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Abstract. We consider the linearized elasticity system in a multidomain of R3. This multidomain is
the union of a horizontal plate with fixed cross section and small thickness ε, and of a vertical beam
with fixed height and small cross section of radius rε. The lateral boundary of the plate and the top
of the beam are assumed to be clamped. When ε and rε tend to zero simultaneously, with rε � ε2,
we identify the limit problem. This limit problem involves six junction conditions.

Mathematics Subject Classification. 35B40, 74B05, 74K30.

Received July 14, 2005.

1. Introduction

Let ωa and ωb (a for “above”, b for “below”) be two bounded regular domains in R2. In the whole paper,
the origin and axes are chosen so that:∫

ωa

x1 dx1 dx2 =
∫

ωa

x2 dx1 dx2 =
∫

ωa

x1x2 dx1 dx2 = 0 and 0 ∈ ωb. (1.1)

Let ε be a parameter taking values in a sequence of positive numbers converging to zero, and let rε be another
positive parameter tending to zero with ε. We introduce the thin multidomain Ωε = Ωaε

⋃
Jε

⋃
Ωbε, where

Ωaε = rεωa × (0, 1) represents a vertical beam with fixed height and small cross section, Ωbε = ωb × (−ε, 0)
represents a horizontal plate with small thickness and fixed cross section, and Jε = rεωa × {0} represents the
interface at the junction between the beam and the plate.
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In this thin multidomain, we consider the displacement U
ε
, solution of the three-dimensional linearized

elasticity system:⎧⎪⎪⎨⎪⎪⎩
U

ε ∈ Y ε and ∀U ∈ Y ε,∫
Ωε

[
Aεe

(
U

ε
)

, e(U)
]

dx =
∫

Ωε

F ε.U dx +
∫

Ωε

[Gε, e(U)] dx +
∫

Σaε
⋃

T bε
⋃

Bbε

Hε.U dσ,
(1.2)

where:
• Y ε = {U ∈ (H1(Ωε))3, U = 0 on T aε = rεωa × {1} and on Σbε = ∂ωb × (−ε, 0)},

• Aε = Aε(x) =

⎧⎨⎩
Aa, if x ∈ Ωaε,

kεAb, if x ∈ Ωbε,

with kε a positive parameter depending on ε and Aa, Ab tensors with constant coefficients Aa
ijkl and Ab

ijkl ,
i, j, k, l ∈ {1, 2, 3}, satisfying the usual symmetry and coercivity conditions:

Aa
ijkl = Aa

jikl = Aa
ijlk, Ab

ijkl = Ab
jikl = Ab

ijlk ,

∃C > 0, ∀ ξ ∈ R3×3
s , [Aaξ, ξ] ≥ C|ξ|2, [Abξ, ξ] ≥ C|ξ|2,

where R3×3
s denotes the set of symmetric 3×3-matrices, (Aaξ)ij =

∑
kl Aa

ijklξkl, the scalar product [., .] in R3×3

is defined by [η, ξ] =
∑

ij ηijξij and |.| is the associated norm; the euclidian scalar product in R3 is denoted by
a dot;

• eij(U) =
1
2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
,

• F ε ∈ (L2(Ωε))3,

• Gε ∈ (L2(Ωε))3×3,

• Hε ∈ (L2(Σaε
⋃

T bε
⋃

Bbε))3, where Σaε denotes the lateral boundary of the beam, T bε and Bbε are
respectively the top and the bottom of the plate:

Σaε = rε∂ωa × (0, 1), T bε = (ωb \ rεωa) × {0}, Bbε = ωb × {−ε}.

The constraint “U = 0” in the definition of Y ε means that the multistructure is clamped on the top T aε of the
beam and on the lateral boundary Σbε of the plate. The case kε tending to zero or infinity corresponds to very
different materials in Ωaε and Ωbε (note that breaking the symmetry between Ωaε and Ωbε by introducing the
coefficient kε in front of Ab is not restrictive). In the right-hand side of (1.2), the second term is written in
divergence form like in [15, 27, 28]. It is well known that, by means of the Green formula, this second term can
contribute to the other ones, giving possibly less regular (not necessarily L2) volume and surface source terms.
For convenience of the reader, we have chosen to write the three integrals: one recovers the classical formulation
by setting Gε = 0, but the simplest case corresponds to F ε = 0, Hε = 0 and Gε �= 0. This case was considered
in the short preliminary version [15].

Problem (1.2) admits a unique solution U
ε

(see e.g. [29]). The aim of this paper is to describe the limit
behaviour of the displacement U

ε
, as ε tends to zero. We prove that this behaviour depends on the limit of the

sequence qε defined by:

qε = kε ε3

(rε)2
·
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When kεε3 and (rε)2 have same order (i.e. when qε tends to q with 0 < q < +∞), the limit problem (obtained
after suitable rescaling) is a coupled problem between a two-dimensional plate and a one-dimensional beam,
with six junction conditions. If kεε3 � (rε)2, the multistructure has the limit behaviour of a thin rigid plate and
a thin elastic beam which are independent of each other, the beam being clamped at both ends; on the contrary,
if kεε3 � (rε)2, the structure behaves as a thin rigid beam and a thin elastic plate which are independent of
each other, the plate being clamped on its contour and fixed vertically at the junction.

The reader is referred to [1, 3, 4, 6–8, 10–12, 21–23, 25–28, 30, 31] for the derivation of the equations of plates
and beams by asymptotic analysis. Junction problems are considered in [5,9,13,14,16–20]. The present work is
a natural follow up of [27,28], which deal with reduction of dimension for elastic thin cylinders, and of [13,14],
which deal with the diffusion equation in the thin multistructure considered in this paper. Our results were
announced in the short note [15].

2. The result

2.1. The rescaled problem

In the sequel, the indexes α and β take values in the set {1, 2}. Moreover, x = (x′, x3) denotes the generic
point in R3.

Let Ωa = ωa × (0, 1), Ωb = ωb × (−1, 0), T a = ωa × {1}, Σa = ∂ωa × (0, 1) and Σb = ∂ωb × (−1, 0). The
asymptotic behaviour of U

ε
can be described by using a convenient rescaling (the reader is referred to Sect. 3.1

for details). This rescaling maps the space Y ε onto the space Yε defined by:

Yε =
{
u = (ua, ub) ∈ (H1(Ωa))3 × (H1(Ωb))3, ua = 0 on T a, ub = 0 on Σb,

ua
α(x′, 0) = εrεub

α(rεx′, 0) and ua
3(x′, 0) = ub

3(rεx′, 0), for a.e. x′ ∈ ωa
}

.
(2.1)

In particular, we denote by uε = (uaε, ubε) the rescaling of the solution U
ε

of problem (1.2). We set

eaε(ua) =

⎛⎜⎜⎜⎝
1

(rε)2
eαβ(ua)

1
rε

eα3(ua)

1
rε

e3α(ua) e33(ua)

⎞⎟⎟⎟⎠ , ebε(ub) =

⎛⎜⎜⎝
eαβ(ub)

1
ε
eα3(ub)

1
ε
e3α(ub)

1
ε2

e33(ub)

⎞⎟⎟⎠ . (2.2)

Then uε is the unique solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε ∈ Yε and ∀u ∈ Yε,∫
Ωa

[Aaeaε(uaε), eaε(ua)] dx + qε

∫
Ωb

[Abebε(ubε), ebε(ub)] dx

=
∫

Ωa

faε.ua dx +
∫

Ωb

f bε.ub dx +
∫

Ωa

[gaε, eaε(ua)] dx +
∫

Ωb

[gbε, ebε(ub)] dx

+
∫

Σa

haε.ua dσ +
∫

ωb

(
hbε

+ .ub
|x3=0 + hbε

− .ub
|x3=−1

)
dx′,

(2.3)

where qε is defined by:

qε = kε ε3

(rε)2
, (2.4)

and where the source terms are suitable transforms of (F ε, Gε, Hε) (see Sect. 3.1).
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2.2. The setting of the limit problem

For the definition of the limit problem, we introduce the following functional spaces:

Ua =
{

ua ∈ (H2
0 (0, 1))2 × H1(Ωa), ∃ ζa ∈ H1(0, 1), ζa(1) = 0, ua

3 = ζa − x1
d ua

1

d x3
− x2

d ua
2

d x3

}
,

Va =
{
va ∈ (H1(Ωa))2 × L2(0, 1; H1(ωa)), ∃ c ∈ H1

0 (0, 1), va
1 = −c x2, v

a
2 = c x1,∫

ωa

va
3 (x′, x3) dx′ = 0, for a.e. x3 ∈ (0, 1)

}
,

Wa =
{
wa ∈ (L2(0, 1; H1(ωa)))2 × {0},

∫
ωa

wa
α dx′ =

∫
ωa

(x1w
a
2 − x2w

a
1 ) dx′ = 0, for a.e. x3 ∈ (0, 1)

}
,

Ub =
{

ub ∈ (H1(Ωb))2 × H2
0 (ωb), ∃ ζb

α ∈ H1
0 (ωb), ub

α = ζb
α − x3

∂ub
3

∂xα

}
,

Vb =
{

vb ∈ (L2(ωb; H1(−1, 0)))2 × {0},
∫ 0

−1

vb
α(x′, x3) dx3 = 0, for a.e. x′ ∈ ωb

}
,

Wb =
{

wb ∈ ({0})2 × L2(ωb; H1(−1, 0)),
∫ 0

−1

wb
3(x

′, x3) dx3 = 0, for a.e. x′ ∈ ωb

}
,

Za = Ua × Va ×Wa, Zb = Ub × Vb ×Wb.

Without loss of generality, we assume that qε defined by (2.4) satisfies:

qε → q, with 0 ≤ q ≤ +∞. (2.5)

According to the value of q, the functional space for the limit problem is the following one:

Z = {z = (za, zb) = ((ua, va, wa), (ub, vb, wb)) ∈ Za ×Zb, ua
3(x

′, 0) = ub
3(0), for a.e. x′ ∈ ωa}, if 0 < q < +∞,

Z∞ = {za = (ua, va, wa) ∈ Za, ua
3(x

′, 0) = 0, for a.e. x′ ∈ ωa}, if q = +∞,

Z0 = {zb = (ub, vb, wb) ∈ Zb, ub
3(0) = 0}, if q = 0.

Let us observe that Ua (resp. Ub) is a Bernoulli-Navier (resp. Kirchhoff-Love) space of displacements. Less
classical spaces are Va, Wa, Vb, Wb, which are introduced in a way similar to [27,28] (see also App., Sect. 8.1).
As for the boundary conditions, some of them are due to the clamping. These are more or less standard ones:

ua
α(1) =

dua
α

dx3
(1) = c(1) = 0, ub

3 = 0 and
∂ub

3

dν
= 0 on ∂ωb.

In contrast with the other requirements, the six conditions:

ua
α(0) =

dua
α

dx3
(0) = c(0) = 0, ua

3(x
′, 0) = ub

3(0) (respectively ua
3(x

′, 0) = 0 or ub
3(0) = 0),

which appear in the definition of the above spaces Ua, Va and Z (respectively Z∞ or Z0), are specific to
the junction between the beam and the plate. Note also that, in view of the definition of Ua, the condition
ua

3(x′, 0) = ub
3(0) (respectively ua

3(x′, 0) = 0) reduces to ζa(0) = ub
3(0) (respectively ζa(0) = 0).
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We finally introduce, for za = (ua, va, wa) in Za and zb = (ub, vb, wb) in Zb:

ea(za) =

⎛⎝ eαβ(wa) eα3(va)

e3α(va) e33(ua)

⎞⎠ , eb(zb) =

⎛⎝ eαβ(ub) eα3(vb)

e3α(vb) e33(wb)

⎞⎠ . (2.6)

2.3. The main result

We describe the limit behaviour of problem (2.3), as ε tends to zero. In the sequel, we assume that

faε ⇀ fa weakly in (L2(Ωa))3, (2.7)

f bε ⇀ f b weakly in (L2(Ωb))3, (2.8)

gaε ⇀ ga weakly in (L2(Ωa))3×3, (2.9)

gbε ⇀ gb weakly in (L2(Ωb))3×3, (2.10)

haε ⇀ ha weakly in (L2(Σa))3, (2.11)

hbε
+ ⇀ hb

+ and hbε
− ⇀ hb

− weakly in (L2(ωb))3, (2.12)

which is not restrictive, as proved in Remark 4 below.
Our main result is the following one:

Theorem 1. Assume that
rε

ε2
tends to +∞ and that (2.5), (2.7) to (2.12) hold true. Then, with the notation

eaε, ebε defined in (2.2) and ea, eb defined in (2.6), one has:

(i) If 0 < q < +∞, there exists z = (za, zb) = ((ua, va, wa), (ub, vb, wb)) ∈ Z such that:

(uaε, ubε) ⇀ (ua, ub) weakly in (H1(Ωa))3 × (H1(Ωb))3, (2.13)

(eaε(uaε), ebε(ubε)) ⇀ (ea(za), eb(zb)) weakly in (L2(Ωa))3×3 × (L2(Ωb))3×3, (2.14)

and z is the unique solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z ∈ Z and ∀ z ∈ Z,∫
Ωa

[Aaea(za), ea(za)] dx + q

∫
Ωb

[Abeb(zb), eb(zb)] dx

=
∫

Ωa

fa.ua dx +
∫

Ωb

f b.ub dx +
∫

Ωa

[ga, ea(za)] dx +
∫

Ωb

[gb, eb(zb)] dx

+
∫

Σa

ha.ua dσ +
∫

ωb

(
hb

+.ub
|x3=0 + hb

−.ub
|x3=−1

)
dx′.

(2.15)

Moreover, if the convergences in (2.9), (2.10) are strong, then the convergences in (2.13) and (2.14) are strong.
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(ii) If q = +∞, there exists za = (ua, va, wa) ∈ Z∞ such that:

uaε ⇀ ua weakly in (H1(Ωa))3, ubε → 0 strongly in (H1(Ωb))3, (2.16)

eaε(uaε) ⇀ ea(za) weakly in (L2(Ωa))3×3, ebε(ubε) → 0 strongly in (L2(Ωb))3×3, (2.17)

and za is the unique solution of the following problem:⎧⎪⎪⎨⎪⎪⎩
za ∈ Z∞ and ∀ za ∈ Z∞,∫

Ωa

[Aaea(za), ea(za)] dx =
∫

Ωa

fa.ua dx +
∫

Ωa

[ga, ea(za)] dx +
∫

Σa

ha.ua dσ.
(2.18)

Moreover, if the convergence in (2.9) is strong, then:

uaε → ua strongly in (H1(Ωa))3, (2.19)

eaε(uaε) → ea(za) strongly in (L2(Ωa))3×3,
√

qε ebε(ubε) → 0 strongly in (L2(Ωb))3×3. (2.20)

(iii) If q = 0, there exists zb = (ub, vb, wb) ∈ Z0 such that:

qε uaε → 0 strongly in (H1(Ωa))3, qε ubε ⇀ ub weakly in (H1(Ωb))3, (2.21)

qεeaε(uaε) → 0 strongly in (L2(Ωa))3×3, qεebε(ubε) ⇀ eb(zb) weakly in (L2(Ωb))3×3, (2.22)

and zb is the unique solution of the following problem:⎧⎪⎪⎨⎪⎪⎩
zb ∈ Z0 and ∀ zb ∈ Z0,∫

Ωb

[Abeb(zb), eb(zb)] dx =
∫

Ωb

f b.ub dx +
∫

Ωb

[gb, eb(zb)] dx +
∫

ωb

(
hb

+.ub
|x3=0 + hb

−.ub
|x3=−1

)
dx′.

(2.23)

Moreover, if the convergence in (2.10) is strong, then:

qεubε → ub strongly in (H1(Ωb))3, (2.24)

√
qε eaε(uaε) → 0 strongly in (L2(Ωb))3×3, qεebε(ubε) → eb(zb) strongly in (L2(Ωb))3×3. (2.25)

Remark 1. The condition that
rε

ε2
tends to +∞ is only used to prove that ua

3(x
′, 0) = ub

3(0) and c(0) = 0

(via a convenient Sobolev embedding theorem, as regards the second equality). We do not know if it is just a
technical condition or not. �

Remark 2. In the Appendix (Sect. 8.1) we prove that the functions va and wa (resp. vb and wb) which appear
in the limit problem are the limits of suitable expressions of uaε (resp. ubε). �
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2.4. Back to the problem in the thin multidomain

As far as the asymptotic behaviour of the “energy” of the solution of problem (1.2) in the thin multidomain
is concerned, we define the following renormalized energy by:

Eε =
(

λε

rε

)2 ∫
Ωε

[Aεe(U
ε
), e(U

ε
)] dx, (2.26)

where λε can be made explicit in terms of ε, rε, F ε, Gε, Hε (see (3.2) in Sect. 3.1); we also have:

Eε =
∫

Ωa

[Aaeaε(uaε), eaε(uaε)] dx + qε

∫
Ωb

[Abebε(ubε), ebε(ubε)] dx,

and from Theorem 1 we deduce the following corollary:

Corollary 1. Assume that
rε

ε2
tends to +∞ and that (2.5), (2.7) to (2.12) hold true.

(i) If 0 < q < +∞ and if the convergences in (2.9), (2.10) are strong, then:

Eε → E =
∫

Ωa

[Aaea(za), ea(za)] dx + q

∫
Ωb

[Abeb(zb), eb(zb)] dx.

(ii) If q = +∞ and if the convergence in (2.9) is strong, then:

Eε → E∞ =
∫

Ωa

[Aaea(za), ea(za)] dx.

(iii) If q = 0 and if the convergence in (2.10) is strong, then:

qεEε → E0 =
∫

Ωb

[Abeb(zb), eb(zb)] dx.

Actually, the proof of Corollary 1 is part of proof of Theorem 1, since the strong convergences of uaε to ua

(resp. ubε to ub) and eaε(uaε) to ea(za) (resp. ebε(ubε) to eb(zb)) follow from the convergence of the energy Eε.
The following interpretation is a direct consequence of the strong convergences of eaε(uaε) and ebε(ubε).

Interpretation. For example, let us consider the particular case of problem (1.2), for which Gε = 0, Hε = 0,
kε = 1 and Aa = Ab = A: ⎧⎪⎪⎨⎪⎪⎩

U
ε ∈ Y ε and ∀U ∈ Y ε,∫
Ωε

[Ae(U
ε
), e(U)] dx =

∫
Ωε

F ε. U dx,

and let us assume that rε = ε3/2 and that:

1
ε9

∑
α

‖F ε
α‖2

L2(Ωaε) +
1
ε6

∑
α

‖F ε
3 ‖2

L2(Ωaε) +
1
ε6

∑
α

‖F ε
α‖2

L2(Ωbε) +
1
ε8

∑
α

‖F ε
3 ‖2

L2(Ωbε) = 1. (2.27)
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This last condition is not restrictive, since it is just a matter of normalization. One can observe that, in this
case, the parameter λε introduced in (3.2), in Section 3.1, has value ε−3/2. Defining the rescaled force and the
rescaled solution by:

faε
α (x) =

1
ε3

F ε
α(ε

3
2 x′, x3), faε

3 (x) =
1
ε

3
2
F ε

3 (ε
3
2 x′, x3), for x ∈ Ωa,

f bε
α (x) =

1
ε

5
2
F ε

α(x′, εx3), f bε
3 (x) =

1
ε

7
2
F ε

3 (x′, εx3), for x ∈ Ωb,

uaε
α (x) = U

ε

α(ε
3
2 x′, x3), uaε

3 (x) =
1
ε

3
2
U

ε

3(ε
3
2 x′, x3), for x ∈ Ωa,

ubε
α (x) =

1
ε

5
2
U

ε

α(x′, εx3), ubε
3 (x) =

1
ε

3
2
U

ε

3(x
′, εx3), for x ∈ Ωb,

one can check that uε solves the rescaled problem:⎧⎪⎪⎨⎪⎪⎩
uε ∈ Yε and ∀u ∈ Yε,∫

Ωa

[Aeaε(uaε), eaε(ua)] dx +
∫

Ωb

[Aebε(ubε), ebε(ub)] dx =
∫

Ωa

faε.ua dx +
∫

Ωb

f bε.ub dx.

Since, thanks to (2.27), ∫
Ωa

|faε|2 dx +
∫

Ωb

|f bε|2 dx = 1,

it is not restrictive to assume that, for some subsequence of ε, still denoted by ε, and for some fa in L2(Ωa)
and f b in L2(Ωb):

faε ⇀ fa in L2(Ωa) and f bε ⇀ f b in L2(Ωb).

Then, Theorem 1 asserts that:

uaε → ua strongly in (H1(Ωa))3 and ubε → ub strongly in (H1(Ωb))3, (2.28)

eaε(uaε) → ea strongly in (L2(Ωa))3×3 and ebε(ubε) → eb strongly in (L2(Ωb))3×3, (2.29)

where ea = ea(za), eb = eb(zb) and z = (za, zb) is the unique solution of the rescaled limit problem:⎧⎪⎪⎨⎪⎪⎩
z ∈ Z and ∀ z ∈ Z,∫

Ωa

[Aea(za), ea(za)] dx +
∫

Ωb

[Aeb(zb), eb(zb)] dx =
∫

Ωa

fa.ua dx +
∫

Ωb

f b.ub dx.
(2.30)

Coming back to the initial domain, we define E
aε

and E
bε

by:

E
aε

= ε
3
2 ea

(
x′

rε
, x3

)
, for x ∈ Ωaε, E

bε
= ε

5
2 eb

(
x′,

x3

ε

)
, for x ∈ Ωbε,
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and we define the relative errors ∆aε, ∆bε and ∆ε by:

∆aε =

∫
Ωaε

|e(Uε
) − E

aε|2 dx∫
Ωaε

|Eaε|2 dx

, ∆bε =

∫
Ωbε

|e(Uε
) − E

bε|2 dx∫
Ωbε

|Ebε|2 dx

,

∆ε =

∫
Ωaε

|e(Uε
) − E

aε|2 dx +
∫

Ωbε

|e(Uε
) − E

bε|2 dx∫
Ωaε

|Eaε|2 dx +
∫

Ωbε

|Ebε|2 dx

·

Assuming that ea �= 0 and eb �= 0, an easy computation gives that:

∆aε =

∫
Ωa

|eaε(uaε) − ea|2 dx∫
Ωa

|ea|2 dx

, ∆bε =

∫
Ωb

|ebε(ubε) − eb|2 dx∫
Ωb

|eb|2 dx

·

Hence the strong convergences in (2.29) imply that ∆aε, ∆bε, and then ∆ε, tend to zero with ε. These conver-
gences of the relative errors mean that the deformation of the original displacement is well described by E

aε

and E
bε

:

e(U
ε
)  E

aε
in Ωaε, e(U

ε
)  E

bε
in Ωbε.

In the same spirit, from the solution z = (za, zb) = ((ua, va, wa), (ub, vb, wb)) of problem (2.30), we are going
to define Ûaε and Û bε, which are good approximates of the restrictions of U

ε
to Ωaε and Ωbε, respectively.

Actually, let us set:

ûaε = ua + rεva + (rε)2wa = ua + ε
3
2 va + ε3wa,

ûbε = ub + εvb + ε2wb,

Ûaε
α (x) = ûaε

α

(
x′

ε
3
2
, x3

)
, Ûaε

3 (x) = ε
3
2 ûaε

3

(
x′

ε
3
2
, x3

)
, for x ∈ Ωaε,

Û bε
α (x) = ε

5
2 ûbε

α

(
x′,

x3

ε

)
, Û bε

3 (x) = ε
3
2 ûbε

3

(
x′,

x3

ε

)
, for x ∈ Ωbε.

Assuming that (va, wa), (vb, wb) have H1 regularity, and since:

eaε(ûaε) = ea + ε
3
2

⎛⎝ 0 eα3(wa)

e3β(wa) e33(va)

⎞⎠ , ebε(ûbε) = eb + ε

⎛⎝ eαβ(vb) eα3(wb)

e3β(wb) 0

⎞⎠ ,

it is clear that, as ε tends to zero, eaε(ûaε) tends to ea strongly in (L2(Ωa))3×3 and that ebε(ûbε) tends to eb

strongly in (L2(Ωb))3×3, and then, from (2.29), that:∫
Ωa

|eaε (uaε − ûaε)|2 dx +
∫

Ωb

∣∣ebε
(
ubε − ûbε

)∣∣2 dx → 0.
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As above, if ea �= 0 and eb �= 0, we get that:

∆̂aε =

∫
Ωaε

|e(Uε − Ûaε)|2 dx∫
Ωaε

|e(Ûaε)|2 dx

=

∫
Ωa

|eaε(uaε − ûaε)|2 dx∫
Ωa

|eaε(ûaε)|2 dx

→ 0,

∆̂bε =

∫
Ωbε

|e(Uε − Û bε)|2 dx∫
Ωbε

|e(Û bε)|2 dx

=

∫
Ωb

|ebε(ubε − ûbε)|2 dx∫
Ωb

|ebε(ûbε)|2 dx

→ 0,

∆̂ε =

∫
Ωaε

|e(Uε − Ûaε)|2 dx +
∫

Ωbε

|e(Uε − Û bε)|2 dx∫
Ωaε

|e(Ûaε)|2 dx +
∫

Ωbε

|e(Û bε)|2 dx

→ 0.

At least formally, this means that:

U
ε  Ûaε in Ωaε, U

ε  Û bε in Ωbε. (2.31)

Let us prove that, from the equivalence (2.31), one can recover heuristically the conditions at the junction. As
a matter of fact, suppose we just know that:

ua
α = ua

α(x3), ua
3 = ζ

a
(x3) − x1

dua
1

dx3
(x3) − x2

dua
2

dx3
(x3),

va
α = c(x3)x′R

α , that is va
1 = −c(x3)x2 and va

2 = c(x3)x1,

wa
3 = 0,

ub
3 = ub

3(x
′), ub

α = ζ
b

α(x′) − x3
∂ub

3

∂xα
(x′),

vb
3 = 0, wb

α = 0.

From the above expressions of ua, va, wa, ub, vb, wb, we deduce that:⎧⎪⎪⎨⎪⎪⎩
Ûaε

α (ε
3
2 x′, x3) = ua

α(x3) + ε
3
2 c(x3)x′R

α + ε3wa
α(x), for x ∈ Ωa,

Û bε
α (x′, εx3) = ε

5
2

(
ζ

b

α(x′) − x3
∂ub

3

∂xα
(x′) + εvb

α(x) + ε2 · 0
)

, for x ∈ Ωb,

(2.32)

⎧⎪⎪⎨⎪⎪⎩
Ûaε

3 (ε
3
2 x′, x3) = ε

3
2

(
ζ

a
(x3) − x1

dua
1

dx3
(x3) − x2

dua
2

dx3
(x3) + ε

3
2 va

3(x) + ε3 · 0
)

, for x ∈ Ωa,

Û bε
3 (x′, εx3) = ε

3
2
(
ub

3(x
′) + ε · 0 + ε2wb

3(x)
)
, for x ∈ Ωb.

(2.33)

At least formally, from (2.31), (2.32) and (2.33), it follows that:

U
ε

α = O(1) in Ωaε, U
ε

α = O(ε
5
2 ) in Ωbε,

U
ε

3 = O(ε
3
2 ) in Ωaε, U

ε

3 = O(ε
3
2 ) in Ωbε.
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We deduce from these estimates that the main observable displacement is the transversal displacement of the
beam. At the junction, the continuity of U

ε
formally implies that, for x′ ∈ ωa:

ua
α(0) + ε

3
2 c(0)x′R

α + ε3wa
α(x′, 0)  ε

5
2

(
ζ

b

α(ε
3
2 x′) − 0 · ∂ub

3

∂xα
(ε

3
2 x′, 0) + εvb

α(ε
3
2 x′, 0) + ε2 · 0

)
,

ζ
a
(0) − x1

dua
1

dx3
(0) − x2

dua
2

dx3
(0) + ε

3
2 va

3(x
′, 0) + ε3 · 0  ub

3(ε
3
2 x′) + ε · 0 + ε2wb

3(ε
3
2 x′, 0).

This gives formally:
ua

α(0) = 0, c(0) = 0,

ζ
a
(0) = ub

3(0),
dua

α

dx3
(0) = 0,

which are the six conditions on the junction, a rigourous proof of which is given in Section 5. Moreover we get
at the junction the following estimates:

U
ε

α = O(ε
5
2 ), U

ε

3 = O(ε
3
2 ) on Jε.

Remark 3. We could go further and formally deduce for instance that:

ζ
b

α(0) = 0, va
3(x

′, 0) = x1
∂ub

3

∂x1
(0) + x2

∂ub
3

∂x2
(0).

But these relations have no sense since the solutions are not sufficiently smooth. For instance ζ
b

α only belongs
to H1(ωb), and its value ζ

b

α(0) is not well defined. In contrast, the functions involved in the conditions at the
junction have a value in zero, since they belong to the functional space given by the limit problem. �

The remaining part of the paper is devoted to the proofs of Theorem 1 and Corollary 1.

3. The derivation of the rescaled problem

Let us emphasize that we perform different scalings for the respective restrictions of U ∈ Y ε to the respective
subdomains Ωaε and Ωbε, in order to get convenient transmission conditions for their transforms ua and ub. We
mean that, with the transmission conditions appearing in the definition (2.1) of Yε, namely:

ua
α(x′, 0) = εrεub

α(rεx′, 0) and ua
3(x

′, 0) = ub
3(r

εx′, 0), for a.e. x′ ∈ ωa, (3.1)

we are able to derive the junction conditions for the limit problem. The derivation of the limit junction conditions
seems to be delicate otherwise. Moreover this is the scaling for which the coupling is maximum at the limit, at
least for the third component of the displacement.

3.1. The result of the scaling

In this subsection, we give the explicit expressions of the source terms and the solution of the rescaled
problem (2.3), as functions of the corresponding terms of the initial problem (1.2). An explanation is given in
Section 3.2.
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On the first hand, assuming that (F ε, Gε, Hε) �= (0, 0, 0) (otherwise the problem is trivial), we define λε by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(rε)2

2∑
α=1

‖F ε
α‖2

L2(Ωaε) + ‖F ε
3 ‖2

L2(Ωaε) +
ε3

(rε)2

2∑
α=1

‖F ε
α‖2

L2(Ωbε) +
ε

(rε)2
‖F ε

3 ‖2
L2(Ωbε)

+ ‖Gε‖2
(L2(Ωaε))3×3 +

ε3

(rε)2
‖Gε‖2

(L2(Ωbε))3×3 +
1

(rε)3

2∑
α=1

‖Hε
α‖2

L2(Σaε) +
1
rε

‖Hε
3‖2

L2(Σaε)

+
ε2

(rε)2

2∑
α=1

‖Hε
α‖2

L2(T bε
⋃

Bbε) +
1

(rε)2
‖Hε

3‖2
L2(T bε

⋃
Bbε) =

(
rε

λε

)2

.

(3.2)

Then we set: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
faε

α (x) =
λε

rε
F ε

α(rεx′, x3), faε
3 (x) = λε F ε

3 (rεx′, x3), for x ∈ Ωa,

f bε
α (x) = λε ε2

(rε)2
F ε

α(x′, εx3), f bε
3 (x) = λε ε

(rε)2
F ε

3 (x′, εx3), for x ∈ Ωb,

(3.3)

gaε(x) = λεGε(rεx′, x3), for x ∈ Ωa, gbε(x) = λε ε2

(rε)2
Gε(x′, εx3), for x ∈ Ωb, (3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

haε
α (x) = λε 1

(rε)2
Hε

α(rεx′, x3), haε
3 (x) = λε 1

rε
Hε

3(rεx′, x3), for x ∈ Σa,

hbε
+ α

(x′) = hbε
+ 3

(x′) = 0, for x′ ∈ rεωa,

hbε
+ α

(x′) = λε ε

(rε)2
Hε

α(x′, 0), hbε
+ 3

(x′) = λε 1
(rε)2

Hε
3 (x′, 0), for x′ ∈ ωb \ rεωa,

hbε
− α

(x′) = λε ε

(rε)2
Hε

α(x′,−ε), hbε
− 3

(x′) = λε 1
(rε)2

Hε
3 (x′,−ε), for x′ ∈ ωb.

(3.5)

Note that hbε
+ = 0 on rεωa, since there is no contribution of Hε on Jε.

On the other hand, for any U ∈ Y ε, we define the rescaled function u = (ua, ub) by:

ua
α(x) = λεrε Uα(rεx′, x3), ua

3(x) = λε U3(rεx′, x3), for x ∈ Ωa, (3.6)

ub
α(x) = λε 1

ε
Uα(x′, εx3), ub

3(x) = λε U3(x′, εx3), for x ∈ Ωb. (3.7)

Remark 4. Let us observe that the rescaled source terms are bounded, but not strongly converging to zero,
since, by definition of λε (see (3.2)) and by (3.3) to (3.5):

‖faε‖2
(L2(Ωa))3 + ‖f bε‖2

(L2(Ωb))3 + ‖gaε‖2
(L2(Ωa))3×3 + ‖gbε‖2

(L2(Ωb))3×3

+ ‖haε‖2
(L2(Σa))3 + ‖hbε

+ ‖2
(L2(ωb))3 + ‖hbε

−‖2
(L2(ωb))3 = 1.

�
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3.2. The derivation of the scaling

Let us consider the possible scalings for the solution U
ε

and test function U . If, instead of a multidomain,
one considers a single thin cylinder, the natural scaling is (see [21, 27, 28]):

uα(x) = rε Uα(rεx′, x3), u3(x) = U3(rεx′, x3), for x ∈ Ωa,

while for a single plate, the natural scaling is (see [5, 7]):

uα(x) = Uα(x′, εx3), u3(x) = ε U3(x′, εx3), for x ∈ Ωb.

For the multidomain made of the union of the beam and the plate, the idea is to consider different coefficients
of normalization, λaε and λbε, for Ωaε and Ωbε respectively, that is we set:

ua
α(x) = λaεrε Uα(rεx′, x3), ua

3(x) = λaε U3(rεx′, x3), for x ∈ Ωa,

ub
α(x) = λbε Uα(x′, εx3), ub

3(x) = λbεε U3(x′, εx3), for x ∈ Ωb.

Then one has, with eaε, ebε defined in (2.2):

e(U)(rεx′, x3) =
1

λaε
eaε(uaε)(x) for x ∈ Ωa and e(U)(x′, εx3) =

1
λbε

ebε(ubε)(x) for x ∈ Ωb,

and it is easy to check that the variational equality in (1.2) reads, once each integral is written on the corre-
sponding fixed domain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(rε)2

(λaε)2

∫
Ωa

[Aaeaε(uaε), eaε(ua)] dx + kε ε

(λbε)2

∫
Ωb

[Abebε(ubε), ebε(ub)] dx

=
1

λaε

(
2∑

α=1

∫
Ωa

rεF ε
α(rεx′, x3)ua

α(x) dx +
∫

Ωa

(rε)2F ε
3 (rεx′, x3)ua

3(x) dx

)

+
1

λbε

(
2∑

α=1

∫
Ωb

εF ε
α(x′, εx3)ub

α(x) dx +
∫

Ωb

F ε
3 (x′, εx3)ub

3(x) dx

)

+
(rε)2

λaε

∫
Ωa

[Gε(rεx′, x3), eaε(ua)] dx +
ε

λbε

∫
Ωb

[Gε(x′, εx3), ebε(ub)] dx

+
1

λaε

(
2∑

α=1

∫
Σa

Hε
α(rεx′, x3)ua

α(x) dσ +
∫

Σa

rεHε
3(rεx′, x3)ua

3(x) dσ

)

+
1

λbε

(
2∑

α=1

∫
ωb\rεωa

Hε
α(x′, 0)ub

α(x′, 0) dx′ +
∫

ωb\rεωa

1
ε
Hε

3(x′, 0)ub
3(x

′, 0) dx′
)

+
1

λbε

(
2∑

α=1

∫
ωb

Hε
α(x′,−ε)ub

α(x′,−1) dx′ +
∫

ωb

1
ε
Hε

3 (x′,−ε)ub
3(x

′,−1) dx′
)

.

(3.8)
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We decide to choose λaε = ελbε, so that the junction condition written for (ua, ub) reads: for almost every x′

in ωa, one has:

ua
α(x′, 0) =

λaε

λbε
rεub

α(rεx′, 0) = εrεub
α(rεx′, 0) and ua

3(x
′, 0) =

λaε

λbε

1
ε
ub

3(r
εx′, 0) = ub

3(r
εx′, 0)

(see also the beginning of Sect. 3). Then, after dividing by (rε)2/(λaε)2, writing λε instead of λaε, for simplicity,
and defining the rescaled source terms by (3.3), (3.4), (3.5), the equality (3.8) is exactly the variational equality
in (2.3). Finally, we recall that the particular choice of λε given in (3.2) makes the source terms bounded, but
not strongly converging to zero (see also Rem. 4).

Remark 5. Since the left-hand side of (3.8) is another way of writing
∫
Ωε [Ae(U

ε
), e(U)] dx, it follows that:

(
rε

λε

)2 (∫
Ωa

[Aaeaε(uaε), eaε(uaε)] dx + qε

∫
Ωb

[Abebε(ubε), ebε(ubε)] dx

)
=

∫
Ωε

[Ae(U
ε
), e(U

ε
)] dx, (3.9)

which gives the definition of the renormalized energy in (2.26). In [15], we took λε = rε, since the initial
problem (1.2) was supposed to be suitably normalized.

4. The A PRIORI estimates and the compactness arguments

4.1. A priori estimates

In the following, we denote by C any positive constant which does not depend on ε and we write eaε (resp. ebε)
for eaε(uaε) (resp. ebε(ubε)). Taking u = uε = (uaε, ubε) as test function in (2.3), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωa

[Aaeaε, eaε] dx + qε

∫
Ωb

[Abebε, ebε] dx

=
∫

Ωa

faε.uaε dx +
∫

Ωb

f bε.ubε dx +
∫

Ωa

[gaε, eaε] dx +
∫

Ωb

[gbε, ebε] dx

+
∫

Σa

haε.uaε dσ +
∫

ωb

(
hbε

+ .ubε
|x3=0 + hbε

− .ubε
|x3=−1

)
dx′.

(4.1)

From Korn’s inequality, since uaε vanishes on T a and ubε vanishes on Σb, we get for ε ≤ 1 and rε ≤ 1:

‖uaε‖(H1(Ωa))3 ≤ C‖e(uaε)‖(L2(Ωa))3×3 ≤ C‖eaε‖(L2(Ωa))3×3 ,

‖ubε‖(H1(Ωb))3 ≤ C‖e(ubε)‖(L2(Ωb))3×3 ≤ C‖ebε‖(L2(Ωb))3×3 ,

and, by continuity of the trace mapping:

‖uaε‖(L2(Σa))3 ≤ C‖uaε‖(H1(Ωa))3 ,

‖ubε
|x3=0‖(L2(ωb))3 + ‖ubε

|x3=−1‖(L2(ωb))3 ≤ C‖ubε‖(H1(Ωb))3 .

By using the above inequalities, the coercivity of Aa and Ab and the boundedness of the source terms (see (2.7)
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to (2.12) and Rem. 4), it follows from (4.1) that

C‖eaε‖2
(L2(Ωa))3×3 + Cqε‖ebε‖2

(L2(Ωb))3×3

≤ (‖faε‖(L2(Ωa))3 + ‖gaε‖(L2(Ωa))3×3 + ‖haε‖(L2(Σa))3
) ‖eaε‖(L2(Ωa))3×3

+
(‖f bε‖(L2(Ωb))3 + ‖gbε‖(L2(Ωa))3×3 + ‖hbε

+ ‖(L2(ωb))3 + ‖hbε
−‖(L2(ωb))3

) ‖ebε‖(L2(Ωb))3×3

≤ C
(‖eaε‖(L2(Ωa))3×3 + ‖ebε‖(L2(Ωb))3×3

)
.

• If qε is bounded from below by some positive constant, that is if q defined in (2.5) is equal to some positive
number or to +∞, it follows that eaε is bounded in (L2(Ωa))3×3 and ebε is bounded in (L2(Ωb))3×3. Then, from
Korn’s inequality, it results that uaε is bounded in (H1(Ωa))3 and ubε is bounded in (H1(Ωb))3. Moreover, in
the particular case where q = +∞, ebε tends to zero (strongly) in (L2(Ωb))3×3 and ubε tends to zero (strongly)
in (H1(Ωb))3.

• Otherwise, i.e. if qε tends to zero, we define ũε by:

ũε =
(
ũaε, ũbε

)
= qεuε = qε

(
uaε, ubε

)
. (4.2)

It is clear that ũε solves:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũε ∈ Yε and ∀u ∈ Yε,

1
qε

∫
Ωa

[Aaeaε(ũaε), eaε(ua)] dx +
∫

Ωb

[Abebε(ũbε), ebε(ub)] dx

=
∫

Ωa

faε.ua dx +
∫

Ωb

f bε.ub dx +
∫

Ωa

[gaε, eaε(ua)] dx +
∫

Ωb

[gbε, ebε(ub)] dx

+
∫

Σa

haε.ua dσ +
∫

ωb

(
hbε

+ .ub
|x3=0 + hbε

− .ub
|x3=−1

)
dx′.

(4.3)

Taking u = ũε as test function in (4.3), it is easy to prove (as we have done in the case qε ≥ C > 0) that
ẽaε = eaε(ũaε) = qεeaε tends to zero in (L2(Ωa))3×3, ẽbε = ebε(ũbε) = qεebε is bounded in (L2(Ωb))3×3,
ũaε = qεuaε tends to zero in (H1(Ωa))3 and ũbε = qεubε is bounded in (H1(Ωb))3.

4.2. Compactness arguments

• If qε tends to q with 0 < q ≤ +∞, it results from the a priori estimates that there exist u = (ua, ub) in
(H1(Ωa))3 × (H1(Ωb))3 and e = (ea, eb) in (L2(Ωa))3×3 × (L2(Ωb))3×3 such that:

uε = (uaε, ubε) ⇀ u = (ua, ub) weakly in (H1(Ωa))3 × (H1(Ωb))3, (4.4)

eε = (eaε, ebε) ⇀ e = (ea, eb) weakly in (L2(Ωa))3×3 × (L2(Ωb))3×3. (4.5)

Clearly ua = 0 on T a, ub = 0 on Σb and ea, eb are symmetric matrices. Moreover, from the boundedness of
eε = (eaε, ebε) and a classical semicontinuity argument, we get that ua is a Bernoulli-Navier displacement and
ub is a Kirchhoff-Love displacement:

eαβ(ua) = 0 and eα3(ua) = 0, eα3(ub) = 0 and e33(ub) = 0,
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which, combined with the constraints ua = 0 on T a, ub = 0 on Σb, is equivalent to (see [20]):

ua ∈ (H2(0, 1))2 × H1(Ωa), ua
α(1) =

dua
α

dx3
(1) = 0,

∃ ζ
a ∈ H1(0, 1), ζ

a
(1) = 0, ua

3 = ζ
a − x1

d ua
1

d x3
− x2

d ua
2

d x3
,

ub ∈ Ub.

Moreover one can prove as in [28] that there exist (va, wa) and (vb, wb) such that ea = ea(ua, va, wa) and
eb = eb(ub, vb, wb) (see the definitions of ea and eb in (2.6)) and such that:

va ∈ (H1(Ωa))2 × L2(0, 1; H1(ωa)), ∃ c ∈ H1(0, 1), c(1) = 0, va
1 = −c x2, va

2 = c x1,∫
ωa

va
3(x

′, x3) dx′ = 0, for a.e. x3 ∈ (0, 1),

wa ∈ Wa, vb ∈ Vb, wb ∈ Wb,

and suitable expressions of uaε (resp. ubε) tend to (va, wa) (resp. (vb, wb)). For the convenience of the reader,
the proof of this fact is given in the Appendix (see Sect. 8.1). In particular, va defines some c ∈ H1(0, 1) with
c(1) = 0, which is actually the limit in L2(0, 1) of cε given by

cε(x3) =

∫
ωa

(x1u
aε
2 (x′, x3) − x2u

aε
1 (x′, x3)) dx′

rε

∫
ωa

(
x2

1 + x2
2

)
dx′

· (4.6)

In conclusion we have proved (2.13), (2.14).
In the particular case q = +∞, we have already noticed (see the a priori estimates) that:

ubε → ub = 0 strongly in (H1(Ωb))3 and ebε → eb = 0 strongly in (L2(Ωb))3×3, (4.7)

that is we have proved (2.16), (2.17).
• If qε tends to zero, it results from the a priori estimates that:

⎧⎨⎩
qε uaε → 0 strongly in (H1(Ωa))3, qε ubε ⇀ ub weakly in (H1(Ωb))3,

qεeaε → 0 strongly in (L2(Ωa))3×3, qεebε ⇀ eb weakly in (L2(Ωb))3×3,
(4.8)

for some ub ∈ Ub and some symmetric matrix eb ∈ (L2(Ωb))3×3. Again (see the App., Sect. 8.1), there exists
(vb, wb) in Vb ×Wb, which are limits of suitable expressions of ubε and such that eb = eb(ub, vb, wb) = eb(zb).
In other words, we have proved (2.21), (2.22).
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5. The limit constraints that are due to the junction

As for the limit constraints, it remains to prove that

1) ua
α(0) = 0,

2) ua
3(x′, 0) = ub

3(0), which is equivalent to ζ
a
(0) = ub

3(0) and
dua

α

dx3
(0) = 0,

3) c(0) = 0,

since the above three conditions give ua
α ∈ (H2

0 (0, 1))2 and c ∈ H1
0 (0, 1), so that ua ∈ Ua and va ∈ Va. These

limit constraints are derived below.

5.1. Proof of ua
α(0) = 0

The fact that ua
α(0) = 0 results from the following easy lemma:

Lemma 1. Assume that {ubε}ε is bounded in L2(ωb). Then {rεubε(rε.)}ε is bounded in L2(ωa), for every ωa

such that rεωa ⊂ ωb, for any ε.

Proof. We have: ∫
ωa

|rεubε(rεx′)|2 dx′ =
∫

rεωa

|ubε(x′)|2 dx′ ≤
∫

ωb

|ubε(x′)|2 dx′ ≤ C. �

Application. If q �= 0, we write the junction condition for uε
α as:

uaε
α (x′, 0) = εrεubε

α (rεx′, 0), for a.e. x′ ∈ ωa.

The left-hand side tends to ua
α(x′, 0) = ua

α(0) in L2(ωa). The right-hand side tends to zero in this space, by
Lemma 1, since ubε

α (., 0) is bounded in L2(ωb), so that ua
α(0) = 0. If q = 0, the same proof applies to ũε = qεuε.

5.2. Proof of ua
3(x

′, 0) = ub
3(0)

This is a crucial part of this paper. It is derived from the following general lemma:

Lemma 2. Assume that ε and rε tend to zero, with 0 < ε2 � rε. Let ubε ∈ (H1(Ωb))3 be such that:

ubε = 0 on Σb,

{ebε(ubε)}ε is bounded in (L2(Ωb))3×3, (5.1)
with ebε defined in (2.2). Then, up to a subsequence:

ubε ⇀ ub weakly in (H1(Ωb))3, (5.2)

for some ub ∈ Ub (in particular ub
3 ∈ H2

0 (ωb)). Moreover ubε
3 (rε., 0) tends to ub

3(0) strongly in L2(ωa), for
every ωa such that rεωa ⊂ ωb, for any ε.

Proof. The first part of the lemma is classical (see [5]). Let us prove the convergence of ubε
3 (rε., 0). We define

Uε : ωb → R by:

Uε(x′) = k

∫ 0

−1

∫ 0

−1

∫
t<x3<t′

ubε
3 (x′, x3) dx3 dt dt′ = k

∫ 0

−1

∫ 0

−1

ρ(t, t′)
∫ t′

t

ubε
3 (x′, x3) dx3 dt dt′, (5.3)

with ρ(t, t′) = 1 if t < t′, 0 otherwise, and with k chosen so that:

k

∫ 0

−1

∫ 0

−1

ρ(t, t′)(t′ − t) dt dt′ = 1. (5.4)
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Moreover we define eε
α : Ωb → R, Eε

α and Dε
α : ωb → R by:

eε
α = 2 eα3(ubε) =

∂ubε
α

∂x3
+

∂ubε
3

∂xα
, (5.5)

Eε
α(x′) = k

∫ 0

−1

∫ 0

−1

ρ(t, t′)
∫ t′

t

eε
α(x′, x3) dx3 dt dt′, (5.6)

Dε
α(x′) = k

∫ 0

−1

∫ 0

−1

ρ(t, t′)
∫ t′

t

∂ubε
α

∂x3
(x′, x3) dx3 dt dt′ = k

∫ 0

−1

∫ 0

−1

ρ(t, t′)
(
ubε

α (x′, t′) − ubε
α (x′, t)

)
dt dt′. (5.7)

It is clear that:
∇Uε = Eε − Dε. (5.8)

Still denoting by C various constants that do not depend on ε, we have from Cauchy-Schwarz inequality:

|Eε
α(x′)|2 ≤ C

∫ 0

−1

|eε
α(x′, x3)|2 dx3,

which gives, by definition of eε
α and by (5.1):

‖Eε
α‖L2(ωb) ≤ C‖eε

α‖L2(Ωb) = C‖eα3(ubε)‖L2(Ωb) ≤ Cε. (5.9)

From (5.7), Cauchy-Schwarz inequality and the boundedness of ubε
α in H1

0 (Ωb), we have:

‖Dε
α‖H1

0(ωb) ≤ C‖ubε
α ‖H1

0 (Ωb) ≤ C. (5.10)

From (5.8), we get the following decomposition:

Uε = Ûε + Ũε,

with Ûε, Ũε the respective solutions in H1
0 (ωb) of:

−∆Ûε = −div Eε and − ∆Ũε = div Dε in ωb,

and from (5.9), (5.10):
‖∇Ûε‖(L2(ωb))2 ≤ ‖Eε‖(L2(ωb))2 ≤ Cε, (5.11)

Ûε → 0 in H1
0 (ωb), (5.12)

‖Ũε‖H2(ωb) ≤ C‖div Dε‖L2(ωb) ≤ C. (5.13)

But, using (5.2) and (5.4), it is easy to prove that:

Uε ⇀ ub
3 = ub

3(x
′) weakly in L2(ωb),

which gives, by virtue of (5.12), (5.13):

Ũε = Uε − Ûε ⇀ ub
3 weakly in H2(ωb).
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Then, as the embedding H2(ωb) ⊂ C0(ωb) is compact, for ωb bidimensional, we get that:

Ũε → ub
3 in C0(ωb). (5.14)

This is enough to prove that ubε
3 (rε., 0) tends to ub

3(0) strongly in L2(ωa).
Actually we have, for a.e. x′ in ωa,⎧⎨⎩

ubε
3 (rεx′, 0) − ub

3(0)

= [ubε
3 (rεx′, 0) − Uε(rεx′)] + [Uε(rεx′) − Ũε(rεx′)] + [Ũε(rεx′) − ub

3(r
εx′)] +

[
ub

3(r
εx′) − ub

3(0)
]
.

(5.15)

We will show that each of the above brackets tends strongly to zero in L2(ωa).
As for the first bracket, we have:∫

ωa

|ubε
3 (rεx′, 0) − Uε(rεx′)|2 dx′ =

1
(rε)2

∫
rεωa

|ubε
3 (x′, 0) − Uε(x′)|2 dx′. (5.16)

But, by using (5.4):

Uε(x′) = k

∫ 0

−1

∫ 0

−1

ρ(t, t′)
∫ t′

t

(
ubε

3 (x′, 0) +
∫ x3

0

∂ubε
3

∂x3
(x′, y3) dy3

)
dx3 dt dt′

= ubε
3 (x′, 0) + k

∫ 0

−1

∫ 0

−1

ρ(t, t′)
∫ t′

t

∫ x3

0

∂ubε
3

∂x3
(x′, y3) dy3 dx3 dt dt′,

so that:

|Uε(x′) − ubε
3 (x′, 0)| ≤ C

∫ 0

−1

∣∣∣∣∂ubε
3

∂x3
(x′, y3)

∣∣∣∣ dy3,

which combined with (5.1) gives:∫
rεωa

|ubε
3 (x′, 0) − Uε(x′)|2 dx′ ≤ C

∫
Ωb

∣∣∣∣∂ubε
3

∂x3

∣∣∣∣2 dx ≤ Cε4.

Coming back to (5.16), it results that:∫
ωa

|ubε
3 (rεx′, 0) − Uε(rεx′)|2 dx′ ≤ C

ε4

(rε)2
,

which tends to zero, since we have assumed that ε2 � rε. Now we consider the second bracket in (5.15), that
is Ûε(rεx′), and we are going to prove that its L2-norm tends to zero, again if ε2 � rε. In fact, from Cauchy-
Schwarz inequality, the continuity of the embedding H1

0 (ωb) ⊂ L4(ωb) (actually Lq(ωb), for every finite q, in
dimension 2) and from (5.11):

∫
ωa

|Ûε(rεx′)|2 dx′ =
1

(rε)2

∫
rεωa

|Ûε(x′)|2 dx′ ≤ 1
(rε)2

(∫
rεωa

|Ûε(x′)|4 dx′
) 1

2

|rεωa| 12

≤ C
1
rε

‖Ûε‖2
L4(ωb) ≤ C

1
rε

‖Ûε‖2
H1

0 (ωb) ≤ C
ε2

rε
·

By virtue of (5.14), the third and the fourth brackets in (5.15) tend to zero in L∞(ωa). This concludes the
proof of Lemma 2. �
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Application: If q �= 0, we write the junction condition for uε
3 as:

uaε
3 (x′, 0) = ubε

3 (rεx′, 0), for a.e. x′ ∈ ωa.

The left-hand side tends to ua
3(x

′, 0) in L2(ωa) while the right-hand side tends to ub
3(0) in the same space by

Lemma 2. It follows that ua
3(x′, 0) = ub

3(0) for a.e. x′ in ωa. If q = 0 the same proof applies to ũε = qεuε.

5.3. Proof of c(0) = 0

This proof also is crucial.

Lemma 3. Assume that ε and rε tend to zero, with 0 < ε2 � rε. Let (uaε, ubε) ∈ (H1(Ωa))3 × (H1(Ωb))3 be
such that:

uaε
|x3=1 = 0, (5.17)

uaε
α (x′, 0) = εrεubε

α (rεx′, 0), a.e. x′ ∈ ωa, (5.18)

{eaε(uaε)}ε is bounded in (L2(Ωa))3×3, (5.19)

{ubε
α }ε is bounded in H1(Ωb). (5.20)

Let cε be defined by:

cε(x3) =

∫
ωa

(x1u
aε
2 (x′, x3) − x2u

aε
1 (x′, x3)) dx′

rε

∫
ωa

(
x2

1 + x2
2

)
dx′

· (5.21)

Then cε tends to c in L2(0, 1), where c belongs to H1
0 (0, 1).

Proof. For α = 1, 2, we define xR
α by

xR
1 = −x2, xR

2 = x1,

and we set:
vaε =

uaε

rε
, eε

α = 2eα3(vaε) = 2eaε
α3(u

aε),

(this notation should not be confused with the notation eε
α appearing in (5.5)),

mε
α =

1
|ωa|

∫
ωa

vaε
α dx′, ρε

α =
1
rε

[
vaε

α − cεxR
α − mε

α

]
,

with cε given by (5.21).
We begin by proving two a priori estimates. Due to (5.19), we have:

‖eε‖(L2(Ωa))2 ≤ C. (5.22)

As for ρε, it follows from (1.1) that ρε
α(., x3) has mean-value zero on ωa, for every x3 and, as eαβ(ρε) =

(1/rε)eαβ(vaε), we get from the Poincaré-Wirtinger inequality for elasticity:

‖ρε‖2
(L2(Ωa))2 ≤ C

∑
αβ

‖eαβ(ρε)‖2
L2(Ωa) =

C

(rε)2
∑
αβ

‖eαβ(vaε)‖2
L2(Ωa) = C

∑
αβ

∥∥eaε
αβ(uaε)

∥∥2

L2(Ωa)
,

which gives, with (5.19):
‖ρε‖(L2(Ωa))2 ≤ C. (5.23)
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Now we prove that one can derive a single equation, of the form cε = Kε − rεRε, from the system of two
equations cεxR

α + mε
α = vaε

α − rερε
α. This is a cleaver argument appearing in [28], see also Section 8.1. Indeed

we get by differentiating the previous system with respect to x3:

dcε

dx3
xR

α +
dmε

α

dx3
+

∂vaε
3

∂xα
= eε

α − rε ∂ρε
α

∂x3
, ∀α = 1, 2. (5.24)

After multiplying (5.24) by a test function ϕα ∈ D(ωa), summing over α and integrating over ωa, we have:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dcε

dx3

∫
ωa

∑
α

ϕαxR
α dx′ +

∑
α

dmε
α

dx3

∫
ωa

ϕα dx′ −
∫

ωa

vaε
3 div ϕdx′

=
∫

ωa

∑
α

eε
αϕα dx′ − rε d

dx3

∫
ωa

∑
α

ρε
αϕα dx′.

(5.25)

We choose the test function ϕα so that: ∫
ωa

∑
α

ϕαxR
α dx′ = 1, (5.26)∫

ωa

ϕα dx′ = 0, ∀α = 1, 2, (5.27)

div ϕ = 0. (5.28)
It is easy to check that such test function does exist: take e.g.

ϕ1 =
∂φ

∂x2
, ϕ2 = − ∂φ

∂x1
, with φ ∈ D(ωa),

∫
ωa

φdx′ =
1
2
·

Now we set (this notation should not be confused with the notation Eε appearing in (5.6)):

Eε =
∫

ωa

eε. ϕdx′, Kε = −
∫ 1

x3

Eε(y3) dy3, Rε =
∫

ωa

ρε. ϕdx′,

where . denotes the scalar product in R2. Then (5.25) reads as:

dcε

dx3
=

dKε

dx3
− rε dRε

dx3
,

which gives by integration:
cε = Kε − rεRε, (5.29)

since cε(1) = Kε(1) = 0 and since also Rε(1) = 0, because ρε(1) = 0.
Now we pass to the limit in (5.29). Due to (5.22) and (5.23), Eε and Rε are bounded in L2(0, 1). Moreover

it follows that Kε is bounded in H1(0, 1), since by Poincaré inequality one has:

‖Kε‖2
H1(0,1) ≤ C

∫ 1

0

∣∣∣∣dKε

dx3

∣∣∣∣2 dx3 = C

∫ 1

0

|Eε|2 dx3 ≤ C.

Then we deduce that there exists c in H1(0, 1), with c(1) = 0, such that:

Kε ⇀ c weakly in H1(0, 1), hence Kε → c strongly in C0(0, 1).

As rεRε tends to zero strongly in L2(0, 1), it follows from (5.29) and the above that cε tends to c strongly in
L2(0, 1).
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It remains to prove that c vanishes at the origin. For this, we notice that Kε(0) → c(0). But one has also
another expression for Kε. Actually, from (5.29), (5.26), (5.27) and by the definition of ρε

α:

Kε = rεRε + cε = rε

∫
ωa

ρε.ϕdx′ + cε

∫
ωa

∑
α

ϕαxR
α dx′ +

∑
α

mε
α

∫
ωa

∑
α

ϕα dx′

=
∑
α

∫
ωa

(
rερε

α + cεxR
α + mε

α

)
ϕα dx′ =

∑
α

∫
ωa

vaε
α ϕα dx′,

that is:

Kε =
∑

α

∫
ωa

vaε
α ϕα dx′ =

∑
α

∫
ωa

1
rε

uaε
α ϕα dx′,

and in particular, due to the boundary condition (5.18):

Kε(0) = ε
∑
α

∫
ωa

ubε
α (rεx′, 0)ϕα dx′.

Hence, by using Hölder inequality, the continuity of the embedding of H
1
2 (ωb) in L4(ωb) (in dimension 2), the

continuity of the trace mapping from H1(Ωb) to H
1
2 (ωb) and (5.20), we get:

|Kε(0)| ≤ Cε
∑
α

∫
ωa

|ubε
α (rεx′, 0)| dx′ = C

ε

(rε)2
∑
α

∫
rεωa

|ubε
α (x′, 0)| dx′

≤ C
ε

(rε)2
∑

α

[∫
rεωa

|ubε
α (x′, 0)|4 dx′

] 1
4

|rεωa| 34 = Cε(rε)−
1
2

∑
α

[∫
rεωa

|ubε
α (x′, 0)|4 dx′

] 1
4

≤ Cε(rε)−
1
2

∑
α

∥∥ubε
α (., 0)

∥∥
L4(ωb)

≤ Cε(rε)−
1
2

∑
α

∥∥ubε
α (., 0)

∥∥
H

1
2 (Ωb)

≤ Cε(rε)−
1
2 ,

which tends to zero, since 0 < ε2 � rε. As we have proved that Kε(0) → c(0), we conclude that c(0) = 0. �

6. The use of convenient test functions

This is the third crucial part of the paper, at least in the case 0 < q < +∞.

6.1. The case q = +∞
Observe that Z∞ = {za ∈ Za, ζa(= ζa(ua)) ∈ H1

0 (0, 1)}. Let ua ∈ Ua, with ζa ∈ H1
0 (0, 1) and let (va, wa)

be such that:
va
1 = −cx2 and va

2 = cx1 with c ∈ H1
0 (0, 1), va

3 ∈ C1(Ωa), va
3 |x3=0 = 0 ,

wa
α ∈ C1(Ωa), wa

α |x3=0 = 0 , wa
3 = 0.

(6.1)

In other words, va and wa satisfy all the conditions given in the definitions of Va and Wa, but the integral ones;
moreover va

3 and wa
α belong to the space R defined by:

R = {v ∈ C1(Ωa), v|x3=0 = 0}. (6.2)



JUNCTION OF ELASTIC PLATES AND BEAMS 441

Let uaε = ua + rεva + (rε)2wa. Then it is easy to check that u = (uaε, 0) is in Yε. Taking it as test function in
the variational equation of problem (1.2), we get:∫

Ωa

[Aaeaε, eaε(uaε)] dx =
∫

Ωa

faε.uaε dx +
∫

Ωa

[gaε, eaε(uaε)] dx +
∫

Σa

haε.uaε dσ. (6.3)

But we have, since eαβ(ua) = eα3(ua) = eαβ(va) = e33(wa) = 0:

eaε(uaε) =

⎛⎝ eαβ(wa) eα3(va)

e3α(va) e33(ua)

⎞⎠ + rε

⎛⎝ 0 eα3(wa)

e3α(wa) e33(va)

⎞⎠ ,

so that eaε(uaε) tends to ea(za) = ea(ua, va, wa) (strongly) in (L2(Ωa))3×3. Moreover uaε tends to ua (strongly)
in (H1(Ωa))3 and we have seen in (4.5) that eaε tends to ea(za) weakly in (L2(Ωa))3×3. By passing to the limit
in (6.3), using (2.7), (2.9), (2.11), it follows that:∫

Ωa

[Aaea(za), ea(za)] dx =
∫

Ωa

fa.ua dx +
∫

Ωa

[ga, ea(za)] dx +
∫

Σa

ha.ua dσ, (6.4)

which is the variational equation of (2.18). It holds also true, by density and continuity, for every (va, wa) such
that:

va
1 = −cx2 and va

2 = cx1 with c ∈ H1
0 (0, 1), va

3 ∈ L2(0, 1; H1(ωa)) ,

wa
α ∈ L2(0, 1; H1(ωa)), wa

3 = 0,

i.e. for every (va, wa) satisfying the conditions given in the definitions of Va and Wa, but the integral ones
(note that R defined in (6.2) is dense in L2(0, 1; H1(ωa)) ). In particular (6.4) is also true for any za ∈ Z∞.
This means that za solves the variational problem (2.18).

6.2. The case q = 0

We have seen that ũε = qεuε = qε(uaε, ubε) solves (4.3) and that (see (4.8)) ũaε = qεuaε tends to ua = 0 in
(H1(Ωa))3, ẽbε = qεebε tends to eb = eb(zb) weakly in (L2(Ωb))3×3, for some zb in Z0 (in particular ub

3(0) = 0).
Let B be some given small ball, with center zero, in ωb. Let zb = (ub, vb, wb) be such that:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ub ∈ Ub, ζb
α(= ζb

α(ub)) = ub
3 = 0 in B,

vb
α ∈ C1(Ωb), vb

α = 0 in B × {0}, vb
3 = 0,

wb
α = 0, wb

3 ∈ C1(Ωb), wb
3 = 0 in B × {0}.

(6.5)

In other words, zb satisfies all the conditions given in the definition of Z0, except the integral ones; moreover
ζb
α and ub

3 vanish in B, vb
α and wb

3 belong to C1(Ωb) and vanish in B × {0}. Let ubε = ub + εvb + (ε)2wb. Then
it is easy to check that u = (0, ubε) is in Yε, for ε small enough. Taking it as test function in the variational
equation of problem (1.2), we get:∫

Ωb

[Abẽbε, ebε(ubε)] dx =
∫

Ωb

f bε.ubε dx +
∫

Ωb

[gbε, ebε(ubε)] dx +
∫

ωb

(
hbε

+ .ubε
|x3=0 + hbε

− .ubε
|x3=−1

)
dx′. (6.6)

But we have, since eα3(ub) = e33(ub) = e33(vb) = eαβ(wb) = 0:

ebε(ubε) =

⎛⎝ eαβ(ub) eα3(vb)

e3α(vb) e33(wb)

⎞⎠ + ε

⎛⎝ eαβ(vb) eα3(wb)

e3α(wb) 0

⎞⎠ ,
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so that ebε(ubε) tends to eb(zb) (strongly) in (L2(Ωb))3×3. Moreover ubε tends to ub (strongly) in (H1(Ωb))3 and
we have seen that ẽbε tends to eb(zb) weakly in (L2(Ωb))3×3. By passing to the limit in (6.6),
using (2.8), (2.10), (2.12), it follows that:∫

Ωb

[Abeb(zb), eb(zb)] dx =
∫

Ωb

f b.ub dx +
∫

Ωb

[gb, eb(zb)] dx +
∫

ωb

(
hb

+.ub
|x3=0 + hb

−.ub
|x3=−1

)
dx′, (6.7)

for every zb = (ub, vb, wb) having the regularity (6.5).
But the following density results are proved in the Appendix (Sect. 8.2). First, from Lemma 5, any

ζb
α ∈ H1

0 (ωb) can be approximated (in the strong topology of H1
0 (ωb)) by a sequence ζbn

α with ζbn
α = 0 in

a ball Bn of radius rn tending to zero. Moreover, from Lemma 6, any ub
3 ∈ H2

0 (ωb), with ub
3(0) = 0 can be

approximated (in the weak topology of H2
0 (ωb)) by a sequence ubn

3 that vanishes in Bn. Finally, from Lemma 7,
any vb

α (or wb
3) in L2(ωb; H1(−1, 0)) can be approximated (in the strong topology of L2(ωb; H1(−1, 0))) by a

sequence of functions vnb
α (or wnb

3 ) in C1(Ωb) that vanish in Bn × {0}.
By continuity, it results that (6.7) holds true for any (ub, vb, wb) such that:

ub ∈ Ub, ub
3(0) = 0,

vb
α ∈ L2(ωb; H1(−1, 0)), vb

3 = 0,

wb
α = 0, wb

3 ∈ L2(ωb; H1(−1, 0)),

i.e. for every zb satisfying the conditions given in the definition of Z0, but the integral ones. In particular (6.7)
is also true for any zb ∈ Z0. This means that zb solves the variational problem (2.23).

6.3. The case 0 < q < +∞
Let z = (za, zb) = ((ua, va, wa), (ub, vb, wb)) ∈ (C1(Ωa))3 × (C1(Ωb))3. We assume that z satisfies all the

conditions required in the definition of Z, except the integral ones, and we assume that it is “more regular”. In
particular ua

3(x
′, 0) = ub

3(0), that is ζa(0) = ub
3(0). The precise requirements are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ua ∈ Ua, ua
α ∈ C2[0, 1], ζa ∈ C1[0, 1],

va
1 = −cx2 and va

2 = cx1 with c ∈ C1[0, 1], c(0) = c(1) = 0, va
3 ∈ C1(Ωa), va

3 |x3=0 = 0,

wa
α ∈ C1(Ωa), wa

α |x3=0 = 0, wa
3 = 0,

ub ∈ Ub, ζb
α ∈ C1(ωb) ∩ H1

0 (ωb), ub
3 ∈ C1(ωb) ∩ H2

0 (ωb),

vb ∈ (C1(Ωb))2 × {0}, vb
α = 0 on Σb,

wb ∈ ({0})2 × C1(Ωb), wb
3 = 0 on Σb,

ub
3(0) = ζa(0).

(6.8)

We are going to define a convenient test function uε = (uaε, ubε) in Yε.
• In Ωb, we choose:

ubε = ub + εvb + ε2wb. (6.9)
As the couple uε = (uaε, ubε) needs to satisfy the transmission conditions (3.1), i.e.:

ua
α(x′, 0) = εrεub

α(rεx′, 0) and ua
3(x

′, 0) = ub
3(r

εx′, 0), for a.e. x′ ∈ ωa,
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then, necessarily, uaε(x′, 0) is given by:

uaε
α (x′, 0) = εrε(ζb

α(rεx′) + εvb
α(rεx′, 0)),

uaε
3 (x′, 0) = ub

3(r
εx′) + ε2wb

3(r
εx′, 0).

• In Ωa ∩ {x3 > rε}, we choose
uaε = ua + rεva + (rε)2wa. (6.10)

• In Ωa ∩ {0 < x3 < rε}, uaε is obtained by linear interpolation between uaε(x′, 0) and uaε(x′, rε):

uaε(x′, x3) =
x3

rε

(
ua(x′, rε) + rεva(x′, rε) + (rε)2wa(x′, rε)

)
+

(
1 − x3

rε

)
uaε(x′, 0),

that is (see above):

uaε
α (x′, x3) =

x3

rε

(
ua

α(rε) + rεva
α(x′, rε) + (rε)2wa

α(x′, rε)
)

+
(
1 − x3

rε

)
εrε

(
ζb
α(rεx′) + εvb

α(rεx′, 0)
)
, (6.11)

uaε
3 (x′, x3) =

x3

rε
(ua

3(x
′, rε) + rεva

3 (x′, rε)) +
(
1 − x3

rε

) (
ub

3(r
εx′) + ε2wb

3(r
εx′, 0)

)
, (6.12)

for 0 < x3 < rε. Taking uε = (uaε, ubε) as test function in the variational equation of problem (2.3), we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωa

[Aaeaε, eaε(uaε)] dx + qε

∫
Ωb

[Abebε, ebε(ubε)] dx

=
∫

Ωa

faε.uaε dx +
∫

Ωb

f bε.ubε dx +
∫

Ωa

[gaε, eaε(uaε)] dx +
∫

Ωb

[gbε, ebε(ubε)] dx

+
∫

Σa

haε.uaε dσ +
∫

ωb

(
hbε

+ .ubε
|x3=0 + hbε

− .ubε
|x3=−1

)
dx′.

(6.13)

Passing to the limit in the integral terms in Ωb is easy. As for the terms in Ωa∩{x3 > rε} and Σa∩{x3 > rε}, we
have from Lebesgue’s theorem, with uaε = ua + rεva + (rε)2wa and χε the characteristic function of {x3 > rε}:

χεeaε(uaε) → ea(za) strongly in (L2(Ωa))3×3,

χεuaε → ua strongly in (L2(Ωa))3,

χεuaε
|Σa → ua

|Σa strongly in (L2(Σa))3,

so that, by virtue of (2.7), (2.9), (2.11), (4.5):∫
Ωa∩{x3>rε}

[Aaeaε − gaε, eaε(uaε)] dx −
∫

Ωa∩{x3>rε}
faε.uaε dx −

∫
Σa∩{x3>rε}

haε.uaε dσ

→
∫

Ωa

[Aaea − ga, ea(za)] dx −
∫

Ωa

fa.ua dx −
∫

Σa

ha.ua dσ.

For the terms in Ωa ∩{0 < x3 < rε} and Σa ∩{0 < x3 < rε}, it is clear, from (2.7), (2.11) and from the uniform
boundedness of uaε, that: ∫

Ωa∩{0<x3<rε}
faε.uaε dx −

∫
Σa∩{0<x3<rε}

haε.uaε dσ → 0.
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Hence it remains to show that: ∫
Ωa∩{0<x3<rε}

[Aaeaε − gaε, eaε(uaε)] dx → 0.

But we have, from Cauchy-Schwarz inequality, (2.9) and (4.5):∫
Ωa∩{0<x3<rε}

[Aaeaε − gaε, eaε(uaε)] dx ≤ C ‖eaε(uaε)‖(L2(Ωa∩{0<x3<rε}))3×3 ,

and it is enough to prove that:

‖eaε(uaε)‖(L2(Ωa∩{0<x3<rε}))3×3 → 0. (6.14)

Then, by passing to the limit in (6.13), we get:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
Ωa

[Aaea(za), ea(za)] dx + q

∫
Ωb

[Abeb(zb), eb(zb)] dx =
∫

Ωa

fa.ua dx +
∫

Ωb

f b.ub dx

+
∫

Ωa

[ga, ea(za)] dx +
∫

Ωb

[gb, eb(zb)] dx +
∫

Σa

ha.ua dσ +
∫

ωb

(
hb

+.ub
|x3=0 + hb

−.ub
|x3=−1

)
dx′,

(6.15)

for any z having the regularity given in (6.8), and then, by a density argument given in Lemma 8 of the Ap-
pendix (Sect. 8.2), for any z satisfying all the requirements of Z, except the integral conditions. A fortiori, the
same variational equality holds true for any z in Z, that is (za, zb) solves (2.15).

Proof of (6.14). We will prove that the norms in L2({0 < x3 < rε}) of the terms e33(uaε),
1

(rε)2
eαβ(uaε) and

1
rε

eα3(uaε) tend to zero.

• Term e33(uaε). We easily get from (6.12) that:

e33(uaε) =
∂uaε

3

∂x3
=

1
rε

(
ua

3(x
′, rε) − ub

3(r
εx′)

)
+ va

3 (x′, rε) − ε2

rε
wb

3(r
εx′, 0). (6.16)

The norms in L2({0 < x3 < rε}) of the two last terms in (6.16) tend to zero, since va
3 (x′, rε) and wb

3(r
εx′, 0)

are uniformly bounded: ∫
0<x3<rε

|va
3 (x′, rε)|2 dx ≤ Crε → 0,∫

0<x3<rε

(
ε2

rε

)2

|wb
3(r

εx′, 0)|2 dx ≤ C
ε4

rε
� C

ε2

rε
→ 0,

since, by assumption, ε2 � rε. As for the first term in (6.16), it is uniformly bounded, because of the junction
condition:

1
rε

(
ua

3(x
′, rε) − ub

3(r
εx′)

)
=

1
rε

(
ua

3(x
′, 0) +

∫ rε

0

∂ua
3

∂x3
(x′, t) dt − ub

3(0) −
∫ rε

0

∇ub
3(tx

′).x′ dt

)

=
1
rε

∫ rε

0

∂ua
3

∂x3
(x′, t) dt − 1

rε

∫ rε

0

∇ub
3(tx

′).x′ dt ≤ C,

and hence, its norm in L2({0 < x3 < rε}) tends to zero.
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• Term
1

(rε)2
eαβ(uaε). From (6.11) we have:

∂uaε
α

∂xβ
=

x3

rε

(
rε ∂va

α

∂xβ
(x′, rε) + (rε)2

∂wa
α

∂xβ
(x′, rε)

)
+

(
1 − x3

rε

)
ε(rε)2

(
∂ζb

α

∂xβ
(rεx′) + ε

∂vb
α

∂xβ
(rεx′, 0)

)
,

and hence, since eαβ(va) = 0:

1
(rε)2

eαβ(uaε) =
x3

rε
eαβ(wa)(x′, rε) +

(
1 − x3

rε

)
ε
(
eαβ(ζb)(rεx′) + εeαβ(vb)(rεx′, 0)

)
,

which gives, from the regularity of wa, ζb and vb (see (6.8)):∣∣∣∣ 1
(rε)2

eαβ(uaε)
∣∣∣∣ ≤ C + Cε(1 + ε) ≤ C,

and hence, the norm in L2({0 < x3 < rε}) of this term tends to zero.

• Term
1
rε

eα3(uaε). From (6.11) we have:

∂uaε
α

∂x3
=

1
rε

(
ua

α(rε) + rεva
α(x′, rε) + (rε)2wa

α(x′, rε)
)− ε

(
ζb
α(rεx′) + εvb

α(rεx′, 0)
)
,

and, from (6.12):

∂uaε
3

∂xα
=

x3

rε

(
∂ua

3

∂xα
(x′, rε) + rε ∂va

3

∂xα
(x′, rε)

)
+

(
1 − x3

rε

)
rε

(
∂ub

3

∂xα
(rεx′) + ε2 ∂wb

3

∂xα
(rεx′, 0)

)
,

so that:
2
rε

eα3(uaε) =
1
rε

(
∂uaε

α

∂x3
+

∂uaε
3

∂xα

)
= T1 + T2 + T3 + T4, (6.17)

with:

T1 =
1

(rε)2

(
ua

α(rε) + x3
∂ua

3

∂xα
(x′, rε)

)
,

T2 =
1
rε

(
va

α(x′, rε) − ε
(
ζb
α(rεx′) + εvb

α(rεx′, 0)
))

,

T3 = wa
α(x′, rε),

T4 =
x3

rε

∂ua
3

∂xα
(x′, rε) +

(
1 − x3

rε

)(
∂ub

3

∂xα
(rεx′) + ε2 ∂wb

3

∂xα
(rεx′, 0)

)
.

We will show that the norm in L2({0 < x3 < rε}) of each term tends to zero.

◦ Term T1. As ua
α(0) = 0, we have:

ua
α(rε) =

∫ rε

0

dua
α

dx3
(t) dt,
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and, as eα3(ua) = 0:

x3
∂ua

3

∂xα
(x′, rε) = −x3

dua
α

dx3
(rε) = −x3

rε

∫ rε

0

dua
α

dx3
(t) dt +

x3

rε

∫ rε

0

(
dua

α

dx3
(t) − dua

α

dx3
(rε)

)
dt,

so that, since
dua

α

dx3
(0) = 0:

ua
α(rε) + x3

∂ua
3

∂xα
(x′, rε) =

(
1 − x3

rε

)∫ rε

0

dua
α

dx3
(t) dt +

x3

rε

∫ rε

0

(
dua

α

dx3
(t) − dua

α

dx3
(rε)

)
dt =

∫ rε

0

∫ t

0

d2ua
α

dx2
3

(τ) dτ dt,

and, from the regularity of ua
α:

|T1| =
1

(rε)2

∣∣∣∣ua
α(rε) + x3

∂ua
3

∂xα
(x′, rε)

∣∣∣∣ ≤ 1
(rε)2

∫ rε

0

∫ t

0

∣∣∣∣d2ua
α

dx2
3

(τ)
∣∣∣∣ dτ dt ≤ C,

so that the norm in L2({0 < x3 < rε}) of T1 tends to zero.

◦ Term T2. We have:

T2 =
1
rε

va
α(x′, rε) − ε

rε

(
ζb
α(rεx′) + εvb

α(rεx′, 0)
)
.

But, as c(0) = 0: ∣∣∣∣ 1
rε

va
α(x′, rε)

∣∣∣∣ ≤ C

rε
|c(rε)| ≤ C,

and the norm of this term in L2({0 < x3 < rε}) tends to zero. On the other hand, as ε2 � rε and as ζb
α and

vb
α are uniformly bounded, due to the regularity conditions (6.8), we have:∣∣∣ ε

rε

(
ζb
α(rεx′) + εvb

α(rεx′, 0)
)∣∣∣ ≤ C

ε

rε
,

so that the norm of this term in L2({0 < x3 < rε}) is bounded by Cε/
√

rε, which tends to zero by assumption.
Therefore the norm in L2({0 < x3 < rε}) of T2 tends to zero.

◦ Terms T3 and T4. These terms are bounded, due to the regularity conditions (6.8), and therefore the
norms in L2({0 < x3 < rε}) of those two terms tend to zero. �

7. Proof of stronger convergences and proof of Corollary 1

Actually, the stronger convergences in Theorem 1 are deduced from Corollary 1. The proof is as follows.
Taking uε = (uaε, ubε) as test function in the variational equation of problem (2.3), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eε =
∫

Ωa

[Aaeaε, eaε] dx + qε

∫
Ωb

[Abebε, ebε] dx

=
∫

Ωa

faε.uaε dx +
∫

Ωb

f bε.ubε dx +
∫

Ωa

[gaε, eaε] dx +
∫

Ωb

[gbε, ebε] dx

+
∫

Σa

haε.uaε dσ +
∫

ωb

(
hbε

+ .ubε
|x3=0 + hbε

− .ubε
|x3=−1

)
dx′.

(7.1)

We are going to pass to the limit in the right-hand side of the above equality.



JUNCTION OF ELASTIC PLATES AND BEAMS 447

• If 0 < q < +∞, we have, from the convergences already proved in Theorem 1 and from classical compactness
arguments,

(eaε, ebε) ⇀ (ea, eb) weakly in (L2(Ωa))3×3 × (L2(Ωb))3×3,

(uaε, ubε) → (ua, ub) strongly in (L2(Ωa))3 × (L2(Ωb))3,

uaε
|Σa → ua

|Σa strongly in (L2(Σa))3,

ubε
|x3=0 → ub

|x3=0 strongly in
(
L2(ωb)

)3
,

ubε
|x3=−1 → ub

|x3=−1 strongly in
(
L2(ωb)

)3
.

If (gaε, gbε) tends to (ga, gb) strongly in (L2(Ωa))3×3 × (L2(Ωb))3×3, it follows that:

Eε =
∫

Ωa

faε.uaε dx +
∫

Ωb

f bε.ubε dx +
∫

Ωa

[gaε, eaε] dx +
∫

Ωb

[gbε, ebε] dx

+
∫

Σa

haε.uaε dσ +
∫

ωb

(
hbε

+ .ubε
|x3=0 + hbε

− .ubε
|x3=−1

)
dx′

−→
∫

Ωa

fa.ua dx +
∫

Ωb

f b.ub dx +
∫

Ωa

[ga, ea] dx +
∫

Ωb

[gb, eb] dx

+
∫

Σa

ha.ua dσ +
∫

ωb

(
hb

+.ub
+|x3=0 + hb

−.ub
|x3=−1

)
dx′

=
∫

Ωa

[Aaea, ea] dx + q

∫
Ωb

[Abeb, eb] dx = E ,

which proves the first part of Corollary 1. Moreover, we get, from the convergence of Eε to E and from a classical
lower semicontinuity argument:

0 = lim inf
(∫

Ωa

[Aaeaε, eaε] dx −
∫

Ωa

[Aaea, ea] dx + qε

∫
Ωb

[Abebε, ebε] dx − q

∫
Ωb

[Abeb, eb] dx

)
≥ lim inf

(∫
Ωa

[Aaeaε, eaε] dx −
∫

Ωa

[Aaea, ea] dx

)
+ lim inf

(
qε

∫
Ωb

[Abebε, ebε] dx − q

∫
Ωb

[Abeb, eb] dx

)
= lim inf

(∫
Ωa

[Aaeaε, eaε] dx −
∫

Ωa

[Aaea, ea] dx

)
+ lim inf q

(∫
Ωb

[Abebε, ebε] dx −
∫

Ωb

[Abeb, eb] dx

)
≥ 0,

which gives, up to extraction of a new subsequence,∫
Ωa

[Aaeaε, eaε] dx −→
∫

Ωa

[Aaea, ea] dx,

∫
Ωb

[Abebε, ebε] dx −→
∫

Ωb

[Abeb, eb] dx.



448 A. GAUDIELLO ET AL.

It follows that:

C ‖eaε − ea‖2
(L2(Ωa))3×3 ≤

∫
Ωa

[Aa(eaε − ea), (eaε − ea)] dx

=
∫

Ωa

[Aaeaε, eaε] dx +
∫

Ωa

[Aaea, ea] dx −
∫

Ωa

[Aaeaε, ea] dx −
∫

Ωa

[Aaea, eaε] dx −→ 0,

and hence eaε tends to ea strongly in (L2(Ωa))3×3. Therefore e(uaε) tends to e(ua) strongly in (L2(Ωa))3×3 and
then, from Korn’s inequality, uaε tends to ua strongly in (H1(Ωa))3. By the same proof, ebε tends to eb strongly
in (L2(Ωb))3×3 and ubε tends to ub strongly in (H1(Ωb))3. In conclusion, we proved the stronger convergences
mentionned in Theorem 1 when 0 < q < +∞.

• If q = +∞, we have seen that:

ubε → ub = 0 strongly in (H1(Ωb))3,

ebε → eb = 0 strongly in (L2(Ωb))3×3,

and, with appropriate changes in the above proof, we have, if gaε tend to ga strongly in (L2(Ωa))3×3:

Eε −→
∫

Ωa

fa.ua dx +
∫

Ωa

[ga, ea] dx +
∫

Σa

ha.ua dσ =
∫

Ωa

[Aaea, ea] dx = E∞,

0 = lim inf
(∫

Ωa

[Aaeaε, eaε] dx −
∫

Ωa

[Aaea, ea] dx + qε

∫
Ωb

[Abebε, ebε] dx

)
≥ lim inf

(∫
Ωa

[Aaeaε, eaε] dx −
∫

Ωa

[Aaea, ea] dx

)
+ lim inf

(
qε

∫
Ωb

[Abebε, ebε] dx

)
≥ 0,

∫
Ωa

[Aaeaε, eaε] dx −→
∫

Ωa

[Aaea, ea] dx,

qε

∫
Ωb

[Abebε, ebε] dx −→ 0,

eaε → ea strongly in (L2(Ωa))3×3,

√
qεebε → 0 strongly in (L2(Ωa))3×3,

uaε → ua strongly in (H1(Ωa))3.

• If q = 0, we have, with ũε = qεuε, ẽε = qεeε:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eε =
1
qε

∫
Ωa

[Aaẽaε, ẽaε] dx +
∫

Ωb

[Abẽbε, ẽbε] dx

=
∫

Ωa

faε.ũaε dx +
∫

Ωb

f bε.ũbε dx +
∫

Ωa

[gaε, ẽaε] dx +
∫

Ωb

[gbε, ẽbε] dx

+
∫

Σa

haε.ũaε dσ +
∫

ωb

(
hbε

+ .ũbε
|x3=0 + hbε

− .ũbε
|x3=−1

)
dx′,

(7.2)
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ũaε → ua = 0 strongly in (H1(Ωa))3,

ẽaε → ea = 0 strongly in (L2(Ωa))3×3,

and we have, if gbε tend to gb strongly in (L2(Ωb))3×3:

Eε −→
∫

Ωb

f b.ub dx +
∫

Ωb

[gb, eb] dx +
∫

ωb

(
hb

+.ub
|x3=0 + hb

−.ub
|x3=−1

)
dx′ =

∫
Ωb

[Abeb, eb] dx = E0,

0 = lim inf
(

1
qε

∫
Ωa

[Aaẽaε, ẽaε] dx +
∫

Ωb

[Abẽbε, ẽbε] dx −
∫

Ωb

[Abeb, eb] dx

)

≥ lim inf
(

1
qε

∫
Ωa

[Aaẽaε, ẽaε] dx

)
+ lim inf

(∫
Ωb

[Abẽbε, ẽbε] dx −
∫

Ωb

[Abeb, eb] dx

)
≥ 0,

∫
Ωb

[Abẽbε, ẽbε] dx −→
∫

Ωb

[Aaeb, eb] dx,

1
qε

∫
Ωa

[Aaẽaε, ẽaε] dx −→ 0,

qεebε = ẽbε → eb strongly in (L2(Ωb))3×3,

√
qε eaε =

1√
qε

ẽaε → 0 strongly in (L2(Ωb))3×3,

qεubε → ub strongly in (H1(Ωb))3.

8. Appendix

8.1. The definitions of (va, wa) and (vb, wb) as suitable limits

For the convenience of the reader, we give in this appendix a sketch of the proof of the following result,
mentionned in Section 4.2 (for thin cylinders, a complete proof is given in [28]). The case of plates is analogous
and simpler.

Lemma 4. (i) Let {uε}ε be a sequence in (H1(Ωa))3 such that uε = 0 on T a = ωa × {1} and:

{eaε(uε)}ε is bounded in (L2(Ωa))3×3. (8.1)

Let Wa be the space defined in Section 2.2 and let:

Va− =
{
va ∈ (H1(Ωa))2 × L2(0, 1; H1(ωa)), ∃ c ∈ H1(0, 1), c(1) = 0, va

1 = −c x2, va
2 = c x1,∫

ωa

va
3 (x′, x3) dx′ = 0, for a.e. x3 ∈ (0, 1)

}
,

(note that Va
− satisfies the same requirements as Va, in Section 2.2, except c(0) = 0). Then there exists a pair
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(va, wa) ∈ Va
− ×Wa such that for all α, β = 1, 2:

1
rε

eα3(uε) ⇀ eα3(va) weakly in L2(Ωa), (8.2)

1
(rε)2

eαβ(uε) ⇀ eαβ(wa) weakly in L2(Ωa). (8.3)

Morever, denoting by (c, va
3 ) the couple defining va and setting:

cε(x3) =

∫
ωa

(x1u
ε
2(x

′, x3) − x2u
ε
1(x

′, x3)) dx′

rε

∫
ωa

(
x2

1 + x2
2

)
dx′

, (8.4)

vε
3 =

uε
3

rε
− 1

|ωa|
∫

ωa

uε
3

rε
dx′ +

1
|ωa|

∑
α

xα
d

dx3

∫
ωa

uε
α dx′, (8.5)

we have:
cε → c strongly in L2(0, 1), (8.6)

vε
3 ⇀ va

3 weakly in H−1(0, 1; H1(ωa)). (8.7)
Finally, setting:

dε
α(x3) =

1
|ωa|

∫
ωa

uε
α(x′, x3)

rε
dx′ (8.8)

and xR
1 = −x2, xR

2 = x1, we have:

uε
α

(rε)2
− 1

rε

(
cεxR

α + dε
α

)
⇀ wa

α weakly in L2(0, 1; H1(ωa)). (8.9)

(ii) If {uε}ε is a sequence in (H1(Ωb))3 such that uε = 0 on Σb = ∂ωb × (−1, 0) and:

{ebε(uε)}ε is bounded in (L2(Ωb))3×3, (8.10)

then there exists a pair (vb, wb) ∈ Vb ×Wb such that for all α = 1, 2:

1
ε
eα3(uε) ⇀ eα3(vb) weakly in L2(Ωb), (8.11)

1
ε2

e33(uε) ⇀ e33(wb) weakly in L2(Ωb). (8.12)

In addition, we have:

uε
α

ε
− ũε

α −
∫ 0

−1

(
uε

α

ε
− ũε

α

)
dx3 ⇀ vb

α weakly in L2(ωb; H1(−1, 0)), for α = 1, 2, (8.13)

with ũε defined by:

ũε
α = −

∫ x3

0

1
ε

∂uε
3

∂xα
(x′, s)ds.

Moreover:
uε

3

ε2
−

∫ 0

−1

uε
3

ε2
dx3 ⇀ wb

3 weakly in L2(ωb; H1(−1, 0)). (8.14)



JUNCTION OF ELASTIC PLATES AND BEAMS 451

Proof of (i). We use the following decomposition and estimate, whose proof may be found for instance in [20,21]:
there exists a positive constant C such that, for every u in L2(0, 1; H1(ωa))2, there exist u and û satisfying:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = u + û,∫
ωa

uα(x′, x3) dx′ = 0,

∫
ωa

(x1u2(x′, x3) − x2u1(x′, x3)) dx′ = 0,

eαβ(û) = 0, ∀α, β = 1, 2,

(8.15)

‖u‖(L2(0,1;H1(ωa)))2 ≤ C
∑
α,β

‖eαβ(u)‖L2(Ωa). (8.16)

The function û is a rigid displacement:

ûα(x′, x3) = c(x3)xR
α + dα(x3), (8.17)

with xR
1 = −x2, xR

2 = x1 (R for “rotation”). Applying (8.15) and (8.17) to u =
1
rε

(uε
1, u

ε
2), we get:

1
rε

uε
α = uε

α + ûε
α, with ûε

α = cε(x3)xR
α + dε

α(x3). (8.18)

One can check easily that the functions cε and dε
α are given in terms of uε by the formulae (8.4) and (8.8).

From (8.16), we obtain:

‖uε
α‖L2(0,1;H1(ωa)) ≤ C

∑
α,β

∥∥∥∥eαβ

(
1
rε

uε

)∥∥∥∥
L2(Ωa)

.

Setting wε
α = uε

α/rε and using (8.1), it follows that:

‖wε
α‖L2(0,1;H1(ωa)) ≤ C.

So, taking a subsequence of ε, still denoted by the same letter, we may assume the existence of wa
α such that:

wε
α ⇀ wa

α weakly in L2(0, 1; H1(ωa)), ∀α = 1, 2,

that is (8.9). Moreover it is clear that (wε
1, w

ε
2, 0) and wa = (wa

1 , wa
2 , 0) belong to Wa. Since (8.18) implies that:

1
(rε)2

eαβ(uε) = eαβ(wε),

we see that (8.3) is proved.
It remains to prove the convergences involving va. In Section 5.3, it is proved that there exists c in H1(0, 1),

c(1) = 0 such that, for a subsequence of ε, (8.6) holds true. As for the other convergences involving va, we use
again the decomposition (8.18), from which we deduce the following equality:

2
rε

eα3(uε) =
∂uε

α

∂x3
+

dcε

dx3
xR

α +
ddε

α

dx3
+

1
rε

∂uε
3

∂xα
, ∀α = 1, 2. (8.19)

Now, setting

vε
3 =

uε
3

rε
− 1

|ωa|
∫

ωa

uε
3

rε
dx′ +

∑
β

xβ
d

dx3
dε

β(x3),
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equality (8.19) can be written as:

2
rε

eα3(uε) =
dcε

dx3
xR

α +
∂vε

3

∂xα
+

∂uε
α

∂x3
· (8.20)

The following estimate is proved in [24]:

‖vε
3‖H−1(0,1;H1(ωa)) ≤ C

⎛⎝∑
αβ

‖eαβ(
uε

rε
)‖L2(Ωa) +

∑
α

‖eα3(
uε

rε
)‖L2(Ωa)

⎞⎠ ,

so that, from (8.1), the sequence {vε
3}ε is bounded in H−1(0, 1; H1(ωa)). Therefore there exists some va

3 in
H−1(0, 1; H1(ωa)), with zero mean-value on ωa, such that (8.7) holds true (for a subsequence). It follows also
from (8.1) that:

1
rε

eα3(uε) ⇀ τα3 weakly in L2(Ωa), (8.21)

(again for some subsequence and some τα3 in L2(Ωa)). Moreover, since wε
α is bounded in L2(0, 1; H1(ωa)):

∂uε
α

∂x3
= rε ∂wε

α

∂x3
−→ 0 in the sense of distributions. (8.22)

By passing to the limit in (8.20), using (8.6), (8.7), (8.21) and (8.22), we get:

2τα3 =
dc

dx3
xR

α +
∂

∂xα
va
3 , (8.23)

which, using c ∈ H1(0, 1), implies that:
∂

∂xα
va
3 ∈ L2(Ωa). (8.24)

From (8.24) and from the fact that va
3 belongs to H−1(0, 1; H1(ωa)) and has zero mean-value on ωa, one deduces

that va
3 belongs to L2(0, 1; H1(ωa)), so that va = (c(x3)xR

α , va
3 ) ∈ Va

− and satisfies (8.2).

Proof of (ii). Now we prove the analogous of the previous properties in the framework of 3d-2d reduction of
dimension. This is much easier. Indeed, in order to prove (8.11) and (8.13), we consider the sequence {vε

α}ε

defined by:

vε
α =

uε
α

ε
− ũε

α −
∫ 0

−1

(
uε

α

ε
− ũε

α

)
dx3,

and

ũε =
(
−

∫ x3

0

1
ε

∂uε
3

∂x1
(x′, s)ds,−

∫ x3

0

1
ε

∂uε
3

∂x2
(x′, s)ds,

uε
3

ε

)
.

Then we have as above:
∂vε

α

∂x3
=

2
ε
eα3(uε), (8.25)

which is bounded in L2(Ωb), as a consequence of (8.10). As vε
α has mean-value zero with respect to x3, it is

bounded in L2(ωb; H1(−1, 0)), so that (8.13) holds true, i.e.:

vε
α ⇀ vb

α weakly in L2
(
ωb; H1(−1, 0)

)
, (8.26)

for some subsequence of ε and for some vb
α in L2(ωb; H1(−1, 0)).
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Setting vb = (vb
1, v

b
2, 0), we get:

eα3(vb) =
1
2

∂vb
α

∂x3
,

so that we derive (8.11) from (8.25) and (8.26).
Finally we prove (8.12) and (8.14), by introducing the sequence of functions wε defined by:

wε =
1
ε2

uε
3 −

∫ 0

−1

1
ε2

uε
3 dx3,

which is bounded in L2(ωb; H1(−1, 0)), since
∂wε

∂x3
=

1
ε2

e33(uε) is bounded in L2(Ωb), due to (8.10). So, extract-

ing a subsequence, we can find wb
3 in L2(ωb; H1(−1, 0)), with mean-value zero in x3, such that (8.12) and (8.14)

hold true, which completes the proof of Lemma 4. �

8.2. The density arguments

In Section 6, we have mentionned four density arguments. These are stated in the following lemmata and
proved below. This is done for the sake of completeness, since Lemmata 7 and 8 are very classical, Lemma 5 is
classical and very similar to the density result proved in [13], while Lemma 6, though less classical, results from
Theorem 9.1.3 of [2].

Lemma 5. Let v ∈ H1
0 (ωb), 0 ∈ ωb ⊂ R2. There exist a sequence of positive numbers rn, tending to zero, and

a sequence of functions vn ∈ H1
0 (ωb) such that:

vn = 0 in the ball Bn of center 0 and radius rn,

vn → v in H1
0 (ωb).

Proof. Let Ṽ = {v ∈ C1(ωb), v = 0 on ∂ωb}. As Ṽ is dense in H1
0 (ωb), we may restrict to v in Ṽ . Then the

proof goes as follows. For any integer n, we consider two balls Bn and B′n in ωb ⊂ R2, with center 0 and
respective radii rn and Rn, to be determined later on, and such that 0 < rn < Rn, Rn tends to zero as n tends
to infinity. We define vn ∈ H1

0 (ωb) by:

vn = 0 in Bn, vn = v in ωb \ B′n, vn = (1 − φn)v in B′n \ Bn,

where φn is the solution of the capacity problem in B′n \ Bn:

∆φn = 0 in B′n \ Bn, φn = 1 on ∂Bn, φn = 0 on ∂B′n.

It is clear that vn ∈ W 1,∞(ωb) ∩ H1
0 (ωb) and vn = 0 in Bn. We are going to prove that, for convenient rn and

Rn, vn → v in H1
0 (ωb). Actually, as 0 ≤ φn ≤ 1, we have:
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‖vn − v‖2
H1

0 (ωb)
=

∫
B′n

|∇(vn − v)|2 dx′

=
∫

Bn

|∇v|2 dx′ +
∫

B′n\Bn

|φn∇v + v∇φn|2 dx′

≤
∫

Bn

|∇v|2 dx′ + 2
∫

B′n\Bn

|φn∇v|2 dx′ + 2
∫

B′n\Bn

|v∇φn|2 dx′

≤ 3
∫

B′n

|∇v|2 dx′ + 2
∫

B′n\Bn

|v∇φn|2 dx′

≤ 3π(Rn)2‖∇v‖2
L∞(ωb) + 2‖v‖2

L∞(ωb)

∫
B′n\Bn

|∇φn|2 dx′

= 3π(Rn)2‖∇v‖2
L∞(ωb) + 4π‖v‖2

L∞(ωb)

(
log

Rn

rn

)−1

.

It is enough to take e.g. rn = 1/n2 and Rn = 1/n, in order to get vn → v in H1
0 (ωb). �

Lemma 6. Let v ∈ H2
0 (ωb), 0 ∈ ωb ⊂ R2, v(0) = 0. There exist a sequence of positive numbers rn, tending to

zero, and a sequence of functions vn ∈ H2
0 (ωb) such that:

vn = 0 in the ball Bn of center 0 and radius rn,

vn ⇀ v weakly in H2
0 (ωb).

Proof. • For any v ∈ H2
0 (ωb), with v(0) = 0, there exists vn ∈ C2(ωb) ∩ H2

0 (ωb) such that vn tends to v in
H2(ωb) and hence in C0(ωb). In particular, vn(0) tends to v(0) = 0. Setting vn = vn − vn(0)φ, with φ ∈ D(ωb)
and φ(0) = 1, it is clear that vn ∈ C2(ωb) ∩ H2

0 (ωb), vn(0) = 0 and that vn tends to v in H2(ωb).
• In view of the result of the previous step, we may restrict to v in C2(ωb)∩H2

0 (ωb), v(0) = 0. Let vn = vφn,
with φn(x′) = φ(n|x′|) and φ ∈ C∞(R), 0 ≤ φ ≤ 1, φ = 0 on (−∞, 1], φ = 1 on [2, +∞). Clearly vn ∈ H2

0 (ωb),
vn = 0 in the ball of center 0 and radius 1/n and we have:∫

ωb

|vn − v|2 dx′ ≤
∫
|x′|< 2

n

|v|2 dx′ → 0,

that is vn → v in L2(ωb). Hence the lemma is proved, as soon as we have proved that vn is bounded uniformly
in H2

0 (ωb), i.e.:
∂2vn

∂xα∂xβ
is bounded in L2

(
ωb

)
. (8.27)

But we have:
∂2vn

∂xα∂xβ
= v

∂2φn

∂xα∂xβ
+ φn ∂2v

∂xα∂xβ
+

∂v

∂xα

∂φn

∂xβ
+

∂v

∂xβ

∂φn

∂xα
·

The second term is obviously bounded in L∞(ωb). Moreover, since:

∂φn

∂xα
= nφ′(n|x′|) xα

|x′| and
∂2φn

∂xα∂xβ
= n2φ′′(n|x′|)xαxβ

|x′|2 + nφ′(n|x′|)
(

δαβ

|x′| −
xαxβ

|x′|3
)

,
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it follows that:∣∣∣∣∂φn

∂xα

∣∣∣∣ ≤ Cn,

∣∣∣∣ ∂2φn

∂xα∂xβ

∣∣∣∣ ≤ Cn2,

∫
ωb

∣∣∣∣ ∂v

∂xβ

∂φn

∂xα

∣∣∣∣2 dx′ ≤ C

∥∥∥∥ ∂v

∂xβ

∥∥∥∥2

∞

∫
1
n <|x′|< 2

n

n2 dx′ = C

∥∥∥∥ ∂v

∂xβ

∥∥∥∥2

∞

∫
1<|x′|<2

dx′ = C,

∫
ωb

∣∣∣∣v ∂2φn

∂xα∂xβ

∣∣∣∣2 dx′ ≤ ‖v‖2
L∞( 1

n <|x′|< 2
n )

∫
1
n <|x′|< 2

n

Cn4 dx′ = Cn2‖v‖2
L∞( 1

n <|x′|< 2
n).

But, for 1/n < |x′| < 2/n, |v(x′)| ≤ C|x′| ≤ C/n, since v is regular and v(0) = 0. It follows that:∫
ωb

∣∣∣∣v ∂2φn

∂xα∂xβ

∣∣∣∣2 dx′ ≤ C,

and finally, (8.27) holds true, which completes the proof of Lemma 6. �

Lemma 7. Let v ∈ L2(ωb; H1(−1, 0)), 0 ∈ ωb ⊂ R2. There exist a sequence of positive numbers rn, tending to
zero, and a sequence of functions vn such that:

vn ∈ C1(Ωb),

vn = 0 in Bn × {0}, Bn denoting the ball of center 0 and radius rn,

vn → v in L2(ωb; H1(−1, 0)).

Proof. By density of C1(Ωb) in L2(ωb; H1(−1, 0)), we may restrict to v ∈ C1(Ωb). We consider a sequence rn

of positive numbers, converging to zero, and a sequence of functions φn : ωb → R, of class C∞, with φn = 0 in
the ball Bn of center 0 and radius rn, φn = 1 outside the ball B′n of center 0 and radius 2rn, 0 ≤ φn ≤ 1 in
B′n \ Bn. We set vn = φnv. Then clearly vn ∈ C1(Ωb) and:

‖vn − v‖2
L2(ωb;H1(−1,0)) =

∫
Ωb

|vn − v|2 dx +
∫

Ωb

∣∣∣∣ ∂

∂x3
(vn − v)

∣∣∣∣2 dx

=
∫

Bn×(−1,0)

|v|2 dx +
∫

(B′n\Bn)×(−1,0)

|(1 − φn)v|2 dx

+
∫

Bn×(−1,0)

∣∣∣∣ ∂v

∂x3

∣∣∣∣2 dx +
∫

(B′n\Bn)×(−1,0)

∣∣∣∣(1 − φn)
∂v

∂x3

∣∣∣∣2 dx

≤
∫

B′n×(−1,0)

(
|v|2 +

∣∣∣∣ ∂v

∂x3

∣∣∣∣2
)

dx,

which tends to zero, as soon as rn tends to zero. �

Lemma 8. Assume that 0 ∈ ωb ⊂ R2. Let U = {u ∈ H1(0, 1), u(1) = 0}, Ũ = {u ∈ C1[0, 1], u(1) = 0},
V = H2

0 (ωb), Ṽ = C1(ωb)∩H2
0 (ωb), W = {(u, v) ∈ U×V, u(0) = v(0)} and W̃ = {(u, v) ∈ Ũ×Ṽ , u(0) = v(0)}.

Then W̃ is dense in W .
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Proof. It is clear that Ũ is dense in U and that Ṽ is dense in V . Therefore, for any (u, v) ∈ W , there exists
(un, vn) ∈ Ũ × Ṽ such that:

un → u in H1(0, 1) and hence in C0[0, 1],

vn → v in H2(ωb) and hence in C0(ωb).

Let φ1 ∈ C∞[0, 1] with φ1(0) = 1, φ1(1) = 0, φ2 ∈ D(ωb) with φ2(0) = 1 and let:

un = un − (un(0) − u(0))φ1,

vn = vn − (vn(0) − v(0))φ2.

It is clear that un ∈ Ũ , vn ∈ Ṽ and un(0) = u(0) = v(0) = vn(0), so that (un, vn) ∈ W̃ . Moreover:

‖un − un‖H1(0,1) = |un(0) − u(0)|‖φ1‖H1(0,1) → 0

and hence un tends to u in H1(0, 1). Similarly vn tends to v in H2(ωb). �
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