
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Junior: The Stanford Entry in

the Urban Challenge

Michael Montemerlo

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305
e-mail: mmde@stanford.edu

Jan Becker

Robert Bosch LLC
Research and Technology Center
4009 Miranda Avenue
Palo Alto, California 94304

Suhrid Bhat

Electronics Research Laboratory
Volkswagen of America
4009 Miranda Avenue
Palo Alto, California 94304

Hendrik Dahlkamp and Dmitri Dolgov

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Scott Ettinger

Intel Research
2200 Mission College Boulevard
Santa Clara, California 95052

Dirk Haehnel

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Journal of Field Robotics 25(9), 569–597 (2008) C© 2008 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.20258



570 • Journal of Field Robotics—2008

Tim Hilden

Electronics Research Laboratory
Volkswagen of America
4009 Miranda Avenue
Palo Alto, California 94304

Gabe Hoffmann

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Burkhard Huhnke

Electronics Research Laboratory
Volkswagen of America
4009 Miranda Avenue
Palo Alto, California 94304

Doug Johnston

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Stefan Klumpp and Dirk Langer

Electronics Research Laboratory
Volkswagen of America
4009 Miranda Avenue
Palo Alto, California 94304

Anthony Levandowski and Jesse Levinson

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Julien Marcil

Electronics Research Laboratory
Volkswagen of America
4009 Miranda Avenue
Palo Alto, California 94304

David Orenstein, Johannes Paefgen,

Isaac Penny, and Anna Petrovskaya

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 571

Mike Pflueger and Ganymed Stanek

Electronics Research Laboratory
Volkswagen of America
4009 Miranda Avenue
Palo Alto, California 94304

David Stavens, Antone Vogt,

and Sebastian Thrun

Stanford Artificial Intelligence Laboratory
Stanford University
Stanford, California 94305

Received 13 March 2008; accepted 20 July 2008

This article presents the architecture of Junior, a robotic vehicle capable of navigating ur-
ban environments autonomously. In doing so, the vehicle is able to select its own routes,
perceive and interact with other traffic, and execute various urban driving skills including
lane changes, U-turns, parking, and merging into moving traffic. The vehicle successfully
finished and won second place in the DARPA Urban Challenge, a robot competition or-
ganized by the U.S. Government. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

The vision of self-driving cars promises to bring fun-
damental change to one of the most essential as-
pects of our daily lives. In the United States alone,
traffic accidents cause the loss of more than 40,000
people annually, and a substantial fraction of the
world’s energy is used for personal car–based trans-
portation (U.S. Department of Transportation, 2005).
A safe, self-driving car would fundamentally im-
prove the safety and comfort of the driving popula-
tion while reducing the environmental impact of the
automobile.

In 2003, the Defense Advanced Research Projects
Agency (DARPA) initiated a series of competitions
aimed at the rapid technological advancement of
autonomous vehicle control. The first such event,
the “DARPA Grand Challenge,” led to the devel-
opment of vehicles that could confidently follow a
desert trail at average velocities nearing 20 mph
(Buehler, Iagnemma, & Singh, 2006). In October 2005,
Stanford’s robot “Stanley” won this challenge and
became the first robot to finish the 131-mile-long
course (Montemerlo, Thrun, Dahlkamp, Stavens, &
Strohband, 2006). The “DARPA Urban Challenge,”
which took place on November 3, 2007, brought
about vehicles that could navigate in traffic in a mock
urban environment.

The rules of the DARPA Urban Challenge were
complex (DARPA, 2007). Vehicles were provided
with a digital street map of the environment in the
form of a road network definition file, or RNDF.
The RNDF contained geometric information on lanes,
lane markings, stop signs, parking lots, and special
checkpoints. Teams were also provided with a high-
resolution aerial image of the area, enabling them to
manually enhance the RNDF before the event. Dur-
ing the Urban Challenge event, vehicles were given
multiple missions, defined as sequences of check-
points. Multiple robotic vehicles carried out missions
in the same environment at the same time, possibly
with different speed limits. When encountering an-
other vehicle, each robot had to obey traffic rules. Ma-
neuvers that were specifically required for the Urban
Challenge included passing parked or slow-moving
vehicles, precedence handling at intersections with
multiple stop signs, merging into fast-moving traffic,
left turns across oncoming traffic, parking in a park-
ing lot, and the execution of U-turns in situations in
which a road is completely blocked. Vehicle speeds
were generally limited to 30 mph, with lower speed
limits in many places. DARPA admitted 11 vehicles to
the final event, of which the present vehicle was one.

“Junior,” the robot shown in Figures 1 and 2, is a
modified 2006 Volkswagen Passat wagon, equipped

Journal of Field Robotics DOI 10.1002/rob



572 • Journal of Field Robotics—2008

IBEO laser

DMIBOSCH Radar

SICK LDLRS laser

Velodyne laser

Riegl laser SICK LMS laser

Applanix INS

Figure 1. Junior, our entry in the DARPA Urban Challenge. Junior is equipped with five different laser measurement
systems, a multiradar assembly, and a multisignal INS, as shown in this figure.

Figure 2. All computing and power equipment is placed in the trunk of the vehicle. Two Intel quad core computers (bottom
right) run the bulk of all vehicle software. Other modules in the trunk rack include a power server for selectively powering
individual vehicle components and various modules concerned with drive-by-wire and GPS navigation. A six-degree-of-
freedom inertial measurement unit is also mounted in the trunk of the vehicle, near the rear axle.

with five laser range finders (manufactured by IBEO,
Riegl, SICK, and Velodyne), an Applanix global po-
sitioning system (GPS)-aided inertial navigation sys-
tem (INS), five BOSCH radars, two Intel quad core
computer systems, and a custom drive-by-wire in-
terface developed by Volkswagen’s Electronic Re-
search Laboratory. The vehicle has an obstacle de-

tection range of up to 120 m and reaches a maxi-
mum velocity of 30 mph, the maximum speed limit
according to the Urban Challenge rules. Junior made
its driving decisions through a distributed software
pipeline that integrates perception, planning, and
control. This software is the focus of the present
article.

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 573

Junior was developed by a team of researchers
from Stanford University and Volkswagen and from
its affiliated corporate sponsors: Applanix, Google,
Intel, Mohr Davidow Ventures, NXP, and Red Bull.
This team was mostly composed of the original Stan-
ford Racing Team, which developed the winning en-
try Stanley in the 2005 DARPA Grand Challenge
(Montemerlo et al., 2006). In the Urban Challenge, Ju-
nior placed second, behind a vehicle from Carnegie
Mellon University and ahead of the third-place win-
ner from Virginia Tech.

2. VEHICLE

Junior is a modified 2006 Passat wagon, equipped
with a four-cylinder turbo diesel injection engine. The
140-horsepower vehicle is equipped with a limited-
torque steering motor, an electronic brake booster,
electronic throttle, gear shifter, parking brake, and
turn signals. A custom interface board provides com-
puter control over each of these vehicle elements. The
engine provides electric power to Junior’s comput-
ing system through a high-current prototype alterna-
tor, supported by a battery-backed electronically con-
trolled power system. For development purposes, the
cabin is equipped with switches that enable a human
driver to engage various electronic interface compo-
nents at will. For example, a human developer may
choose the computer to control the steering wheel
and turn signals while retaining manual control over
the throttle and the vehicle brakes. These controls
were primarily for testing purposes; during the ac-
tual competition, no humans were allowed inside the
vehicles.

For inertial navigation, an Applanix POS LV
420 system provides real-time integration of multi-
ple dual-frequency GPS receivers, including a GPS
azimuth heading measurement subsystem, a high-
performance inertial measurement unit, wheel odom-
etry via a distance measurement unit (DMI), and the
Omnistar satellite-based Virtual Base Station service.
The real-time position and orientation errors of this
system were typically below 100 cm and 0.1 deg,
respectively.

Two side-facing SICK LMS 291-S14 sensors and a
forward-pointed RIEGL LMS-Q120 laser sensor pro-
vide measurements of the adjacent three-dimensional
(3-D) road structure and infrared reflectivity mea-
surements of the road surface for lane marking de-
tection and precision vehicle localization.

For obstacle and moving-vehicle detection, a
Velodyne HDL-64E is mounted on the roof of the
vehicle. The Velodyne, which incorporates 64 laser
diodes and spins at up to 15 Hz, generates dense
range data covering a 360-deg horizontal field of view
and a 30-deg vertical field of view. The Velodyne is
supplemented by two SICK LDLRS sensors mounted
at the rear of the vehicle and two IBEO ALASCA
XT LIDARs mounted in the front bumper. Five
BOSCH Long Range Radars (LRR2) mounted around
the front grille provide additional information about
moving vehicles.

Junior’s computer system consists of two Intel
quad core servers. Both computers run Linux, and
they communicate over a gigabit Ethernet link.

3. SOFTWARE ARCHITECTURE

Junior’s software architecture is designed as a
data-driven pipeline in which individual modules
process information asynchronously. This same soft-
ware architecture was employed successfully by Ju-
nior’s predecessor Stanley in the 2005 challenge
(Montemerlo et al., 2006). Each module commu-
nicates with other modules via an anonymous
publish/subscribe message-passing protocol, based
on the Inter Process Communication Toolkit (IPC)
(Simmons & Apfelbaum, 1998).

Modules subscribe to message streams from
other modules, which are then sent asynchronously.
The result of the computation of a module may then
be published to other modules. In this way, each
module is processing data at all times, acting as a
pipeline. The time delay between entry of sensor data
into the pipeline to the effect on the vehicle’s actua-
tors is approximately 300 ms. The software is roughly
organized into five groups of modules:

• Sensor interfaces: The sensor interfaces man-
age communication with the vehicle and in-
dividual sensors and make resulting sensor
data available to the rest of the software
modules.

• Perception modules: The perception mod-
ules segment the environment data into mov-
ing vehicles and static obstacles. They also
provide precision localization of the vehicle
relative to the digital map of the environment.

• Navigation modules: The navigation mod-
ules determine the behavior of the vehicle.
The navigation group consists of a number

Journal of Field Robotics DOI 10.1002/rob



574 • Journal of Field Robotics—2008

Table I. Table of processes running during the Urban Challenge.

Process name Computer Description

PROCESS-CONTROL 1 Starts and restarts processes, adds process control via IPC
APPLANIX 1 Applanix interface (via IPC).
LDLRS1 & LDLRS2 1 SICK LDLRS laser interface (via IPC).
IBEO 1 IBEO laser interface (via IPC).
SICK1 & SICK2 1 SICK LMS laser interfaces (via IPC).
RIEGL 1 Riegl laser interface (via IPC).
VELODYNE 1 Velodyne laser interface (via IPC and shared memory). This module also projects

the 3-D points using Applanix pose information.
CAN 1 CAN bus interface
RADAR1–RADAR5 1 Radar interfaces (via IPC).
PERCEPTION 1 IPC/Shared Memory interface of Velodyne data, obstacle detection, dynamic

tracking and scan differencing
RNDF LOCALIZE 1 1D localization using RNDF
HEALTHMON 1 Logs computer health information (temperature, processes, CPU and memory

usage)
PROCESS-CONTROL 2 Start/restarts processes and adds process control over IPC
CENTRAL 2 IPC server
PARAM SERVER 2 Central server for all parameters
ESTOP 2 IPC/serial interface to DARPA E-stop
HEALTHMON 2 Monitors the health of all modules
POWER 2 IPC/serial interface to power-server (relay card)
PASSAT 2 IPC/serial interface to vehicle interface board
CONTROLLER 2 Vehicle motion controller
PLANNER 2 Path planner and hybrid A* planner

of motion planners plus a hierarchical finite
state machine for invoking different robot be-
haviors and preventing deadlocks.

• Drive-by-wire interface: Controls are passed
back to the vehicle through the drive-by-wire
interface. This module enables software con-
trol of the throttle, brake, steering, gear shift-
ing, turn signals, and emergency brake.

• Global services: A number of system-
level modules provide logging, time stamp-
ing, message-passing support, and watch-
dog functions to keep the software running
reliably.

Table 1 lists the actual processes running on the
robot’s computers during the race event, and
Figure 3 shows an overview of the data flow between
modules.

4. ENVIRONMENT PERCEPTION

Junior’s perceptual routines address a wide variety of
obstacle detection and tracking problems. Figure 4(a)
shows a scan from the primary obstacle detection sen-

sor, the Velodyne. Scans from the IBEO lasers, shown
in Figure 4(b), and LDLRS lasers are used to supple-
ment the Velodyne data in blind spots. A radar sys-
tem complements the laser system as an early warn-
ing system for moving objects in intersections.

4.1. Laser Obstacle Detection

In urban environments, the vehicle encounters a wide
variety of static and moving obstacles. Obstacles as
small as a curb may trip a fast-moving vehicle, so
detecting small objects is of great importance. Over-
hangs and trees may look like large obstacles at a
distance, but traveling underneath is often possible.
Thus, obstacle detection must consider the 3-D geom-
etry of the world. Figure 5 depicts a typical output
of the obstacle detection routine in an urban environ-
ment. Each red object corresponds to an obstacle. To-
ward the bottom right, a camera image is shown for
reference.

The robot’s primary sensor for obstacle detec-
tion is the Velodyne laser. A simple algorithm for de-
tecting obstacles in Velodyne scans would be to find

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 575

Figure 3. Flow diagram of the Junior software.

points with similar x–y coordinates whose vertical
displacement exceeds a given threshold. Indeed, this
algorithm can be used to detect large obstacles such
as pedestrians, signposts, and cars. However, range

and calibration error are high enough with this sen-
sor that the displacement threshold cannot be set low
enough in practice to detect curb-sized objects with-
out substantial numbers of false positives.

(a) (b)

Figure 4. (a) The Velodyne contains 64 laser sensors and rotates at 10 Hz. It is able to see objects and terrain out to 60 m
in every direction. (b) The IBEO sensor possesses four scan lines, which are primarily parallel to the ground. The IBEO is
capable of detecting large vertical obstacles, such as cars and signposts.

Journal of Field Robotics DOI 10.1002/rob



576 • Journal of Field Robotics—2008

(a) (b)

Figure 5. Obstacles detected by the vehicle are overlaid on aerial imagery (left) and Velodyne data (right). In the example
on the right, the curbs along both sides of the road are detected.

An alternative to comparing vertical displace-
ments is to compare the range returned by two adja-
cent beams, where “adjacency” is measured in terms
of the pointing angle of the beams. Each of the
64 lasers has a fixed pitch angle relative to the vehicle
frame and thus would sweep out a circle of a fixed
radius on a flat ground plane as the sensor rotates.
Sloped terrain locally compresses these rings, caus-
ing the distance between adjacent rings to be smaller
than the interring distance on flat terrain. In the ex-
treme case, a vertical obstacle causes adjacent beams
to return nearly equal ranges. Because the individual
beams strike the ground at such shallow angles, the
distance between rings is a much more sensitive mea-
surement of terrain slope than vertical displacement.
By finding points that generate inter-ring distances
that differ from the expected distance by more than a
given threshold, even obstacles that are not apparent
to the vertical thresholding algorithm can be reliably
detected.

In addition to terrain slope, rolling and pitching
of the vehicle will cause the rings traced out by the
individual lasers to compress and expand. If this is
not taken into account, rolling to the left can cause
otherwise flat terrain to the left of the vehicle to be
detected incorrectly as an obstacle. This problem can
be remedied by making the expected distance to the
next ring a function of range, rather than the index
of the particular laser. Thus as the vehicle rolls to the
left, the expected range difference for a specific beam
decreases as the ring moves closer to the vehicle. Im-

plemented in this way, small obstacles can be reliably
detected even as the sensor rolls and pitches.

Two more issues must be addressed when per-
forming obstacle detection in urban terrain. First,
trees and other objects frequently overhang safe driv-
ing surfaces and should not be detected as obstacles.
Overhanging objects are filtered out by comparing
their height with a simple ground model. Points that
fall in a particular x–y grid cell that exceed the height
of the lowest detected point in the same cell by more
than a given threshold (the height of the vehicle plus
a safety buffer) are ignored as overhanging obstacles.

Second, the Velodyne sensor possesses a “blind
spot” behind the vehicle. This is the result of the
sensor’s geometry and mounting location. Further,
it also cannot detect small obstacles such as curbs
in the immediate vicinity of the robot due to self-
occlusion. Here the IBEO and SICK LDLRS sensors
are used to supplement the Velodyne data. Because
both of these sensors are essentially two-dimensional
(2-D), ground readings cannot be distinguished from
vertical obstacles, and hence obstacles can be found
only at very short range (where ground measure-
ments are unlikely). Whenever either of these sen-
sors detects an object within a close range (15 m for
the LDLRS and 5 m for the IBEO), the measurement
is flagged as an obstacle. This combination between
short-range sensing in 2-D and longer range sens-
ing using the 3-D sensor provides high reliability.
We note that a 5-m cutoff for the IBEO sensor may
seem overly pessimistic as this laser is designed for

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 577

Figure 6. Map of a parking lot. Obstacles in yellow are tall obstacles, brown obstacles are curbs, and green obstacles are
overhanging objects (e.g., tree branches) that are of no relevance to ground navigation.

long-range detection (100 m and more). However, the
sensor presents a large number of false-positive de-
tections on nonflat terrain, such as dirt roads.

Our obstacle detection method worked excep-
tionally well. In the Urban Challenge, we know of no
instance in which our robot Junior collided with an
obstacle. In particular, Junior never ran over a curb.
We also found that the number of false positives was
remarkably small, and false positives did not mea-
surably impact the vehicle performance. In this sense,
static obstacle detection worked flawlessly.

4.2. Static Mapping

In many situations, multiple measurements have to
be integrated over time even for static environment
mapping. Such is the case, for example, in parking
lots, where occlusion or range limitations may make
it impossible to see all relevant obstacles at all times.
Integrating multiple measurements is also necessary
to cope with certain blind spots in the near range of
the vehicle. In particular, curbs are detectable only be-
yond a certain minimum range with a Velodyne laser.

To alleviate these problems, Junior caches sensor
measurement into local maps. Figure 6 shows such
a local map, constructed from many sensor measure-
ments over time. Different colors indicate different
obstacle types on a parking lot. The exact map-update
rule relies on the standard Bayesian framework for
evidence accumulation (Moravec, 1988). This safe-
guards the robot against spurious obstacles that show
up in only a small number of measurements.

A key downside of accumulating static data over
time into a map arises from objects that move. For ex-
ample, a passage may be blocked for a while and then
become drivable again. To accommodate such situa-
tions, the software performs a local visibility calcu-
lation. In each polar direction away from the robot,
the grid cells between the robot and the nearest de-
tected object are observed to be free. Beyond the first
detected obstacle, of course, it is impossible to say
whether the absence of further obstacles is due to oc-
clusion. Hence, no map updating takes place beyond
this range. This mechanism may still lead to an overly
conservative map but empirically works well for nav-
igating cluttered spaces such as parking lots. Figure 7

Journal of Field Robotics DOI 10.1002/rob



578 • Journal of Field Robotics—2008

(a) (b)

Figure 7. Examples of free space analysis for Velodyne scans. The green lines represent the area surrounding the robot that
is observed to be empty. This evidence is incorporated into the static map, shown in black and blue.

illustrates the region in which free space is detected
in a Velodyne sensor scan.

4.3. Dynamic Object Detection and Tracking

A key challenge in successful urban driving pertains
to other moving traffic. The present software pro-
vides a reliable method for moving-object detection
and prediction based on particle filters.

Moving-object detection is performed on a syn-
thetic 2-D scan of the environment. This scan is syn-
thesized from the various laser sensors by extract-
ing the range to the nearest detected obstacle along
an evenly spaced array of synthetic range sensors.
The use of such a synthetic scan comes with sev-
eral advantages over the raw sensor data. First, its
compactness allows for efficient computation. Sec-
ond, the method is applicable to any of the three
obstacle-detecting range sensors (Velodyne, IBEO,
and SICK LDLRS) and any combination thereof. The
latter property stems from the fact that any of those
laser measurements can be mapped easily into a syn-
thetic 2-D range scan, rendering the scan representa-
tion relatively sensor independent. This synergy thus

provides our robot with a unified method for finding,
tracking, and predicting moving objects. Figure 8(a)
shows such a synthetic scan.

The moving object tracker then proceeds in two
stages. First, it identifies areas of change. For that, it
compares two synthetic scans acquired over a brief
time interval. If an obstacle in one of the scans falls
into the free space of the respective other scan, this
obstacle is a witness of motion. Figure 8(b) shows
such a situation. The red color of a scan corresponds
to an obstacle that is new, and the green color marks
the absence of a previously seen obstacle.

When such witnesses are found, the tracker ini-
tializes a set of particles as possible object hypothe-
ses. These particles implement rectangular objects of
different dimensions and at slightly different veloci-
ties and locations. A particle filter algorithm is then
used to track such moving objects over time. Typi-
cally, within three sightings of a moving object, the
filter latches on and reliably tracks the moving object.

Figure 8(c) depicts the resulting tracks; a camera
image of the same scene is shown in Figure 8(d). The
tracker estimates the location, the yaw, the velocity,
and the size of the object.

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 579

(a)

(b)

(c)

(d)

Figure 8. (a) Synthetic 2-D scan derived from Velodyne
data. (b) Scan differencing provides areas in which change
has occurred, here in green and red. (c) Tracks of other ve-
hicles. (d) The corresponding camera image.

5. PRECISION LOCALIZATION

One of the key perceptual routines in Junior’s soft-
ware pertains to localization. As noted, the robot
is given a digital map of the road network in the
form of an RNDF. Although the RNDF is specified
in GPS coordinates, the GPS-based inertial position
computed by the Applanix system is generally not
able to recover the coordinates of the vehicle with
sufficient accuracy to perform reliable lane keeping
without sensor feedback. Further, the RNDF is itself
inaccurate, adding further errors if the vehicle were
to blindly follow the road using the RNDF and Ap-
planix pose estimates. Junior therefore estimates a
local alignment between the RNDF and its present
position using local sensor measurements. In other
words, Junior continuously localizes itself relative to
the RNDF.

This fine-grained localization uses two types of
information: road reflectivity and curb-like obstacles.
The reflectivity is sensed using the RIEGL LMS-Q120
and the SICK LMS sensors, both of which are pointed
toward the ground. Figure 9 shows the reflectivity in-
formation obtained through the sideways-mounted
SICK sensors and integrated over time. This diagram
illustrates the varying infrared reflectivity of the lane
markings.

The filter for localization is a one-dimensional
(1-D) histogram filter that estimates the vehicle’s lat-
eral offset relative to the RNDF. This filter estimates
the posterior distribution of any lateral offset based

Figure 9. The side lasers provide intensity information
that is matched probabilistically with the RNDF for preci-
sion localization.

Journal of Field Robotics DOI 10.1002/rob



580 • Journal of Field Robotics—2008

Figure 10. Typical localization result: The red bar illustrates the Applanix localization, whereas the yellow curve measures
the posterior over the lateral position of the vehicle. The green line depicts the response from the lane line detector. In this
case, the error is approximately 80 cm.

on the reflectivity and the sighted curbs along the
road. It “rewards,” in a probabilistic fashion, offsets
for which lane-marker-like reflectivity patterns align
with the lane markers or the roadside in the RNDF.
The filter “penalizes” offsets for which an observed
curb would reach into the driving corridor of the
RNDF. As a result, at any point in time the vehicle es-
timates a fine-grained offset to the measured location
by the GPS-based INS system.

Figure 10 illustrates localization relative to
the RNDF in a test run. Here the green curves de-
pict the likely locations of lane markers in both lasers,
and the yellow curve depicts the posterior distribu-
tion in the lateral direction. This specific posterior de-
viates from the Applanix estimate by about 80 cm,
which, if not accounted for, would make Junior’s
wheels drive on the centerline. In the Urban Chal-
lenge Event, localization offsets of 1 m or more were
common. Without this localization step, Junior would
have frequently crossed the centerline unintention-
ally or possibly hit a curb.

Finally, Figure 11 shows a distribution of lateral
offset corrections that were applied during the Urban
Challenge.

When integrating multiple sensor measurements
over time, it may be tempting to use the INS pose
estimates (the output of the Applanix) to calculate

Figure 11. Histogram of average localization corrections
during the entire race. At times the lateral correction ex-
ceeds 1 m.

the relative offset between different measurements.
However, in any precision INS system, the estimated
position frequently “jumps” in response to GPS mea-
surements. This is because INS systems provide the
most likely position at the present time. As new GPS
information arrives, it is possible that the most likely
position changes by an amount inconsistent with the

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 581

vehicle motion. The problem, then, is that when such
a revision occurs, past INS measurements have to
be corrected as well, to yield a consistent map. Such
a problem is known in the estimation literature as
(backwards) smoothing (Jazwinsky, 1970).

To alleviate this problem, Junior maintains an in-
ternal smooth coordinate system that is robust to such
jumps. In the smooth coordinate system, the robot po-
sition is defined as the sum of all incremental velocity
updates:

x̄ = x0 +
∑

t

�t · ẋt ,

where x0 is the first INS coordinate and ẋt are the ve-
locity estimates of the INS. In this internal coordinate
system, sudden INS position jumps have no effect,
and the sensor data are always locally consistent. Ve-
hicle velocity estimates from the pose estimation sys-
tem tend to be much more stable than the position
estimates, even when GPS is intermittent or unavail-
able. X and Y velocities are particularly resistant to
jumps because they are partially observed by wheel
odometry.

This “trick” of smooth coordinates makes it pos-
sible to maintain locally consistent maps even when
GPS shifts occur. We note, however, that the smooth
coordinate system may cause inconsistencies in map-
ping data over long time periods and hence can be
applied only to local mapping problems. This is not
a problem for the present application, as the robot
maintains only local maps for navigation.

In the software implementation, the mapping be-
tween raw (global) and smooth (local) coordinates
requires only that one maintain the sum of all esti-
mation shifts, which is initialized by zero. This cor-
rection term is then recursively updated by adding
mismatches between actual INS coordinates and the
velocity-based value.

6. NAVIGATION

6.1. Global Path Planning

The first step of navigation pertains to global path
planning. The global path planner is activated for
each new checkpoint; it also is activated when a per-
manent road blockage leads to a change of the topol-
ogy of the road network. However, instead of plan-
ning one specific path to the next checkpoint, the
global path planner plans paths from every location

in the map to the next checkpoint. As a result, the ve-
hicle may depart from the optimal path and select a
different one without losing direction as to where to
move.

Junior’s global path planner is an instance of dy-
namic programming, or DP (Howard, 1960). The DP
algorithm recursively computes for each cell in a
discrete version of the RNDF the cumulative costs of
moving from each such location to the goal point. The
recursive update equation for the cost is standard in
the DP literature. Let V (x) be the cost of a discrete
location in the RNDF, with V (goal) = 0. Then the fol-
lowing recursive equation defines the back up and,
implicitly, the cumulative cost function V :

V (x) ←− min
u

c(x, u) +
∑

y

p(y | x, u) V (y).

Here u is an action, e.g., drive along a specific road
segment. In most cases, there is only one admissible
action. At intersections, however, there are choices
(go straight, turn left, . . . ). Multilane roads offer the
choice of lane changes. For these cases the maximiza-
tion over the control choice u in the above expres-
sion will provide multiple terms, the minimization of
which leads to the fastest expected path.

In practice, not all action choices are always suc-
cessful. For example, a shift from a left to a right
lane “succeeds” only if no vehicle is in the right lane;
otherwise the vehicle cannot shift lanes. This is ac-
commodated in the use of the transition probability
p(y | x, u). Junior, for example, might assess the suc-
cess probability of a lane shift at any given discrete
location as low as 10%. The benefit of this probabilis-
tic view of decision making is that it penalizes plans
that delay lane changes to the very last moment. In
fact, Junior tends to execute lane shifts at the earli-
est possibility, and it trades off speed gains with the
probability (and the cost) of failure when passing a
slow-moving vehicle at locations where a subsequent
right turn is required (which may be admissible only
when in the right lane).

A key ingredient in the recursive equation above
is the cost c(x, u). In most cases, the cost is simply the
time it takes to move between adjacent cells in the dis-
crete version of the RNDF. In this way, the speed lim-
its are factored into the optimal path calculation, and
the vehicle selects the path that in expectation min-
imizes arrival time. Certain maneuvers, such as left
turns across traffic, are “penalized” by an additional

Journal of Field Robotics DOI 10.1002/rob



582 • Journal of Field Robotics—2008

Figure 12. Global planning: DP propagates values through a crude discrete version of the environment map. The color of
the RNDF is representative of the cost to move to the goal from each position in the graph. Low costs are green, and high
costs are red.

amount of time to account for the risk that the robot
takes when making such a choice. In this way, the
cost function c implements a careful balance between
navigation time and risk. So in some cases, Junior en-
gages in a slight detour so as to avoid a risky left turn
or a risky merge. The additional costs of maneuvers
can be either set by hand (as they were for the Urban
Challenge) or learned from simulation data in repre-
sentative environments.

Figure 12 shows a propagated cumulative cost
function. Here the cumulative cost is indicated by the
color of the path. This global function is brought to
bear to assess the “goodness” of each location beyond
the immediate sensor reach of the vehicle.

6.2. RNDF Road Navigation

The actual vehicle navigation is handled differently
for common road navigation and the free-style navi-
gation necessary for parking lots.

Figure 13 visualizes a typical situation. For each
principal path, the planner rolls out a trajectory that
is parallel to the smoothed center of the lane. This
smoothed lane center is directly computed from the

RNDF. However, the planner also rolls out trajec-
tories that undergo lateral shifts. Each of these tra-
jectories is the result of an internal vehicle simula-
tion with different steering parameters. The score of
a trajectory considers the time it will take to follow
this path (which may be infinite if a path is blocked
by an obstacle), plus the cumulative cost computed
by the global path planner, for the final point along
the trajectory. The planner then selects the trajectory
that minimizes this total cost value. In doing so, the
robot combines optimal route selection with dynamic
nudging around local obstacles.

Figure 14 illustrates this decision process in a sit-
uation in which a slow-moving vehicle blocks the
right lane. Even though lane changes come with a
small penalty cost, the time savings due to faster
travel in the left lane results in a lane change. The
planner then steers the robot back into the right lane
when the passing maneuver is complete.

We find that this path planner works well in well-
defined traffic situations. It results in smooth motion
along unobstructed roads and in smooth and well-
defined passing maneuvers. The planner also enables
Junior to avoid small obstacles that might extend into

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 583

(a)

(b)

Figure 13. Planner rollouts in an urban setting with multiple discrete choices. (a) For each principal path, the planner rolls
out trajectories that undergo lateral shifts. (b) A driving situation with two discrete plan choices, turn right or drive straight
through the intersetion. The paths are colored according to the DP value function, with red being high cost and green being
low cost.

a lane, such as parked cars on the side. However, it is
unable to handle blocked roads or intersections, and
it also is unable to navigate parking lots.

6.3. Free-Form Navigation

For free-form navigation in parking lots, the robot uti-
lizes a second planner, which can generate arbitrary

trajectories irrespective of a specific road structure.
This planner requires a goal coordinate and a map. It
identifies a near-cost optimal path to the goal should
such a path exist.

This free-form planner is a modified version of
A∗, which we call hybrid A∗. In the present appli-
cation, hybrid A∗ represents the vehicle state in a
four-dimensional (4-D) discrete grid. Two of those

Journal of Field Robotics DOI 10.1002/rob



584 • Journal of Field Robotics—2008

Figure 14. A passing maneuver. The additional cost of being in a slightly suboptimal lane is overwhelmed by the cost of
driving behind a slow driver, causing Junior to change lanes and pass.

dimensions represent the x–y location of the vehicle
center in smooth map coordinates, a third represents
the vehicle heading direction θ , and a fourth pertains
to the direction of motion, either forward or reverse.

One problem with regular (nonhybrid) A∗ is that
the resulting discrete plan cannot be executed by
a vehicle, simply because the world is continuous,
whereas A∗ states are discrete. To remedy this prob-
lem, hybrid A∗ assigns to each discrete cell in A∗ a
continuous vehicle coordinate. This continuous co-
ordinate is such that it can be realized by the actual
robot.

To see how this works, let 〈x, y, θ〉 be the present
coordinates of the robot, and suppose that those co-
ordinates lie in cell ci in the discrete A∗ state repre-
sentation. Then, by definition, the continuous coor-
dinates associated with cell ci are xi = x, yi = y, and
θi = θ . Now predict the (continuous) vehicle state af-
ter applying a control u for a given amount of time.
Suppose that the prediction is 〈x ′, y ′, θ ′〉, and assume
that this prediction falls into a different cell, denoted
cj . Then, if this is the first time cj has been expanded,
this cell will be assigned the associated continuous
coordinates xj = x ′, yj = y ′, and θj = θ ′. The result of
this assignment is that there exists an actual control u

in which the continuous coordinates associated with
cell cj can actually be attained—a guarantee that is

not available for conventional A∗. The hybrid A∗ al-
gorithm then applies the same logic for future cell ex-
pansions, using 〈xj , yj , θj 〉 whenever making a pre-
diction that starts in cell cj . We note that hybrid A∗ is
guaranteed to yield realizable paths but it is not com-
plete. That is, it may fail to find a path. The coarser
the discretization, the more often hybrid A∗ will fail
to find a path.

Figure 15 compares hybrid A∗ to regular A∗

and Field D∗ (Ferguson & Stentz, 2005), an alter-
native algorithm that also considers the continuous
nature of the underlying state space. A path found
by plain A∗ cannot easily be executed; and even
the much smoother Field D∗ path possesses kinks
that a vehicle cannot execute. By virtue of associ-
ating continuous coordinates with each grid cell in
hybrid A∗, our approach results in a path that is
executable.

The cost function in A∗ follows the idea of ex-
ecution time. Our implementation assigns a slightly
higher cost to reverse driving to encourage the vehi-
cle to drive “normally.” Further, a change of direction
induces an additional cost to account for the time it
takes to execute such a maneuver. Finally, we add a
pseudo-cost that relates to the distance to nearby ob-
stacles so as to encourage the vehicle to stay clear of
obstacles.

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 585

Figure 15. Graphical comparison of search algorithms. Left: A∗ associates costs with centers of cells and visits only states
that correspond to grid-cell centers. Center: Field D∗ (Ferguson & Stentz, 2005) associates costs with cell corners and allows
arbitrary linear paths from cell to cell. Right: Hybrid A∗ associates a continuous state with each cell, and the score of the
cell is the cost of its associated continuous state.

Our search algorithm is guided by two heuris-
tics, called the nonholonomic-without-obstacles heuristic
and the holonomic-with-obstacles heuristic. As the name
suggests, the first heuristic ignores obstacles but takes
into account the nonholonomic nature of the car. This
heuristic, which can be completely precomputed for
the entire 4-D space (vehicle location, orientation, and
direction of motion), helps in the endgame by ap-
proaching the goal with the desired heading. The sec-
ond heuristic is a dual of the first in that it ignores
the nonholonomic nature of the car but computes the
shortest distance to the goal. It is calculated online
by performing dynamic programming in 2-D (ignor-
ing vehicle orientation and motion direction). Both
heuristics are admissible, so the maximum of the two
can be used.

Figure 16(a) illustrates A∗ planning using the
commonly used Euclidean distance heuristic. As
shown in Figure 16(b), the nonholonomic-without-

obstacles heuristic is significantly more efficient than
Euclidean distance because it takes into account ve-
hicle orientation. However, as shown in Figure 16(c),
this heuristic alone fails in situations with U-shaped
dead ends. By adding the holonomic-with-obstacles
heuristic, the resulting planner is highly efficient, as
illustrated in Figure 16(d).

Although hybrid A∗ paths are realizable by the
vehicle, the small number of discrete actions available
to the planner often leads to trajectories with rapid
changes in steering angles, which may still lead to
trajectories that require excessive steering. In a final
postprocessing stage, the path is further smoothed by
a conjugate gradient smoother that optimizes similar
criteria as hybrid A∗. This smoother modifies controls
and moves way points locally. In the optimization,
we also optimize for minimal steering wheel motion
and minimum curvature. Figure 17 shows the result
of smoothing.

Figure 16. Hybrid-state A∗ heuristics. (a) Euclidean distance in 2-D expands 21,515 nodes. (b) The nonholonomic-without-
obstacles heuristic is a significant improvement, as it expands 1,465 nodes, but as shown in (c), it can lead to wasteful
exploration of dead ends in more complex settings (68,730 nodes). (d) This is rectified by using the latter in conjunction
with the holonomic-with-obstacles heuristic (10,588 nodes).

Journal of Field Robotics DOI 10.1002/rob



586 • Journal of Field Robotics—2008

Figure 17. Path smoothing with conjugate gradient. This smoother uses a vehicle model to guarantee that the resulting
paths are attainable. The hybrid A∗ path is shown in black. The smoothed path is shown in blue (front axle) and cyan (rear
axle). The optimized path is much smoother than the hybrid A∗ path and can thus be driven faster.

The hybrid A∗ planner is used for parking
lots and also for certain traffic maneuvers, such as
U-turns. Figure 18 shows examples from the Urban
Challenge and the associated National Qualification
Event. Shown there are two successful U-turns and
one parking maneuver. The example in Figure 18(d)
is based on a simulation of a more complex parking
lot. The apparent suboptimality of the path is the re-
sult of the fact that the robot “discovers” the map as
it explores the environment, forcing it into multiple
back ups as a previously believed free path is found
to be occupied. All of those runs involve repetitive
executions of the hybrid A∗ algorithm, which take
place while the vehicle is in motion. When executed
on a single core of Junior’s computers, planning from
scratch requires up to 100 m; in the Urban Challenge,
planning was substantially faster because of the lack
of obstacles in parking lots.

6.4. Intersections and Merges

Intersections are places that require discrete choices
not covered by the basic navigation modules. For ex-
ample, at multiway intersections with stop signs, ve-
hicles may proceed through the intersection only in
the order of their arrival.

Junior keeps track of specific “critical zones” at
intersections. For multiway intersections with stop
signs, such critical zones correspond to regions near
each stop sign. If such a zone is occupied by a ve-
hicle at the time the robot arrives, Junior waits un-
til this zone has cleared (or a timeout has occurred).
Intersection critical zones are shown in Figure 19. In
merging, the critical zones correspond to segments of
roads where Junior may have to give precedence to
moving traffic. If an object is found in such a zone,
Junior uses its radars and its vehicle tracker to de-
termine the velocity of moving objects. Based on the
velocity and proximity, a threshold test then marks
the zone in question as busy, which then results in Ju-
nior waiting at a merge point. The calculation of crit-
ical zones is somewhat involved. However, all com-
putations are performed automatically based on the
RNDF and ahead of the actual vehicle operation.

Figure 20 visualizes a merging process during the
qualification event to the Urban Challenge. This test
involves merging into a busy lane with four human-
driven vehicles and across another lane with seven
human-driven cars. The robot waits until none of the
critical zones is busy and then pulls into the moving
traffic. In this example, the vehicle was able to pull
safely into 8-s gaps in two-way traffic.

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 587

(a) (b)

(c) (d)

Figure 18. Examples of trajectories generated by Junior’s hybrid A∗ planner. Trajectories in (a)–(c) were driven by Ju-
nior in the DARPA Urban Challenge: (a) and (b) show U-turns on blocked roads; (c) shows a parking task. The path in
(d) was generated in simulation for a more complex maze-like environment. Note that in all cases the robot had to replan
in response to obstacles being detected by its sensors. In particular, this explains the suboptimality of the trajectory in (d).

6.5. Behavior Hierarchy

An essential aspect of the control software is logic
that prevents the robot from getting stuck. Junior’s
stuckness detector is triggered in two ways: through
timeouts when the vehicle is waiting for an impasse
to clear and through the repeated traversal of a loca-
tion in the map—which may indicate that the vehicle
is looping indefinitely.

Figure 21 shows the finite state machine (FSM)
that is used to switch between different driving states
and that invokes exceptions to overcome stuckness.
This FSM possesses 13 states (of which 11 are shown;
2 are omitted for clarity). The individual states in this
FSM correspond to the following conditions:

• LOCATE VEHICLE: This is the initial state
of the vehicle. Before it can start driving,
the robot estimates its initial position on the
RNDF and starts road driving or parking lot
navigation, whichever is appropriate.

• FORWARD DRIVE: This state corresponds to
forward driving, lane keeping, and obstacle
avoidance. When not in a parking lot, this is
the preferred navigation state.

• STOP SIGN WAIT: This state is invoked
when the robot waits at a stop sign to handle
intersection precedence.

• CROSS INTERSECTION: Here the robot
waits until it is safe to cross an intersection
(e.g., during merging) or until the intersection

Journal of Field Robotics DOI 10.1002/rob



588 • Journal of Field Robotics—2008

(a) (b)

Figure 19. Critical zones: (a) At this four-way stop sign, busy critical zones are colored in red, whereas critical zones
without vehicles are shown in green. In this image, a vehicle can be seen driving through the intersection from the right.
(b) Critical zones for merging into an intersection.

is clear (if it is an all-way stop intersection).
The state also handles driving until Junior has
exited the intersection.

• STOP FOR CHEATERS: This state enables
Junior to wait for another car moving out of
turn at a four-way intersection.

• UTURN DRIVE: This state is invoked for a
U-turn.

• UTURN STOP: Same as UTURN DRIVE, but
here the robot is stopping in preparation for a
U-turn.

• CROSS DIVIDER: This state enables Junior to
cross the yellow line (after stopping and wait-
ing for oncoming traffic) in order to avoid a
partial road blockage.

• PARKING NAVIGATE: Normal parking lot
driving.

• TRAFFIC JAM: In this sate, the robot uses
the general-purpose hybrid A∗ planner to get
around a road blockage. The planner aims
to achieve any road point 20 m away on the
current robot trajectory. Use of the general-
purpose planner allows the robot to engage
in unrestricted motion and disregard certain
traffic rules.

• ESCAPE: This state is the same as TRAF-
FIC JAM, only more extreme. Here the robot
aims for any way point on any base trajectory
more than 20 m away. This state enables the

robot to choose a suboptimal route at an in-
tersection in order to extract itself from a jam.

• BAD RNDF: In this state, the robot uses the
hybrid A∗ planner to navigate a road that
does not match the RNDF. It triggers on one-
lane, one-way roads if CROSS DIVIDER fails.

• MISSION COMPLETE: This state is set when
race is over.

For simplicity, Figure 21 omits ESCAPE and TRAF-
FIC JAM. Nearly all states have transitions to ES-
CAPE and TRAFFIC JAM.

At the top level, the FSM transitions between the
normal driving states, such as lane keeping and park-
ing lot navigation. Transitions to lower driving lev-
els (exceptions) are initiated by the stuckness detec-
tors. Most of those transition invoke a “wait period”
before the corresponding exception behavior is in-
voked. The FSM returns to normal behavior after the
successful execution of a robotic behavior.

The FSM makes the robot robust to a number of
contingencies. For example,

• For a blocked lane, the vehicle considers
crossing into the opposite lane. If the opposite
lane is also blocked, a U-turn is initiated, the
internal RNDF is modified accordingly, and
dynamic programming is run to regenerate
the RNDF value function.

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 589

(a)

(b)

(c)

Figure 20. Merging into dense traffic during the qualification events at the Urban Challenge. (a) Photo of merging test;
(b)–(c) The merging process.

• Failure to traverse a blocked intersection is re-
solved by invoking the hybrid A∗ algorithm,
to find a path to the nearest reachable exit of
the intersection; see Figure 22 for an example.

• Failure to navigate a blocked one-way road
results in using hybrid A∗ to the next GPS
way point. This feature enables vehicles to
navigate RNDFs with sparse GPS way points.

• Repeated looping while attempting to reach
a checkpoint results in the checkpoint being
skipped, so as to not jeopardize the overall

mission. This behavior avoids infinite looping
if a checkpoint is unreachable.

• Failure to find a path in a parking lot with
hybrid A∗ causes the robot to temporarily
erase its map. Such failures may be the result
of incorrectly incorporating dynamic objects
into the static map.

• In nearly all situations, failure to make
progress for extended periods of time ulti-
mately leads to the use of hybrid A∗ to find
a path to a nearby GPS way point. When this

Journal of Field Robotics DOI 10.1002/rob



590 • Journal of Field Robotics—2008

LOCATE_VEHICLE

FORWARD_DRIVE

PARKING_NAVIGATE

STOP_SIGN_WAIT

CROSS_INTERSECTIONUTURN_DRIVE

UTURN_STOP CROSS_DIVIDER

MISSION_COMPLETE

STOP_FOR_CHEATERS

BAD_RNDF

Figure 21. FSM that governs the robot’s behavior.

(a) Blocked intersection (b) Hybrid A* (c) Successful traversal

Figure 22. Navigating a simulated traffic jam: After a timeout period, the robot resorts to hybrid A∗ to find a feasible path
across the intersection.

rare behavior is invoked, the robot does not
obey traffic rules any longer.

In the Urban Challenge event, the robot almost never
entered any of the exception states. This is largely be-
cause the race organizers repeatedly paused the robot
when it was facing traffic jams. However, extensive
experiments prior to the Urban Challenge showed
that it was quite difficult to make the robot fail to

achieve its mission, provided that the mission re-
mained achievable.

6.6. Manual RNDF Adjustment

Ahead of the Urban Challenge event, DARPA pro-
vided teams not just with an RNDF but also with a
high-resolution aerial image of the site. Whereas the
RNDF was produced by careful ground-based GPS

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 591

Figure 23. RNDF editor tool.

measurements along the course, the aerial image was
purchased from a commercial vendor and acquired
by aircraft.

To maximize the accuracy of the RNDF, the team
manually adjusted and augmented the DARPA-
provided RNDF. Figure 23 shows a screen shot of the
editor. This tool enables an editor to move, add, and
delete way points. The RNDF editor program is fast
enough to incorporate new way points in real time
(10 Hz).

The editing required 3 h of a person’s time. In
an initial phase, way points were shifted manually,
and roughly 400 new way points were added manu-
ally to the 629 lane way points in the RNDF. These
additions increased the spatial coherence of the
RNDF and the aerial image. Figure 24 shows a situ-
ation in which the addition of such way point con-
straints leads to substantial improvements of the
RNDF.

To avoid sharp turns at the transition of lin-
ear road segments, the tool provides an automated

RNDF smoothing algorithm. This algorithm upsam-
ples the RNDF at 1-m intervals and sets those so as
to maximize the smoothness of the resulting path.
The optimization of these additional points combines
a least-squares distance measure with a smoothness
measure. The resulting “smooth RNDF,” or SRNDF,
is then used instead of the original RNDF for local-
ization and navigation. Figure 25 compares the RNDF
and the SRNDF for a small fraction of the course.

7. THE URBAN CHALLENGE

7.1. Results

The Urban Challenge took place November 3, 2007,
in Victorville, California. Figure 26 shows images of
the start and the finish of the Urban Challenge. Our
robot Junior never hit an obstacle, and according to
DARPA, it broke no traffic rule. A careful analysis
of the race logs and official DARPA documentation
revealed two situations (described below) in which

Journal of Field Robotics DOI 10.1002/rob



592 • Journal of Field Robotics—2008

(a) Before editing (b) Some new constraints (c) More constraints

Figure 24. Example: Effect of adding and moving way points in the RNDF. Here the corridor is slightly altered to better
match the aerial image. The RNDF editor permits such alterations in an interactive manner and displays the results on the
base trajectory without any delay.

Figure 25. The SRNDF creator produces a smooth base trajectory automatically by minimizing a set of nonlinear quadratic
constraints. The original RNDF is shown in blue. The SRNDF is shown in green.

Junior behaved suboptimally. However, all of those
events were deemed rule conforming by the race
organizers. Overall, Junior’s localization and road-
following behaviors were essentially flawless. The

robot never came close to hitting a curb or crossing
into opposing traffic.

The event was organized in three missions, which
differed in length and complexity (Figure 27). Our

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 593

Figure 26. The start and the finish of the Urban Challenge. Junior arrives at the finish line.

robot accomplished all three missions in 4 h, 5 min,
and 6 s of run time. During this time, the robot trav-
eled a total of 55.96 miles, or 90.068 km. Its aver-

age speed while in run mode was thus 13.7 mph.
This is slower than the average speed in the 2005
Grand Challenge (Montemerlo et al., 2006; Urmson

Figure 27. Junior mission times during the Urban Challenge. Times marked green correspond to local pauses, and times
in red to all pauses, in which all vehicles were paused.

Journal of Field Robotics DOI 10.1002/rob



594 • Journal of Field Robotics—2008

et al., 2004), but most of the slowdown was caused
by speed limits, traffic regulations (e.g., stop signs),
and other traffic. The total time from the start to the
final arrival was 5 h, 23 min, and 2 s, which includes
all pause times. Thus, Junior was paused for a to-
tal of 1 h, 17 min, and 56 s. None of those pauses
was caused by Junior or requested by our team. An
estimated 26 min and 27 s were “local” pauses, in
which Junior was paused by the organizers because
other vehicles were stuck. Our robot was paused six
times because other robots encountered problems on
the off-road section or were involved in an accident.
The longest local pause (10 min, 15 s) occurred when
Junior had to wait behind a two-robot accident. Be-
cause of DARPA’s decision to pause robots, Junior
could not exercise its hybrid A∗ planner in these
situations. DARPA determined Junior’s adjusted to-
tal time to be 4 h, 29 min, and 28 s. Junior was
judged to be the second-fastest-finishing robot in this
event.

7.2. Notable Race Events

Figure 28 shows scans of other robots encountered in
the race. Overall, DARPA officials estimate that Ju-
nior faced approximately 200 other vehicles during
the race. The large number of robot–robot encounters
was a unique feature of the Urban Challenge.

There were several notable encounters during the
race in which Junior exhibited particularly intelligent
driving behavior, as well as two incidents when Ju-
nior made clearly suboptimal decisions (neither of
which violated any traffic rules).

7.2.1. Hybrid A∗ on the Dirt Road

Whereas the majority of the course was paved, urban
terrain, the robots were required to traverse a short

off-road section connecting the urban road network
to a 30-mph highway section. The off-road terrain
was a graded dirt path with a nontrivial elevation
change, reminiscent of the 2005 DARPA Grand Chal-
lenge course. This section caused problems for sev-
eral of the robots in the competition. Junior traveled
down the dirt road during the first mission, immedi-
ately behind another robot and its chase car. Whereas
Junior had no difficulty following the dirt road, the
robot in front of Junior stopped three times for ex-
tended periods. In response to the first stop, Junior
also stopped and waited behind the robot and its
chase car. After seeing no movement for a period of
time, Junior activated several of its recovery behav-
iors. First, Junior considered CROSS DIVIDER, a pre-
set passing maneuver to the left of the two stopped
cars. There was not sufficient space to fit between the
cars and the berm on the side of the road, so Junior
then switched to the BAD RNDF behavior, in which
the hybrid A∗ planner is used to plan an arbitrary
path to the next DARPA way point. Unfortunately,
there was not enough space to get around the cars
even with the general path planner. Junior repeat-
edly repositioned himself on the road in an attempt
to find a free path to the next way point, until the cars
started moving again. Junior repeated this behavior
when the preceding robot stopped a second time but
was paused by DARPA until the first robot recovered.
Figure 29(a) shows data and a CROSS DIVIDER path
around the preceding vehicle on the dirt road.

7.2.2. Passing Disabled Robot

The course included several free-form navigation
zones where the robots were required to navigate
around arbitrary obstacles and park in parking spots.
As Junior approached one of these zones during the
first mission, it encountered another robot, which

UMCTIMTSVIhceTainigriV

Figure 28. Scans of other robots encountered in the race.

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 595

(a) Navigating a blocked dirt road (b) Passing a disabled robot at parking lot entrance

(c) Nudge to avoid an oncoming robot (d) Slowing down after being cut off by other robot

(e) An overly aggressive merge into moving traffic (f) Pulling alongside a car at a stop sign

Figure 29. Key moments in the Urban Challenge race.

had become disabled at the entrance to the zone. Ju-
nior queued up behind the robot, waiting for it to
enter the zone. After the robot did not move for a
given amount of time, Junior passed it slowly on the
left using the CROSS DIVIDER behavior. Once Junior
had cleared the disabled vehicle, the hybrid A∗ plan-
ner was enabled to navigate successfully through the
zone. Figure 29(b) shows this passing maneuver.

7.2.3. Avoiding Opposing Traffic

During the first mission, Junior was traveling down a
two-way road and encountered another robot in the
opposing lane of traffic. The other robot was driv-
ing such that its left wheels were approximately 1 ft
over the yellow line, protruding into oncoming traf-
fic. Junior sensed the oncoming vehicle and quickly
nudged the right side of its lane, where it then passed

Journal of Field Robotics DOI 10.1002/rob



596 • Journal of Field Robotics—2008

at full speed without incident. This situation is de-
picted in Figure 29(c).

7.2.4. Reacting to an Aggressive Merge

During the third mission, Junior was traveling
around a large traffic circle that featured prominently
in the competition. Another robot was stopped at a
stop sign waiting to enter the traffic circle. The other
robot pulled out aggressively in front of Junior, who
was traveling approximately 15 mph at the time. Ju-
nior braked hard to slow down for the other robot
and continued with its mission. Figure 29(d) depicts
the situation during this merge.

7.2.5. Junior Merges Aggressively

Junior merged into moving traffic successfully on nu-
merous occasions during the race. On one occasion
during the first mission, however, Junior turned left
from a stop sign in front of a robot that was moving at
20 mph with an uncomfortably small gap. Data from
this merge are shown in Figure 29(e). The merge was
aggressive enough that the chase car drivers paused
the other vehicle. Later analysis revealed that Junior
saw the oncoming vehicle, yet believed there was
a sufficient distance to merge safely. Our team had
previously lowered merging distance thresholds to
compensate for overly conservative behavior during
the qualification event. In retrospect, these thresholds
were set too low for higher speed merging situations.
Although this merge was definitely suboptimal be-
havior, it was later judged by DARPA not to be a vio-
lation of the rules.

7.2.6. Pulling Alongside a Waiting Car

During the second mission, Junior pulled up behind a
robot waiting at a stop sign. The lane was quite wide,
and the other robot was offset toward the right side
of the lane. Junior, on the other hand, was traveling
down the left side of the lane. When pulling forward,
Junior did not register the other car as being inside
the lane of travel and thus began to pull alongside
the car waiting at the stop sign. As Junior tried to
pass, the other car pulled forward from the stop sign
and left the area. This incident highlights how diffi-
cult it can be for a robot to distinguish between a car
stopped at a stop sign and a car parked on the side of
the road. See Figure 29(f).

8. DISCUSSION

This paper described a robot designed for urban driv-
ing. Stanford’s robot Junior integrates a number of
recent innovations in mobile robotics, such as proba-
bilistic localization, mapping, tracking, global and lo-
cal planning, and an FSM for making the robot robust
to unexpected situations. The results of the Urban
Challenge, along with prior experiments carried out
by the research team, suggest that the robot is capable
of navigating in other robotic and human traffic. The
robot successfully demonstrated merging, intersec-
tion handling, parking lot navigation, lane changes,
and autonomous U-turns.

The approach presented here features a number
of innovations, which are well grounded in past re-
search on autonomous driving and mobile robotics.
These innovations include the obstacle/curb detec-
tion method, the vehicle tracker, the various motion
planners, and the behavioral hierarchy that addresses
a broad range of traffic situations. Together, these
methods provide for a robust system for urban in-
traffic autonomous navigation.

Still, a number of advances are required for truly
autonomous urban driving. The present robot is un-
able to handle traffic lights. No experiments have
been performed with a more diverse set of traffic
participants, such as bicycles and pedestrians. Fi-
nally, DARPA frequently paused robots in the Ur-
ban Challenge to clear up traffic jams. In real urban
traffic, such interventions are not realistic. It is un-
clear whether the present robot (or other robots in
this event!) would have acted sensibly in lasting traf-
fic congestion.

REFERENCES

Buehler, M., Iagnemma, K., & Singh, S. (Eds.). (2006). The
2005 DARPA Grand Challenge: The great robot race.
Berlin: Springer.

DARPA. (2007). Urban Challenge rules, revision Oct. 27,
2007. See www.darpa.mil/grandchallenge/rules.asp.

Ferguson, D., & Stentz, A. (2005). Field D∗: An
interpolation-based path planner and replanner.
In Robotics search: Results of the 12th International
Symposium (ISRR’05), San Francisco, CA, edited by
S. Thrun, R. Brooks, & H. Durrant-Whyte (pp. 239–
253). Berlin: Springer.

Howard, R. A. (1960). Dynamic programming and Markov
processes. New York: Wiley, and Cambridge, MA: MIT
Press.

Jazwinsky, A. (1970). Stochastic processes and filtering
theory. New York: Academic.

Journal of Field Robotics DOI 10.1002/rob



Montemerlo et al.: Junior: The Stanford Entry in the Urban Challenge • 597

Montemerlo, M., Thrun, S., Dahlkamp, H., Stavens, D.,
& Strohband, S. (2006). Winning the DARPA Grand
Challenge with an AI robot. In Proceedings of the
AAAI National Conference on Artificial Intelligence,
Boston, MA. AAAI.

Moravec, H. P. (1988). Sensor fusion in certainty grids for
mobile robots. AI Magazine, 9(2), 61–74.

Simmons, R., & Apfelbaum, D. (1998). A task description
language for robot control. In Proceedings of the Con-
ference on Intelligent Robotics and Systems (IROS),
Victoria, CA.

Urmson, C., Anhalt, J., Clark, M., Galatali, T., Gonzalez,
J., Gowdy, J., Gutierrez, A., Harbaugh, S., Johnson-
Roberson, M., Kato, H., Koon, P., Peterson, K., Smith,
B., Spiker, S., Tryzelaar, E., & Whittaker, W. (2004).
High speed navigation of unrehearsed terrain: Red
Team technology for the Grand Challenge 2004 (Tech.
Rep. CMU-RI-TR-04-37). Pittsburgh, PA: Robotics
Institute, Carnegie Mellon University.

U.S. Department of Transportation (2005). Transportation
statistics annual report. Bureau of Transportation
Statistics, U.S. Department of Transportation.

Journal of Field Robotics DOI 10.1002/rob


