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Abstract

Proteogenomics is an emerging approach to improve gene annotation and interpretation of 

proteomics data. Here we present JUMPg, an integrative proteogenomics pipeline including 

customized database construction, tag-based database search, peptide-spectrum match filtering, 

and data visualization. JUMPg creates multiple databases of DNA polymorphisms, mutations, 

splice junctions, partially trypticity, as well as protein fragments translated from the whole 

transcriptome in all six frames upon RNA-seq de novo assembly. We use a multistage strategy to 

search these databases sequentially, in which the performance is optimized by researching only 

unmatched high quality spectra, and re-using amino acid tags generated by the JUMP search 

engine. The identified peptides/proteins are displayed with gene loci using the UCSC genome 

browser. Then the JUMPg program is applied to process a label-free mass spectrometry dataset of 

Alzheimer’s disease postmortem brain, uncovering 496 new peptides of amino acid substitutions, 

alternative splicing, frame shift, and “non-coding gene” translation. The novel protein PNMA6BL 

specifically expressed in the brain is highlighted. We also tested JUMPg to analyze a stable-

isotope labeled dataset of multiple myeloma cells, revealing 991 sample-specific peptides that 

include protein sequences in the immunoglobulin light chain variable region. Thus, the JUMPg 

program is an effective proteogenomics tool for multi-omics data integration.

Graphical abstract

&Corresponding Author: Junmin Peng, tel: 901-336-1083; junmin.peng@stjude.org. 

The authors declare no competing financial interest.

Supporting Information Notes

Supporting Data: MS/MS spectra assigned to RNA 6FT peptides of one-hit wonders.

HHS Public Access
Author manuscript
J Proteome Res. Author manuscript; available in PMC 2016 September 22.

Published in final edited form as:

J Proteome Res. 2016 July 1; 15(7): 2309–2320. doi:10.1021/acs.jproteome.6b00344.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Keywords

Genomics; proteomics; mass spectrometry; proteogenomics; RNA-seq; database search; 

multistage analysis; spectrum quality control

INTRODUCTION

The flow of genetic information from DNA to RNA to proteins is the “central dogma” of 

molecular biology. Global analysis and annotation of these biomolecules in cells is one of 

the ultimate goals in analytical biochemistry. Although whole genome and transcriptome can 

now be analyzed by advanced next-generation sequencing technology,1, 2 it is still not clear 

whether some DNA sequences truly encode proteins, such as short open reading frames.3 As 

to the individual human being, the proteome is shaped by personalized genome containing 

genetic DNA polymorphism and sporadic mutations. In cancer patients, up to thousands of 

DNA mutations can be detected in tumor cells.4 A recurring question is whether these 

mutations are transcribed and translated into proteins. Furthermore, instead of one gene-one 

protein hypothesis, the proteome is greatly enlarged by alternative RNA splicing5 and 

alternative translation.6 For example, in repeat-associated non-ATG translation, 

homopolymeric proteins in three reading frames can be unexpectedly expressed from 

numerous expanded repeat mutations (e.g. CAG, CGG and GGGGCC) that are linked to 

neurodegenerative diseases.7 Thus, many protein forms in cells may be missing in 

commonly used protein reference databases.

Proteogenomics is an emerging approach to enhance the annotation of genome and 

proteome, often relying on next-generation sequencing and deep mass spectrometry (MS) 

data.8–10 Indeed, the approach is initially designed by proteomics pioneers for interpreting 

reference genomes.11–14 With the development of genome-wide sequencing techniques, 

genomics variant sequence information (e.g., DNA polymorphisms and alternative splicing) 

has been rapidly accumulated and incorporated into customized database to identify protein 

variants.15, 16 But genome-wide proteomics studies had been difficult until recent 

improvement in the depth of MS-based proteomics.17–19

Proteogenomics pipeline usually includes multiple steps, such as customized database 

construction, database search, peptide-spectrum match (PSM) filtering, novel peptide 

identification and visualization.10, 20–22 The whole process can be laborious and error-prone. 

A number of computational methods have been proposed for generating customized 

database in recent years,23–33 which can be classified into three categories: (i) DNA 
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polymorphism/mutation (hereafter using “mutation” for simplicity) database, (ii) splice 

junction database, and (iii) genome/transcriptome six-frame translation (6FT) database for 

detecting non-canonical translation events in unknown coding DNA sequence regions. 

However, most of these studies do not address peptides in all categories simultaneously. 

Hence, we attempt to include all possible novel peptides derived from genomic and 

transcriptomic data in the customized database in an effective and efficient way.

Another challenge in proteogenomics study is how to overcome the effect of database size 

(i.e. search space).34 Whereas enlarging customized database potentially increases the 

chance of true PSMs, it also raises an associated probability that MS/MS spectra are 

wrongly matched to peptides, especially when the majority of sequences in the search space 

are false (e.g. in whole genome 6FT database).35 One effective solution is to use multistage 

database search strategy,36–38 in which MS/MS spectra are first searched against a well-

annotated database (e.g. UniProt), and then the unmatched spectra are explored by searching 

large but less confident search space. In this way, most true PSMs are obtained at the first 

stage of analysis, and further increased by subsequent stage(s). To be more efficient, this 

multistage process can be further accelerated by removing low quality spectra before the 

second stage of analysis.38 Low quality spectra could be readily discriminated by amino acid 

tags extracted from the spectra.39 However, these advanced techniques have not been applied 

in the majority of proteogenomics studies. In addition, most existing proteogenomics tools 

are not well integrated for high usability.

Here we present JUMPg, a computational pipeline that automates complex proteogenomics 

analysis. The program provides customized database methods from all three categories; 

supports multistage analysis to maximize peptide identification, and exhibits detected 

peptides/proteins in the UCSC genome browser. For high sensitivity and accuracy, the JUMP 

algorithm40 is implemented to produce high quality tag information for assessing MS/MS 

spectrum quality and performing database search. Application of JUMPg in two deep 

proteomics datasets revealed a variety of sample-specific peptides/proteins in Alzheimer’s 

disease (AD) brain and multiple myeloma (MM) cells. The JUMPg software, source code 

and documentation are freely available (https://github.com/gatechatl/JUMPg).

EXPERIMENTAL PROCEDURES

The JUMPg algorithm takes as input MS raw data, commonly used protein database (e.g. 

UniProt), and corresponding genomics data (e.g. mutations detected by next-generation 

sequencing, RNA-seq raw data and derived splice junctions and assembled transcripts), and 

outputs identified peptides/proteins with annotations. There are five modules in the 

algorithm (Figure 1 and Figure S1 in the Supporting Information).

Module 1: Customized Database Construction

JUMPg provides three options of constructing customized databases (Figure 2), including 

mutations, splice junctions, and non-canonical translation from all six frames.

Mutation peptides are directly input by genomic variant files (e.g. VCF files) or indirectly 

derived from RNA-seq raw data (FASTAQ file). RNA reads are aligned to human reference 
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genome (hg19) by STAR41 with UCSC gene annotations.42 Mutations are detected by 

GATK following the “GATK Best Practices” protocol43, 44, stored in VCF format, and 

classified by AnnoVar (version 23, August 2013)45 into different functional categories (e.g. 

non-silent, intronic, intergenic, etc.). Amino acid (AA) sequences that flank (±30 AAs) non-

silent mutations are extracted according to UCSC gene annotations into FASTA format.

Splice junction database is generated with a similar strategy described by Sheynkman et al. 

2013.26 Splice junction peptides are input by junction files from the STAR program,41 and 

filtered with following criteria: i) at least 2 uniquely mapped reads, and ii) containing 

canonical splice sites (GT/AG, GC/AG, or AT/AC). The two genomic sequence fragments 

that flank a pair of splice donor and acceptor sites are retrieved from reference genome, and 

translated in three open reading frames (ORFs). If the ORF contains a stop codon, the 

sequence is trimmed. If the stop codon locates upstream of the splice site, the sequence is 

discarded because no novel amino acid sequence is produced.

Non-canonical translated peptides are made from RNA-seq reads through all 6 frames. 

RNAseq reads are first assembled into transcripts using trinity (version 2.1.1) 46 with default 

parameters (Supporting Information Notes). Each transcript is then translated in 6 frames, 

split by stop codons and only ORFs with at least 66 AAs (i.e., ~200 bp) are retained.

Module 2: Database Search

Our tag-based database search engine JUMP 40 was modified to adapt multistage strategy 

and maintain regular search function (version 13.1.0). In the regular search, JUMP performs 

preprocessing, tag generation, MS/MS pattern matching and scoring as previously 

reported,40 and outputs two temporary files: a DTAS file containing mass-corrected and 

intensity-normalized MS/MS peak information, and a TAGS file containing de novo tags for 

each MS/MS scan. We evaluated MS/MS quality by the two files and kept only unmatched 

high quality spectra for multistage analysis (see Module 5). In addition, we also used these 

files to bypass two time-consuming steps (preprocessing and tag generation) during the 

multistage analysis, which is termed tag recycling. Common parameters include ±6 ppm for 

precursor ion mass tolerance, dynamic mass shift for oxidized Met (+15.9949 Da), and the 

consideration of a, b, and y ions. Fixed modifications on the N termini and Lys (+229.1629 

Da) are also included for the TMT dataset.

Module 3: Peptide-spectrum Match Filtering

The peptide-spectrum matches (PSMs) are filtered as previously reported.47 The target-

decoy strategy is used to evaluate false discovery rate.48, 49 PSMs are first filtered by user-

specified parameters (e.g. minimal peptide length and minimum search score), then by 

precursor ion mass accuracy. The resulting PSMs are further grouped by precursor ion 

charge state, tryptic ends, and then filtered by matching scores (Jscore and ΔJscore) to 

achieve the user-specified level of false discovery rate.

Module 4: Peptide Annotation and Visualization

Accepted peptides from mutation or junction search space are examined respectively for the 

specific amino acid(s) mutated or that span the splicing junction. The survived peptides are 
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condensed into events (e.g., by collapsing different modification forms), with genomic 

positions stored in BED format for visualization in the UCSC genome browser.50

For peptides identified from RNA 6FT database, peptides from known search space are first 

removed and the corresponding RNA transcripts are aligned to reference genome (hg19) by 

BLAT (v36, default parameters).51 Top-scored alignment result for each transcript is 

retained from which the genomic position of each peptide is derived. Peptides are further 

classified according to UCSC gene annotations. In case one peptide can be assigned to 

multiple isoforms, the following priority will be applied: CDS > UTR > intron > non-coding 

genes > intergenic regions. Peptides that cannot be mapped to human genome are currently 

not considered.

Module 5: Spectrum Quality Scoring

The quality of tandem MS spectra is scored by the method of linear discriminant analysis 

(LDA)38 with modification, using the 1st stage database search result as a training set. The 

method integrates features reflecting tag information (i.e. the top tag length) and spectrum 

data (i.e. square root of MS2 peak number and logarithm transformed MS2 maximum peak 

intensity) by the equation:

Where fi and ci denote value and coefficient of each feature, respectively. The coefficients 

are obtained by training the LDA model. The threshold of spectrum quality score is adjusted 

to allow discarding less than 1% of accepted PSMs.

To evaluate whether the LDA method introduced overfitting during the analysis, we 

performed 10-fold cross validation analysis in the following steps: i) the whole dataset was 

randomly partitioned into 10 equal sized subsamples; ii) of these 10 subsamples, 9 

subsamples were used for training the LDA model and deriving a training receiver operating 

characteristic (ROC) curve, while the remaining subsample was used as the testing data for a 

testing ROC curve; iii) we repeated the 2nd step for 10 times to evaluate the variation of the 

analysis. If overfitting occurred, the area under ROC curve (AUC) of the training dataset 

would be larger than that of the independent testing dataset. Our results showed that the 

training and testing AUCs were nearly identical (Table S4 in Supporting Information), 

indicating no overfitting of LDA modeling in our analysis.

Data Analysis of Two Large Dataset (AD and MM cells)

The first dataset was collected from human Alzheimer’s disease postmortem brain, including 

label-free high resolution MS raw data (1.7 million MS/MS scans) and RNA-seq data (50 

million reads; Table S1 in Supporting Information).52 The second dataset was obtained from 

a multiple myeloma cell line (ANBL6),53 including tandem mass tag (TMT, Thermo Fisher 

Scientific) labeled raw data (6.2 million MS/MS scans) and RNA-seq data (242 million 

reads).
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Proteogenomics analysis was performed by JUMPg in three stages. i) MS data were 

searched against a database combining mutations and splice junction peptides as well as 

UniProt human proteins (downloaded in February 2015) with fully tryptic restriction. The 

resulting PSMs in the 1st stage were filtered to 1% unique protein FDR. ii) Partially tryptic 

search was carried out with the unmatched high quality spectra against proteins accepted 

during the 1st stage. iii) The remaining spectra were matched to RNA-seq 6FT database, and 

filtered to 0% FDR. However, we recognized that the FDR estimation may not be accurate 

and further calculated the standard deviation of the FDR by previously reported method.49 

The actual FDR falls between 0% and 0.2% within a 99% confidence interval. Moreover, we 

compared peptides identified from novel search space with those from reference database, 

and found that all peptides showed highly similar distributions of matching score, precursor 

mass error and tag length (Figure S2 in Supporting Information), indicating that our 

stringent filtering yielded high quality PSMs in novel search space.

RESULTS AND DISCUSSION

Improved Peptide Identification by Multistage Customized Databases and Partially Tryptic 
Search

The JUMPg program implements three independent methods for constructing customized 

peptide databases including mutations, splice junctions and RNA-seq 6FT translated 

peptides (Figure 1). While mutations and splice junctions focus on variant peptides in 

annotated CDS regions, there is emerging evidence for functional proteins encoded by 

unknown open reading frames.3 Therefore JUMPg constructs another database by RNA-seq 

de novo assembly and six frame translation25 (Figure 2). This method shows the best 

balance between database comprehensiveness (the whole transcriptome) and specificity 

(compact search space), compared to whole genome translation (Supporting Information 

Note, Table S2 and Figure S3). As to search space, the mutation, splice junction and 6FT 

databases are equivalent to 1.1%, 3.0% and 71.4% of fully tryptic UniProt protein database 

(default reference database), respectively (Table 1). In addition, whole proteome data often 

contain a significant amount of partially tryptic peptides possibly due to endogenous 

protease activities.48 The partially tryptic database is ~10 times larger than the fully tryptic 

counterpart.

To increase the search efficiency against these databases (Figure S4 in Supporting 

Information), a multistage strategy is developed to perform the analysis sequentially (Figure 

1A). First, the MS/MS spectra are matched to a fully tryptic peptide database pooled from 

UniProt, mutations and splice junctions. The matching results are filtered to ~1% false 

discovery rate at protein level. Then only the unmatched high quality spectra are subjected to 

the 2nd stage of analysis against the large partially tryptic database. Moreover, this partially 

tryptic database is shrunk by considering proteins only identified in the 1st stage (Table S3 in 

Supporting Information). Finally, the remaining high quality spectra are searched against the 

6FT database, as the majority of the peptides inside are false owing to six frame translation.

JUMPg exports the identified peptides in a text table, showing the peptide sequences, PSM 

counts, tags and scores of the best PSM, and database entries (Figure 1B). JUMPg also 

provides a visualization function by converting peptides to genomic locations via UCSC 
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known gene annotations, which can be co-displayed with other genomic information on the 

UCSC genome browser (Figure 1C).50 For example, two novel peptides (in magenta) were 

identified to indicate an event of intron retention, whereas another peptide (in green) was 

also identified to support the canonical protein isoform, annotated with known transcript (in 

navy) of the CASKIN1 gene in chromosome 16. Taken together, JUMPg maximizes novel 

peptide identification by three different customized database methods in an effective manner, 

and displays results for integrative visualization.

Acceleration of Multistage Database Search by Spectrum Quality Control and Amino Acid 
Tag Recycling

To reduce multistage database search time, we discard low quality spectra before the 2nd 

stage analysis, based on MS/MS spectrum quality. To calculate a quality score for each 

spectrum, we use three features, spectrum intensity, total peak number, and the best tag 

length. All three features are highly correlated with PSM identification successful rate 

defined by accepted PSMs in the 1st stage analysis (Figure 3A), consistent with previous 

reports.39, 54 Of these, the tag length (in black) shows the best performance by receiver 

operating characteristic (ROC) curves (Figure 3B). To maximize the discriminant capacity, 

we use the LDA method38 to combine these features into one single quality score (in red), 

which outperforms any individual feature (Figure 3B). Next, a threshold of the quality score 

is selected to balance the removal of MS/MS spectra and the recovery of high quality 

spectra, depending on the score distribution and the accumulative curve of accepted PSMs in 

the 1st stage analysis (Figure 3C). When preserving 99% of accepted PSMs, the threshold is 

able to eliminate ~35% of the MS/MS spectra. As database search time is linearly correlated 

with the spectrum number,55 this filtering step can save ~35% of computational time (Figure 

S4C in Supporting Information).

To further improve database search speed, JUMPg implements a novel function by recycling 

amino acid tags of each MS/MS spectrum. The tag information enables high sensitivity and 

accuracy of peptide identification,40, 56, 57 but the process to derive tags is time-consuming. 

The tags generated at the 1st stage analysis are recorded and re-used in the 2nd and later 

stage analysis, which further accelerate database search by ~25%. Taken together, the 

spectrum quality control and tag recycling reduce search time by more than 50% for 

multistage analysis.

We also considered one potential caveat of multistage analysis, in which PSMs accepted in 

the 1st stage could have higher scores in the 2nd or 3rd stage. To address this, more than 

156,000 MS/MS spectra were searched against fully tryptic database, resulting in 52,114 

accepted PSMs (1% FDR). These spectra were re-searched against partially tryptic database, 

leading to higher scores of only 97 (0.2% out of 52,114) PSMs. This small percentage is 

lower than the specified FDR level (1%). Thus, the multistage strategy saves database search 

time by omitting PSMs accepted in the 1st stage, which does not introduce extra false 

positives of PSMs.
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Application to Label Free Data: Discovery of a Novel Protein Coding Gene in Human Brain

We previously analyzed Alzheimer’s disease brain proteome by long gradient LC/LC-

MS/MS and the transcriptome by RNA sequencing, identifying ~10,000 reference 

proteins.52 However, the sample-specific events such as DNA polymorphisms and brain 

specific alternative splicing events have not been addressed. Here we used the JUMPg 

pipeline to analyze the same dataset (dataset 1 with ~1.7 million label free MS/MS spectra), 

discovering a total of 496 novel peptides in three stage analyses (Table 1). These 496 novel 

peptides are classified into 14 types of events (Table 2), including amino acid substitution, 

deletion, frame shift, exon skipping and other alternative splicing events, as well as 

translation from antisense strand, non-coding genes, untranslated regions (UTR) and 

intergenic regions. Four examples are illustrated in detail (Figure 4): (i) a single amino acid 

substitution in ACO2 supported by three peptides, (ii) an in-frame deletion of PRUNE2, (iii) 

an exon skipping in SLC12A5, and (iv) 5′ UTR translation / alternative start codon 

demonstrated by the original and Met oxidized forms of a fully tryptic peptide.

As a high percentage of mutated peptides identified in proteogenomics studies are also 

found in public single nucleotide polymorphism database (dbSNP),24, 31, 37 we analyzed in 

this sample the 255 novel single-amino acid substitution events, and found that 239 (94%) 

are collected in the dbSNP (version 138). This consistent result provides additional support 

to the confidence of JUMPg-identified novel peptides.

Interestingly, we uncovered a novel protein coding gene specifically expressed in the human 

brain. During the 3rd stage analysis with the 6FT database, we found nine novel peptides that 

locate within a 1.5 kb region of chromosome X (Figure 5A, 5B), a genomic region with no 

protein coding gene models recorded in databases (including refSeq, UCSC, GENCODE 

v19, Ensembl v75 and AceView). Closer examination of these nine peptides (in magenta) 

confirmed that they share the same open reading frame, suggesting that these peptides are 

translated from one novel protein coding gene. To obtain the full protein sequence of this 

new gene, we aligned the assembled RNA transcripts to the reference genome, translated 

this genomic region according to the reading frame defined by JUMPg-identified peptides, 

and derived 578 amino acid protein sequence (in green, Figure S4 in Supporting 

Information).

To functionally annotate this novel protein, the sequence was aligned to NCBI non-

redundant protein database.58 The top hit was a computationally predicted protein termed 

“putative paraneoplastic antigen-like protein 6B-like protein (PNMA6BL)” in a primate 

(Cercocebus atys) with 86% identity. Moreover, one “PNMA” domain was identified by 

Pfam59 within the novel protein sequence, suggesting that this protein belongs to the 

paraneoplastic antigens Ma (PNMA) gene family. In human, this family includes 7 known 

members (PNMA1, 2, 3, 5, 6A and PNMAL1, 2). Phylogenetic analysis indicated that this 

novel protein was clustered within the PNMA6 sub-branch (Figure 5C), consistent with its 

homologue in the primate. Thus, we named this novel protein as “PNMA6BL”. In addition, 

pan-tissue RNA-seq analysis indicates that the PNMA6BL gene is almost exclusively 

expressed in human brain (Figure 5D), which is typical for the PNMA gene family.60 This 

example demonstrates that our JUMPg pipeline allows the identification of previously 

unannotated genes by combining deep proteomics and transcriptomics data.
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Application to Isotopically labeled Data: Identification of Immunoglobulin Light Chain 
Variable Region Peptide in Multiple Myeloma Cells

Isobaric labeling techniques (e.g. iTRAQ/TMT) have been widely used in quantitative 

proteomics,61, 62 but peptide identification is more challenging due to noise peaks induced 

by labeling reagents.63 To further test the performance of JUMPg, we applied the same 

procedure (Figure 1A) to a large TMT dataset (dataset 2 with 6.2 million MS/MS spectra) 

from multiple myeloma (MM) cell lines. Intriguingly, we observed a high percentage of 

partially tryptic peptides in this dataset (Table 1), with 67,368 partially tryptic peptides (33% 

of total peptides) from 182,988 PSMs (20% of total PSMs). As MM cells are known to 

produce a high level of immunoglobulin, cell survival relies on excessive proteasome 

activity,64 which might explain the presence of additional partially tryptic peptides. 

Similarly, high frequency of partial trypticity was also detected in human serum,65 

suggesting that in vivo proteases may be linked to this elevated partial cleavage.

In the three stage analyses, we accepted 198,103 peptides from 909,223 PSMs (Table 1). As 

expected, the PSM identification successful rate of the TMT dataset (18%) is lower than that 

of the label free AD dataset (36%). Nonetheless, we determined a total of 991 novel 

peptides, which were summarized into 531 mutation, 158 novel splicing and 48 non-

canonical translation events (Table 2). Notably, the most abundant peptide matched by 211 

PSMs displays three substitutions in the immunoglobulin light chain variable region (Figure 

6). The result exemplifies the advantage of the 6FT method, in which bona fide RNA 

information is retained in the 6FT database. Because the immunoglobulin light chain 

variable region is unique to individual B cell clones, the capability of identifying these 

unique peptides highlights JUMPg as a potential tool towards personalized proteome.66

CONCLUSIONS

We have demonstrated that JUMPg is an automated proteogenomics pipeline to identify and 

visualize reference and novel peptides from proteomics and functional genomics data. 

Several key features distinguish JUMPg from previous proteogenomics software: i) JUMPg 

streamlines the analysis by integrating five consecutive modules (see Experimental 

procedures); ii) JUMPg maximizes peptide identifications by three customized database 

methods and partially tryptic search; iii) JUMPg supports multistage database search; and iv) 

JUMPg uses the tag-based hybrid search engine JUMP for high sensitivity and accuracy. In 

addition, multistage database search speed is optimized by removing low quality spectra and 

recycling tags. Application of JUMPg to two different datasets identified thousands of novel 

peptides, including a novel protein coding gene in human brain and immunoglobulin light 

chain variable region in multiple myeloma cells. Thus, JUMPg is a comprehensive and 

integrative tool for proteogenomics analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The JUMPg proteogenomic pipeline

(A) Schematic flowchart of JUMPg for peptide identification, with its simplified structure 

shown in a box. (B) An example of peptide identification table in the JUMPg output. The 

best scored PSMs are indicated by concatenated LC-MS/MS run name, scan number, the 

rank of precursor ion intensity in the isolation window, and charge state. (C) Data 

visualization to display related genes, transcripts and peptides/proteins. JUMPg generates 

peptide files containing the information of genomic locations (in BED format), which are 

uploaded into UCSC genome browser.
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Figure 2. Three customized databases derived from RNA-seq results

RNA-seq reads are aligned to genome reference. Mutations are called, annotated and 

translated to generate mutation peptide database, while splice junctions are called with 

flanking genomic sequences translated to build splice junction peptide database. In addition, 

RNA-seq reads are de novo assembled into transcripts and subjected to 6-frame translation 

to produce another database.
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Figure 3. Multistage database search accelerated by MS/MS quality control

(A) PSM identification success rate is positively correlated with MS/MS intensity, MS/MS 

peak counts, the derived tag length, and MS/MS quality score that integrates the previous 

three parameters. PSM identification success rate is equal to the accepted PSMs divided by 

the whole PSMs. (B) ROC curves indicate that MS/MS quality score (red line) outperforms 

any single feature. (C) The distribution of MS/MS quality score of all scans acquired in one 

LC-MS/MS run (dataset 1, fraction 7). MS/MS quality score threshold (vertical black line) is 

selected to retain 99% true positives (grey bars) whereas removing 35% of MS/MS spectra 

due to poor quality. The red line indicates the accumulative curve of accepted PSMs in the 

1st stage analysis.
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Figure 4. The JUMPg identified novel peptides in the AD brain sample

(A) A single amino acid substitution event (Leucine to Valine) in gene ACO2 is supported 

by one fully tryptic and two partially tryptic peptides. The number of PSMs is shown in 

brackets. (B) A 15-bp in-frame deletion event in gene PRUNE2 is revealed by a novel 

peptide (in magenta). (C) An exon-skipping event in gene SLC12A5. Reference peptides (in 

green) are also shown for comparison. (D) Identified peptides (in magenta, Met oxidation 

indicated by asterisk) support a 5′UTR translation event, indicating alternative start codon 

usage in the MINOS1 gene.
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Figure 5. Identification of novel protein coding gene PNMA6BL in human brain

(A) A novel gene named PNMA6BL is defined by nine peptides in the AD sample. RNA-

seq read depth, identified novel peptides, and the newly defined gene model PNMA6BL are 

shown. (B) Examples of MS/MS spectra assigned to PNMA6BL peptides. (C) PNMA6BL 

protein sequence is clustered within the PNMA6 branch of the Ma gene family. Asterisks 

indicate branches with PhyML67 supported bootstrap values greater than 90%. (D) PNMA6 

is highly expressed in brain, supported by FPKM values in the GTEx dataset. 68
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Figure 6. Peptide identification in the immunoglobulin light chain variable region in the MM 
sample

The peptide carries three amino acid substitutions (highlighted in red) compared to reference 

genome (hg19), which is supported by 211 PSMs and 1.3 million RNA-seq reads.

Li et al. Page 20

J Proteome Res. Author manuscript; available in PMC 2016 September 22.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Li et al. Page 21

Ta
b

le
 1

S
u
m

m
ar

y
 o

f 
p
ep

ti
d
es

 i
d
en

ti
fi

ed
 i

n
 A

lz
h
ei

m
er

’s
 d

is
ea

se
 a

n
d
 c

an
ce

r 
sa

m
p
le

s 
b
y
 t

h
e 

JU
M

P
g
 p

ro
g
ra

m

D
a
ta

b
a
se

D
a
ta

se
t 

1
: 

A
lz

h
ei

m
er

’s
 d

is
ea

se
 b

ra
in

D
a
ta

se
t 

2
: 

M
u

lt
ip

le
 m

y
el

o
m

a

S
ea

rc
h

 s
p

a
ce

*
P

S
M

s
P

ep
ti

d
es

S
ea

rc
h

 s
p

a
ce

*
P

S
M

s
P

ep
ti

d
es

1
st
 s

ta
g
e 

(f
u
ll

y
 t

ry
p
ti

c)

 
U

n
iP

ro
t

5
,0

8
6
,2

4
4

5
5
6
,5

5
1

8
7
,8

0
6

5
,0

8
6
,2

4
4

7
2
3
,5

2
1

1
2
9
,8

6
1

 
M

u
ta

ti
o
n

5
6
,0

8
5

1
,4

0
1

2
8
8

6
3
,7

0
8

1
,9

3
1

5
8
4

 
S

p
li

ce
 j

u
n
ct

io
n

1
5
2
,6

6
2

1
5
5

5
1

7
4
2
,5

8
5

3
1
6

1
6
3

2
n
d
 s

ta
g
e 

(p
ar

ti
al

ly
 t

ry
p
ti

c)
#

 
U

n
iP

ro
t

4
3
,9

9
8
,8

4
4

2
6
,0

3
0

6
,6

2
1

4
7
,2

7
3
,4

2
9

1
8
2
,7

3
7

6
7
,2

5
1

 
m

u
ta

ti
o
n

4
2
,7

6
1

3
3

1
0

9
8
,3

4
8

2
3
7

1
1
4

 
ju

n
ct

io
n

1
4
,3

1
7

0
0

5
1
,8

9
9

1
4

3

3
rd

 s
ta

g
e 

(f
u
ll

y
 t

ry
p
ti

c)

 
R

N
A

se
q
 6

F
T

3
,6

3
3
,9

5
3

5
6
9

1
4
7

4
,5

2
3
,3

6
8

4
6
7

1
2
7

T
o
ta

l
5
8
4
,7

3
9

9
4
,9

2
3

9
0
9
,2

2
3

1
9
8
,1

0
3

*
T

h
e 

se
ar

ch
 s

p
ac

e 
is

 i
n
d
ic

at
ed

 b
y
 t

h
e 

n
u
m

b
er

 o
f 

u
n
iq

u
e 

th
eo

re
ti

ca
l 

p
ep

ti
d
es

 i
n
 a

 p
ar

ti
cu

la
r 

d
at

ab
as

e.

#
O

n
ly

 p
ro

te
in

s/
ev

en
ts

 i
d
en

ti
fi

ed
 i

n
 t

h
e 

1
st

 s
ta

g
e 

ar
e 

co
n
si

d
er

ed
 i

n
 p

ar
ti

al
ly

 t
ry

p
ti

c 
d
at

ab
as

e 
se

ar
ch

.

J Proteome Res. Author manuscript; available in PMC 2016 September 22.



A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u

s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t

Li et al. Page 22

Table 2

JUMPg identified novel peptide events

Different Events AD MM

Mutation

 Single-AA substitution 255 518

 Multi-AA substitution 1 6

 Insertion 0 1

 Deletion 5 6

Splicing

 Skipped exons 11 58

 Within intron / new CDS exon 11 24

 Alternative donor 3 17

 Alternative acceptor 16 52

 Within intergenic regions 4 7

Non-canonical translation

 Frame-shift 5 9

 UTR translation 14 19

 Intron translation 14 14

 Antisense translation 1 1

 Non-coding gene translation 1 3

 Within intergenic regions 2 2

 USCS reference proteins* 17 23

 Total 360 760

*
Matched to the UCSC database but not in UniProt.
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