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One sentence summary 24 

SARS-CoV-2 transmission on mink farms. 25 

26 
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Abstract 27 

The zoonotic origin of the SARS-CoV-2 pandemic is still unknown. Animal experiments have 28 

shown that non-human primates, cats, ferrets, hamsters, rabbits and bats can be infected by 29 

SARS-CoV-2. In addition, SARS-CoV-2 RNA has been detected in felids, mink and dogs in the 30 

field. Here, we describe an in-depth investigation of outbreaks on 16 mink farms and humans 31 

living or working on these farms, using whole genome sequencing. We conclude that the virus 32 

was initially introduced from humans and has evolved, most likely reflecting widespread 33 

circulation among mink in the beginning of the infection period several weeks prior to 34 

detection. At the moment, despite enhanced biosecurity, early warning surveillance and 35 

immediate culling of infected farms, there is ongoing transmission between mink farms with 36 

three big transmission clusters with unknown modes of transmission. We also describe the 37 

first animal to human transmissions of SARS-CoV-2 in mink farms. 38 

39 
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Main text 40 

Late December 2019, SARS-CoV-2 was identified as the causative agent in a viral pneumonia 41 

outbreak, possibly related to a seafood and a live animal market in Wuhan, China (1). Since 42 

then, SARS-CoV-2 spread across the world and by August 31rd, over 25,200,000 people had 43 

been infected with SARS-CoV-2 resulting in over 840,000 deaths (2). In the Netherlands, over 44 

72,000 infections have been confirmed, over 6,200 SARS-CoV-2 related deaths have been 45 

reported, and drastic measures have been put into place to prevent further spread of SARS-46 

CoV-2  (3). 47 

         In view of the similarities with SARS-CoV-1, a zoonotic origin of the outbreak was 48 

suspected by the possible link with the Wuhan market where various animals were sold 49 

including fish, shellfish, poultry, wild birds and exotic animals. The finding of cases with onset 50 

of illness well before the period observed in the cluster, however, suggests the possibility of 51 

other sources (4). Although closely related coronaviruses in bats  (5, 6) and pangolins (7, 8) 52 

have most sequence identity to SARS-CoV-2, the most likely diversion date of SARS-CoV-2 53 

from the most closely related bat sequence is estimated to date back to somewhere between 54 

1948-1982  (9). Therefore, the animal reservoir(s) of SARS-CoV-2 is (are) yet to be identified. 55 

         Experimental infections in dogs (10), cats (10, 11), ferrets (10, 12), hamsters (13, 14), 56 

rhesus macaques (15), tree shrew (16), cynomolgus macaques (17), grivets (18), common 57 

marmosets (19), rabbits (20), and fruit bats (21) have shown that these species are susceptible 58 

to SARS-CoV-2, and experimentally infected cats, tree shrews, hamsters and ferrets could 59 

transmit the virus. In contrast, experimental infection of pigs and several poultry species  with 60 

SARS-CoV-2 proved to be unsuccessful (10, 21, 22). SARS-CoV-2 has also sporadically been 61 

identified in naturally infected animals. In the USA and in Hong Kong, SARS-CoV-2 RNA has 62 

been detected in dogs (23). In the Netherlands, France, Hong Kong, Belgium and the USA, cats 63 
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have tested positive by RT-PCR for SARS-CoV-2 (24–27). Furthermore, SARS-CoV-2 has been 64 

detected in four tigers and three lions in a zoo in New York (28). In Italy, the Netherlands and 65 

in Wuhan, antibodies to SARS-CoV-2 have been detected in cats (29–31). Recently, detected 66 

SARS-CoV-2 was detected in farmed mink (Neovison vison) that showed signs of respiratory 67 

disease and increased mortality (29, 32).  68 

Thereafter, the Dutch national response system for zoonotic diseases was activated, 69 

and it was concluded that the public health risk of animal infection with SARS-CoV-2 was low, 70 

but that there was a need for increased awareness of possible involvement of animals in the 71 

COVID-19 epidemic. Therefore, from May 20th 2020 onwards, mink farmers, veterinarians and 72 

laboratories were obliged to report symptoms in mink (family Mustelidae) to the Netherlands 73 

Food and Consumer Product Safety Authority (NFCPSA) and an extensive surveillance system 74 

was set up (33). 75 

Whole genome sequencing (WGS) can be used to monitor the emergence and spread 76 

of pathogens (34–37). As part of the surveillance effort in the Netherlands over 1,750 SARS-77 

CoV-2 viruses have been sequenced to date from patients from different parts of the 78 

Netherlands (38). Here, we describe an in-depth investigation into the SARS-CoV-2 outbreak 79 

in mink farms and mink farm employees in the Netherlands, combining epidemiological 80 

information, surveillance data and WGS on the human-animal interface. 81 

82 
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Methods 83 

Outbreak investigation 84 

Following initial detection of SARS-CoV-2 in mink on two farms on April 23rd and April 25th, 85 

respectively, as part of routine health monitoring done by the Royal GD Animal Health service 86 

and subsequent investigation by Wageningen Bioveterinary Research (WBVR), the national 87 

reference laboratory for notifiable animal diseases, a One Health outbreak investigation team 88 

was convened (39, 40). Subsequently, respiratory signs and increased mortality in mink was 89 

made notifiable by the Dutch Ministry of Agriculture, Nature and Food Quality and the farms 90 

were quarantined (no movements of animals and manure and visitor restrictions). On May 7th 91 

two other mink farms in the same region were confirmed to be infected. By the end of May 92 

the Dutch minister of Agriculture decided that all mink on SARS-CoV-2 infected farms had to 93 

be culled. Moreover, as the clinical manifestation of the infection was highly variable within 94 

and between farms, including asymptomatic infections, weekly testing of dead animals for 95 

SARS-CoV-2 infections became compulsory for all mink farms in the Netherlands. Moreover, 96 

a nation-wide transport ban of mink and mink manure, and a strict hygiene and visitor 97 

protocol was implemented. The first infected mink farms were culled from June 6th onwards. 98 

From the 10th infected farm (NB10) onwards, culling took place within 1-3 days after diagnosis. 99 

In this manuscript, the data up to June 26th, when a total of 16 mink farms in the Netherlands 100 

were found positive for SARS-CoV-2 infections, is presented. 101 

 102 

Veterinary and human contact tracing  103 

The Netherlands Food and Consumer Product Safety Authority (NVWA) traced animal related 104 

contacts with other mink farms. Backward and forward tracing of possible high-risk contacts 105 

was done in the framework of the standard epidemiological investigation by the NVWA (i.e. 106 
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focused on movement of vehicles, visitors such as veterinary practitioners, (temporary) 107 

workers, sharing of equipment between farms and transport and delivery of materials, such 108 

as feed, pelts, carcasses and manure). Persons with possible exposure from this investigation, 109 

as well as farm owners and resident farm workers were asked to report health complaints to 110 

the municipal health service for testing and – in the case of confirmed infections – for health 111 

advice and further contact tracing. Farm owners and workers on infected mink farms were 112 

informed of potential risks and were given advice on the importance and use of personal 113 

protective equipment and hygiene when handling animals (41). The contact structure on the 114 

farms was assessed through in-depth interviews, to identify additional persons with possible 115 

exposure to mink. In order to provide an enhanced set of reference genome sequences, 116 

anonymized samples from patients that had been diagnosed with COVID-19 in the area of the 117 

same four-digits postal codes as farms NB1-NB4 in March and April 2020 were retrieved from 118 

clinical laboratories in the region.  119 

 120 

SARS-CoV-2 diagnostics and sequencing 121 

The presence of viral RNA in mink samples was determined using a RT-PCR targeting the E 122 

gene as previously described (42). For the human samples, diagnostic RT-PCR was performed 123 

for the E and the RdRp gene (42). In addition, serology was performed, using the Wantai Ig 124 

total and IgM ELISA, following the manufacturer’s instructions(43). For all samples with a Ct 125 

value <32, sequencing was performed using a SARS-CoV-2 specific multiplex PCR for Nanopore 126 

sequencing, as previously described (3). The libraries were generated using the native barcode 127 

kits from Nanopore (EXP-NBD104 and EXP-NBD114 and SQK-LSK109) and sequenced on a R9.4 128 

flow cell multiplexing 24 samples per sequence run. Flow cells were washed and reused until 129 

less than 800 pores were active. The resulting raw sequence data was demultiplexed using 130 
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Porechop (https://github.com/rrwick/Porechop). Primers were trimmed after which a 131 

reference-based alignment was performed. The consensus genome was extracted and 132 

positions with a coverage <30 were replaced with an “N” as described previously (44). 133 

Mutations in the genome compared to the GISAID sequence EPI_ISL_412973 were confirmed 134 

by manually checking the mapped reads and homopolymeric regions were manually checked 135 

and resolved by consulting reference genomes. The average SNP difference was determined 136 

using snp-dists (https://github.com/tseemann/snp-dists). All sequences generated in this 137 

study are available on GISAID. 138 

  139 

Phylogenetic analysis 140 

All available near full-length Dutch SARS-CoV-2 genomes available on 1st of July were selected 141 

(n=1,775) and aligned with the sequences from this study using MUSCLE (45). Sequences with 142 

>10% “Ns” were excluded. The alignment was manually checked for discrepancies after which 143 

IQ-TREE (46) was used to perform a maximum likelihood phylogenetic analysis under the 144 

GTR+F+I +G4 model as best predicted model using the ultrafast bootstrap option with 1,000 145 

replicates. The phylogenetic trees were visualized in Figtree 146 

(http://tree.bio.ed.ac.uk/software/figtree/). For clarity reasons all bootstrap values below 80 147 

were removed. To look at potential relationships with migrant workers, also all Polish 148 

sequences from GISAID (47) were included in the alignment (Supplementary table 1). 149 

 150 

Mapping specific mutation patterns on mink farms and in mink farm employees 151 

Amino acid coordinates are described in relation to the Genbank NC_045512.2 reference 152 

genome. Open reading frames were extracted from the genome alignment using the genome 153 

annotation as supplied with the reference genome. A custom R script was used to distinguish 154 
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synonymous from non-synonymous mutations and non-synonymous mutations were 155 

visualized using a tile map from the ggplot2 package (48). 156 

 157 

Geographical overview of mink farms in the Netherlands and SARS-CoV-2 positive farms 158 

To protect confidentiality, SARS-CoV-2 positive mink farms were aggregated at municipality 159 

level. The datasets “Landbouw; gewassen, dieren en grondgebruik naar gemeente” and “Wijk- 160 

en Buurtkaart 2019” from Statistics Netherlands (CBS) were used (49). Maps were created 161 

using R packages sp (50), raster (51) and rgdal (52) and ArcGIS 10.6 software by ESRI.  162 

163 
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Results 164 

SARS-CoV-2 was first diagnosed on two mink farms in the Netherlands on April 23rd (NB1) and 165 

April 25th (NB2), respectively. After the initial detection of SARS-CoV-2 on these farms an in-166 

depth investigation was started to look for potential transmission routes and to perform an 167 

environmental and occupational risk assessment. Here, we describe the results of the 168 

outbreak investigation of the first 16 SARS-CoV-2 infected mink farms by combining SARS-CoV-169 

2 diagnostics, WGS and in-depth interviews. 170 

 171 

Screening of farm workers and contacts 172 

Farm owners of the 16 SARS-CoV-2 positive mink farms were contacted by the municipal 173 

health services to conduct contact investigation and samples were taken for RT-PCR-based 174 

and serological SARS-CoV-2 diagnostics. In total, 97 individuals were tested by either 175 

serological assays and/or RT-PCR. In total, 43 out of 88 (49%) upper-respiratory tract samples 176 

tested positive by RT-PCR while 38 out of 75 (51%) serum samples tested positive for SARS-177 

CoV-2 specific antibodies. In total, 66 of 97 (67%) of the persons tested had evidence for SARS-178 

CoV-2 infection (table 1).   179 

 180 

Table 1. Overview of human sampling on SARS-CoV-2 positive mink farms. 181 

Farm: First 

diagnosis in 

animals: 

Date(s) of sampling 

employees and family 

members: 

PCR positive 

(%) 

Serology 

positive (%) 

Employees and family 

members tested positive 

(PCR and/or serology) 

NB1 24-04-2020 28-04-2020 – 11-05-2020 5/6 (83%) 5/5 (100%) 6/6 (100%) 

NB2 25-04-2020 31-03-2020 – 30-04-2020 1/2 (50%) 8/8 (100%) 8/8 (100%) 

NB3 07-05-2020 11-05-2020 – 26-05-2020 5/7 (71%) 0/6 (0%)* 5/7 (71%) 

NB4 07-05-2020 08-05-2020 1/3 (33%) 2/2 (100%) 2/3 (66%) 

NB5 31-05-2020 01-06-2020 2/7 (29%) 3/6 (50%) 3/7 (43%)  

NB6 31-05-2020 01-06-2020 1/6 (17%) 4/6 (66%) 4/6 (66%) 
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* Serology was done approximately one week before the positive PCR test. 182 

** No serology was performed 183 

 184 

Anthropozoonotic transmission of SARS-CoV-2 185 

During the interview on April 28th, four out of five employees from NB1 reported that they 186 

had experienced respiratory symptoms before the outbreak was detected in minks, but none 187 

of them had been tested for SARS-CoV-2. The first day of symptoms of people working on NB1 188 

ranged from April 1st to May 9th. For 16 of the mink, sampled on April 28th, and one farm 189 

employee, sampled on May 4th, a WGS was obtained (hCov-190 

19/Netherlands/NoordBrabant_177/2020). The human sequence clusters within the mink 191 

sequences although it had 7 nucleotides difference with the closest mink sequence (Figure 1 192 

and cluster A in figures 2 and 3). On farm NB2, SARS-CoV-2 was diagnosed on April 25th. 193 

Retrospective analysis showed that one employee from NB2 had been hospitalized with SARS-194 

CoV-2 on March 31st. All samples from the 8 employees taken on April 30th were negative by 195 

RT-PCR but tested positive for SARS-CoV-2 antibodies. The virus sequence obtained from 196 

animals was distinct from that of farm NB1, indicating a separate introduction (Figure 2 and 197 

3, cluster B). 198 

 199 

NB7 31-05-2020 10-06-2020 – 01-07-2020 8/10 (80%) NA** 8/10 (80%) 

NB8 02-06-2020 03-06-2020 5/10 (50%) 5/9 (56%) 8/10 (80%) 

NB9 04-06-2020 07-06-2020 1/7 (14%) 1/7 (14%) 2/7 (29%)  

NB10 08-06-2020 11-06-2020 1/8 (13%) 3/8 (38%) 4/8 (50%) 

NB11 08-06-2020 11-06-2020 1/3 (33%) 0/2 (0%) 1/3 (33%) 

NB12 09-06-2020 11-06-2020 6/9 (66%) 2/8 (25%) 7/9 (78%) 

NB13 14-06-2020 11-06-2020 – 18-06-2020 3/3 (33%) 0/2 (0%) 3/3 (33%) 

NB14 14-06-2020 14-06-2020 1/3 (100%) 5/6 (83%) 5/6 (83%)  

NB15 21-06-2020 10-06-2020 – 30-06-2020 2/2 (100%) NA** 2/2 (100%) 

NB16 21-06-2020 23-06-2020 0/2 (0%) NA** 0/2 (0%) 

Total:   43/88 (49%) 38/75 (51%) 66/97 (68%) 
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 200 

Figure 1: Zoom of the phylogenetic analysis of NB1. A maximum likelihood analysis was performed 201 

using all available SARS-CoV-2 Dutch sequences. Sequences from mink on NB1 are depicted in red and 202 

from the employee on NB1 in blue. The two sequences in black at the root of the cluster are the closest 203 

matching human genome sequences from the national SARS-CoV-2 sequence database. Scale bar 204 

represents units of substitutions per site. 205 

 206 

Zoonotic transmission of SARS-CoV-2 207 

On mink farm NB3 SARS-CoV-2 infection was diagnosed on May 7th. Initially all seven 208 

employees tested negative for SARS-CoV-2, but when retested between May 19th and May 209 

26th after developing COVID-19 related symptoms, 5 out of 7 individuals working or living on 210 

the farm tested positive for SARS-CoV-2 RNA. WGS were obtained from these five individuals 211 

and the clustering of these sequences with the sequences derived from mink from NB3, 212 

together with initial negative test result and the start of the symptoms, indicate that the 213 

employees were infected with SARS-CoV-2 after the mink on the farm got infected. Also, an 214 

additional infection was observed based on contact-tracing: a close contact of one of the 215 

employees – who did not visit the farm – got infected with the SARS-CoV-2 strain found on 216 
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NB3. Animal and human sequences from farm NB3 were related to those from farm NB1, but 217 

were both part of cluster A. 218 

 Similarly, on mink farm NB7 zoonotic transmission from mink to human most likely 219 

occurred. On this farm, SARS-CoV-2 infection in mink was diagnosed on May 31st and 220 

employees initially tested negative for SARS-CoV-2 but started to develop symptoms at a later 221 

stage. Samples were taken between June 10th and July 1st from 10 employees of which 8 tested 222 

positive for SARS-CoV-2 RNA. From 2 samples WGS could be generated from the employees 223 

which clustered together with the sequences from the animals from this farm. 224 

 225 

Comparison with national reference database and enhanced regional sampling 226 

The sequences generated from mink farms and from mink farm employees were compared 227 

with the national database consisting of around 1,775 WGS. In addition, to discriminate 228 

between locally acquired infections and mink farm related SARS-CoV-2 infection, and to 229 

determine the potential risk for people living close to mink farms, WGS was also performed 230 

on 34 SARS-CoV-2 positive samples from individuals who live in the same four-digit postal 231 

code area compared to the first four mink farms. These local sequences reflected the general 232 

diversity seen in the Netherlands and were not related to the clusters of mink sequences 233 

found on the mink farms, thereby also giving no indication of spill-over to people living in close 234 

proximity to mink farms (sequences shown in magenta, Figure 2). The sequences from the 235 

mink farm investigation were also compared to sequences from Poland (n=65), since many of 236 

the mink farm workers were seasonal migrants from Poland, but the these were not related.  237 

 238 
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 239 

Figure 2: Maximum likelihood analysis of all SARS-CoV-2 Dutch sequences. The sequences derived 240 

from minks from different farms are indicated with different colors, human sequences related to the 241 

mink farms in blue and samples from similar 4-digit postal code are indicated in magenta. Scale bar 242 

represents units of substitutions per site. 243 

 244 

Mink farm related sequence clusters 245 

Phylogenetic analysis of the mink SARS-CoV-2 genomes showed that mink sequences of 16 246 

farms grouped into 5 different clusters (Figure 2 and 3). Viruses from farms NB1, NB3, NB4, 247 
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NB8, NB12, NB13 and NB16 belonged to cluster A, sequences from NB2 were a separate 248 

cluster (B), those from farms NB6, NB7, NB9 and NB14 grouped together in cluster C, NB5, 249 

NB8, NB10 and NB15 grouped to cluster D, and NB11 had sequences designated as cluster E.  250 

On farm NB8, SARS-CoV-2 viruses could be found from both cluster A and cluster D. A detailed 251 

inventory of possible common characteristics, like farm owner, shared personnel, feed 252 

supplier and veterinary service provider, was made. In some cases, a link was observed with 253 

the same owners of several farms, for instance for cluster A for NB1 and NB4, and for NB8 and 254 

NB12. Although NB7, NB11 and NB15 were also linked to the same owner, viruses from these 255 

farms belonged to cluster C, D and E respectively. No common factor could be identified for 256 

most farms and clustering could also not be explained by geographic distances as multiple 257 

clusters were detected in different farms located close to each other (Table 2 and figure 4). 258 

 259 

Table 2. Overview of the clusters detected on the different farms. 260 

Farm: Date of 

diagnosis: 

Sequence 

cluster: 

Same 

owner: 

Feed 

supplier: 

Vet**: Number 

of 

sequences 

(human): 

Sequence 

diversity 

(average): 

Mink 

population 

size: 

Detection***: 

NB1 24-04-20 A NB1, 

NB4 

1 I 17 (1) 0-9 (3.9) 75,711 Notification  

NB2 25-04-20 B   1 II 8 0-8 (3.6) 50,473 Notification 

NB3 07-05-20 A   2 III 5 (5) 0-2 (0.6) 12,400 Notification 

NB4 07-05-20 A NB1, 

NB4 

1 I 1 NA 67,945 Contact 

tracing NB1 

NB5 31-05-20 D   1 IV 1 NA 38,936 EWS-Ser+PM-

1st 

NB6 31-05-20 C   3 V 9 0-12 (6.8) 54,515 EWS-Ser+PM-

1st 

NB7 31-05-20 C NB7, 

NB11, 

NB15 

3 II 6 (2) 0-4 (1.4) 79,355 EWS-PM-1st    

NB8 02-06-20 A/D NB8, 

NB12* 

3 V 6 (5) 0-6 (2.6) 39,144 EWS-Ser+PM-

1st   

NB9 04-06-20 C   2 V 2 (1) 0-3 (1.5) 32,557 EWS-Ser+PM-

2nd   

NB10 08-06-20 D   3 II 4 0-3 (1.1) 26,824 EWS-Ser+PM-

2nd 
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* There was exchange of personnel in these two locations. 261 

** Veterinarian II and V were both from the same veterinary practice. 262 

***  Notification: based on reporting of clinical signs which was obligated from 26 April onwards; EWS-Ser-263 

Detection based on a one-off nation-wide compulsory serological screening of all mink farms at the end of 264 

May/early June by GD Animal Health; EWS-PM-Detection based on the early warning monitoring system 265 

for which carcasses of animals that died of natural causes were submitted weekly for PCR testing by GD 266 

Animal Health from the end of May onwards in a weekly cycle (EWS-PM 1st to 6th post mortem screening). 267 

 268 

In total 18 sequences from mink farm employees or close contacts were generated from seven 269 

different farms. In most cases, these human sequences were near-identical to the mink 270 

sequences from the same farm. For NB1 the situation was different and the human sequence 271 

clusters deeply within the sequences derived from mink (Figure 1), with 7 nucleotides 272 

difference with the closest related mink sequence. This was also the case on farm NB14, with 273 

4 nucleotides difference with the closest related mink sequence. Employees sampled at mink 274 

farm NB8 clustered with animals from NB12 which can be explained by the exchange of 275 

personnel between these two farms.  276 

NB11 08-06-20 E NB7, 

NB11, 

NB15 

3 II 4 0-4 (2.2) 38,745 EWS-PM-2nd   

NB12 09-06-20 A NB8, 

NB12* 

3 II 5 0-3 (1.2) 55,352 Notification 

NB13 14-06-20 A 
 

3 V 5 (3) 0-5 (3.2) 20,366 EWS-PM-5th 

NB14 14-06-20 C   3 II 5 (1) 0-7 (3.7) 28,375 EWS-PM-5th 

NB15 21-06-20 D NB7, 

NB11, 

NB15 

3 II 5 0-2 (0.6) 35,928 EWS-PM-6th 

NB16 21-06-20 A   3 II 5 0-4 (1.6) 66,920 EWS-PM-6th 
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 277 

Figure 3: Phylogenetic analysis of SARS-CoV-2 strains detected in the 5 mink farm clusters. The 278 

sequences derived from different farms are depicted in different colors. Scale bar represents units of 279 

substitutions per site. 280 
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 281 

Figure 4. Geographical overview of SARS-CoV-2 positive mink farms per municipality affected. The 282 

proportion of SARS-CoV-2 positive mink farms over the total number of mink farms (CBS, 2019) is 283 

indicated. Symbols for positive farms are colored by cluster and shapes indicate farms with a same 284 

owner.  285 
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Within farm diversity 287 

SARS-CoV-2 was detected on mink farm NB1-NB4 after reports of respiratory symptoms and 288 

increased mortality in mink. The sequences from farm NB1 had between 0 and 9 nucleotides 289 

differences (average 3.9 nucleotides) and from NB2 between 0 and 8 nucleotides differences 290 

(average of 3.6), which is much more than what has been observed in outbreaks in human 291 

settings. The sequences from NB3 had 0 to 2 nucleotides difference suggesting that the virus 292 

was recently introduced, in line with the observed disease in humans, which occurred in the 293 

weeks post diagnosis of the infection in mink. After the initial detection of SARS-CoV-2 on 294 

mink farms, farms were screened weekly. The first, second, fifth and sixth weekly screening 295 

yielded new positives. The sequences of mink at NB6 had between 0 and 12 nucleotides 296 

differences, whereas diversity was lower for the subsequent farm sequences (Table 2). 297 

Several non-synonymous mutations were identified among the mink sequences 298 

compared to the Wuhan reference sequence NC_045512.2. However, no particular amino 299 

acid substitutions were found in all mink samples (Figure 5). Of note, three of the clusters had 300 

the position 614G variant (clusters A, C and E), and 2 had the original variant. There were no 301 

obvious differences in the presentation of disease in animals or humans between clusters 302 

based on the data available at this stage, but further data collection and analysis, also for cases 303 

after NB16, are ongoing to investigate this further.  The observed mutations can also be found 304 

in the general population and the same mutations also were found in human cases which were 305 

related to the mink farms. 306 
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307 

Figure 5. Overview of the specific amino acid mutations found in mink farms. Above the x-axis the 308 

open reading frames (ORF) are indicated and on the x-axis the amino acid position within each 309 

ORF is indicated. On the y-axis the sequence names are indicated and on the right side of the 310 
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graph the cluster numbers and specific farm identifiers and the type of host are used to group 311 

the samples. 312 

 313 

Discussion 314 

Here we show ongoing SARS-CoV-2 transmission in mink farms and spill-over events to 315 

humans. To the best of our knowledge, these are the first animal to human SARS-CoV-2 316 

transmission events documented. More research in minks and other mustelid species, to 317 

demonstrate if these species can be a true reservoir of SARS-CoV-2 although from our 318 

observations we consider this likely. After the detection of SARS-CoV-2 on mink farms, 68% of 319 

the tested farm workers and/or relatives or contacts were shown to be infected with SARS-320 

CoV-2, indicating that contact with SARS-CoV-2 infected mink is a risk factor for contracting 321 

COVID-19. 322 

A high diversity in the sequences from some mink farms was observed which most 323 

likely can be explained by many generations of infected animals before an increase in 324 

mortality was observed. The current estimates are that the substitution rate of SARS-CoV-2 is 325 

around 1.16*10^-3 substitutions/site/year (53), which corresponds to around one mutation 326 

per two weeks. This could mean that the virus was already circulating in mink farms for some 327 

time. However, there was also a relatively high sequence diversity observed in farms which 328 

still tested negative one week prior, hinting towards a faster evolution of the virus in the mink 329 

population. This can indicate that the virus might replicate more efficiently in mink or might 330 

have acquired mutations which makes the virus more virulent. However, no specific mutations 331 

were found in all mink samples, making increased virulence less likely. In addition, mink farms 332 

have large populations of animals which could lead to very efficient virus transmission. 333 

Generation intervals for SARS-CoV-2 in humans have been estimated to be around 4-5 334 
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days(54), but with high dose exposure in a high-density farm could potentially be shorter. 335 

Recently, a specific mutation in the spike protein (D614G) was shown to result in an increased 336 

virulence in vitro (55), while it was not associated an increased growth rate for cluster nor an 337 

increased mortality (56).  This mutation was present in farm clusters A, C and E, but no obvious 338 

differences in clinical presentation, disease severity, or rate of transmission to humans was 339 

observed.   340 

While we found sequences matching with the animal sequences on several farms, not 341 

all of these can be considered direct zoonotic transmissions. For instance, the two employees 342 

from mink farm NB3 were most likely infected while working at the mink farm given the 343 

specific clustering in the phylogenetic tree and the timing of infection. Subsequent human 344 

infections may have originated from additional zoonotic infections, or from human to human 345 

transmission within their household. Further proof that animals were the most likely source 346 

of infection was provided by the clear phylogenetic separation between farm related human 347 

cases and animal cases, from sequences from cases within the same 4-digit postal code area. 348 

Spill-back into the community living in the same 4-digit postal code area was not observed 349 

using sequence data, but cannot be entirely ruled out as the testing strategy during April and 350 

May was focusing on health care workers, persons with more severe symptoms, and persons 351 

at risk for complications, rather than monitoring community transmission and milder cases.  352 

While the number of SARS-CoV-2 infected individuals was decreasing in the 353 

Netherlands in May and June, an increase in detection of SARS-CoV-2 in mink farms was 354 

observed. Based on WGS these sequences are part of multiple individual transmission chains 355 

linked to the mink farms and are not a reflection of the situation in the human population 356 

during this time. In some cases, the farms had the same owner but in other cases no 357 

epidemiological link could be established. People coming to the different farms might be a 358 
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source but also semi-wild cats roaming around the farms or wildlife might play a role (27). So 359 

far, the investigation failed to identify common factors that might explain farm to farm spread.  360 

During interviews, it became clear that farms had occasionally hired temporary workers that 361 

had not been included in the testing and were lost to follow-up, stressing the need for vigorous 362 

biosecurity and occupational health guidance. Since our observation, SARS-CoV-2 infections 363 

have also been described in mink farms in Denmark, Spain and the USA (57–59), and mink 364 

farming is common in other regions of the world as well, also in China where around 26 million 365 

mink pelts are produced on a  yearly basis (60). The population size and the structure of mink 366 

farms is such that it is conceivable that SARS-CoV-2 – once introduced – could continue to 367 

circulate. Therefore, continued monitoring and cooperation between human and animal 368 

health services is crucial to prevent the animals serving as a reservoir for continued infection 369 

in humans. 370 

 371 
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with SARS-CoV-2 affected farms by June 21st 2020 are shown in red. 652 
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