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ABSTRACT

In this paper, we present a data workflow developed to operate the adJUstiNg Gain detector FoR the Aramis User station (JUNGFRAU)
adaptive gain charge integrating pixel-array detectors at macromolecular crystallography beamlines. We summarize current achievements
for operating at 9 GB/s data-rate a JUNGFRAU with 4 Mpixel at 1.1 kHz frame-rate and preparations to operate at 46 GB/s data-rate a
JUNGFRAU with 10 Mpixel at 2.2 kHz in the future. In this context, we highlight the challenges for computer architecture and how these
challenges can be addressed with innovative hardware including IBM POWER9 servers and field-programmable gate arrays. We discuss also
data science challenges, showing the effect of rounding and lossy compression schemes on the MX JUNGFRAU detector images.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143480

INTRODUCTION

Macromolecular crystallography (MX) is the dominant method
for high-resolution structure determination of biomolecules.
Currently, the protein data bank (PDB) has about 140 000 x-ray struc-
tures and most of them were determined at synchrotron facilities.
Besides, numerous protein-ligand structures are determined routinely
for structure-based drug discovery in the pharmaceutical industry.
Along with the continuous development in beamline instrumentation,
particularly hybrid pixel-array detectors (PAD), diffraction-data col-
lection methods have evolved as well. The traditional high-dose, low
multiplicity, and coarse slicing data collection strategy1 has been grad-
ually replaced at third-generation synchrotrons by continuous shutter-
less data collection with low-dose, high multiplicity, and fine slicing
methods2–5 thanks to the fast frame-rate, high sensitivity, and low-
noise of PAD.6 The PAD also enabled fast x-ray based scanning (i.e.,
sample rastering) for detecting weakly diffracting microcrystals. From
each identified crystal, a partial data set is then collected and many of
them are assembled in a method called serial synchrotron crystallogra-
phy (SSX).7 In addition to the rotation method at cryogenic

temperature, room-temperature (RT) MX with still diffraction images
has emerged for studying protein dynamics in recent years. This RT
serial crystallography has enabled time-resolved crystallography to
reach ps to ms resolution at x-ray free-electron laser (XFEL)8,9 and
synchrotron10,11 facilities, respectively.

In parallel to the rapid advances of single-photon counting tech-
nology,12 next-generation charge-integrating detectors are maturing.
One of such detectors is the adJUstiNg Gain detector FoR the Aramis
User station (JUNGFRAU),13–15 which features direct detection, a high
dynamic range, a linear photon-rate response, and a superb spatial
response. JUNGFRAU has low electronic noise: for a short integration
time (10 ls), it is 83 e� RMS and for a long integration time (840 ls),
the value increases to 200 e� RMS.13,16 In both cases, when data are
converted to photon counts, this noise is a small fraction of a charge
generated by a single x-ray photon, e.g., 3500 e� by a 12.4 keV photon.
JUNGFRAU can be operated with a frame rate of up to 2.2 kHz. With
the next-generation synchrotron sources [i.e., Diffraction Limited
Storage Rings (DLSRs)] on the horizon, higher photon flux and tighter
beam focus will be available at MX beamlines.17 With such source
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brilliance, rotation crystallography could be carried out in a second at
an unprecedented speed of 100�/s or higher, experimental phasing
could be conducted at lower energy than what’s possible today, and
serial crystallography could be performed as continuous scans in kHz
frame rate for both static and time-resolved crystallography.18 At XFEL
sources operated at a high repetition-rate (up to MHz), a fast frame-
rate integrating detector can significantly improve data collection effi-
ciency and reduce sample consumption. These scientific opportunities
are exciting and promising. The JUNGFRAU detector could potentially
play a transformative role; however, the operation of a large-format
detector at kHz frame rates comes with its own technical challenges. If
such challenges are not addressed in a technically sound and economi-
cally sustainable manner, the scientific impact of the next-generation
light sources could be compromised. Here, we present our solutions to
operate the JUNGFRAU detector at synchrotron protein crystallogra-
phy beamlines from high-performance computing and data science
points of view. We will explain how JUNGFRAU specifics affect data
representation, we will compare possible compression schemes with
their consequences and we will show hardware and software solutions
necessary for the 46 GB/s data-rate from a JUNGFRAU 10 Mpixel
detector planned for Swiss Light Source macromolecular crystallogra-
phy (MX) beamlines.

OVERALL DATA FLOW

The schematics of data flow envisioned for JUNGFRAU at Swiss
Light Source MX beamlines are presented in Fig. 1. After each image is
recorded on the detector, the pixel content is transferred via a fiber
optic Ethernet network to the data acquisition system. The system
needs to perform the following steps:

1. All the incoming packets are processed and sorted losslessly.
2. Gain and ADU (arbitrary detector units) pixel content is con-

verted into energy or photon count units, accounting for the spe-
cial larger pixels between detector chips—i.e., splitting these into
two or four pixels in the output image, so all pixels are of the
same size. In this step, multiple frames can be summed to reduce
the frame rate as well.

3. The full image is composed and analyzed for features like the
Bragg spot number and positions, ice rings, and salt crystal
reflections. Optionally, a veto mechanism can be used to discard
useless frames. There is also the option to inform the beamline
operator on the presence of anomalies that could compromise
the experiment and detector (e.g., empty frames, suspiciously
strong reflections).

4. The composed image is compressed and written into external
storage.

5. Further analysis with MX software is performed with online and
offline processing systems.

This publication covers steps 1–4, aiming to optimally implement
them in a single computing system.

DATA RATES

The JUNGFRAU detector, similarly to EIGER, is a modular
detector. A single JUNGFRAUmodule, a basic building block, has 524
288 pixels organized into 1024 columns and 512 rows. Each module
has an independent readout with two 10 Gbit/s Ethernet (10 GbE)
ports per module.

FIG. 1. Data flow envisioned for kilohertz framerate JUNGFRAU detectors at the Swiss Light Source MX beamlines. Blue arrows represent the flow of x-ray images (the most
throughput critical), red arrows the flow of metadata, and the yellow arrow the flow of sensor information.
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Since one pixel is encoded by 16 bits, the network interface is lim-
iting the frame rate. In the case of a single 10 GbE interface, 1.1 kHz is
achievable, with a data rate of 524 288 pixels� 16 bit� 1.1 kHz¼ 1.15
GB/s. This is 9.23 Gbit/s and is very close to theoretical bandwidth of
10 GbE, especially as the calculation does not account for overheads
from the network protocol and detector headers. Enabling a second 10
GbE interface doubles the maximal frame rate of a single module to
2.2 kHz and data rate to 2.30 GB/s.

Data rates for larger system JUNGFRAU detectors are obtained
just by multiplying the numbers presented above by the number of
modules. The summary of operated and planned systems for macro-
molecular crystallography at the Paul Scherrer Institut is presented in
Table I. For reference, these data rates can be compared with the first
large format PAD installed at the Swiss Light Source X06SA beamline
in 2007, i.e., PILATUS 6M. The detector, state-of-the-art at the time,
operated with a 12.5Hz frame rate and produced roughly 300 MB/s
data without compression.19,20 Another reference point is the fastest
commercially available large format x-ray detector for MX applica-
tions, which at the time of writing is Dectris EIGER2 XE 16M, produc-
ing 13.4 GB/s at a steady 400Hz frame rate or bursts of 18.5 GB/s at a
higher 550Hz frame rate.21

DATA RECEIVING

To achieve the highest possible utilization of the network inter-
face and real-time operation, a simple transport layer protocol, User
Datagram Protocol (UDP), needs to be used for sending data from the
detector to a readout computer. In such a protocol, network infrastruc-
ture does not guarantee delivery of a packet from the sender to
receiver. If for example receiver buffer is flooded, incoming packets
will be dropped and never recovered. However, it is practically a better
strategy, as protocols with a mechanism for reliable packet delivery,
like widely used Transmission Control Protocol (TCP), introduce
overhead on communication and require buffering capabilities.

Since receiving data at rates of multiple GB/s is a challenging
task, it requires using high-end servers with multiple CPUs installed
and a large amount of memory for buffering. We used a system with 4
Intel Xeon CPUs and 1.5 TB random access memory (RAM) installed
(see Methods). Such systems have a non-uniform memory access
(NUMA) architecture. While placed in a single box, the system is built
from 4 NUMA nodes, each having a single central processing unit
(CPU), a quarter of system memory, and Peripheral Component
Interconnect Express (PCIe) extension cards. Each of the NUMA
nodes has dedicated fast interconnect to all three others. However,
accessing memory or devices by a program running inside a single
node is faster, than if communication is scattered over multiple nodes.

For convenience, these features are usually hidden from the user, who
programs the machine as a single box.

However, we found that eliminating cross-traffic across NUMA
nodes was indeed necessary for handling the JUNGFRAU 4 Mpixel
detector at 1.1 kHz. To achieve this, we mounted 4 Mellanox Connect-
X 4 Lx network cards in the machine, each having two ports for 10
GbE, in a way that each card was connected to a different CPU/
NUMA node. Each card was servicing 2 JUNGFRAU modules. We
ran one receiver process per module. Each process was pinned to a
CPU that belonged to the same NUMA node as the network card.
Similarly interrupts of the network card were pinned to a respective
CPU, and different CPU cores were used for receiving and interrupt
handling. Received data were saved to a RAM disk using only memory
inside the particular NUMA node.

In this experiment, we aimed to save the raw data in memory
and do further steps of the data flow after the collection is finished.
Indeed, we could successfully fill memory with the data - allowing us
to save 2min 20 s of continuous exposure at 1.1 kHz. We also found
that using four 3.2 TB fast SSD disks, mounted as PCIe 3.0x4 cards, in
a similarly NUMA aware configuration, allows us to store about
20min of exposure without lost frames.

Receiving the data with standard methods is limited by the net-
work stack implementation in Linux. For the secure and versatile oper-
ation of multiple network applications on a single system, the Linux
kernel needs to analyze and sort all the incoming packets. This
requires a context switch between user application and kernel, as well
as several memory copies between internal buffers before data are
received by the proper application. The benefit of using the operating
system network stack is portability—receiver can work on any hard-
ware that supports Linux kernel. However, when performance is the
key factor, and the receiver is expected to react to only one type of
traffic—UDP/IP packets sent by the detector, a more optimized solu-
tion can be selected.

Network cards have an ability for user-space Ethernet, also called
raw Ethernet or zero-copy transfer. This instructs the network card to
directly write incoming network packets into a user-space buffer,
avoiding kernel involvement. It is the user application that decodes the
content of the incoming packets, including any network or transport
layer protocol headers.

We have tested the functionality as implemented in the ibverbs
library for the Mellanox Connect-X network cards.22 Although
the library implements the remote direct memory access (RDMA)
protocol, we have chosen the option to set the queue pair as
IBV_QPT_RAW_ETH, thus treating any incoming Ethernet traffic
as if it were an RDMA communication. This is different from data
acquisition frameworks that implement RDMA for both the
receiver and sender.23 In the case of raw Ethernet, the sender of the
data (the detector) is not aware of RDMA, and it sends standard
UDP/IP packets. It is only the receiver that uses the RDMA API.

As a conventional approach, with the Linux kernel stack, is not
sustainable for increasing data rates (>20 GB/s), we have tried the
Mellanox raw Ethernet functionality, as a proof of concept, for future
use with 2.2 kHz 4M and 10M JUNGFRAU. For the test, we have
taken a JUNGFRAU 4 Mpixel detector operating at 1.1 kHz. In this
case, all traffic from all eight modules of the detector was routed to a
single 100 GbE Mellanox card, spread over two 40 GbE ports due to a
switch limitation. Two parallel threads were used, each receiving data

TABLE I. Summary of data rates in GB/s for large format JUNGFRAU detectors
used for macromolecular crystallography at the Paul Scherrer Institute.

Application
Detector size
(Mpixel)

Number of
modules

Frame
rate (kHz)

Data rate
(GB/s)

SwissFEL 16 32 0.1 3.4

Swiss Light
Source (2018)

4 8 1.1 9.2

Swiss Light
Source (2021)

10 20 2.2 46.1

Structural Dynamics ARTICLE scitation.org/journal/sdy

Struct. Dyn. 7, 014305 (2020); doi: 10.1063/1.5143480 7, 014305-3

VC Author(s) 2020

https://scitation.org/journal/sdy


from a single 40 GbE port. After a frame was received, pixel readout
was copied from the packet to a second array. We have tried collecting
up to 20 000 frames and all were successfully received without lost
frames, and the size was limited by the memory capacity of a smaller
2-socket Intel Xeon server used for the test. The user-space technology
is, therefore, a promising solution to implement for high data rate
detectors.

An even more performing solution is replacing the network card
with a field-programmable gate array (FPGA) mounted on a PCIe
board to process the incoming detector traffic. By proper design,
FPGA can analyze arriving packets, select ones that were sent by the
detector, decode the frame header, and put the packet content into
designated space in memory. As FPGA functionality is encoded in
hardware, latency and throughput are predictable, so this is an attrac-
tive solution for a real-time processing system. However, the effort of
developing FPGA implementation is higher than CPU programming.

JUNGFRAU PIXEL ENCODING

JUNGFRAU is a gain adaptive detector. During exposure, each
pixel can operate in three amplification modes (gain levels), designated
as G0, G1, and G2. G0 is a base mode, which is sensitive to weak
signals - allowing single-photon sensitivity. However, if integrated
charge is close to G0 saturation, the detector will automatically switch
first to G1 and later G2. These two modes allow measuring a stronger
signal, and hence extend the total dynamic range. The choice of break-
points between the three gain levels ensures that detector inaccuracies
are below Poisson statistical uncertainty. The readout value from a
JUNGFRAU pixel has to contain information on both the gain level
and the stored charge (in ADU). As JUNGFRAU has a 16-bit pixel
readout, the first 2 bits encode the gain level and the remaining 14 bits
the accumulated charge.

To calculate the actual energy that was deposited in the pixel dur-
ing the exposure, three tasks need to be done, as presented previously:15

1. The gain level needs to be decoded by interpreting the first two
bits (00–G0, 01–G1, 11–G2).

2. From the charge value of 14-bit, one needs to subtract a
“pedestal”—the mean value of dark noise, i.e., the mean reading
of each pixel in the absence of x-rays. The pedestal is pixel spe-
cific and is different for the three gain levels, i.e., chosen accord-
ingly. Pedestal values depend on system temperature and are
affected by potential radiation damage of the sensor, so they
need to be measured for the particular detector setup. In our
case, a pedestal for low gains (G1 and G2) is collected in a dedi-
cated run, as the detector needs to be forced to operate with these
gains. To calculate the pedestal value for the highest gain (G0),
the acquisition is started a few seconds before the shutter open-
ing, and dark frames at the beginning of exposure are used.

3. Results of (2) need to be multiplied by a conversion factor (gain
factor) from ADU to either energy expressed in eV or photon
counts. Again, it is a pixel specific factor and different for each of
three gain levels. Gain calibration is not affected by the particular
detector setup and is done before detector operation, details were
described by us beforehand.15

The procedure outlined in points (1)–(3) is sufficient for XFELs
and pulsed measurements at synchrotrons, where a short integration
time (e.g., 10 ls) is used and the pedestal remains stable.14

Conventional operations at synchrotron MX beamlines are more diffi-
cult due to a relatively long integration time required to achieve the
full duty cycle (�450 ls at 2.2 kHz). In this case, the detector system
can take a few seconds to reach a stable operation state at the start of
the measurement. During this time, there are small temperature
changes in the whole system, which results in the drift of pedestal. The
drift was observed at the level of up to 100 ADU (2.5 keV), which is a
fraction of a photon. Currently, the effect is mitigated by the proce-
dure, which introduces a delay between the starting detector and
experiment, i.e., measuring photons and by pedestal correction. The
pedestals are also monitored and updated throughout the measure-
ment to take the drift into account.14 This comes at the expense of a
slightly increased computational complexity and time. Alternatively,
the detector could be operated in a continuous mode, where it is
always measuring, but only relevant frames, determined by a beamline
trigger signal, are saved.

Another correction, common mode, is often used for integrating
detectors.24 It accounts for spatially correlated fluctuations of the
pedestal. Although such noise is also present in JUNGFRAU, the low
magnitude of the fluctuations makes the correction unnecessary for
MX applications. However, other applications where pixels are
summed together, e.g., spectroscopy, might benefit from including it.

JUNGFRAU IMAGE CONVERSION

The raw data from the JUNGFRAU detector cannot be directly
processed by standard macromolecular crystallography software.
There is a need for a conversion from a 16-bit gainþADU representa-
tion to a linear scale of either energy deposited in the pixel or photon
count. While the procedure is very straightforward, the difficulty in
executing it comes from the huge amount of data needed for
processing.

Pseudocode, implementing the conversion procedure explained
previously,14,15 is presented in Fig. 2. The code requires executing 2
floating-point operations per single pixel—one subtraction to account
for the pedestal and one multiplication/division to account for signal
amplification at a given gain level. Calculating for a 4 Mpixel detector,
operating at 1.1 kHz frame rate, one needs to process approximately
5� 109 pixels per second. Multiplying by 2 floating-point operations
(FLOP), this means 10� 109 floating-point operations per second
(GFLOPS), which is extremely small for current computing systems.
For example, for a single Nvidia V100 general-purpose graphics proc-
essing unit (GPGPU), the producer claims 7 TFLOPS peak perfor-
mance,25 more than two orders of magnitude, so the task is not
limited by the calculating capacity of modern computing systems.
However, there is another factor—memory, which is more limiting in
that case.

To convert a single pixel, CPU needs to fetch six constants from
memory: pedestal value and gain factor for all three gains. Since these
values are 32-bit single-precision floats, the combination of six values
requires fetching 192 bits per pixel. For the 5� 109 pixels per second
mentioned above multiplied by 224 bit (16 bit ¼ pixel inþ 16 bit
¼ pixel outþ 192 bit ¼ conversion constants), one needs to be able to
achieve steady data transfer from RAM of 129 GB/s. The situation is
more daunting for the 10 Mpixel 2.2 kHz detector, where the number
is 5� larger, 646 GB/s. Accounting for pedestal drift increases memory
needs, as one extra constant (the pedestal G0 RMS) has to be fetched,
and the updated G0 pedestal has to be written to memory, resulting in
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higher rates of 166 GB/s for 4 Mpixel 1.1 kHz and 830 GB/s for 10
Mpixel 2.2 kHz. To give the proper magnitude—the HPE DL580
Gen10 server used in our test measures 310 GB/s memory bandwidth
in STREAM test (copy), when using all CPUs.26

To achieve the highest conversion performance, the code was
adapted to benefit from a single instruction multiple data (SIMD)
model, present in modern CPUs and GPGPUs. As an example of
SIMD, Advanced Vector Extensions 512 (AVX-512) capable Intel
Xeon CPUs have 32 512-bit registers (called also ZMM registers).
Each such register can store at once 16 32-bit single-precision floating-
point numbers or 8 64-bit double-precision floating-point numbers.
Next, the CPU can perform the same operation simultaneously on

each of the numbers stored in the wide register, e.g., addition or multi-
plication. This is fully equivalent to performing 16 scalar additions but
requires only one instruction instead of 16. The SIMD code can be
automatically generated for loops with modern compilers (see
Methods). Used of SIMD increases the performance roofline signifi-
cantly (see Fig. 3), but comes at a cost for loops having conditional
branches—in this case, the CPU will execute all branches and will
select the correct result when data are written to memory. For the
Switch1 statement (Fig. 2), the CPU will calculate the photon count
value for all three gain levels, but will only write the correct one to
memory. This means reading from memory all the conversion con-
stants, irrespective of whether, for example, only the G0 gain level was

FIG. 2. Pseudo-code for the JUNGFRAU
data conversion procedure without frame
summation.
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present in the data. As indeed most pixels never switch gain in MX
measurement, function could first check, if a chunk of the data con-
tains pixels that switched to lower gain levels (G1 and G2)—and if
these are absent, for that particular chunk to execute code that imple-
ments only the G0 branch of Switch1 statement (Fig. 2). This would
reduce memory throughput needs, as fewer constants are transferred.
With the current implementation, such optimization did not improve
performance, but it could be helpful in the future. A drawback of such
optimization is that performance would be less predictable, as it would
depend on the image content.

The code was parallelized with the POSIX threads (pthreads)
library, allowing for fine-grained control of access to variables with
mutexes and monitors. Two categories of threads were imple-
mented—conversion threads that implement the arithmetically
intensive part of the task and file writer threads that also cover data
compression. The separation is important, as for optimal operation
each converter thread needs to cover a small area of the detector for all
images, while converter threads need to have images composed of all
modules, but can operate on only a subset of frames. Loop ordering
affects memory bandwidth. If a single vertical line is converted for a
subset of frames, e.g., 100, conversion constants for this line can be

kept in the CPU cache and the number of memory operations is sig-
nificantly reduced.

During the JUNGFRAU 4M commissioning at the Swiss Light
Source, we tested the code for conversion of JUNGFRAU images to
photon counts. For a 4 Mpixel detector, running at 1.1 kHz, the time
to perform all the conversion steps is approximately twice the data col-
lection time. As a test case, we chose a lysozyme crystal, rotated for
720� at 100�/s, recording 0.088� per image. The total collection time
was 9.2 s without the beam to allow for pedestal drift to stabilize and
7.2 s with beam crystal rotation.

The overall time to run the full conversion procedure on these
data—i.e., to analyze pedestal images, generate pedestal maps, convert
protein diffraction images to photon count units, track pedestal modi-
fications, and save results as a Hierarchical Data Format version 5
(HDF5)27 file was 14 s when running in isolation on the server men-
tioned above. However, if we allowed for coarser slicing of 0.44�/
image, with one output image being the summation of five detector
frames, the conversion time reduced, to 9.2 s, equivalent to data collec-
tion time. As summation is the last step of conversion, the number of
instructions for conversion remains the same; however since fewer
frames are transferred to the writer process, the program spends less
time on compression and output, improving the overall performance.
With roofline plot analysis (see Fig. 3),28 we show that the conversion
procedure is close to architectural limits of CPU cache performance.
So, while the CPU procedure could be used for online conversion for
small size detectors (1 Mpixel) or at frame rates below 100Hz, it is an
order of magnitude too slow to be a sustainable solution for large for-
mat detectors operating at 2 kHz frame rate.

Alternatively, the conversion routine can be implemented in
FPGA, with guaranteed latency and throughput. As PCIe FPGA
boards are equipped with 100 GbE ports, it is possible to combine
the receiving and conversion function in a single FPGA—here only
converted data are written to host memory and the number of mem-
ory copies is reduced. Both properties make the solution especially
attractive for a real-time processing system and are less important
for offline analysis. As a proof of concept, we have developed the C
code for the routine that can be compiled into register transfer
language for FPGA via Xilinx High-Level Synthesis.29 The main
modification is that the floating-point arithmetic used on the CPU is
replaced with fixed-point representation. We have tested our imple-
mentation, where the pedestal for G0 is implemented as a 22-bit
fixed-point number keeping extra precision for drift update, while all
the other constants are 16-bit fixed-point numbers. The measured
RMS on a small dataset between CPU floating-point implementation
to single 12.4 keV photons and FPGA fixed integer, also rounded to
single photons, is 0.22 photon, which is a reasonable value for round-
ing to full photons. According to the FPGA synthesis result, this
design is capable of converting 32 pixels per single clock cycle at
250MHz frequency allowing for 16 GB/s conversion speed, more
than 12 GB/s that 100 GbE can provide. As the resource utilization is
around 10% of the XCVU33P FPGA logic elements (see the
Methods section for details regarding the chosen FPGA), there is a
possibility to duplicate the design to process 32 GB/s within a single
FPGA board (2� 100 GbE) or to add more functionality, like online
spot finding or machine learning (ML) inference. With such design
in operation, two FPGA boards would suffice to handle JUNGFRAU
10M at the full frame rate.

FIG. 3. Roofline analysis is a method to compare the performance of a current
implementation (loop, function) with the best possible for given hardware. Two val-
ues are taken into account—arithmetic intensity, i.e., the number of floating-point
operations per volume of data (X-axis) and performance, i.e., the number of
floating-point operations per unit of time (Y-axis). Dotted lines represent “ceilings”—
horizontal lines correspond to limits on the number of CPU operations, while diago-
nal lines represent bandwidth limitation of memory and CPU cache. A purple dot
represents the performance of Loop3 on Fig. 2 (no frame summation)—since the
dot is positioned above the DDR memory ceiling, it shows that the procedure is
using the full performance of CPU cache of level 3 (L3). Both loop performance
and roofline limits are measured with Intel Advisor 2019 and are aggregated over
48 cores. The number of floating-point operations per second is calculated over
loop execution time only.
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A middle ground between CPU and FPGA would be a GPGPU
implementation with more SIMD cores than CPU and better memory
bandwidth. Software development and optimization are simpler for
GPGPU than for FPGA. While GPGPUs are not real-time devices, it
is anyway easier to control execution time, as only one kernel is
executed on a GPGPU. A GPGPU version was also developed with
promising performance results, which will be explained in another
publication.

PIXEL REPRESENTATION AND COMPRESSION

The lowest number a pixel can encode per exposure is 1 ADU at
G0, corresponding to roughly 0.005 photons at 12.4 keV. The highest
number, saturation at G2, is roughly 10 000 12.4 keV photons. The
ratio between the two is 2� 106, so one needs a 21-bit integer to
encode all possible outcomes of the JUNGFRAU pixel on a linear
scale. As CPUs operate with numbers of only a given bit width, 32-bit
fixed-point representation is a natural choice, as the range of pixel
photon counts is fixed, although 32-bit floating-point representation
could also be used for calculation convenience.

The highest possible precision is necessary when energy or sub-
pixel position of photons is measured. This is the case when fluores-
cence photons need to be distinguished from ones having incoming
beam energy.30 However, the full 21-bit precision is not always neces-
sary—e.g., in the case of protein diffraction with a monochromatic
beam, the most relevant total is the integrated number of photons per
reflection.

To test the effect of rounding, we applied various schemes to a
lysozyme dataset collected with the JUNGFRAU using the rotation
method. Table II summarizes the results with different rounding
schemes. While rounding coarser than one photon results in a clear
reduction of both data quality in high resolution shells, refinement
statistics, and total anomalous signal, the effect of rounding finer than
one photon is very small for precision indicators (Rmeas for the highest
resolution shell) and not visible for accuracy measures (Rfree, mean
anomalous peak height). This is expected, as rounding coarser than
one might “lose” photons after integrating. However, rounding to
exactly one photon will lose a photon only in a very specific condition,
when the reflection observation contains only one photon and this
photon hits a four-pixel junction. This is similar to the “corner effect”
explained by us previously for photon counting detectors,13 although

applying only to the weakest, single photon, observations.
Measurement error for these reflections is dominated by random
noise, coming from crystal quality and counting statistics.31 As, how-
ever, the rounding error does not scale up with the intensity of the
reflection, it will be negligible for strong reflections, the ones that are
most sensitive for the systematic error of the detector. This is different
from the corner effect observed for photon counting detectors, where
photon loss is increasing with more photons for a Bragg spot, leading
to systematic error for low resolution. These considerations are also
consistent with our prior work, where we used rounding up to full
photons and we observed that the positioning of Bragg spots in rela-
tion to the sub-pixel position does not affect spot intensity.13

The next step was to analyze different compression schemes. A
similar study was done in the past when the EIGER detector was intro-
duced.32 It was established at the time that the best compression factor
was obtained using a two-step method. The algorithm consists of two
steps. In the first step, the Bitshuffle filter,33 positions of bits are
exchanged. It takes 16 consecutive 16-bit integers (or 32� 32-bit inte-
ger) and reorders bits, writing highest bits for all numbers first, then
second-highest, third-highest, etc. As most diffraction images are com-
posed of relatively homogeneous background, low counts of similar
magnitude, most blocks will be made of a long sequence of zeros with
few ones close to the end, making it easier for a dictionary compres-
sion, e.g., Liv-Zimpel 4 (LZ4),34 as predictable sequences will be longer.
LZ4 was chosen as it is optimized for decompression performance. As
compression is an active field, new algorithms are introduced, we have
also included in our tests new algorithm from LZ4 author called
Zstandard (Zstd).35 The algorithm is similar to LZ4, as made for fast
decompression, but is expected to offer better compression factors.
Finally, we also tested Gzip, as it is the most commonly available
algorithm at the moment.

The results of compression tests are presented in Table IV for the
total conversion process and Table S1 for pure compression. Indeed, a
combination of Bitshuffle and a compression algorithm gives the best
results, with Bitshuffle/LZ4 offering the highest throughput and
Bitshuffle/Zstd offering the highest compression ratio. As the
Bitshuffle compression scheme is a two-step process, it is usually per-
formed in blocks fitting CPU cache, usually 8 kB, Table S2 presents
the relationship between the block size and compression, showing that
Bitshuffle/Zstd needs longer blocks to perform better, while Bitshuffle/

TABLE II. Data quality indicators in function of rounding the JUNGFRAU pixel readout value to a multiple of photon count for the lysozyme crystal dataset collected at the Swiss
Light Source X06SA beamline with the JUNGFRAU 4M at 1.1 kHz using 12.4 keV x-rays, 100% beam transmission, and 0.088�/880 ls steps. 2045 images (180� rotation) were
taken for data analysis. The low resolution shell is defined as 50–3.25 Å, while the high resolution shell is 1.18–1.31 Å. The size of the dataset was calculated after compressing
with Bitshuffle/LZ4.

Rounding to a multiple
(photons)

Rmeas low/high
res. shell (%)

Mean anomalous peak
height for S (r)

Refinement statistics
Rwork/Rfree (%)

Bitshuffle/LZ4 compression
(bits/pixel)

1/8 2.2/18.2 15.3 11.7/13.6 5.0

1/4 2.2/18.3 15.1 11.7/13.4 4.1

1/2 2.1/18.5 15.2 11.6/13.4 3.1

1 2.1/18.9 15.2 11.6/13.5 2.3

2 2.2/22.8 14.7 11.8/13.5 1.5

4 2.1/27.8 14.3 12.5/14.5 0.90

8 2.1/30.6 13.9 15.4/17.6 0.39
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LZ4 does not benefit from increasing block size and a block size of 64
kB is recommended for Bitshuffle/Zstd. Gzip is an order of magnitude
slower, without any gain in the compression ratio. Interestingly, as
summarized in Table IV, we have found that XDS data processing is
not limited at the moment with decompression performance, with dif-
ference below 3% from the fastest to slowest and no reasonable trend.

To better investigate Bitshuffle performance, we have performed
two experiments. First, presented in Table II, we have compared the
compression ratio for different rounding schemes. For each 1 bit of
higher precision, from rounding of 2 photons, there is roughly 0.9
increase in encoding per pixel. It clearly shows that compression only
applies to low bits (encoding order of magnitude of pixels) and to
encoding high precision. Therefore, increasing precision, especially
beyond rounding to a single photon, will be expensive in space. In the
second experiment, we have measured compression performance for
original and already bit-shuffled data with different compression
algorithms (compare Tables S1 and S3). While compression factors
are better for bit shuffled data, as already seen, interestingly the same
algorithm compresses bit shuffled data significantly faster. This is due
to the fact that Bitshuffle data are more predictable and matches to the
compression dictionary are made more often. However for non-
shuffled data, the algorithm is less predictable. This effect is seen even
at a CPU level, where LZ4 compression of not-shuffled data has a high

number (25%) of CPU wrongly predicting loop outcomes (bad specu-
lation), while there are close to none mispredictions in the case of bit
shuffled data. The data also show that bit shuffling is a limiting step
for combinations with both LZ4 and Zstd. In case conversion is per-
formed on FPGA, the two steps can be decoupled. Bitshuffle would be
most effective on FPGA, as these are bit order agnostic and such oper-
ation does not involve significant resources. FPGA implementation is
considerably simpler than CPU, as Bitshuffle block fits into 20 lines of
register transfer language or four lines of FPGA high-level synthesis C
code, while CPU implementation requires more than 1000 lines of the
C code. On the other hand, dictionary compression is difficult to
perform on an FPGA chip, but effective on a CPU, so it should be
optimally implemented there. With LZ4 performance well over 2 GB/s
on a single core with bit shuffled data, less than 23 cores would be
necessary to handle 46 GB/s of JUNGFRAU 10M, making implemen-
tation feasible.

Instead of fixed rounding, once could also apply a lossy compres-
sion algorithm to the floating-point outcome of conversion. A good
choice would be one of the compression algorithms designed for scien-
tific data that can guarantee certain precision. Here, we have evaluated
the SZ algorithm36 with a relatively high error bound—while data
quality is worse than in the case of rounding, a compression factor of
336� over raw data is impressive and allows us to pack a full dataset
into a size similar to less than ten uncompressed images. One impact
of the lossy compression is that the small local intensity fluctuation is
flattened. This effect affects mostly background and has not much
impact on strong reflections. However, it can average out weakest
reflections into the background at high resolution. Therefore, the total
number of accepted reflections after XDS CORRECT step is reduced
at high resolution, as presented in Table III. The data completeness
and multiplicity are reduced accordingly, which could result in a
superficial reduction in Rmeas at certain circumstances. The anomalous
peak height, the precision of determining the last shell, and refinement
statistics are all affected by lossy compression, but such a difference
could be acceptable for some applications. Such compression could
also be used in parallel with rounding schemes—an SZ compressed
dataset could easily be taken home on a portable hard disk even for
the most data ¼ intensive serial crystallography experiments, for
example for the ability to visualize images at user’s home institution,
while the higher precision data would remain available for processing
in the high performance computing center at the synchrotron/XFEL
facility.

TABLE III. Data quality indicators with SZ lossy compression for the lysozyme crystal dataset collected at the Swiss Light Source X06SA beamline with the JUNGFRAU 4M at
1.1 kHz using 12.4 keV x-rays, 100% beam transmission, and 0.088�/880 cs steps. 2045 images (180� rotation) were taken for data analysis. The low resolution shell is defined
as 50–3.31 Å, while the high resolution shell is 1.18–1.11 Å. The number of reflection observations accepted per resolution shell is taken from the output of the XDS CORRECT
step.

Absolute error
bound in SZ

Rmeas low/high
res. shell (%)

Number of accepted
observations; low/high res. shell

Mean anomalous peak
height for S (r)

Refinement statistics
Rwork/Rfree (%)

Compression factor
(bits/pixel)

0.0 2.1/18.9 20 784/17 040 15.2 11.6/13.5 2.3

1.0 2.5/31.1 21 047/16 792 13.1 12.7/14.2 1.1

2.0 2.3/22.4 20 656/12 275 13.0 13.8/16.0 0.43

4.0 2.3/44.8 21 438/13 096 9.7 14.1/16.0 0.11

8.0 2.9/54.0 21 489/13 360 8.7 14.5/16.1 0.042

TABLE IV. Comparison of lossless compression algorithms in terms of total time to
generate converted HDF5 file (reading raw gain þ ADC frames, conversion to pho-
ton, frame summation, compression, and writing converted data to SSDs) processing
time with XDS and compression factor for a large lysozyme dataset collected at the
Swiss Light Source X06SA beamline JUNGFRAU 4M at 1.1 kHz using 12.4 keV x-
rays, 100% beam transmission, and 0.088�/880 ls steps. 2045 images (180� rota-
tion) were taken for data analysis. For writing corresponding frequency is noted.
Writing time was averaged over 10 runs while processing time over 20 runs due to
smaller differences.

Compression
algorithm

Writing
time/frequency

Processing
time

Compression
(bit/pxl)

No compression 12.9 s/158Hz 73.5 s 16.0

LZ4 6.4 s/320Hz 73.3 s 6.8

Bitshuffle/LZ4 3.7 s/550Hz 74.3 s 2.3

Zstd 6.3 s/324Hz 75.4 s 2.8

Bitshuffle/Zstd 5.8 s/351Hz 73.2 s 1.8

Gzip 66.7 s/31Hz 75.1 s 2.4
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Interestingly, a similar analysis was already performed by J.
Holton in the past on diffraction images collected with charge-coupled
device (CCD) detectors.37 In his work, a more elaborate scheme is
explained, where spots should be compressed with a lossless algorithm,
while the background is compressed with a lossy algorithm. He also
pointed out that rounding or compression errors need to be always
compared with other sources of errors—i.e., lossy schemes might not
affect the outcome of the experiment at all if the magnitude of the
uncertainty is small in comparison to e.g., counting statistics noise or
the inability to correctly model observed Bragg spot amplitudes.38

Even very aggressive lossy compression schemes might be therefore
good enough for high-throughput projects that do not require experi-
mental phasing or do not rely on the quality of the highest resolution
shell.

Another practical problem with pedestal subtraction is that some
pixels, in the absence of photons, might sometimes get negative counts
after conversion (e.g., �1) due to noise and the pedestal fluctuation
combined effect. For serial crystallography, developed at XFEL sources
with hybrid pixel integrating detectors, e.g., CSPAD,31 negative counts
are not a new problem and are accepted by processing software, e.g.,
CrystFEL32 or cctbx.xfel33 as valid input. However, for modern rota-
tional crystallography, where images form a time series and back-
ground can be estimated with higher precision than in serial method,
negative observations are not well treated, since their occurrence is
absent in photon counting detector data sets for which the analysis
software is usually developed. For example, XDS30 is not accepting
negative counts, as this would violate an assumption that photon
counts follow the Poisson counting statistic. Here, temporary work-
arounds are to either fix negative numbers to zero or offset all pixel
values by a given number, possibly explicitly taking each pixel pedestal
variance into account. Therefore, for the time being, JUNGFRAU data
generated for rotational and serial crystallography differ in the treat-
ment of negative counts.13

FILE FORMAT

To allow for seamless operation with MX processing programs,
the converted images are stored in a container HDF5 format. For con-
venience, the file format used for experiments at Swiss Light Source
was chosen to mimic data produced by the Dectris Eiger file writer
interface.39 This allows the files to be read directly for visualization
with Albula viewer and for processing with XDS through the Neggia
plugin (Dectris) or with standard HDF5 plugins for CrystFEL.40

Further work is performed to adapt the software to produce HDF5
files fully compatible with NeXus NXmx data format,41 which also
makes JUNGFRAU datasets directly readable by DIALS42 and
cctbx.xfel.43 Full compatibility with the NXmx standard will necessi-
tate a modification of the format itself. For example, the rounding
mentioned in Pixel representation and compression section cannot be
effectively described within existing NXmxmetadata classes. The same
applies to gain and pedestal maps used for the conversion process and
description of the applied corrections (e.g., drift).

It should be noted that the current HDF5 library is not an ideal
choice for high-performance applications. Due to historical reasons, it
lacks thread safety, i.e., two threads operating within a single program
cannot execute two HDF5 library calls in parallel, even if the scope of
these calls is completely disjoint, and they access two independent
HDF5 files. For this reason, hiding compression calls within HDF5

filter plugins should be avoided. Instead, data should be compressed
before calling the HDF5 library and a direct chunk writer should be
used. This is currently implemented for the Bitshuffle/LZ4, Bitshuffle/
Zstd, LZ4, Zstd, and Gzip filters in our conversion routine, while SZ
implementation is planned. While fully thread-safe HDF5 is not likely
to improve performance, it will simplify the code and make it easier to
implement newer algorithms into the code, thanks to the HDF5 plugin
mechanism.

Another question is whether to save or not to save the raw
unconverted data. It is important to keep such an option open in the
design of the acquisition system for further research on JUNGFRAU
behavior, as well as for troubleshooting. However, since knowledge of
raw data is most likely not beneficial for MX data processing, and these
data are poorly compressed, it is expected that incoming raw data
from the detector will be converted on the fly and will not be stored,
even on a short-term basis.

PLANNED DATA ACQUISITION SYSTEM FOR
JUNGFRAU 10M

Development schemes for IT products have recently changed.
While for many years big progress was achieved in optimizing
general-purpose products, mostly CPUs, this is no longer the case due
to technical limitations of the manufacturing process.44,45 This has
currently resulted in an increasing number of specialized processing
units, which offer continuous growth in performance but require spe-
cialized programming techniques.46 These are, for example, already
mentioned FPGAs and GPGPUs, but also specialized chips for
machine learning (ML). All these are used currently for data science
and artificial intelligence applications. Interestingly frameworks like
Tensorflow, made for ML and utilizing GPGPU accelerators, can be
also successfully applied to data analysis pipelines.47

Specifically, the results presented above show that the operation
of a 46 GB/s JUNGFRAU 10 Mpixel will be challenging to run on
mainstream-architecture server systems with software-only solutions.
Instead, solutions that benefit from cutting-edge hardware mecha-
nisms will be necessary to keep the solution simple and sustainable for
any future increase in data rates. For example, real-time processing
could be done on FPGAs, while x-ray image analysis performed on
GPGPUs, as already shown for tomography data.48 Both devices have
advantages over CPUs in terms of computing power and memory
bandwidth, including 2nd generation High Bandwidth Memory
(HBM2) allowing for 450–900 GB/s memory bandwidth per single
GPGPU25 or FPGA.49

While all these components can provide significant value to a
data acquisition system, ensuring enough data bandwidth and seam-
less integration between them is crucial to successful implementation.
Therefore, we have selected IBM POWER9 as a promising architecture
to implement a data acquisition system for the most demanding detec-
tor. POWER architecture is strongly focusing on input/
output performance, providing a bandwidth between components sur-
passing what is available with mainstream architecture. The three
main interfaces are NVLink for CPU-GPGPU communication (up to
75 GB/s in each direction), OpenCAPI for CPU-FPGA communica-
tion (up to 25 GB/s in each direction), and PCIe 4.0 (up to 32 GB/s in
each direction, double that of the PCIe 3.0).50 The benefit of using
POWER interfaces, i.e., NVLink and OpenCAPI, is not only band-
width, but these interfaces allow also for coherent memory access.
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FPGA board connected via OpenCAPI or GPGPU connected via
NVLink sees host (CPU) virtual memory space exactly like the process
running on the CPU, reducing the burden of writing reliable and
secure applications. Memory coherency can be also available for PCIe
FPGA accelerators installed in POWER9 servers via OpenCAPI prede-
cessor, the Coherent Accelerator Processor Interface (CAPI). IBM also
provides optimized software to benefit from the architecture, including
the CAPI Storage, Network, and Analytics Programming (SNAP)
framework51,52 that simplifies the integration of FPGA designs with
POWER9, as well as optimized ML and data analysis routines for
GPGPUs or FPGAs.53

Current plans for the JUNGFRAU data acquisition system are
presented in Fig. 4. These include a two-socket POWER9 server (e.g.,
AC922 or IC922) with two FPGA boards (e.g., Alpha Data 9H3 or
9H7) and Mellanox 2� 100 GbE network card. In this design, FPGA
boards accept incoming traffic of up to 46 GB/s. Packet sorting, con-
version, and bit shuffling are all implemented in the FPGA. It will be
also explored if spot finding or machine learning image analysis could

be carried out on the fly on the FPGA to facilitate downstream data
processing and/or avoid saving empty frames in serial crystallography
experiments. Converted data, with additional metadata and annota-
tions, are then transferred via a dedicated accelerator interface,
OpenCAPI, to the host memory. When data are present in the CPU
memory, they are compressed with the LZ4 algorithm on the CPU.
Finally, compressed images are streamed directly to a data processing
cluster via a queue protocol. Optionally, writing of HDF5 files and
buffering on NVMe SSDs can be also done by a second server, to avoid
file system overheads on the data acquisition system, with data being
transferred between the two systems via RDMA. In this design, critical
part of decoding is done on FPGA, which guarantees real-time proc-
essing of the data. Tasks of the CPU are limited to flow control and
compression, which reduces competition to CPU memory access.
Finally, lower energy consumption and heat production of FPGA, as
compared for the same task on the CPU or GPU, allow one to handle
higher throughput within a single computer box and reduce operation
costs.54

FIG. 4. Conceptual design of data acquisition system for JUNGFRAU 10M for MX beamlines at the Paul Scherrer Institute with IBM AC 922 system, 2 Alpha-Data 9H3 FPGA
boards and single 2� 100 GbE Mellanox Connect-X network card. Detector operates at 2.2 kHz framerate. Maximal possible bandwidth of each interface is marked in paren-
theses according to hardware specifications49,58 (U: unidirectional bandwidth, B: bidirectional bandwidth). Assumes a compression factor of 4 with Bitshuffle/LZ4.
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GENERAL OUTLOOK

Increasing data rates at next-generation synchrotron facilities
and XFELs puts significant stress on computational and data storage
infrastructure. This has consequences not only for the choice of com-
puting technology but for science as well. Currently, a well-established
paradigm in x-ray macromolecular crystallography is to save all the
data at the highest possible precision. While in some cases this is
indeed justified, such an approach is not sustainable in general. At
some point, it will be only possible to operate above a certain frame
rate if online data reduction is implemented by either a rounding
scheme, lossy compression, or a veto mechanism for empty images in
serial crystallography. Such choices should be made so that the impre-
cision and information loss in the data have a negligible impact on the
outcome of the experiment. But the gain in the sustainable data rate
will not only be beneficial for high-throughput applications but also
could enable scientists to better explore what the next-generation light
sources can offer.

METHODS

Data acquisition and all the calculations were performed on an
HPE DL580 Gen10 server. The server was equipped with 4 Intel Xeon
Gold 6146 CPUs (3.2GHz; 12 core/CPU), 1.5 TB RAM
(DDR4–2666), four 3.2 TB PCIe Non-Volatile Memory Express
(NVMe) SSDs, 100 GbE Mellanox Connect-X 4 network card, and
four 2-port 10 GbE Mellanox Connect-X 4 Lx network cards. For
mid-term storage of images, an external array of 24 disks, each 12 TB,
was attached via a Serial Attached SCSI (SAS) controller and operated
with a Zettabyte File System (ZFS), allowing roughly 1.5 GB/s writing
speed. The server was capable of handling 9 GB/s JUNGFRAU 4M at
1.1 kHz, but only in a mode, where incoming raw gainþADU data
were first saved to the RAM disk and later converted, compressed, and
written to external storage.

The system was running Red Hat Enterprise Linux v. 7.6.
Receiving of data and communication with the detector were handled
by SLS Detector package v. 3.1.4. Software development for the
converter was performed with Intel Parallel Studio XE v. 2018 and v.
2019, including the Intel C/Cþþ compiler. Performance analysis
was performed with Intel Advisor and Intel VTune Amplifier.
Vectorization of the code was achieved by enforcing array memory
alignment and ivdep pragmas, no intrinsic libraries were used.
Optimized LZ4 and gzip routines were used from the Intel
Performance Primitives toolset. Zstandard compression algorithm v.
1.4.4 was used. The Bitshuffle filter was modified to accommodate
Zstandard compression and is available to download from the
authors’ Github. The block size for Bitshuffle/Zstandard was
increased to 64 kB¼ 32678� 16-bit, with significantly better com-
pression performance. For Bitshuffle/LZ4, the gain in the compressed
size was negligible and the default block size of 8 kB¼ 4096� 16-bit
was used. SZ compression v. 2.1.7 was used. High-Level Synthesis
code for FPGAs was developed and synthesized with Xilinx Vivado
HLS v. 2019.2 for Xilinx Ultrascaleþ XCVU33P-2E FPGA, as
installed on the Alpha Data 9H3 board.

A lysozyme test crystal was prepared in the same way as before.13

Measurement was carried out at the X06SA beamline. The
JUNGFRAU 4M detector was used, composed of 8 modules each hav-
ing 1024� 512 pixels. The detector was cooled to �12 �C to achieve a
long integration time of 840 ls, with a frame time of 880 ls (1.1 kHz).

X-ray energy was set to 12.4 keV and no beam attenuation was used.
The crystal was measured with 100�/s rotation speed, resulting in
0.088� per single image, as before.13 Data collection started roughly
3343 frames (2.9 s) before the sample was illuminated with x-rays. To
account for shutter opening time, frames starting with number 3500
were converted into photon counts, while previous frames were used
to calculate and track the G0 pedestal. Data were processed with XDS
with parallelization set to 4 jobs, each over 12 CPUs.55 The Rmeas

31

data quality indicator was extracted from the XDS output. The anoma-
lous peak height was calculated with ANODE56 based on the 6G8A
lysozyme model deposited previously by us to the PDB.13 Refinement
was performed with phenix.refine57 using the same input file, as previ-
ously, optimized for high resolution structure. The same free reflection
set was used for all refinement runs of the same system.

CODE AVAILABILITY

Conversion code is available at https://github.com/fleon-psi/
JFConverter. The modified Bitshuffle filter to accommodate Zstandard
is available at https://github.com/fleon-psi/bitshuffle. Lysozyme
unconverted JUNGFRAU 4M images (�150 GB) are available from
the PSI Public Repository (https://doi.org/10.16907/808de0df-a9d3-
4698-8e9f-d6e091516650).

SUPPLEMENTARY MATERIAL

See the supplementary material for additional results on lossless
compression throughput (Tables S1–S3).
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