of r along y x= , and r” that of r along y x= − . 
Note that g and b are such that one lies in the minor arc rr’ and 
the other in the minor arc rr”. So, the corresponding f and F are as 
follows: 
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                     □ 

Notice we do integration around a circle in the proof of the 
above two properties. This is to sum up all the contribution of 
type-v, type-h or type-d paths from r, but assume only one type of 
paths throughout the different grid points r on the circle. This is 
obviously not true in reality. To put some confidence into the 
above analysis, we write a program to do explicit counting as 
follows. We draw different sizes of digital circles with radius of 5 
to 256 pixels. For each circle, we go around each pixel on its 
circumference to check the coordinate of the pixel in order to 
mark which type of paths the pixel can generate towards the 
center. We find the percentages in all types of paths are quite 
balance for radius larger than ten pixels. This is comforting to the 
analysis.  

For an n×n grid with m > 3 seeds, there are (2m – h – 2) 
Voronoi vertices where h is the number of Voronoi cells on the 
boundary of the grid. If we assume the errors at Voronoi vertices 
are independent to each other and there is an estimate on R for all 
Voronoi cells, then from Property 6 and Property 7, we have the 
number of errors at Voronoi vertices estimated at: 
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Note that E is a lower bound estimate on the number of 
errors at grid points. This is because E does not account for errors 
near the boundary of the grids (where some seed can be killed by 
the boundary rather than by other seed) and also errors at clusters 
of grid points (not necessarily involving Voronoi vertices). For the 
latter grid points, errors actually happen mostly because Voronoi 
vertices have errors at the rounds with step lengths ≥ 21 and then 
propagate the errors to them in subsequent rounds. However, we 
note that such errors occur very rarely as indicated by the 
probabilities in Property 6 and Property 7 with k ≥ 1. We have 
also verified experimentally (Section 6) that E can be a good 
estimate on the number of errors due to JFA. This means that 
JFA+1, JFA+2 and JFA2 are efficient algorithms in computing 
Voronoi diagrams with near to 100% accuracy. 

6. Experimental Results 
We have implemented JFA and its variants using Visual 

C++.net 2003 and Cg 1.3. The hardware platform is Pentium IV 
3.0GHz, 1G DDR2 RAM and nVidia GeForce 6800 GT PCI-X 
with 256M DDR3 video memory. For each run of our experiment, 
we randomly generate input seeds for a grid of 512×512. The 
number of seeds ranges from 100 to 1000 in increment of a 
hundred, and 1000 to 10000 in increment of a thousand. To obtain 
an exact Voronoi diagram to count the number of grid points with 
errors in JFA, we adapt the algorithm of [Denny 2003]. 

Figure 8: (a) Type-v. The red dashed curve indicates the circle with the
center at o1 and passing through point r and r’. (b) Type-d. The red 
dashed curve indicates the circle with the center at o1 and passing through
point r and r’. The green dashed curve indicates the circle with the center
at o2 and passing through point r and r”.
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Each value in our following charts is obtained through 
averaging 10000 runs of random inputs. 

 
Efficiency. The speed of JFA is compared with the popular 
algorithm by [Hoff et al. 1999]. We note that their algorithm, 
though linear in complexity to the number of seeds, decreases 
rapidly in frame rate as more and more seeds are used. On the 
contrary, the frame rates of our JFA implementation maintain 
quite consistent for different number of seeds. The result is shown 
in Figure 9. The black curve is for Hoff’s algorithm. The red 
curve is for JFA, JFA+1 and JFA+2; all our three algorithms 
achieve about the same frame rates in our experiments. As for 
JFA2, we see that it is still much faster than Hoff’s algorithm for 
large number of seeds. 

In another view, JFA is output sensitive where its running 
time is mainly depending on the output resolution (if no time is 
charged to put the seeds into a texture, as in the case of an input is 
already a texture).  

 
Errors in JFA. The solid curves in Figure 10 (with y-axis on the 
left) refer to the average number of errors in JFA for different 
number of seeds. The blue curve counts each error at grid point as 
1 to get the total number of errors, whereas the red curve counts a 
cluster of connected grid points with errors as 1. Each data point 
has a very small variance over the 10000 runs. The blue curve and 
the red curve do not deviate much; this is a testimony to the 
importance of counting errors due to Voronoi vertices as done in 
Section 5. 

In another view, the dashed curves in Figure 10 (with y-axis 
on the right) show that the ratio of the average number of total 
errors to the total number of seeds decreases with increasing 
number of seeds. This phenomenon is also captured in E of 
Section 5 – when there are many seeds, the value of R decreases 
as each Voronoi cell decreases in size, and E/m thus decreases too. 
This underscores the robustness of JFA in dealing with large 
number of seeds. 

Our estimate of errors with E is also plotted as the black 
curve in Figure 10. To do that, we need to estimate R for each case 
of different number of seeds. For that, we can either take the total 
area of the grid divided by the number of Delaunay triangles to 
estimate the radius R of the circumcircle, or take the average from 
the actual experiments too. We use the former but verify to be 
consistent with the experiments too. 

The black curve compares very well to the actual errors as 
shown by the blue curve and red curve. This is particularly so for 
the number of seeds below 3000. The not-so-good estimate for the 
number of seeds above 3000 is because E is rather sensitive to 
changes in R of small value (of less than 5 pixels) as in this case 
with a large number of seeds. 

 
Effectiveness of JFA Variants. As we observe, most errors in JFA 
are single Voronoi vertices or small clusters of grid points around 

Voronoi vertices. The variants of JFA as JFA+1 or JFA+2 can 
indeed greatly decrease the total number of errors as shown in 
Figure 11. The error rates of JFA+1 are just a few grid points, 
which are good news to most applications of Voronoi diagram or 
distance transform. At the extreme, JFA2 has close to zero errors 
in all the 10000 runs. The main errors of JFA2 are as shown in 
Figure 5 where no number of additional rounds to JFA can correct 
the errors. In between, the result of JFA+2 is also interesting – for 
large numbers of seeds, JFA+2 has very good results that 
approach those of JFA2. Also, we notice in Figure 9 that JFA+2 is 
as efficient as JFA and it is thus the best compromised among all.  

On the other hand, the error of JFA2Seed as shown in Figure 
11 is comparable to (but slightly worse than) the other variants. 
However, its large penalty in frame rate as shown in Figure 9 does 
not warrant its use. 

 
Generalized Voronoi Diagram. The seeds of the Voronoi diagram 
can be generalized to line segments or even curves or areas. Such 
generalized cases can also be computed by our algorithms; see, 
for example, Figure 12. Though we do not have an analysis of 
errors for such cases, we expect good results with little errors too. 
This is because our algorithms treat such generalized seeds as 
collections of point seeds and thus expect to inherit the good 
performance obtained for point seeds.  

 
Figure 12: Applying JFA on (a) the input image, we have (b) the result of 
the generalized Voronoi diagram of the seven area seeds. 

7. Jump Flooding in Higher Dimensions 
The proposed JFA and its variants are applicable to 

computing higher dimensional Voronoi diagrams. However, the 
current GPU cannot write data into 3D textures as needed by JFA. 
Though one can pack and simulate a 3D texture with a 2D texture 
[Harris 2003], such packing currently works mainly for a small 
3D texture and is thus not very useful when we need jump 
flooding in a large 3D space. So, to assess the effectiveness of our 
proposed algorithms for higher dimensions, we perform CPU 
simulation of JFA and its variants. In this paper, we only present 
the 3D case.  

In our experiment, we randomly generate input seeds for a 
grid of 512×512×512. The number of seeds ranges from 100 to 
1000 in increment of a hundred, 1000 to 10000 in increment of a 
thousand, and 10000 to 30000 in increment of ten thousand. Each 
size of seeds is performed 100 runs to obtain an average on the 
number of grid points with errors. We do not attempt larger 
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our algorithms and Hoff’s algorithm. 

Figure 10: The actual and estimated errors in 
JFA.  
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number of runs because for a large number of seeds even 100 runs 
already take several days to complete. 

Figure 13 shows the simulation results for JFA, JFA+1, 
JFA+2 and JFA2 in 3D. The ratio of the average number of total 
errors to the total number of seeds for JFA is also shown as the 
black dashed curve. Quantitatively, JFA and its variants perform 
very well in generating close to the exact Voronoi diagram of a set 
of seeds. The percentage of grid points with errors is close to zero. 
We expect that JFA and its variants in 3D are even more effective 
than their counterparts in 2D. This is because there are many more 
paths from a seed to each grid points in 3D, and it becomes much 
harder to kill all paths to a grid point generated by its closest seed. 
Thus, the probability of a grid point not receiving its closest seed 
becomes very low. 
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Figure 13: Errors in JFA, JFA+1, JFA+2 and JFA2 in a 512×512×512 grid. 

8. Conclusion and Future Work 
This paper studies the jump flooding algorithm (JFA) for the 

current GPU. This is probably the first of its kind of analysis on 
the propagation of computation in GPU. The paper has good 
insights to analyzing propagation that can be useful to other 
studies of GPU computation. 

In this work, we implement JFA and its variants for the 2D 
case where input is either a set of seeds or an image texture to 
efficiently compute Voronoi diagram and distance transform. We 
have also performed CPU simulation of JFA and its variants in 3D 
to demonstrate the effectiveness of JFA in higher dimensions in 
computing Voronoi diagram and distance transform. 

One possible future work is to investigate the feasibility of 
JFA on different kinds of Voronoi diagrams. There are many 
distance metrics other than Euclidean metric, such as Manhattan 
distance, chess-board distance, and more generally the Minkowski 
norm, and many kinds of weighting on seeds such as 
multiplicative and additive.  

Our JFA algorithm is a new parallel computation scheme on 
GPU. It may have many applications in various areas. We are 
currently investigating the usefulness of JFA to real-time soft 
shadow generation. 
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