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Abstract We investigate the jumping conics of stable vector bundles E of rank 2 on a
smooth quadric surface Q with the first Chern class c1 = OQ(−1,−1) with respect to the
ample line bundle OQ(1, 1). We show that the set of jumping conics of E is a hypersurface
of degree c2(E) − 1 in P

∗
3. Using these hypersurfaces, we describe moduli spaces of stable

vector bundles of rank 2 on Q in the cases of lower c2(E).
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1 Introduction

The moduli space of stable sheaves on surfaces has been studied by many people. Especially,
over the projective plane, the moduli space of stable sheaves of rank 2 was studied by Barth
[1] and Hulek [10], using the jumping lines and jumping lines of the second kind. In Vitter
[18], this idea was generalized to the jumping conics on the projective plane. In this article,
we use the concept of jumping conics on the smooth quadric surface, which was introduced,
in the case of trivial first Chern class, by Soberon-Chavez in [17].

Let Q be a smooth quadric in P3 = P(V ), where V is a 4-dimensional vector space over
complex numbers C, and M(k) be the moduli space of stable vector bundles of rank 2 on Q
with the Chern classes c1 = OQ(−1,−1) and c2 = k with respect to the ample line bundle
H = OQ(1, 1). M(k) forms an open Zariski subset of the projective variety M(k) whose
points correspond to the semi-stable sheaves on Q with the same numerical invariants. The
Zariski tangent space of M(k) at E is naturally isomorphic to H1(Q, End(E)), and so the
dimension of M(k) is equal to h1(Q, End(E)) = 4k − 5, since E is simple.
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196 S. Huh

Using the Beilinson-type theorem on Q [3], we obtain the following monad for E ∈ M(k),

0 → C
k−1 ⊗ OQ(−1,−1) → C

k ⊗ (OQ(0,−1) ⊕ OQ(−1, 0)) → C
k−1 ⊗ OQ → 0,

with the cohomology sheaf E , where the first injective map derives a map

δ : H1(E(−1,−1)) ⊗ V ∗ → H1(E).

As in Barth [2], we similarly define S(E) ⊂ P
∗
3, the set of jumping conics of E , and prove

that S(E) is a hypersurface in P
∗
3 of degree k − 1 whose equation is given by det δ(z) = 0,

z ∈ V ∗, where δ(z) is a symmetric (k − 1) × (k − 1)-matrix. We give a criterion for H ∈ P
∗
3

to be a singular point of S(E) and calculate the exact number of singular points of S(E)

when E is a Hulsbergen bundle, i.e. E admits the following exact sequence,

0 → OQ → E(1, 1) → IZ (1, 1) → 0,

where Z is a 0-cycle on Q with length k whose support is in general position.
In Sect. 3, we describe the above results in the cases c2 ≤ 3 by investigating the map

S : M(k) → |OP
∗
3
(k − 1)|,

sending E to S(E). When c2 = 2, S(E) is a hypersurface in P3, and M(2) is isomorphic to
P3\Q via S, which was already shown in Huh [9]. In the case of c2 = 3, we investigate the
surjective map from M(3) to P

∗
3, sending E to the vertex point of the quadric cone S(E) ⊂ P

∗
3

to give an explicit description of M(3). In fact, the generic fibre of this map over H ∈ P
∗
3 is

isomorphic to the set of smooth conics that are Poncelet related to the smooth conic H ∩ Q.
As a result, we can observe that S is generically one to one from M(3) to its image. In other
words, when c2 = 2, 3, the set of jumping conics, S(E), uniquely determines E in general.

2 The Beilinson theorem and jumping conics

2.1 The Beilinson theorem

Let V1 and V2 be two 2-dimensional vector spaces with the coordinate [x1i ] and [x2 j ], respec-
tively. Let Q be a smooth quadric isomorphic to P(V1)×P(V2), and then it is embedded into
P3 
 P(V ) by the Segre map, where V = V1 ⊗ V2. Let us denote f ∗OP1(a) ⊗ g∗OP1(b) by
OQ(a, b) and E ⊗OQ(a, b) by E(a, b) for coherent sheaves E on Q, where f and g are the
projections from Q to each factor. Then, the canonical line bundle K Q of Q is OQ(−2,−2).

Definition 2.1 For a fixed ample line bundle H on Q, a torsion-free sheaf E of rank r on Q
is called stable (resp. semi-stable) with respect to H if

χ(F ⊗ OQ(m H))

r ′ < (resp. ≤)
χ(E ⊗ OQ(m H))

r
,

for all non-zero subsheaves F ⊂ E of rank r ′.

Let M(k) be the moduli space of semi-stable sheaves of rank 2 on Q with the Chern clas-
ses c1 = OQ(−1,−1) and c2 = k with respect to the ample line bundle H = OQ(1, 1). The
existence and the projectivity of M(k) is known in Gieseker [7], and it has an open Zariski
subset M(k) that consists of the stable vector bundles with the given numeric invariants. By
the Bogomolov theorem, M(k) is empty if 4k < c2

1 = 2, and in particular, we can consider
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Jumping conics on a smooth quadric in P3 197

only the case k ≥ 1. Note that E 
 E∗(−1,−1) and by the Riemann-Roch theorem, we
have

χE (m) := χ(E(m, m)) = 2m2 + 2m + 1 − k,

for E ∈ M(k).
Using the same trick as in the proof of the Beilinson theorem on the vector bundles over

the projective space [15], we can obtain similar statement over Q.

Proposition 2.2 [3] For any holomorphic bundle E on Q, there is a spectral sequence

E p,q
1 ⇒ E p+q∞ =

{
E, if p + q = 0;
0, otherwise,

with ⎧⎪⎪⎨
⎪⎪⎩

E p,q
1 = 0, |p + 1| > 1

E0,q
1 = Hq(E) ⊗ OQ

E−2,q
1 = Hq(E(−1,−1)) ⊗ OQ(−1,−1),

and an exact sequence

· · · → Hq(E(0,−1)) ⊗ OQ(0,−1) → E−1,q
1 → Hq(E(−1, 0)) ⊗ OQ(−1, 0) → · · · .

Proof Let p1 and p2 be the projections from Q × Q to each factor and denote p∗
1OQ(a, b)⊗

p∗
2OQ(c, d) by O(a, b)(c, d)′. If we let � be the diagonal of Q × Q, we have the following

Koszul complex,

0 → O(−1,−1)(−1,−1)′ →
1⊕

i=0

O(−i, 1 − i)(−i, 1 − i)′ → O → O�. (1)

If we tensor it with p∗
2 E , then we have a locally free resolution of p∗

2 E |�. If we take higher
direct images under p1, we get the assertion by the standard argument on the spectral
sequence. ��

In the Sect. 5 of [13], a similar construction was considered in the case where the first Chern
class is trivial. Now from the stability condition of E ∈ M(k), we have H0(E(a, b)) = 0
whenever a + b ≤ 0. Hence, E p,q

1 = 0 for p = −2,−1, 0 and q = 0, 2, and thus the
proposition gives us a monad

M : 0 → K1,1 ⊗ OQ(−1,−1) → E−1,1
1 → K0,0 ⊗ OQ → 0, (2)

with the cohomology sheaf E(M) = E , where Ka,b = H1(E(−a,−b)) and E−1,1
1 fits into

the following exact sequence,

0 → K0,1 ⊗ OQ(0,−1) → E−1,1
1 → K1,0 ⊗ OQ(−1, 0) → 0. (3)

Since H1(OQ(1,−1)) = 0, this exact sequence splits. Thus, we have the following corollary.

Corollary 2.3 Let E ∈ M(k). Then, E becomes the cohomology sheaf of the following
monad:

M(E) : 0 → K1,1 ⊗ OQ(−1,−1) →
1⊕

i=0

(Ki,1−i ⊗ OQ(−i,−1 + i)) → K0,0 ⊗ OQ → 0.
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198 S. Huh

Note that k1,1 = k0,0 = k − 1 and k1,0 = k0,1 = k, where ki, j = dim Ka,b.
Let us denote by a, the first injective map in the monad in the corollary (2.3). Since

E 
 E∗(−1,−1), the last surjective map is the dual of a, twisted by OQ(−1,−1), and thus
the monad M(E) is completely determined by a. The monomorphism a is defined from an
element α in

K ∗
1,1 ⊗ ((K0,1 ⊗ V1) ⊕ (K1,0 ⊗ V2)),

i.e. α = (α1, α2), where αi ∈ Hom(V ∗
i , Hom(K1,1, Ki−1,2−i )) are the multiplication maps,

by the following equation;

a(k ⊗ (z1 ∧ z2)) = α1(z1)(k) ⊗ z2 − α2(z2)(k) ⊗ z1

over each fibre, where k ∈ K1,1. Note that O(−1,−1) can be identified with ∧2(O(−1, 0)⊕
O(0,−1)), from which E0 := O(−1, 0) ⊕ O(0,−1) has a symplectic structure. Moreover,

the isomorphism f : E
∼
−→ E∗(−1,−1) from the perfect pairing

E ⊗ E → ∧2 E 
 O(−1,−1),

sending g ⊗ h to g ∧ h is symplectic in the sense that f = − f ∗(−1,−1). Thus, we have an
isomorphism q from K0,1 ⊗ O(0,−1) ⊕ K1,0 ⊗ O(−1, 0) to its dual satisfying q = −q∗
which fits into the isomorphism f between M(E) and M(E)∗. From this and the symplectic
structure of E0, we can obtain isomorphisms q1 : K0,1 
 K ∗

1,0 and q2 : K1,0 
 K ∗
0,1 with

q1 = qt
2. In other words, the vector space K0,1 ⊕ K1,0 carries a quadratic form given by

(q1, q2).
Finally, the last map is given by α∗ ◦ q . Since M(E) is a monad, we have

(
α∗

2 α∗
1

) (
q1 0
0 q2

) (
α1

−α2

)
= 0,

i.e. α∗
2 ◦ q1 ◦ α1 = α∗

1 ◦ q2 ◦ α2. Now, we can consider a map

δ : V ∗
1 ⊗ V ∗

2 → Hom(K1,1, K0,0), (4)

defined by δ := α∗
2 ◦ q1 ◦ α1. We have δ(z) ∈ K0,0 ⊗ K0,0 since K ∗

1,1 
 K0,0. Moreover,

δ(z)t = (α∗
2 ◦ q1 ◦ α1)

t = α∗
1 ◦ q∗

1 ◦ α2 = α∗
1 ◦ q2 ◦ α2 = δ(z).

In other words, δ(z) is an element in Sym2(K0,0) for all z.

2.2 Jumping conics

Let H be a general hyperplane section of P3, and then CH := Q ∩ H is a conic on H . Let
E be a vector bundle of rank r on Q. If we choose an isomorphism f : P1 → CH , then due
to Grothendieck, we have

f ∗E |CH 
 OP1(a1) ⊕ · · · ⊕ OP1(ar ),

where aE,H := (a1, . . . , ar ) ∈ Z
r such that a1 ≥ · · · ≥ ar . Here, aE,H is called the splitting

type of E |CH .

Definition 2.4 A conic CH = Q ∩ H on Q is called a jumping conic of E if the splitting
type aE,H of E |CH is different from the generic splitting type aE . We will denote the set of
jumping conics of E by S(E) ⊂ P

∗
3.
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Jumping conics on a smooth quadric in P3 199

Remark 2.5 The above definition is valid only for the general hyperplane sections H . Later,
we give an equivalent definition for the jumping conics for arbitrary case, using the coho-
mological criterion.

From the theorem (0.2) in [14], we have ai −ai+1 ≤ 2 for all i , since the degree of Q ⊂ P3 is
2. From the following proposition, we know that this upper bound can be sharpened to be 1.

Proposition 2.6 If E is a stable vector bundle on Q of rank r, we have

ai − ai+1 ≤ 1, for all i,

where aE = (a1, . . . , ar ). In particular, for E ∈ M(k) and a general conic CH on Q, we
have

E |CH 
 OCH (−p) ⊕ OCH (−p),

where p is a point on CH .

Proof This result is well known (see proposition (1.4) and corollary (1.5) in [6]). The main
ingredient is that, for the incidence variety I ⊂ Q × P

∗
3, we have

f ∗TI|Q |CH 
 OP1(−1)⊕2,

where f : P1 → CH . ��

Let us assume that E ∈ M(k) is a stable vector bundle on Q. As a direct consequence,
the jumping conics of E ∈ M(k) can be characterized by

h0(E |CH ) �= 0, (5)

and we will use this cohomological criterion as the definition of the jumping conics of E .
We consider the exact sequence,

0 → E(−1,−1) → E → E |CH → 0,

to derive the following long exact sequence,

0 → H0(E |CH ) → H1(E(−1,−1)) → H1(E), (6)

where the last map is given by δ(z) = α∗
2 ◦ q1 ◦ α1, where z is the coordinates determining

the hyperplane section H . Hence, CH is a jumping conic if and only if det(δ) = 0. Note that
det(δ) is a homogeneous polynomial of degree c2(E) − 1 with the coordinates of V ∗

1 ⊗ V ∗
2 .

This determinant does not vanish identically due to the proposition (2.6), and so we obtain
that S(E) is a hypersurface of degree c2(E) − 1 in P

∗
3. From the fact that δ(z) = δ(z)t , we

obtain the following statement.

Theorem 2.7 S(E) is a symmetric determinantal hypersurface of degree c2(E) − 1 in P
∗
3.

The natural question on S(E) is the smoothness, and the next proposition will give an
answer to this question.

Proposition 2.8 If h0(E |CH ) ≥ 2, then H ∈ P
∗
3 is a singular point of S(E).
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200 S. Huh

Proof The statement is clear from the theory on the singular locus of symmetric determi-
nantal varieties [8]. Indeed, let M = M0 denote the projective space PN of (k − 1)× (k − 1)

symmetric matrices up to scalars, and Mi be the locus of matrices of corank i or more. Let
us consider a map ϕ : P

∗
3 → M , determined naturally by δ. If we let Si be the preimage of

Mi via ϕ, then we have

Tp S2 = dϕ−1(Tqϕ(S2))

= dϕ−1(Tq M2 ∩ Tqϕ(P∗
3))

= dϕ−1(M ∩ Tqϕ(P∗
3)), since Tq M2 = M [8]

= dϕ−1Tqϕ(P∗
3) = P

∗
3,

where q = ϕ(p) and p ∈ S2. In particular, S2 is the singular locus of S1 = S(E). ��
Remark 2.9 Let f : P1 → CH ⊂ Q be a smooth conic on Q and assume that we have

f ∗E |CH 
 OP1(−1 − i) ⊕ OP1(−1 + i),

where i is a nonnegative integer. Note that i = h0(E |CH ) = corank(δ(z)), where z is the
coordinates of H . If i ≥ 2, then H ∈ P

∗
3 is a singular point of S(E).

Now for later use, let us define a sheaf supported on S(E). As in [1], we can see that S(E)

is the support of the OP
∗
3
-sheaf ϑE (1) defined by the following exact sequence,

0 → K1,1 ⊗ OP
∗
3
(−1) → K0,0 ⊗ OP

∗
3

→ ϑE (1) → 0. (7)

The first injective map is composed of

K1,1 ⊗ OP
∗
3
(−1) → K1,1 ⊗ (V ∗

1 ⊗ V ∗
2 ) ⊗ OP

∗
3

→ K0,0 ⊗ OP
∗
3
,

where the first map is from the Euler sequence over P
∗
3, and the second map is from the map

δ. So ϑE is an OS(E)-sheaf.
From the incidence variety I ⊂ Q × P

∗
3, we obtain

0 → π∗
1 OQ(−1,−1) ⊗ π∗

2 OP
∗
3
(−1) → OQ×P

∗
3

→ OI → 0.

If we tensor it with π∗
1 E and take the direct image of it, we obtain,

0 → K1,1 ⊗ OP
∗
3
(−1) → K0,0 ⊗ OP

∗
3

→ R1π2∗π∗
1 E → 0.

Since this exact sequence coincide with the sequence (7), we have

Lemma 2.10 ϑE (1) 
 R1π2∗π∗
1 E .

3 Examples

Let M(k) be the moduli space of stable vector bundles of rank 2 on Q with the Chern classes
c1 = OQ(−1,−1) and c2 = k with respect to the ample line bundle OQ(1, 1). The dimen-
sion of M(k) can be computed to be h1(Q, End(E)) = 4k − 5. By sending E ∈ M(k) to
the set of jumping conics of E , we can define a morphism

S : M(k) → |OP
∗
3
(k − 1)| 
 PN ,

where N = (k+2
3

) − 1.
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Jumping conics on a smooth quadric in P3 201

Let Z = {x1, . . . , xk} be a 0-dimensional reduced subscheme of Q with length k. If E is
a stable vector bundle fitted into the exact sequence,

0 → OQ → E(1, 1) → IZ (1, 1) → 0,

which is called a Hulsbergen bundle, then E is in M(k). Note that if k ≤ 4, then E ∈ M(k)

admits the above exact sequence since χ(E(1, 1)) = 5 − k and so h0(E(1, 1)) ≥ 1. Con-
versely, let us consider the above extension. It is parametrized by

P(Z) := P Ext1(IZ (1, 1), OQ) 
 PH0(OZ )∗.

If we give P(Z), the coordinate system (c1, . . . , ck) corresponding to Z , then by the lemma
(5.1.2) in Chapter 1 [15] or [4], the bundle E corresponding to (c1, . . . , ck) is locally free if
and only if ci �= 0 for all i .

Now by the theorem (2.7), S(E) ⊂ P
∗
3 is a hypersurface of degree k − 1.

Remark 3.1 The original definition of Hulsbergen bundle is given in [1] as the bundle E
of rank 2 on P2 with c1(E) = 0 such that E(1) admits a section s with k ordinary zeros
precisely at Z = {z1, . . . , zk}. It is obtained by an extension

0 → OP2

s
−→ E(1) → IZ (2) → 0, (8)

where IZ ⊂ OP2 is the ideal sheaf of Z . The main theorem of Barth is that the set of jumping
lines of a Hulsbergen bundle is a Darboux curve. Later, we will prove a similar argument for
M(k).

Lemma 3.2 (1) If |Z ∩ H | ≥ 3, then h0(E |CH ) ≥ 2.
(2) If |Z ∩ H | ≤ 2, then h0(E |CH ) ≤ 1.

Proof Let m = |Z ∩ H | ≥ 3. If CH is a smooth conic, then by tensoring the above
exact sequence with OH , we have E |CH 
 OCH ((m − 1)p) ⊕ OCH ((−m − 1)p) since
Ext1(OCH ((−m − 1)p), OCH ((m − 1)p)) = 0. Thus, h0(ECH ) ≥ 2.

Let us assume that CH = l1 + l2, i.e. H is a tangent plane of Q. Note that

h0(CH , O(a1, a2)) =
⎧⎨
⎩

0, if ai < 0 for i = 1, 2;
ai , if ai ≥ 0, a j < 0;
a1 + a2 + 1, if ai ≥ 0 for i = 1, 2

where O(a1, a2) := Ol1(a1) ∪ Ol2(a2). From the lemma (2.1) in [12], it is clear that
h0(ECH ) ≥ 2. For example, when m = 3 and Z ∩ H = {x, y, z}, x, y ∈ l1, z ∈ l2
and q = l1 ∩ l2 �∈ Z , we have

0 → Ol1(1) ∪ Ol2 → E → Ol1(−2) ∪ Ol2(−1) → 0, (9)

and in particular the filtrations in the lemma (2.1) of [12], coincide in q . Thus, h0(E |CH ) = 2.
Assume that |Z ∩ H | ≤ 2. If CH is smooth, we obtain in a similar way as above that ECH

is either OCH (−2p) ⊕ OCH or OCH (−p) ⊕ OCH (−p) and thus h0(E |CH ) ≤ 1. When H
is a tangent plane section at q ∈ Q, we can also similarly show that h0(E |CH ) ≤ 1, except
when Z ∩ H = {x, y} and y = q , say x ∈ l1. In this case, we have

E |l1 
 Ol1(1) ⊕ Ol1(−2), and

E |l2 
 Ol2 ⊕ Ol2(−1).

Since y = q is the intersection point of l1 and l2, the sub-bundles Ol1(1) and Ol2 in (9) do
not coincide at y. So h0(E |CH ) = 1. ��
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Since we have
(k

3

)
hyperplanes that meet Z at 3 points and thus S(E) has at least

(k
3

)
singular points. Thus, we have the following statement.

Proposition 3.3 For a Hulsbergen bundle E ∈ M(k), S(E) is a hypersurface of degree
k − 1 in P

∗
3 with

(k
3

)
singular points.

3.1 If c2 = 1, then there is no stable vector bundles. In fact, it can be shown [9] that there
exists a unique strictly semi-stable vector bundle E0 := OQ(−1, 0)⊕OQ(0,−1). Since
h0(E0) = h1(E0(−1,−1)) = 0, we have h0(E0|CH ) = 0 for all H ∈ P

∗
3. Hence, if we

extend the concept of the jumping conic to semi-stable bundles, we can say that there
is no jumping conic of E0. It is consistent with the fact that S(E0) is a hypersurface of
degree 0 in P

∗
3.

3.2 If c2 = 2, then S(E) is a hyperplane in P
∗
3. So the map S is from M(2) to P3. It was

shown in [9] that S extends to an isomorphism

S : M(2) → P3,

where M(2) is the compactification of M(2) in the sense of Gieseker [7], whose bound-
ary consists of non-locally free sheaves with the same numeric invariants. In fact, for E ∈
M(2), we have h0(E(1, 1)) = 3 and can define a morphism from P2 
 PH0(E(1, 1))

to the Grassmannian Gr(1, 3), sending a section s to the line in P3 containing the two
zeros of s. The image of this map can be shown to be a 2-cycle of Gr(1, 3) corresponding
to the unique point in P3. S maps E to this uniquely determined point. Moreover, M(2)

maps to P3\Q via S, and in particular, S(E) determines E completely. Let Z be a 0-cycle
on Q with length 2 such that the support of Z does not lie on a line in Q and consider
an extension family P(Z) of E , admitting the following exact sequence,

0 → OQ → E(1, 1) → IZ (1, 1) → 0.

Then, P(Z) 
 P1 is the secant line of Q passing through the support of Z . From this
description, it can be easily checked that H ∈ S(E) if and only if E |CH 
 OCH ⊕
OCH (−2p), which is consistent with the fact that S(E) is smooth.

3.3 In the previous case, we prove that S(E) uniquely determines E in the case of c2 = 2.
In general, this is not true. If c2 = 3, we have a map S : M(3) → |OP

∗
3
(2)| 
 P9, where

S(E) is a quadric in P
∗
3. In this case, we will show that the map S is generically one to

one to its image, but not isomorphism.

For E ∈ M(3), we know that E(1, 1) is fitted into the following exact sequence,

0 → OQ → E(1, 1) → IZ (1, 1) → 0, (10)

with a 0-cycle Z on Q with length 3. If Z is contained in a line on Q, then E contains
OQ(0,−1) or OQ(−1, 0) as a sub-bundle, contradicting to the stability of E . Thus, there
exists a unique hyperplane H in P3 containing Z .

Remark 3.4 Conversely, if Z is not contained in any line on Q, then it can be easily shown
from the standard computation that any sheaf E admitting an exact sequence (10) is semi-
stable. In fact, if a subscheme of length 2 of Z is contained in a line on Q, any sheaf E
admitting (10) is strictly semi-stable.

Now let us consider the map

ηE : P1 
 PH0(E(1, 1)) → Gr(2, 3) 
 P
∗
3,
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Jumping conics on a smooth quadric in P3 203

sending a section s ∈ H0(E(1, 1)) to the projective plane in P3 containing a 0-cycle Z in
the exact sequence (10), which is obtained from s. Before proving that ηE is a constant map,
we suggest a different proof of the fact that S(E) is a quadric cone in P

∗
3.

Proposition 3.5 For E ∈ M(3), S(E) is a quadric cone in P
∗
3 with a vertex point.

Proof Let s be a section of E(1, 1) from which E(1, 1) admits an exact sequence (10) for
a 0-dimensional cycle Z of length 3. Let Z = {z1, z2, z3}. If Hs be a hyperplane in P3

containing Z , then E |CHs
admits an exact sequence,

0 → OCHs
(p) → E |CHs

→ OCHs
(−3p) → 0,

where p is a point on CHs . Since h0(E |CHs
) = 2, Hs is a singular point of S(E) by proposi-

tion (2.8). Let us assume that S(E) consists of two hyperplanes meeting at a line l. Clearly,
Hs lies in l. There are three lines on S(E) corresponding to the hyperplanes containing two
points of Z , and they are exactly the intersection of H(zi )’s, where H(zi ) is the hyperplane
in P

∗
3 whose points correspond to the hyperplanes in P3 containing zi for i = 1, 2, 3. Hence,

there is a hyperplane of S(E) that contains two intersecting lines of H(zi )’s. It is impossible
since the two intersecting lines of H(zi ) with S(E) lie on different components of S(E).
Thus, Q is a quadric cone with a vertex point. ��
Corollary 3.6 For E ∈ M(3), the map ηE is a constant map to the vertex point of S(E).

Proof It is clear that the map ηE is a constant map, and its image corresponds to the hyper-
plane Hs in P3, since Hs is the unique singular point of S(E). ��
Remark 3.7 The hyperplane H corresponding to the vertex point of S(E) is the unique
hyperplane for which E |CH is isomorphic to OCH (−3p) ⊕ OCH (p), where p is a point on
Q. For the other hyperplanes in S(E), E |CH becomes OCH (−2p) ⊕ OCH .

By sending E ∈ M(3) to the vertex point of S(E), we can define a map

	∗ : M(3) → P
∗
3.

Let p be a point in P
∗
3\Q∗, where Q∗ is the dual of Q, whose points correspond to the tangent

planes of Q. We can pick a stable vector bundle E fitted into the exact sequence (10) for a
0-cycle Z of length 3 whose support lies in the hyperplane section corresponding to p. Then,
E maps to the point p via 	∗. In the case when p ∈ Q∗, we can also choose a 0-cycle Z
for which there exists a stable vector bundle E mapping to p. Thus, 	∗ is surjective, and its
generic fibres are 4-dimensional.

Now let us consider the determinant map

λE : ∧2 H0(E(1, 1)) → H0(OQ(1, 1)).

Since h0(E(1, 1)) = 2, the dimension of the domain is 1-dimensional.

Lemma 3.8 λE is injective.

Proof We follow the argument in the proof of the lemma (6.6) in [16]. Let s1, s2 be two
linearly independent sections of E(1, 1). Assume that s1 ∧ s2 maps to 0 via λE . It would
generate a line sub-bundle L of E(1, 1) with h0(L) = 2. The only choices for L are OQ(0, 1)

and OQ(1, 0), and both contradict the stability of E . ��
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Let us define qE to be the point in P
∗
3 
 PH0(OQ(1, 1)) corresponding to the image of

λE . Since E(1, 1) is fitted into the exact sequence (10), H0(E(1, 1)) can be considered as the
direct sum of H0(OQ) and H0(IZ (1, 1)), so ∧2 H0(E(1, 1)) is isomorphic to H0(IZ (1, 1)).
From the long exact sequence of cohomology of the exact sequence,

0 → IZ (1, 1) → OQ(1, 1) → OZ → 0,

H0(IZ (1, 1)) is embedded into H0(OQ(1, 1)). This embedding is determined by the injec-
tion of H0(OZ )∗ into H0(OQ(1, 1))∗, i.e. the hyperplane in P3 containing Z . We know
from the preceding corollary that this hyperplane is independent on the sections of E(1, 1).
Thus, the embedding of H0(IZ (1, 1)) into H0(OQ(1, 1)) is independent on Z and it would
give the same map as λE . As a quick consequence of this argument, we obtain that the image
of λE corresponds to the unique hyperplane in P3 containing Z . In other words, we obtain
the following statement.

Proposition 3.9 qE is the vertex point of S(E).

Remark 3.10 Let fQ be the polar map from P3 to P
∗
3 given by

[x0, . . . , x3] �→
[

∂ f

∂t0
(x), . . . ,

∂ f

∂t3
(x)

]
, (11)

where f is the homogeneous polynomial of degree 2 defining Q. Then, we have a surjective
map from M(3) to P3,

	 := f −1
Q ◦ 	∗ : M(3) → P3.

For E ∈ M(3), let HE be the hyperplane of P3 corresponding to qE . Note that CHE = HE ∩Q
is the set of points p ∈ Q for which 	(E) is contained in the tangent plane of Q at p. Thus,
we can define the map 	 by sending E to the intersection point of the tangent planes at the
support of Z in the exact sequence (10), which is independent on the choice of a section of
E(1, 1).

Recall that the set of singular quadrics in P
∗
3 is the discriminant hypersurface D2 in P9

defined by the equation det(A) = 0, where A is a symmetric 4×4-matrix. By differentiating,
we know that the singular points of D2 are defined by the determinants of 3 × 3-minors of
A, i.e. the singular points of D2 correspond to the singular quadrics of rank ≤ 2. Let D0

2 be
the smooth part of D2. Then, we have the following picture,

M(3)
S ��

	∗
���������� D0

2

��
P

∗
3,

(12)

where D0
2 is an open Zariski subset of a quartic hypersurface D2 of P9, and the vertical map

sends a singular quadric of rank 3 to its vertex point.
Let E ∈ (	∗)−1(qE ) with qE �∈ Q∗. Thus, HE is not a tangent plane of Q, and so

CHE is a smooth conic on HE . Let P
∗
2 be the image of HE via the polar map fQ , which is

a hyperplane of P
∗
3, not containing qE . Then, P

∗
2 contains the dual conic C∗

HE
of CHE via

fQ |HE . Let πqE be the projection map from P
∗
3 to P

∗
2 at qE . Then, we can assign a smooth

conic C(E) := πqE (S(E)) ⊂ P
∗
2 to E , i.e. we have a map
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πqE : (	∗)−1(qE ) → |O∗
P2

(2)| 
 P5.

Clearly, C(E) �= C∗
HE

.
Let us fix a general hyperplane H of P3. For a 0-cycle Z with length 3 contained in

CH 
 P1, we can consider an extension space P(Z) := P Ext1(IZ (1, 1), OQ) 
 P2. Note
that the Hilbert scheme parametrizing 0-cycles on CH with length 3, P

[3]
1 , is isomorphic to

P3. Let us define

U := R1 p1∗(I ⊗ p2
∗OQ(−1,−1)),

where p1, p2 are the projections from P3 × Q to each factor, and I is the universal ideal sheaf
of P3 × Q. We can easily find that U is a vector bundle on P3 of rank 3, and the fibre of P(U∗)
at Z ∈ P3 is P(Z). Then, we have a rational map from P(U∗) to M(3)q := (	∗)−1(q), and
eventually to P5 after the composition with πq , where q corresponds to H . In particular, the
dimension of the image of P(U∗) is less than 5 since the dimension of M(3)q is 4.

P(U∗)

�����������
�� P5

M(3)q

�����������

(13)

For a general 0-cycle Z = {z1, z2, z3} on CH , let pi j ∈ P
∗
2 be the point corresponding to the

line containing zi and z j . The conic C(E) contains pi j , and so the image of P(Z) is contained
in the projective plane in P5 parametrizing all the conics passing through three points pi j .
Let Z∗ = {z∗

1, z∗
2, z∗

3} be the dual lines on P
∗
2 of Z , then pi j is the intersection point of z∗

i
and z∗

j . If we choose linear forms 0 �= Zi ∈ H0(OP
∗
2
(1)) which vanish on z∗

i , then from the
previous statement, πq ◦ S is defined by

πq ◦ S : P(Z) → |OP
∗
2
(2)|

(c1, c2, c3) �→ f1 Z2 Z3 + f2 Z1 Z3 + f3 Z1 Z2,

where (c1, c2, c3) is the coordinates from the identification of P(Z) with PH0(OZ )∗ and fi ’s
are homogeneous polynomials of c j ’s.

Proposition 3.11 For a general 0-cycle Z = {z1, z2, z3}, the map πq ◦ S from P(Z) to P5
sending E to πq(S(E)), is a linear embedding.

Proof From the previous argument, it is enough to check that fi ’s are linearly independent
linear polynomials. In fact, we can prove that fi ≡ ci for all i .

Recall that I is the incidence variety in Q × P
∗
3 with the projections π1 and π2. Then, we

have an isomorphism,

h : OP
∗
3

→ π2∗π∗
1 IZ ((0, 0), 3),

given by the multiplication with Z1 Z2 Z3. Here, OI((a, b), c) is the sheaf π∗
1 OQ(a, b) ⊗

π∗
2 OP

∗
3
(c) on I. Note that π2∗π∗

1 IZ is the ideal sheaf of functions on P
∗
3, vanishing on the

lines z∗
i . From the canonical homomorphisms,

Ext1(IZ (1, 1), OQ) → Ext1(π∗
1 IZ (1, 1), OI)

→ Ext1(π∗
1 IZ ((0, 0), 3), OI((−1,−1), 3)),

we can assign to an element ε ∈ Ext1(IZ (1, 1), OQ), an extension

0 → OI((−1,−1), 3) → π∗
1 E((0, 0), 3) → π∗

1 IZ ((0, 0), 3) → 0. (14)
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From the long exact sequence of cohomology of (14), we obtain

H0(O∗
P3

) → H0(π∗
1 IZ ((0, 0), 3)) → H1(OI((−1,−1), 3)) 
 H0(OP

∗
3
(2)),

and let π(ε) be the image of 1 ∈ H0(OP
∗
3
). Then, we can define a homomorphism

π : Ext1(IZ (1, 1), OQ) → H0(OP
∗
3
(2)), (15)

by sending ε to π(ε).
From the inclusion Izi ↪→ IZ , we have a natural injection from

Ext1(Izi (1, 1), OQ) 
 C ↪→ Ext1(IZ (1, 1), OQ)

whose image is H0(Ozi )
∗. It can be easily checked that any element in the image is mapped

to H0(OP
∗
3
(2)) by the multiplication with (Z1 Z2 Z3)/Zi . Thus, π is defined by sending

(c1, c2, c3) to c1 Z2 Z3 + c2 Z1 Z3 + c3 Z1 Z2.
When we take the direct image of (14), then we obtain

π2∗π∗
1 E((0, 0), 3) → π2∗π∗

1 IZ ((0, 0), 3) → R1π2∗OI((−1,−1), 3)

→ R1π2∗π∗
1 E((0, 0), 3) → R1π2∗π∗

1 IZ ((0, 0), 3) → 0.

Note that π2∗π∗
1 IZ ((0, 0), 3) 
 OP

∗
3
, R1π2∗OI((−1,−1), 3) 
 OP

∗
3
(2) and the second map

in the sequence above is given by the multiplication with π(ε). As an analogue of the result
in Hulek [10], we can easily check that R1π2∗π∗

1 E((0, 0), 3) is isomorphic to ϑE (4), and
its support is S(E). On the other hand, the support of R1π2∗π∗

1 IZ ((0, 0), 3) is contained in
{pi j }, and thus the support of S(E) is same as the support of {π(ε) = 0}. Because of the
same degree, they are the same. ��
Remark 3.12 Using the argument as in the similar statement on the projective plane in Huls-
bergen [11], we can prove that a sheaf E ∈ P(Z) with the coordinates (c1, c2, c3) is locally
free if and only if ci �= 0 for all i . Thus, from the proof of the preceding proposition, we can
observe that the conic corresponding to the image of E is smooth if and only if E is locally
free. Note that the secant variety V3 of the Veronese surface in P5 is a cubic hypersurface.
The intersection of the image of P(Z) with V3 are the three lines, which are the image of
non-locally free sheaves in P(Z).

We can see that the same statement holds for arbitrary hyperplane section H ∈ P
∗
3. If

H ∈ Q∗, Q∗ the dual conic of Q, then CH = l1 ∪ l2. Because of the stability condition, our
0-cycles of length 3 associated to E with 	∗(E) ∈ Q∗ cannot have its support only on l1 nor
l2. So the family of 0-cycles we consider is isomorphic to the two copies of P

[2]
1 × P1. Let us

denote

M(3) = M0(3)
∐

M1(3)
∐

M2(3),

where M0(3) = (	∗)−1(P∗
3\Q∗) and Mi (3)’s are the two irreducible components of

(	∗)−1(Q∗) whose 0-cycles have two points of its support on the ruling equivalent to li .
First, let us assume that H �∈ Q∗. Let V ⊂ P5 be the image of P(U∗) and v ∈ V be a

general point in V . Then, there exists three points zi ’s on CH and ci ’s for which we have
v = c1 Z1 + c2 Z2 + c3 Z3. Since zi ∈ CH , the lines Zi ’s are tangent to the dual conic C∗

H , i.e.
Zi ’s is a circumscribed triangle around C∗

H . Note that Zi ’s is a inscribed triangle in v. Thus,
V is the closure of the family of conics Poncelet related to C∗

H (see Sect. 2 in [5]). From the
classical result, V is a hypersurface in P5, and the generic fibre of the map P(U∗) → V is
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isomorphic to P1. In fact, from the remark (2.2.3) in [5], V is isomorphic to a hypersurface
of degree 4, H4 in the space of conics, given by the condition f 2

2 − f1 f3 = 0, where

det(A − t I3) = (−t)3 + f1(−t)2 + f2(−t) + f3,

is the characteristic polynomial of a symmetric matrix A defining a conic.
Let E ∈ M1(3) and so H ∈ Q∗. If we define V as before and let v ∈ V be a general

conic, then v pass through the dual point p1 ∈ P2 of l1. Let us fix a conic v passing through
p1. If we choose q1 ∈ v not equal to p1, then consider a line l passing through q1 and the
dual point p2 of l2. Let q2 be the other intersection point of l with v. Then, the dual point
corresponding to the lines p1q1, q1q2, q2 p1 is a 0-cycle Z mapping to v. It depends on the
choice of q1. Thus, V is isomorphic to a hyperplane in P5, and the generic fibre of the map
from P(U∗) is again isomorphic to P1. We have the same argument for M2(3).

Remark 3.13 In fact, we can obtain differently the old result of Darboux on the Poncelet-
related conics in the case of triangles. We know that we have dim V ≤ dim M(3)q = 4.

Assume that CH is a smooth conic. Let �2 be the subscheme of C [3]
H whose points are

0-cycles with at most two points as their supports. Similarly, we can define �3 ⊂ �2. Let
Z ∈ �2, say Z = {x, x, y}. The map P(Z) → P5 is naturally defined by sending (c1, c2, c3)

to (c1 + c2)XY + c3 X2. From this observation, the image of P2-bundle over δ3 is CH ⊂ P5
mapped by |OCH (2)|. For Z = {x, x, y}, P(Z) is mapped to the line passing through X2 and
XY . When Y is moving along CH , this line covers a projective plane P2(x) passing through
the point X2 ∈ CH ⊂ P5. Let D be the union of such projective planes over x moving
along CH . In particular, D is a subvariety of V with dimension 3 and all the non-locally free
sheaves in P(U∗) map to D. Also we have

V3 ∩ V = D,

where V3 is the secant variety of the Veronese surface in P5. It also implies that V is a
subvariety of P5 with dimension 4.

Let us consider a fibre of the map P(U∗) → V over XY with x, y ∈ CH . The image of
the closure of this fibre via the projection to C [3]

H is isomorphic to P1, parametrizing 0-cycles
whose supports contain x and y. In fact, there exists a unique component of the closure of
the fibre, mapping to P1 ⊂ C [3]

H . It implies that the closure of the fibre over a generic conic
v in V is isomorphic to P1, since there exists at most one point in P(Z) that maps to v.

Summarizing the previous arguments, we obtain the following proposition, since the maps
from each components of M(3)q to P5 are isomorphisms;

Proposition 3.14 M(3) admits a map onto P
∗
3 whose fibre over H ∈ P

∗
3 is isomorphic to

(1) an open Zariski subset H4 ∩ (P5\V3) of a H4, where V3 is the secant variety of the
Veronese surface S ⊂ P5 and H4 is a hypersurface of degree 4 consisting of conics
Poncelet related to Q ∩ H, if H ∈ P

∗
3\Q∗;

(2) the union of two varieties Hi ∩(P5\V3), i = 1, 2, where Hi is the hyperplane in the space
of conics which pass through a point pi dual to the line li ⊂ H, where Q ∩ H = l1 + l2,
if H ∈ Q∗.

In particular, the map S is generically one to one. In fact, M(3)q for q ∈ Q∗ ⊂ P
∗
3 has

two irreducible components mapping to two hyperplanes Hi , i = 1, 2 in P5. Since H1 and
H2 intersect along a 3-dimensional projective space H3 
 P3, S is exactly two to one on the
preimage of H3. Now we have the followings;
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Theorem 3.15 The set of jumping conics of E ∈ M(k), uniquely determines E in general
when k ≤ 3.

It might be an interesting question to ask whether this theorem is true for k ≥ 4.
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