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The depth to which Jupiter’s observed east-west jet-streams extend has been a long-standing18

question1, 2. Resolving this puzzle has been a primary goal of NASA’s Juno mission to Jupiter3, 4,19

which has been in orbit around the gas giant since July 2016. Juno’s gravitational measure-20
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ments have revealed that Jupiter’s gravitational field is north-south asymmetric5, which is21

a signature of atmospheric and interior flows within the planet6. Here we report that the22

measured gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet-streams,23

as they appear at the cloud-level, extend down to depths of thousands of kilometers beneath24

the cloud-level, likely to the region of magnetic dissipation at a depth of about 3000 km7, 8.25

Inverting the measured gravity values into a wind field9, we provide the most likely verti-26

cal profile of the deep atmospheric and interior flow, and the latitudinal dependence of its27

depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile28

match the measurement as well, when taking into account the contribution of the interior29

structure10. These results indicate that the mass of the dynamical atmosphere is about one30

percent of Jupiter’s total mass.31

The Juno gravity measurements to date have improved the accuracy of the known gravity32

harmonics J2, J4, J6 and J8 by more than two orders of magnitude5, 12. These low-degree even33

gravity harmonics are mostly affected by Jupiter’s interior density structure and its shape13, and34

therefore, although the signal from these harmonics may contain a contribution from the flow35

(∆Jn)14, it is difficult to use these harmonics to directly infer information about the flows. The36

gravity measurements also revealed north-south asymmetries in the gravity field of Jupiter5, result-37

ing in considerable values of the odd gravity harmonics J3, J5, J7 and J9 (see Table 1). Since a38

gas planet rotating as a solid-body has no asymmetry between north and south, any non-zero value39

of the odd Jn must come from dynamics6. As the observed cloud-level flow is not hemispherically40

symmetric (Fig. 1), if enough mass is involved in the asymmetric component of the flow, this will41
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manifest large odd Jn. At present, the gravity harmonics beyond J10 are still beneath the level of42

the measurement uncertainty5, and because the low-degree even Jn are dominated by solid-body43

rotation, the only current measurements that can be uniquely related to the dynamics are the low-44

degree odd harmonics J3 to J9. Therefore, in the current study, we use only those to infer the depth45

of the cloud-level winds.46

Since Jupiter is rotating at a short period of 9.92 hours, the flow within the planet to lead-47

ing order is in geostrophic balance, meaning the momentum budget is dominated by the balance48

between the Coriolis force and the horizontal pressure gradients. As a consequence, the flow to49

leading order is in thermal wind balance, namely,50

2Ω · ∇ (ρsu) = ∇ρ′×g, (1)

where Ω is the rotation rate of the planet, u is the velocity field, ρs and ρ′ are the static and dy-51

namic components of density, respectively, and g is the gravity obtained by integrating ρs (see52

Methods)15 . Non-spherical effects can play a role in this balance (e.g., the deviation of g from53

radial symmetry)16, 17; however, it has been shown that to leading order Eq. (1) captures well the54

dynamical balance17, 18 (Fig. ED1). As the gravity harmonics induced by the flow are directly re-55

lated to ρ′, this enables to relate the flow field and the gravity spectrum. Thus, given the measured56

gravitational field, inversion of Eq. (1) allows to infer the flow profile that best matches the mea-57

surement. For this inversion we use an optimization based on the adjoint method9 (see Methods).58

The relation between the odd gravity harmonics and the flow is shown in Fig. 2 for a simple59

model6 where the depth of the cloud-level wind is parametrized with a single decay parameter,60
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H . In this scenario, the interior flow is an extension of the cloud-level flow, along the direction61

of the spin axis due to angular momentum constraints (see below)15, 19, but decays exponentially62

in radius with H being the e-folding decay depth6, 20. The Juno measured values (Fig. 2, dashed),63

show that for all four harmonics, independently, the theoretical values capture the correct sign of64

the measured harmonics and indicate that the e-folding decay depth of the flow is between 100065

and 3000 km (Fig. 2, gray shading). Inverting the gravity field9, taking into consideration the66

uncertainties of each of the measured harmonics and their cross-correlated uncertainties (the error67

covariance matrix, see Methods), gives an e-folding decay depth of ∼ 1500 km. Note however68

that the measured value of J5 deviates by about a factor of two from the corresponding theoretical69

value of a single parameter deep wind profile, suggesting that a more elaborate vertical flow profile70

than the simple exponential decay is needed in order to match the data.71

Given that the measurements provide four non-zero odd gravity harmonics, indeed a more72

complex optimization of the vertical and meridional flow profile is feasible. Motivated by the73

Galileo probe measurement of a relatively constant wind profile between 4 and 22 bars21, and74

magnetohydrodynamic theory suggesting that Ohmic dissipation will cause a more abrupt decay75

of the flow at depth7, 8, 22, 23 we add in addition to the exponential decay function used in the first76

estimation (Fig. 2), a vertical decay profile expressed as a hyperbolic tangent function and a free77

parameter, α, representing the ratio between the two functions. This allows for a much wider range78

of vertical decay profiles, with three free parameters defining the vertical profile of the flow: the79

depth H representing the inflection point of the tanh function, ∆H representing the decay width80

of the tanh function and the ratio α between the tanh and an exponential decay with the same81
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decay depth H . Using these three parameters as control parameters in the inverse adjoint model,82

the optimization process (Fig. 3) minimizes a cost-function taking into account the uncertain-83

ties in the gravity measurements, including the error covariance between the different harmonics84

(Methods)9, 24.85

Beginning with an assumed vertical decay profile as an initial condition (Fig. 3a, dashed line,86

and black squares in Fig. 3b,c), the optimization iteratively minimizes the cost-function reaching87

a unique global minimum in the three dimensional parameter space of H , ∆H and α (red dot,88

Fig. 3b,c). The best optimized solution, defining a particular vertical profile of the zonal flow (red89

line, Fig. 3a), is achieved with H = 1803± 351 km, ∆H = 1570± 422 km and α = 0.92± 0.26,90

where the error is calculated by the optimization process (see Methods), indicating a very deep91

flow profile containing a significant mass. Note that the minimum of the cost-function for ∆H92

is rather flat towards lower ∆H (Fig. 3b), indicating that a flow profile with a much more abrupt93

decay at depth is compatible with the measured Jn. Integrating the density profile ρs down to94

where the flow decreases significantly (∼ 3000 km) reveals that this region contains about 1%95

of Jupiter’s mass (the mass dependence on depth is shown in Fig. ED2). This large mass of the96

dynamical atmosphere (the region that is differentially rotating) is consistent with the observed97

jets’ persistence over the past several decades2. In a companion paper we show, based on the even98

harmonics, that beneath this dynamical atmosphere, in Jupiter’s deep interior, there is likely very99

little flow10. In terms of angular momentum, the angular momentum of this flow is 2 × 10−5 that100

of the solid-body planet.101
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The solution shown in Fig. 3a (red line) implies that the meridional profile of the flow at depth102

is strongly correlated to the cloud-level flow. To test the statistical significance of this solution we103

generate a large set of synthetic latitudinal wind profiles (Fig. ED3), by expanding the observed104

flow up to high degree Legendre polynomials and summing them back up while assigning random105

signs to the expansion coefficients. We find that the solution using the observed cloud-level wind106

profile (Fig. ED4, black) is one of the closest solutions to the measurements (Fig. ED4, red) and107

only a small subset of the random flow profiles (less than 1%) give a lower cost-function value108

(Fig. ED4, green). This shows that it is statistically improbable that the meridional profile of109

the flow changes with depth, or that the solution was found by chance (see further discussion in110

Methods).111

Considering the angular momentum budget is helpful for developing a mechanistic under-112

standing of these deep dynamics. Modeling studies have suggested19, 22, that the leading order113

angular momentum balance is u · ∇M = D − S, where u is the mass averaged velocity, D is114

the drag due to the Lorentz force at depth and S = 1

ρ
∇ ·

(

ρu′M ′

)

is the eddy angular momen-115

tum flux divergence, with the bar indicating a zonal and time mean. At the observed cloud-level116

the eastward (westward) jets are correlated with regions of eddy momentum flux convergence (di-117

vergence), i.e., where S is negative (positive)22, 25. Below that, where the eddy momentum flux118

convergence is expected to become weak25, i.e., u · ∇M ≈ 0, the flow is along angular momen-119

tum surfaces, which on Jupiter are almost entirely parallel to the axis of rotation15, 19, 26. Then,120

in the deep region, where the fluid becomes electrically conducting (mainly due to pressure ion-121

ization) and the Lorentz force may become important (depending on the magnetic field structure)122
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the leading order balance is u · ∇M = D and the circulation closes. Kinematic dynamo models,123

calculating the magnetic drag at depth based on the radially varying electric conductivity inside124

Jupiter, find that the depth where the Lorentz drag (D) becomes important is ∼ 3000 km7, 8. Thus,125

the theoretical magnetic field considerations and the gravity measurements, which are completely126

independent, give very consistent results.127

Three-dimensional hydrodynamic models of Jupiter, driven by shallow atmospheric turbulence22, 27
128

or deep internal convection15, have found that the low latitudes are often more barotropic than high129

latitudes. Thus, an additional complexity that can be added to the optimization is allowing the de-130

cay depth (H) to vary with latitude. In order to limit the number of optimized parameters the decay131

depth is expanded in Legendre polynomials to second order, increasing the number of optimized132

parameters to four (see Methods). Similar to the case of a latitudinally independent verical profile133

(Fig. 3), in this case the optimized vertical decay profile is rather barotropic at lower depths and ex-134

tends very deep (Fig. 4a). The optimization uncertainty is shown graphically by the blue shading,135

with the values for the profile at the equator are given in the caption. At higher latitudes, the verti-136

cal decay occurs at shallower depths, and the associated uncertainty grows to ∼ 500 km (Fig. 4b).137

The values of Jn corresponding to the solutions of Figs. 3 and 4 appear in Table 1. Note that138

with more free parameters than used in these optimizations, closer matches to the measurements139

can be reached. However, the power of these solutions is that they are based on relatively simple140

extensions of the cloud-level flow, giving results remarkably close to all four independent gravity141

measurements, and regardless of the exact vertical profile indicate that the observed cloud-level142

flows extend to depths of thousands of kilometers.143
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The flow profile determined by the odd harmonics has also a signature in the even harmonics.144

Due to the uncertainty in the bulk interior density structure of Jupiter10, 28, there is a wide range145

of solutions for the static gravity harmonics (Js

n
) for the lowest harmonics14, 28, which does not146

allow testing uniquely whether the ∆Jn from the even harmonics matches the measured values via147

∆Jn = Jn−Js

n
. However, for J8 and J10 the interior models are very constraining10, giving values148

between −245.7×10−8 and −246.3×10−8 for Js

8
, and between 20.1×10−8 and 20.4×10−8 for Js

10
149

(for interior models that match also J4 and J6). The measured Juno values are J8 = −242.6±0.8×150

10−8 and J10 = 17.2± 2.3× 10−8, meaning that a positive (negative) correction by the dynamics151

is needed in order to match the measurements for J8 (J10). The values corresponding to the flow152

profiles presented in Figs. 3 and 4 (Table ED1) are indeed such that for both cases, and for both153

J8 and J10, the dynamical corrections can reconcile the differences between the measurements and154

the internal models, further confirming that the inferred flow profile presented here matches the155

measurements from Juno. In a companion paper it is shown that using the range of current interior156

models gives further constraints on possible deeper interior flow10.157

Juno’s gravity measurements are consistent with Juno’s microwave radiometer measurements158

indicating a north-south asymmetry in the sub cloud-level atmospheric composition, and a di-159

rect signature of the main equatorial belt to the maximum depth of the microwave sensitivity at160

∼ 1000 bars12, 29. With more Juno orbits the microwave measurements4, 30 will obtain greater and161

improved thermal mapping of the deep atmosphere, which will better constrain the water and am-162

monia abundances as well as the atmospheric flows at those levels. As the Juno mission completes163

its global mapping of Jupiter, the combination of the gravity, magnetic and microwave data may164
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provide further insights into the coupling between Jupiter’s deep interior and atmospheric flows.165
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Figure 1: Jupiter’s asymmetric zonal velocity field. a. An image of Jupiter taken by the Hubble

wide field camera in 2014, with the cloud-level zonal flows (thick black line) as function of latitude

as measured during Juno’s 3rd perijove of Jupiter on December 11th 201611. Grid latitudes are as

in panel (b) and the longitudinal spread is 45◦. Zonal flow scale is the same as the longitudinal grid

on the sphere. b. The asymmetric component of the flow is taken as the difference between the

northern and southern hemisphere cloud-level flows.
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Figure 2: The odd gravity harmonics as function of a single e-folding decay depth parameter

H . Theoretical predicted values6 (soild) and the Juno measured values5 (dashed, corresponding to

the values in Table 1) for J3 (red), J5 (blue), J7 (magenta) and J9 (orange) are shown as function

of H . All four gravity harmonic measurements, independently, indicate the e-folding depth of the

flow is 1000-3000 km (gray shading). All four odd harmonics are small if the flows are shallow,

and become large for deeper flows that contain more mass. The change in sign at different decay

depths depends on the way the flow pattern projects onto the different Legendre polynomials.
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Figure 3: Jupiter’s optimized vertical wind profile. a. The vertical profile of the flow from the

optimization process, beginning with an initial profile (dashed), which evolves along the optimiza-

tion process (from light to dark shades of gray) leading to the best optimized vertical profile (red),

with the parameters: H = 1803± 351 km, ∆H = 1570± 422 km and α = 0.92± 0.26 (Eq. M13

in Methods). Abscissa shows both the depth (bottom) and pressure (top) beneath the 1 bar level.

b. The cost-function in the plane of H and ∆H showing a robust minimum at H = 1803 km and

∆H = 1570 km (red dot). c. The cost-function in the plane of H and α showing a minimum at

H = 1803 km and α = 0.92 (red dot). In both panels b and c the gray shaded dots correspond to

the gray shaded curves in panel a. Cost-function values in the color-bar are divided by 1000 (see

calculation in Methods). A statistical significance test for the latitudinal dependence of the flow

profile appears in Figs. ED4 and ED5 (Methods).
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Figure 4: Jupiter’s optimized vertical wind profile when allowing for its latitudinal variation.

a. The vertical profile of the flow at the equator from the optimization process (blue line) and its

uncertainty (blue shading). Best optimized values at the equator are H = 2379 ± 142, ∆H =

819 ± 437 and α = 0.62 ± 0.09. Abscissa shows both the depth (bottom) and pressure (top)

beneath the 1 bar level. b. The variation of the inflection point (as shown in panel a) with latitude

(blue line) and its uncertainty (blue shading). Details of the latitudinal dependence of H and its

functional form are given in Methods (Eq. M13). c. The Juno measurement of the asymmetric

gravity field (for J3 − J9) as function of latitude and the corresponding values from the best-fit

solution (panels a and b), showing a good match between the measurement and the optimized

solution (see calculation in Methods).

17



×10−8 Measured Model without

latitudinal variation

Model with

latitudinal variation

J3 −4.24±0.97 −5.71±1.67 −5.96±2.33

J5 −6.89±0.81 −7.73±0.41 −8.00±0.43

J7 12.39±1.68 12.77±0.54 12.04±0.70

J9 −10.58±4.35 −8.84±0.42 −9.71±0.72

e

signature

b

of

harmonics

the

Table 1: The Juno measured and model odd gravity harmonics. Model results are

shown for both optimizations with and without variation of flow depth with latitude. The

uncertainty is the 3σ uncertainty values. The model uncertainty is calculated by the opti-

mization procedure (Methods). For the middle (right) column the Jn values correspond to

the parameter values given in the caption of Fig. 3 (Fig. 4).
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Methods1

Calculation of the dynamical gravity harmonics. The gravity harmonics (Jn) are defined as a weighted2

integral over the interior density distribution Jn = −(Man)−1
´

Pnρrnd3r, where M is the planetary mass, a3

is the equatorial radius, Pn is the n-th Legendre polynomial, ρ is the local density and r is the local radius31.4

On planets with internal dynamics, the density is perturbed by the flow so that the total density in Jn can be5

written as ρ = ρs +ρ ′, where the density ρs is the hydrostatic density resulting from the background rotation6

and internal density distribution32,33,34,28,35, and ρ ′ are the density fluctuations arising from atmospheric and7

internal dynamics20. The gravity harmonics can be similarly decomposed into two parts Jn = Js
n +∆Jn, where8

the static component (Js
n) is due to the planet’s internal density distribution and shape13,36, and the dynamical9

component (∆Jn) is due to the density deviations related to the flow20.10

In order to develop the relation between the flow on Jupiter and the gravity field measured by Juno, we11

consider the full momentum balance on a rotating planet12

∂u

∂ t
+(u ·∇)u+2Ω×u+Ω×Ω×r = −

1

ρ
∇p+∇Φ, (M1)

where u is the 3D flow vector, Ω is the planetary rotation rate (1.76×10−4 s−1), ρ is density, p is pressure and13

Φ is the body force potential set by gravity so that ∇Φ =−g37. The first term on the left hand side is the local14

acceleration of the flow, the second is the Eulerian advection, the third is the Coriolis acceleration, and the15

fourth is the centrifugal acceleration. On the right hand side appear the pressure gradient and the body force.16

Frictional forces are neglected. For Jupiter parameters, and large scale motion, the Rossby number is small17

Ro ≡U/ΩL ≈ 0.05, where U is the typical value of the velocity O(100 m s−1 ), and L is the typical jet scale18

O(104 km). The small Rossby number implies that the first two terms are negligible compared to the Coriolis19

term, so that20

2Ω×(ρu) = −∇p−ρg−ρΩ×Ω×r. (M2)

Since for Jupiter parameters the ratio between the two latter terms on the right hand side of Eq. (M2), is21

aΩ2

g
≈ 0.1, and not two orders of magnitude smaller as it is for Earth parameters, we do not appriori make the22

traditional approximation merging the centrifugal force with the gravity term38, but solve for the full system,23

allowing the density, pressure and gravity to be functions of radius (r) and latitude (θ ). We separate the24
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solution to a static solution in which u = 0, and ρs (r,θ), ps (r,θ), and gs (r,θ) are solutions to the leading25

order equation26

0 = −∇ps −ρsgs −ρsΩ×Ω×r, (M3)

and a deviation due to the dynamics ρ ′ (r,θ), p′ (r,θ), and g′ (r,θ), where ρ = ρs + ρ ′, p = ps + p′ and27

g = gs+g′. For the static part of the solution we use solutions from internal models39,28. Subtracting Eq. (M3)28

from Eq. (M2) gives the leading order dynamical equation29

2Ω× (ρsu) = −∇p′−ρsg
′−ρ ′gs −ρ ′Ω×Ω×r. (M4)

Taking the curl of Eq. M4, eliminating the dependence on pressure, yields a single equation in the az-30

imuthal direction31

−2Ωr∂z (ρsu) = −rg
(θ)
s

∂ρ ′

∂ r
−g

(r)
s

∂ρ ′

∂θ
+ r

∂ρs

∂ r
g′(θ)−g′(r)

∂ρs

∂θ
−Ω2r

[

∂ρ ′

∂θ
cos2 θ +

∂ρ ′

∂ r
r cosθ sinθ

]

,(M5)

where u is the velocity component in the azimuthal direction, and the notation ∂z ≡ cosθ 1
r

∂
∂θ +sinθ ∂

∂ r
denotes32

the derivative along the direction of the axis of rotation. Note that this is an integro-differential equation since33

both the gravity gs and g′, are calculated by integrating ρs and ρ ′, respectively. Although this equation can34

be solved numerically18, it is very difficult to solve at the required resolution and the approximation below is35

sufficient for relating the flow field and the gravity harmonics18.36

A typical solution to Eq. M5, corresponding to the flow field in Fig. 3 in the main text, is given in Fig. ED1.37

It shows that the leading order balance is between the left hand side term and the second term on the right hand38

side of Eq. M5. All other terms are at least an order of magnitude smaller, and have a very small contribution39

to the gravitational harmonics18. Thus, taking g = gs (r) in Eq. M4 and neglecting the centrifugal term gives40

the leading order solution. Taking the curl of Eq. M4 gives then the leading order equation41

2Ω ·∇(ρsu) = ∇ρ ′×g, (M6)

which is Eq. 1 in the main text, and is a form of the thermal wind equation15,20. Note that if a higher correction42

is desired, all terms in Eq. M5 must be maintained since the smaller terms in Eq. M5 partially cancel each43

other (Fig. ED1). Approximations not maintaining all these terms would be invalid16.44
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The zonal component of Eq. M6 is then45

2Ωr∂z (ρsu) = g
(r)
s

∂ρ ′

∂θ
, (M7)

which can be integrated to find a solution for the dynamical part of the density given by46

ρ ′(r,θ) = 2Ωr
gs

ˆ θ

∂z

(

ρs(r)u(r,θ
′)
)

dθ ′+ρ ′
0(r), (M8)

where ρ ′
0(r) is an unknown integration function that depends only on radius. Although the density ρ ′ can not47

be determined uniquely due to the unknown ρ ′
0 (r), the gravity harmonics due to dynamics48

∆Jn =−
2π

Man

π/2
ˆ

−π/2

cosθdθ

a
ˆ

0

rn+2Pn (sinθ)ρ ′ (r,θ)dr, (M9)

can be determined uniquely since49

π/2
ˆ

−π/2

cosθdθ

a
ˆ

0

rn+2Pn (sinθ)ρ ′
0 (r)dr = 0. (M10)

To avoid integrating over discontinuities at the equator the integration is performed from the equator poleward50

in both hemispheres separately40. Therefore, given any flow profile, the anomalous density gradient can51

be determined to leading order (Eq. M8) and the resulting dynamical gravity harmonics can be calculated52

(Eq. M9). Note that the sphericity assumption leaves the choice of using the equatorial radius or the mean53

radius. For consistency with the standard normalization41,5 of Jn we use the equatorial radius, but repeating54

the calculation with the mean radius gives results within one percent of those presented here.55

56

Calculation of the gravity anomaly. Equivalent to the gravity harmonics is the physical gravity anomaly57

(Fig. 4c), which emphasizes the nature of the solution as function of latitude20. The gravity anomaly in the58

radial direction on the surface of a planet that results from the asymmetric flow is given by59

∆gr(θ) = −
GM

a2 ∑
n

(n+1)∆JnPn (sinθ) , (M11)

with n = 3,5,7,9. In Fig. 4c in the main text we show a comparison between the measured5 and the calculated60

21



gravity anomalies. The better match at low latitudes is a result of the measurements having smaller uncertain-61

ties at low latitudes due to the trajectory of the spacecraft being at periapses near Jupiter’s lower latitudes62

during the initial phase of the Juno mission12,41.63

64

Setup of the flow structure. Knowledge of the flow field of Jupiter to date comes almost completely65

from cloud tracking42,11. We use this flow field as an upper boundary, and extend the flow into the interior by66

optimizing the general functions below. Angular momentum constraints require that the flow into the interior67

follows angular momentum surfaces26,15,19 (see discussion in the main text), which on Jupiter are nearly68

parallel to the direction of the axis of rotation. Magnetic drag7 and the compressibility of the fluid15 require69

that the flow decays at some depth, and therefore we use a flow field with the following general structure70

u(r,θ) = ucyl(s)Q(r), (M12)

where ucyl(s) is the cloud-level azimuthal wind projected downward along the direction of the axis of rotation,71

and s = r cos(θ) is the distance from the axis of rotation. Q(r) is the radial decay function we optimize, given72

by73

Q(r) = (1−α)exp

(

r−a

H(θ)

)

+α





tanh
(

−a−H(θ)−r

∆H

)

+1

tanh
(

H(θ)
∆H

)

+1



 , (M13)

where a is the planetary radius, α is the contribution ratio between an exponential and a normalized hyperbolic74

tangent function and ∆H is the width of the hyperbolic tangent. We take a hierarchal approach using this profile75

at several levels of complexity. First, setting α = 0, the flow is parameterized as a simple exponential decay,76

with H being independent of latitude, as has been done in many previous studies20,6,43,44,10. Then, allowing77

0 < α < 1, the flow is parameterized (Fig. 3 of the main text), with three free parameters, α , H and ∆H as78

they appear in Eq. M13, but still keeping H as a single number. As a final step (Fig. 4 of the main text), H is79

allowed to vary as a function of latitude and defined as80

H (θ) = H0 +H2P2(sinθ), (M14)

where H0 is the single latitude independent depth used in the first and second setups, and H2 is the additional81

parameter used to set the amplitude of the latitude dependent second Legendre polynomial function P2. For82
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the optimization shown in Fig. 4 in the main text the values are H0 = 1619±150 and H2 =−1519±459. Note83

that the hyperbolic function is normalized by its value at the surface of the planet to assure that the surface84

flow has the value of the measured cloud-level wind. Expansion of H (θ) to higher harmonics is possible, but85

additional optimized parameters increase the solution uncertainty (see below), and therefore we restrict this86

expansion only to second order.87

88

The Optimization procedure. The methodology described here is similar to that used in Galanti and89

Kaspi (2017)24. We find the values of a set of control variables that bring the model solution for the gravity90

harmonics to be as close as possible to the measured gravity harmonics. The number of optimized control91

variables in the three setups varies between one and four parameters as discussed above. The measure for92

the desired proximity of the model solution to the measurements (a cost-function) takes into account our93

knowledge regarding the observational errors. The optimization procedure provides an efficient way to reach94

the global minimum of the cost-function.95

Since α has different units than H and ∆H, the problem is best conditioned when the total control vector96

is composed from the different parameters normalized by their typical values. We define the general control97

vector as98

−→
XC = {H0/hnor,∆H/hnor,α/αnor,H2/hnor} , (M15)

where hnor = 107 m and αnor = 1. In the optimization procedure, the values of the normalized control variables99

H0/hnor,α/αnor, and∆H/hnor are limited to the range of 0 to 1, and the value of H2/hnor between -1 and 1.100

The cost-function is defined as the weighted difference between the model calculated odd harmonics and101

those measured by Juno. Together with an additional penalty term to ensure that initial guess does not affect102

the solution, the cost-function is103

L = (Jm −Jo)T
W(Jm −Jo)+ εXT

CXC, (M16)

where Jm =
{

Jm
3 ,Jm

5 ,Jm
7 ,Jm

9

}

is the calculated model solution , Jo =
{

Jo
3 ,J

o
5 ,J

o
7 ,J

o
9

}

is the measured one,104

and W is 4× 4 weight matrix (Table ED2) calculated as the inverse of the covariance matrix multiplied by105

9 (equivalent to 3 times the uncertainties). The diagonal terms give the weight assigned to each harmonic106

independently, and the off-diagonal terms give the weights resulting for the cross correlation of the measure-107
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ment errors. The larger the value, the more weight is given in the cost-function. For example, looking at the108

diagonal terms, the largest weight is given to J5 and the smallest one to J9. Importantly, the off diagonal terms109

have values that are as large as the diagonal terms, i.e., there is a strong correlation between the measurement110

errors, and therefore we demand that the discrepancy between the model harmonics and the measured ones111

will also be cross correlated in the same manner. The second term in Eq. M16 acts as a penalty term (also112

known as ’regularization’) whose purpose in this case is to ensure that the optimized solution is not affected113

by the initial guess, or any part of the control vector that does not affect the difference between the calculated114

and observed gravity harmonics. An extensive discussion of this issue (also known as the null space of the115

solution) can be found in previous studies18,24. The value of the parameter ε is set according to the initial116

value of the cost-function, so it affects the solution only when the cost-function is reduced considerably. The117

form of the penalty term is set to penalize any non-zero value of the control variable XC since there is no prior118

knowledge of the depth of the flow. Given an initial guess for
−→
XC, a minimal value of L is searched for using119

the Matlab function ’fmincon’ and taking advantage of the cost-function gradient that is calculated with the120

adjoint of the dynamical model9.121

122

Calculating the uncertainties in the solution. The control variable uncertainties are derived from the123

Hessian matrix G (second derivative of the cost-function L with respect to the control vector XC)9. For124

example, in the third setup of the optimization there are 4 parameters that are optimized, therefore the size of125

the Hessian matrix will be 4×4. Inverting the Hessian matrix G, we get the solution error covariance matrix126

C. This matrix includes the error covariance associated with combination of each two control variables (off127

diagonal terms), and the variance of each one (diagonal terms). Physically, the covariance matrix indicates128

to the formal uncertainties in the control variables given the uncertainties of the observations (weights W in129

the cost-function). The larger the uncertainties in the observations, the smaller are the weights in the cost-130

function, and the larger the uncertainties in the control variables. The uncertainties appearing in this study for131

H, ∆H, and α , are the square root of the diagonal terms in the matrix C. Note that in all cases analyzed in132

this work, the off-diagonal terms in C have the same order of magnitude as the diagonal terms, meaning that133

uncertainties in the control variable are highly correlated.134

Using the uncertainties in the control variable, we can calculate the uncertainties in the model solution for135

Jn. Since the uncertainties for H, ∆H, and α represent the 1st standard deviation of the errors, we can statis-136

tically estimate the associated error in the Jn by solving the model with the parameters randomly perturbed137

24



around their optimized value (with the perturbations having a normal distribution with the calculated standard138

deviation). In this study we generate 1000 such cases, calculate the Jn for each case, and then calculate the139

standard deviation for each Jn. This is the error value given to each gravity harmonic in Table 1 of the main140

text, and Table ED1.141

142

Statistical significance test for the latitudinal profile. One of the conclusions of the manuscript is143

that the observed cloud-level meridional wind profile, as observed at the cloud-level, extends deep into the144

interior. This is a strong constraint on the flow, which we investigate its statistical significance here. Since we145

are optimizing a solution with only four measurements, there exists a possibility that the match obtained with146

the gravity measurements is by chance and not because the same meridional profile extends to great depths. In147

order to exclude this possibility we examine whether a match with the gravity measurements could be obtained148

when using a different meridional wind profile than that of the cloud-level flows. To make a sensible test the149

artificial wind profile we examine should have similar characteristics, such as the typical latitudinal width of150

the jets and their amplitude. To accomplish this, the observed cloud-level wind is decomposed into the first151

100 Legendre polynomials152

Usurf(θ) =
99

∑
i=0

AiPi(sinθ), (M17)

where Ai are the coefficients of the Legendre polynomials. To create the different artificial wind possibilities,153

the wind is then reconstructed as154

U
j

rand(θ) =
99

∑
i=0

S
j
i AiPi(sinθ), (M18)

where S
j
i are a 100 plus or minus signs randomly chosen for each realization j of the wind. The resulting155

artificial cloud-level wind retains the basic characteristics (width and strength) of the observed zonal jets,156

but their latitudinal locations are now very different. In order to statistically examine our ability to reach157

a solution that gives a good match between the model calculated gravity harmonics and those measured,158

1000 artificial cloud-level wind profiles were generated. Few examples of such randomly generated winds159

are shown in Fig. ED3. Note that while the wind profiles are very different one from the other, the main160
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characteristics of the observed winds are kept. Fig. ED4 shows the resulting J3, J5, J7 and J9 for these flow161

profiles (blue dots), optimized in the same way that the cloud-level winds are. The results indicate that the162

gravity harmonics calculated using the specific cloud-level wind profile (black points with their uncertainty163

ellipse), give results closer to the measurements (red points with their uncertainty ellipse) than 99% of the164

random profiles, indicating the robustness of this result. Note the tendency of the optimized solutions to be165

in the quarter of the phase space where the measurements are (Fig. ED4), particularly for the case of J5 and166

J7, because for these harmonics the absolute value of the measurement is largest and the relative measurement167

error is smallest (see Table 1 in the main text), so their weight in the cost-function is the largest. Taking168

the same random set of meridional profiles and calculating their gravity harmonics for a fixed vertical profile169

(without the optimization process), gives solutions spread equally over all quarters of the parameter space170

(Fig. ED5). This illustrates that also the tendency of the simple exponential decay solution to have the correct171

sign and magnitude (Fig. 2 in the main text) is very likely not by chance. As an additional test we calculate172

the solution taking the Jupiter observed cloud-level meridional profile, but extended into the interior radially173

instead of along the direction of the spin axis. In this case even the sign of the gravity harmonics differs from174

the measurements.175

176

Non-uniqueness of the gravity inversion. It is important to note that the gravity inversion problem is177

non-unique, and as demonstrated in Figs. 3 and 4 different profiles can give similar gravity signatures. In178

addition, the cases presented here do not match the measurements perfectly, and with more free parameters179

and/or other meridional profiles45 one could achieve better matches to the measurements. However, since the180

problem is non-unique, achieving a perfect match is not necessarily meaningful. Thus, the rational of this181

study is to show that using a minimal set of assumptions about the vertical and meridional structure, gives182

by itself a very good, and statistically significant, match to the measurements, indicating the structure and183

extent of the flow. Regardless of the exact vertical profile (which can depend on the parameterization and the184

non-uniqueness) the gravity measurements robustly reveal that the east-west jet-streams on Jupiter are very185

deep, reaching several thousands of kilometers beneath the cloud-level (several tens of kbar in pressure), and186

advect a significant mass that is on the order of 1% the mass of the planet.187

188

Code availability: code for inversion of the gravity data is available at:189

http://www.weizmann.ac.il/eserpages/kaspi/juno_code/190
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Extended Data Figures276

277

Figure ED1: The vorticity balance. Solution to Eq. M5 a. left hand side term with the wind profile from

Fig. 3 in the main text, b. total of the right hand side, c-h. the six terms on the right hand side of Eq. M5,

showing that the thermal wind balance (panels a and d) is the leading order balance. Note that the different

panels have different color scales.
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Figure ED2: Jupiter’s mass distribution. The percent of Jupiter’s mass as function of depth beneath the

1-bar level. The gray line shows that roughly 1% of the mass is contained above a depth of 3000 km.
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Figure ED3: Example of wind profiles used for the statistical significance test. The observed cloud-level

wind (black), together with a sample of 10 randomly generated wind profiles.
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Figure ED4: Optimized solutions for the odd harmonics using random meridional wind profiles. a-f.

Optimized solutions (blue) for J3, J5, J7 and J9 for flows with 1000 different artificial meridional profiles (as

in Fig. ED3). The Juno measurements are shown in red with their corresponding uncertainty ellipse. The

optimized solution corresponding to Jupiter’s observed cloud-level meridional wind profile (Fig. 3 in the main

text) is shown in black with the corresponding uncertainty ellipse. g. The cost-function for all different

meridional profiles explored, with the red line corresponding to the solution with the Jupiter meridional wind

profile. Less than 1% of the solutions have lower cost functions (green dots in panels a-f).
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Figure ED5: Solutions for the odd harmonics using random meridional wind profiles and a fixed vertical

profile. a-f. Solutions (blue) for J3, J5, J7 and J9 for flows with 1000 different artificial meridional profiles

(as in Fig. ED3), and the vertical profile held fixed with H = 2000 km, ∆H = 1500 km and α = 1. The Juno

measurements are shown in red with their corresponding uncertainty ellipse. The solution with these parame-

ters and using Jupiter’s observed cloud-level meridional wind profile is shown in black with the corresponding

uncertainty ellipse. g. The cost-function for all different meridional profiles explored, with the red line cor-

responding to the solution with the Jupiter meridional wind profile. This shows that when no optimization is

done (which takes into consideration the relative measurement error of the different harmonics), the solutions

are spread equally over all four quadrants in these phase spaces (different than Fig. ED4).
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×10−8 Model without

latitudinal variation

Model with

latitudinal variation

∆J2 54.62±5.21 −48.87±7.93

∆J4 −5.18±0.74 −15.01±7.56

∆J6 0.33±0.35 0.29±1.49

∆J8 5.41±0.28 4.76±0.61

∆J10 -5.35±0.25 -4.94±0.71

Table ED1: The flow induced even gravity harmonics corresponding to the optimized solutions in Ta-

ble 1. The even gravity harmonics solutions for the optimization, with and without variation of flow depth

with latitude, that correspond to the solutions presented in Figs. 3 and 5 and Table 1 of the main text. The

uncertainties are the 3σ uncertainty values.
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J3 J5 J7 J9

J3 8.32 -11.05 1.45 -0. 41

J5 -11.05 20.21 -12.26 3.35

J7 1.45 -12.26 14.31 -7.63

J9 -0. 41 3.35 -7.63 7.91

Table ED2: The weights matrix W used in the cost function L (Eq. M16). Shown are the weights associated

with J3, J5, J7 and J9 (diagonal terms) and those associated with the correlation between the harmonics (off-

diagonal terms). The values reflect the uncertainties in the measurements, calculated taking the inverse of the

measurement error covariance matrix multiplied by 9 (to reflect 3σ uncertainties). The larger the value, the

larger the weight given to it when minimizing the cost-function. Values shown are multiplied by 10−16.
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