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We describe Just Fast Keying (JFK), a new key-exchange protocol, primarily designed for use in the
IP security architecture. It is simple, efficient, and secure; we sketch a proof of the latter property.
JFK also has a number of novel engineering parameters that permit a variety of tradeoffs, most
notably the ability to balance the need for perfect forward secrecy against susceptibility to denial-
of-service attacks.
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1. INTRODUCTION

Many public-key-based key-setup and key-agreement protocols already ex-
ist and have been implemented for a variety of applications and environ-
ments. Several have been proposed for the IPsec protocol suite, and one, in-
ternet key exchange (IKE) [Harkins and Carrel 1998], is the current standard.
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IKE has a number of deficiencies, the three most important being that the
number of rounds is high, that it is vulnerable to denial-of-service (DoS) at-
tacks, and the complexity of the protocol and its specification. This complex-
ity has led to interoperability problems—so much so that, several years after
its initial adoption by the IETF, there are still non-interoperating commercial
implementations.

While it might be possible to “patch” the IKE protocol to fix some of these
problems, it may be perferable to construct a new protocol that more narrowly
addresses the requirements “from the ground up.” We set out to engineer a new
key-exchange protocol specifically for Internet security applications. We call
our new protocol “JFK,” which stands for “Just Fast Keying.”

1.1 Design Goals

We seek a protocol with the following characteristics:

—Security: No one other than the participants may have access to the generated
key.

—PFS: It must approach Perfect Forward Secrecy.
—Privacy: It must preserve the privacy of the initiator and/or responder, insofar

as possible.
—Memory-DoS: It must resist memory exhaustion attacks.
—Computation-DoS: It must resist CPU exhaustion attacks on the responder.
—Availability: It must protect against easy to mount protocol-specific DoS at-

tacks, for example, in a wireless environment where an attacker can observe
everyone’s transmissions but cannot interfere with the transmitted packets
themselves.

—Efficiency: It must be efficient with respect to computation, bandwidth, and
number of rounds.

—Non-negotiated: It must avoid complex negotiations over capabilities.
—Simplicity: The resulting protocol must be as simple as possible, within the

constraints of the requirements.

The Security requirement is obvious enough (we use the security model
of Canetti and Krawczyk [2001; 2002a]). The rest, however, require some
discussion.

The PFS property is perhaps the most controversial. (PFS is an attribute
of encrypted communications allowing for a long-term key to be compromised
without affecting the security of past session keys.) Rather than assert that
“we must have PFS at all costs,” we treat the amount of forward secrecy as an
engineering parameter that can be traded off against other necessary functions,
such as efficiency or resistance to DoS attacks. In fact, this corresponds quite
nicely to the reality of today’s Internet systems, where a compromise during the
existence of a security association (SA) will reveal the plaintext of any ongoing
transmissions. Our protocol has a forward secrecy interval; SAs are protected
against compromises that occur outside of that interval. Specifically, we allow
a party to reuse the same secret Diffie–Hellman (DH) exponents for multiple
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exchanges within a given time period; this may save a large number of costly
modular exponentiations.

The Privacy property means that the protocol must not reveal the identity
of a participant to any unauthorized party, including an active attacker that
attempts to act as the peer. Clearly, it is not possible for a protocol to pro-
tect both the initator and the responder against an active attacker; one of the
participants must always “go first.” In general, we believe that the most ap-
propriate choice is to protect the initator, since the initator is typically a rela-
tively anonymous “client,” while the responder’s identity may already be known.
Conversely, protecting the responder’s privacy may not be of much value (ex-
cept perhaps in peer-to-peer communication): in many cases, the responder is
a server with a fixed address or characteristics (e.g., well-known web server).
One approach is to allow for a protocol that allows the two parties to negotiate
who needs identity protection. In JFK, we decided against this approach: it is
unclear what, if any, metric can be used to determine which party should re-
ceive identity protection; furthermore, this negotiation could act as a loophole to
make initiators reveal their identity first. Instead, we propose two alternative
protocols: one that protects the initator against an active attack, and another
that protects the responder. These two protocols are respectively named JFKi
and JFKr.

The Memory-DoS and Computation-DoS properties have become more impor-
tant in the context of recent Internet DoS attacks. Photuris [Karn and Simpson
1999] was the first published key-management protocol for which DoS resis-
tance was a design consideration; we suggest that these properties are at least
as important today. We also extend these properties with a general Availability
requirement, by which we mean that the protocol must try to counter attacks
that aim to disrupt a legitimate exchange, especially in environments where
an attacker may have limited capabilities in terms of packet modification (e.g.,
a wireless network).

The Efficiency property is worth discussing. In many protocols, key setup
must be performed frequently enough that it can become a bottleneck to com-
munication. The key-exchange protocol must minimize computation as well
total bandwidth and round trips. Round trips can be an especially important
factor when communicating over unreliable media. Using our protocols, only
two round trips are needed to set up a working SA. This is a considerable sav-
ing in comparison with existing protocols, such as IKE.

The Nonnegotiated property is necessary for several reasons. Negotiations
create complexity and round trips, and hence should be avoided. DoS resistance
is also relevant here; a partially negotiated SA consumes resources.

The Simplicity property is motivated by several factors. Efficiency is one;
increased likelihood of correctness is another. But our motivation is especially
colored by our experience with IKE. Even if the protocol is defined correctly, it
must be implemented correctly; as protocols become more complex, implemen-
tation and interoperability errors occur more often. This hinders both security
and interoperability. Our design follows the traditional design paradigm of suc-
cessful internetworking protocols: keep individual building blocks as simple as
possible; avoid large, complex, monolithic protocols. We have consciously chosen
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to omit support for certain features when we felt that adding such support would
cause an increase in complexity that was disproportional to the benefit gained.

Protocol design is, to some extent, an engineering activity, and we need to
provide for tradeoffs between different types of security. There are tradeoffs
that we made during the protocol design, and others, such as that between
forward secrecy and computational effort, that are left to the implementation
and to the user, for example, selected as parameters during configuration and
session negotiation.

2. PROTOCOL DEFINITION

We present two variants of the JFK protocol. Both variants take two round
trips (i.e., four messages) and both provide the same level of DoS protection.
The first variant, denoted JFKi, provides identity protection for the initiator
even against active attacks. The identity of the responder is not protected.
This type of protection is appropriate for a client–server scenario where the
initiator (the client) may wish to protect its identity, whereas the identity of the
responder (the server) is public. As discussed in Section 4, this protocol uses the
basic design of the ISO 9798-3 key-exchange protocol [IEEE 1993; Canetti and
Krawczyk 2001], with modifications that guarantee the properties discussed in
Section 1.

The second variant, JFKr, provides identity protection for the respon-
der against active adversaries. Furthermore, it protects both sides’ identities
against passive eavesdroppers. This type of protection is appropriate for a peer-
to-peer scenario, where the responder may wish to protect its identity. Note that
it is considerably easier to mount active identity-probing attacks against the
responder than against the initiator. Furthermore, JFKr provides repudiability
on the key exchange, since neither side can prove to a third party that their peer
in fact participated in the protocol exchange with them. (In contrast, JFKi au-
thentication is nonrepudiable, since each party signs the other’s identity along
with session-specific information such as the nonces.) This protocol uses the ba-
sic design of the Sign-and-MAC (SIGMA) protocol from Krawczyk [2002], again
with the appropriate modifications.

2.1 Notation

First, some notation:

Hk(M ) Keyed hash (e.g., HMAC [Krawczyk et al. 1997]) of message M using
key k. We assume that H is a pseudorandom function. This also im-
plies that H is a secure message authentication (MAC) function. In
some places we make a somewhat stronger assumption relating H and
discrete logarithms; see more details within.

{M }Ke
Ka

Encryption using symmetric key Ke, followed by MAC authentication
with symmetric key Ka of message M . The MAC is computed over the
ciphertext, prefixed with the literal ASCII string "I" or "R", depending
on who the message sender is (initiator or responder).
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Sx[M ] Digital signature of message M with the private key belonging to prin-
cipal x (initiator or responder). It is assumed to be a non-message-
recovering signature.

The message components used in JFK are:

IPI Initiator’s network address.
g x DH exponentials; also identifying the group-ID.
gi Initiator’s current exponential (mod p).
gr Responder’s current exponential (mod p).
NI Initiator nonce, a random bit-string.
N ′I Initiator’s initial nonce, computed as H(NI ).
NR Responder nonce, a random bit-string.
IDI Initiator’s certificates or public-key identifying information.
IDR Responder’s certificates or public-key identifying information.
IDR ′ An indication by the initiator to the responder as to what authenti-

cation information (e.g., certificates) the latter should use.
HKR A transient hash key private to the responder.

sa Cryptographic and service properties of the SA that the initiator
wants to establish. It contains a Domain-of-Interpretation, which
JFK understands, and an application-specific bit-string.

sa′ SA information the responder may need to give to the initiator (e.g.,
the responder’s SPI, in IPsec).

Kir Shared key derived from gir , N ′I , and NR used for protecting the
application (e.g., the IPsec SA).

Ke, Ka Shared keys derived from gir , N ′I , and NR , used to encrypt and au-
thenticate messages (3) and (4) of the protocol.

grpinfoR All groups supported by the responder, the symmetric algorithms
used to protect messages (3) and (4), and the hash function used for
key generation.

Both parties must pick a fresh nonce at each invocation of the JFK proto-
col. The nonces are used in the session-key computation, to provide key in-
dependence when one or both parties reuse their DH exponential; the ses-
sion key will be different between independent runs of the protocol, as long
as one of the nonces or exponentials changes. HKR is a global parameter
for the responder—it stays the same between protocol runs, but can change
periodically.

2.2 The JFKi Protocol

The JFKi protocol consists of four messages (two round trips):

I → R : N ′I , gi, IDR ′ (1)

R → I : N ′I , NR , gr , grpinfoR , IDR ,
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SR[gr , grpinfoR],

HHKR

(
gr , NR , N ′I , IPI

)
(2)

I → R : NI , NR , gi, gr ,

HHKR

(
gr , NR , N ′I , IPI

)
,

{IDI , sa, SI [N ′I , NR , gi, gr , IDR , sa]}Ke
Ka

(3)

R → I : {SR[N ′I , NR , gi, gr , IDI , sa, sa′], sa′}Ke
Ka

(4)

The keys Ke and Ka, used to protect the confidentiality and integrity of
messages (3) and (4), respectively, are computed as Hgir (N ′I , NR , "1") and
Hgir (N ′I , NR , "2"), respectively. The session key, Kir , is Hgir (N ′I , NR , "0"). This
key is passed to IPsec or, more generally, to the application that requested key-
agreement services. (Note that there may be a difference in the number of bits
from the HMAC and the number produced by the raw DH exchange; the 512
least-significant bits are of gir are used as the key in that case.) If the key used
by IPsec is longer than the output of the HMAC, the key extension method of
IKE is used to generate more keying material.

Message (1) is straightforward; note that it assumes that the initiator already
knows a group and generator that are acceptable to the responder. The initiator
can reuse a gi value in multiple instances of the protocol with the responder,
or other responders that accept the same group, for as long as she wishes her
forward secrecy interval to be. We discuss how the initiator can discover what
groups to use in a later section. This message also contains an indication as to
which ID the initiator would like the responder to use to authenticate. IDR ′ is
sent in the clear; however, the responder’s ID in message (2) is also sent in the
clear, so there is no loss of privacy.

Message (2) is more complex. Assuming that the responder accepts the DH
group in the initiator’s message (rejections are discussed in Section 2.5), he
replies with a signed copy of his own exponential (in the same group, also
(mod p)), information on what secret key algorithms are acceptable for the next
message, a random nonce, his identity (certificates or a string identifying his
public key), and an authenticator calculated from a secret, HKR , known to the
responder; the authenticator is computed over the responder’s exponential, the
two nonces, and the initiator’s network address. The responder’s exponential
may also be reused; again, it is regenerated according to the responder’s forward
secrecy interval. The signature on the exponential needs to be calculated at the
same rate as the responder’s forward secrecy interval (when the exponential
itself changes). Finally, note that the responder does not need to generate any
state at this point, and the only cryptographic operation is a MAC calculation.
If the responder is not under heavy load, or if PFS is deemed important, the
responder may generate a new exponential and corresponding signature for use
in this exchange; of course, this would require keeping some state (the secret
part of the responder’s DH computation).

Message (3) echoes back the data sent by the responder, including the au-
thenticator. However, instead of the initial nonce, N ′I , the initiator now sends its
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source, NI . The authenticator is used by the responder to verify the authenticity
of the returned data. The authenticator also confirms that the sender of the mes-
sage (3) used the same address as in message (1)—this can be used to detect and
counter a “cookie jar” DoS attack.1 A valid authenticator indicates to the respon-
der that a round trip has been completed (between messages (1), (2), and (3)). To
check the authenticator, the responder must first compute N ′I from its source,
NI by applying the hash function H. The purpose of this scheme is to avoid
a certain attack in environments where an attacker can eavesdrop traffic but
cannot modify already transmitted packets, for example, in a wireless network.
In such an environment, if NI was used instead of N ′I , the eavesdropper could
construct a valid-looking message (3) (by copying the nonces, exponentials, and
the authenticator) that would cause the responder to perform the (expensive)
public-key operations, only to then drop the packet because further processing
would detect that the message was fake (by failure to decrypt or verify the re-
mainder of the payload, as we shall see shortly). The responder is then left with
two options: blacklist the authenticator (causing the exchange with the initia-
tor to fail), or simply discard the packet (thus allowing a computation-based
DoS attack). With our approach, however, the eavesdropper cannot produce a
valid NI (since that would imply a weak hash function) and thus cannot pro-
duce a message (3) that will pass the authenticator verification phase. If the
eavesdropper cannot intercept or preempt a valid message (3), as may be the
case with some wireless networks, they cannot hijack the initiator’s response
to mount this DoS attack. Note that if a legitimate message (3) is transmitted
over the wireless network but is somehow not received by the responder, an
eavesdropper can use it to mount the previously described attack. Although
the scheme is not foolproof, it significantly raises the bar against this DoS at-
tack in certain environments, without hindering the exchange under normal
circumstances.

Message (3) also includes the initiator’s identity and service request, and
a signature computed over the nonces, the responder’s identity, and the two
exponentials. This latter information is all encrypted and authenticated un-
der keys Ke and Ka, as already described. The encryption and authentication
use algorithms specified in grpinfoR . The responder keeps a copy of recently
received messages (3), and their corresponding message (4). Receiving a dupli-
cate (or replayed) message (3) causes the responder to simply retransmit the
corresponding message (4), without creating new state or invoking IPsec. This
cache of messages can be reset as soon as HKR is changed. The responder’s
exponential (gr ) is re-sent by the initiator because the responder may be gen-
erating a new gr for every new JFK protocol run (e.g., if the arrival rate of
requests is below some threshold). It is important that the responder deal with
repeated messages (3) as described above. Responders that create new state
for a repeated message (3) open the door to attacks against the protocol and/or
underlying application (IPsec).

1The “cookie jar” DoS attack involves an attacker that is willing to reveal the address of one
subverted host so as to acquire a valid cookie (or number of cookies) that can then be used by a
large number of other subverted hosts to launch a DDoS attack using the valid cookie(s).
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Note that the signature is protected by the encryption. This is necessary for
identity protection, since everything signed is public except the sa, and that is
often guessable. An attacker could verify guesses at identities if the signature
were not encrypted.

Message (4) contains application-specific information (such as the respon-
der’s IPsec SPI), and a signature on both nonces, both exponentials, and the
initiator’s identity. Everything is encrypted and authenticated by the same Ke
and Ka used in message (3), which are derived from N ′I , NR , and gir . The
encryption and authentication algorithms are specified in grpinfoR .

2.3 Discussion

The design follows from our requirements. With respect to communication effi-
ciency, observe that the protocol requires only two round trips. The protocol is
optimized to protect the responder against DoS attacks on state or computation.
The initiator bears the initial computational burden and must establish round-
trip communication with the responder before the latter is required to perform
expensive operations. At the same time, the protocol is designed to limit the
private information revealed by the initiator; she does not reveal her identity
until she is sure that only the responder can retrieve it. (An active attacker can
replay an old message (2) as a response to the initiator’s initial message, but
he cannot retrieve the initiator’s identity from message (3) because he cannot
complete the DH computation.)

The initiator’s first message, message (1), is a straightforward DH exponen-
tial. Note that this is assumed to be encoded in a self-identifying manner, that
is, it contains a tag indicating which modulus and base was used. The nonce N ′I
serves three purposes: first, it allows the initiator to reuse the same exponen-
tial across different sessions (with the same or different responders, within the
initiator’s forward secrecy interval) while ensuring that the resulting session
key will be different. Secondly, it can be used to differentiate between different
parallel sessions (in any case, we assume that the underlying transport proto-
col, that is, UDP, can handle the demultiplexing by using different ports at the
initiator). Lastly, it allows the responder to distinguish between a valid mes-
sage (3) and one produced by an eavesdropper, as we discussed in the previous
section.

Message (2) must require only minimal work for the responder, since at
that point he has no idea whether the initiator is a legitimate correspondent
or, for example, a forged message from a DoS attack; no round trip has yet
occurred with the initiator. Therefore, it is important that the responder not be
required at this point to perform expensive calculations or create state. Here,
the responder’s cost will be a single authentication operation, the cost of which
(for HMAC) is dominated by two invocations of a cryptographic hash function,
plus generation of a random nonce NR .

The responder may compute a new exponential gb (mod p) for each inter-
action. This is an expensive option, however, and at times of high load (or at-
tack) it would be inadvisable. The nonce prevents two successive session keys
from being the same, even if both the initiator and the responder are reusing
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exponentials. One case when both sides may reuse the same exponentials is
when the initiator is a low-power device (e.g., a cellphone) and the responder is
a busy server.

A simple way of addressing DoS is to periodically (e.g., once every 30 s)
generate an (r, gr , HHKR

(gr ), SR[gr ]) tuple and place it in a FIFO queue.
As requests arrive (in particular, as valid messages (3) are processed), the
first entry from the FIFO is removed; thus, as long as valid requests ar-
rive at under the generation rate, PFS is provided for all exchanges. If the
rate of valid protocol requests exceeds the generating rate, a JFK implemen-
tation should reuse the last tuple in the FIFO. Notice that in this scheme,
the same gr may be reused in different sessions, if these sessions are in-
terleaved. This does not violate the PFS or other security properties of the
protocol.

If the responder is willing to accept the group identified in the initiator’s
message, his exponential must be in the same group. Otherwise, he may respond
with an exponential from any group of his own choosing. The field grpinfoR
lists what groups the responder finds acceptable, if the initiator should wish
to restart the protocol. This provides a simple mechanism for the initiator to
discover the groups currently allowed by the responder. That field also lists what
encryption and MAC algorithms are acceptable for the next two messages. This
is not negotiated; the responder has the right to decide what strength encryption
is necessary to use his services.

Note that the responder creates no state when sending this message. If it
is fraudulent, that is, if the initiator is nonexistent or intent on perpetrating a
DoS attack, the responder will not have committed any storage resources.

In message (3), the initiator echoes content from the responder’s message,
including the authenticator. The authenticator allows the responder to ver-
ify that he is in round-trip communication with a legitimate potential cor-
respondent. By revealing the source, NI , of the initial nonce, N ′I , the initia-
tor denies an eavesdropper the ability to disrupt the protocol exchange by
transmitting a valid-looking message (3), as discussed above. The initiator
also uses the key derived from the two exponentials and the two nonces to
encrypt her identity and service request. The initiator’s nonce is used to en-
sure that this session key is unique, even if both the initiator and the re-
sponder are reusing their exponentials and the responder has “forgotten” to
change nonces.

Because the initiator can validate the responder’s identity before sending
her own and because her identifying information (ignoring her public-key sig-
nature) is sent encrypted, her privacy is protected from both passive and active
attackers. An active attacker can replay an old message (2) as a response to the
initiator’s initial message, but he cannot retrieve the initiator’s identity from
message (3) because he cannot complete the DH computation. The service re-
quest is encrypted, too, since its disclosure might identify the requester. The
responder may wish to require a certain strength of cryptographic algorithm
for selected services.

Upon successful receipt and verification of this message, the responder has a
shared key with a party known to be the initiator. The responder further knows
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what service the initiator is requesting. At this point, he may accept or reject
the request.

The responder’s processing on receipt of message (3) requires verifying an
authenticator and, if that is successful, performing several public-key opera-
tions to verify the initiator’s signature and certificate chain. The authenticator
(requiring three hash operations, two for the HMAC computation and one for
deriving N ′I from the received NI ) is sufficient defense against forgery; replays,
however, could cause considerable computation. The defense against this is to
cache the corresponding message (4); if a duplicate message (3) is seen, the
cached response is retransmitted; the responder does not create any new state
or notify the application (e.g., IPsec). The key for looking up messages (3) in the
cache is the authenticator; this prevents DoS attacks where the attacker ran-
domly modifies the encrypted blocks of a valid message, causing a cache miss
and thus more processing to be done at the responder. Further, if the authenti-
cator verifies but there is some problem with the message (e.g., the certificates
do not verify), the responder can cache the authenticator along with an indi-
cation as to the failure (or the actual rejection message), to avoid unnecessary
processing (which may be part of a DoS attack). This cache of messages (3) and
authenticators can be purged as soon as HKR is changed (since the authenti-
cator will no longer pass verification).

Caching message (3) and refraining from creating new state for replayed
instances of message (3) also serves another security purpose. If the responder
were to create a new state and send a new message (4), and a new sa′ for a
replayed message (3), then an attacker who compromised the initiator could
replay a recent session with the responder. That is, by replaying message (3)
from a recent exchange between the initiator and the responder, the attacker
could establish a session with the responder where the session-key would be
identical to the key of the previous session (which took place when the initiator
was not yet compromised). This could compromise the Forward Security of the
initiator.

There is a risk, however, in keeping this message cached for too long: if the
responder’s machine is compromised during this period, PFS is compromised.
We can tune this by changing the MAC key HKR more frequently. The cache
can be reset when a new HKR is chosen.

In message (4), the responder sends to the initiator any responder-specific
application data (e.g., the responder’s IPsec SPI), along with a signature on
both nonces, both exponentials, and the initiator’s identity. All the information
is encrypted and authenticated using keys derived from the two nonces, N ′I and
NR , and the DH result. The initiator can verify that the responder is present
and participating in the session, by decrypting the message and verifying the
enclosed signature.

2.4 The JFKr Protocol

Using the same notation as in JFKi, the JFKr protocol is

I → R : N ′I , gi (1)
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R → I : N ′I , NR , gr , grpinfoR ,
HHKR

(
gr , NR , N ′I , I PI

)
(2)

I → R : NI , NR , gi, gr ,
HHKR

(
gr , NR , N ′I , I PI

)
{IDI , IDR ′ , sa, SI [N ′I , NR , gi, gr , grpinfoR]}Ke

Ka
(3)

R → I : {IDR , sa′, SR[gr , NR , gi, N ′I ]}Ke
Ka

(4)

As in JFKi, the keys used to protect messages (3) and (4), Ke and Ka, are
respectively computed as Hgir (N ′I , NR , "1") and Hgir (N ′I , NR , "2"). The session
key passed to IPsec (or some other application), Kir , is Hgir (N ′I , NR , "0").

Both parties send their identities encrypted and authenticated under Ke
and Ka, respectively, providing both parties with identity protection against
passive eavesdroppers. In addition, the party that first reveals its identity is
the initiator. This way, the responder is required to reveal its identity only after
it verifies the identity of the initiator. This guarantees active identity protection
to the responder.

We remark that it is essentially impossible, under current technology as-
sumptions, to have a two-round-trip protocol that provides DoS protection for
the responder, passive identity protection for both parties, and active identity
protection for the initiator. An informal argument proceeds as follows: If DoS
protection is in place, then the responder must be able to send his first mes-
sage before he computes any shared key. This is so since computing a shared
key is a relatively costly operation in current technology. This means that the
responder cannot send his identity in the second message, without compromis-
ing his identity protection against passive eavesdroppers. This means that the
responder’s identity must be sent in the fourth (and last) message of the pro-
tocol. Consequently, the initiator’s identity must be sent before the responder’s
identity is sent.

2.5 Rejection Messages

Instead of sending messages (2) or (4), the responder can send a “rejection”
instead. For message (2), this rejection can only be on the grounds that he does
not accept the group that the initiator has used for her exponential. Accord-
ingly, the reply should indicate what groups are acceptable. Since message (2)
already contains the field grpinfoR (which indicates what groups are accept-
able), no explicit rejection message is needed. (For efficiency’s sake, the group
information could also be in the responder’s long-lived certificate, which the
initiator may already have.)

Message (4) can be a rejection for several reasons, including lack of autho-
rization for the service requested. But it could also be caused by the initiator
requesting cryptographic algorithms that the responder regards as inappropri-
ate, given the requester (initiator), the service requested, and possibly other
information available to the responder, such as the time of day or the initiator’s
location as indicated by the network. In these cases, the responder’s reply should
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list acceptable cryptographic algorithms, if any. The initiator would then send a
new message (3), which the responder would accept anew; again, the responder
does not create any state until after a successful message (3) receipt.

3. WHAT JFK AVOIDS

By intent, JFK does not do certain things. It is worth enumerating them, if
only to stimulate discussion about whether certain protocol features are ever
appropriate. In JFK, the “missing” features were omitted by design, in the
interests of simplicity.

3.1 Multiple Authentication Options

The most obvious “omission” is any form of authentication other than by certifi-
cate chains trusted by the each party. We make no provisions for shared secrets,
token-based authentication, certificate discovery, or explicit cross-certification
of PKIs. In our view, these are best accomplished by outboard protocols. Initia-
tors that wish to rely on any form of legacy authentication can use the protocols
being defined by the IPSRA [Sheffer et al. 2001] or SACRED [Arsenault and
Farrell 2001; Gustafson et al. 2001] IETF working groups. While these mecha-
nisms do add extra round trips, the expense can be amortized across many JFK
negotiations. Similarly, certificate chain discovery (beyond the minimal capa-
bilities implicit in IDI and IDR) should be accomplished by protocols defined for
that purpose. By excluding the protocols from JFK, we can exclude them from
our security analysis; the only interface between the two is a certificate chain,
which by definition is a stand-alone secure object.

We also eliminate negotiation generally, in favor of ukases issued by the
responder. The responder is providing a service; it is entitled to set its own
requirements for that service. Any cryptographic primitive mentioned by the
responder is acceptable; the initiator can choose any it wishes. We thus elim-
inate complex rules for selecting the “best” choice from two different sets. We
also eliminate the need that state be kept by the responder; the initiator can
either accept the responder’s desires or restart the protocol.

3.2 Phase II and Lack Thereof

JFK rejects the notion of two different phases. As will be discussed in Section 5,
the practical benefits of quick mode are limited. Furthermore, we do not agree
that frequent rekeying is necessary. If the underlying block cipher is sufficiently
limited as to bar long-term use of any one key, the proper solution is to replace
that cipher. For example, 3DES is inadequate for protection of very high-speed
transmissions, because the probability of collision in CBC mode becomes too
high after encryption of 232 plaintext blocks. Using AES instead of 3DES solves
that problem without complicating the key exchange.

Phase II of IKE is used for several things; we do not regard any of them
as necessary. One is generating the actual keying material used for SAs. It is
expected that this will be done several times, to amortize the expense of the
Phase I negotiation. A second reason for this is to permit very frequent rekeying.
Finally, it permits several separate SAs to be set up, with different parameters.
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We do not think these apply. First, with modern ciphers such as AES, there
is no need for frequent key changes. AES keys are long enough that brute-force
attacks are infeasible. Its longer block size protects against CBC limitations
when encrypting many blocks.

We also feel that JFK is efficient enough that avoiding the overhead of a
full key exchange is not required. Rather than adding new SAs to an existing
Phase I SA, we suggest that a full JFK exchange be initiated instead. We note
that the initiator can also choose to reuse its exponential, it if wishes to trade
PFS for computation time. If state already exists between the initiator and the
responder, they can simply check that the DH exponentials are the same; if
so, the result of the previous exponentiation can be reused. As long as one of
the two parties uses a fresh nonce in the new protocol exchange, the resulting
cryptographic keys will be fresh and not subject to a related key (or other,
similar) attack. As we discuss in Section 3.3, a similar performance optimization
can be used on the certificate-chain validation.

A second major reason for Phase II is dead-peer detection. IPsec gateways
often need to know if the other end of a SA is dead, both to free up resources
and to avoid “black holes.” In JFK, this is done by noting the time of the last
packet received. A peer that wishes to elicit a packet may send a “ping.” Such
hosts may decline any proposed SAs that do not permit such “ping” packets.

A third reason for Phase II is general SA control, and in particular SA dele-
tion. While such a desire is not wrong, we prefer not to burden the basic key-
exchange mechanism with extra complexity. There are a number of possible
approaches. Ours requires that JFK endpoints implement the following rule: a
new negotiation that specifies an SPD identical to the SPD of an existing SA
overwrites it. To some extent, this removes any need to delete an SA if black hole
avoidance is the concern; simply negotiate a new SA. To delete an SA without
replacing it, negotiate a new SA with a null ciphersuite.

3.3 Rekeying

When a negotiated SA expires (or shortly before it does), the JFK protocol is
run again. It is up to the application to select the appropriate SA to use among
many valid ones. In the case of IPsec, implementations should switch to using
the new SA for outgoing traffic, but would still accept traffic on the old SA (as
long as that SA has not expired).

To address performance considerations, we should point out that, properly
implemented, rekeying only requires one signature and one verification opera-
tion in each direction, if both parties use the same DH exponentials (in which
case, the cached result can be reused) and certificates: the receiver of an ID pay-
load compares its hash with those of any cached ID payloads received from the
same peer. While this is an implementation detail, a natural location to cache
past ID payloads is along with already established SAs (a convenient fact, as
rekeying will likely occur before existing SAs are allowed to expire, so the ID
information will be readily available). If a match is found and the result has
not “expired” yet, then we do not need to revalidate the certificate chain. A pre-
viously verified certificate chain is considered valid for the shortest of its CRL

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.



Just Fast Keying: Key Agreement in a Hostile Internet • 255

revalidate time, certificate expiration time, OCSP result validity time, and so
on. For each certificate chain, there is one such value associated (the time when
one of its components becomes invalid or needs to be checked again). Notice
that an implementation does not need to cache the actual ID payloads; all that
is needed is the hash and the expiration time.

That said, if for some reason fast rekeying is needed for some application
domain, it should be done by a separate protocol.

4. DISCUSSION OF THE SECURITY ANALYSIS

Detailed formal definitions and proofs of security of the JFK protocols are be-
yond the scope of this paper. Nonetheless, below we sketch the main ideas of the
analysis, with emphasis on those that require extending the existing techniques
for key-agreement protocols.

There are currently two main approaches to analyzing the security of proto-
cols: the formal-methods approach and the cryptographic reduction approach.
In the former, the cryptographic components of a protocol are modeled by “ideal
boxes.” Then automatic theorem-verification tools are applied to the protocol.
In this approach, if the verification returns a failure, the protocol has a serious
flaw (and the flaw is typically explicitly presented). However, even if the verifi-
cation procedure does not return a flaw, it still does not follow that the protocol
is resistant to all feasible attacks. This is due to the idealized modeling of the
cryptographic primitives.

The cryptographic reduction approach provides a less abstract treatment
of the security of protocols, taking into account the imperfections of the un-
derlying cryptographic primitives. Specifically, the underlying cryptographic
primitives are assumed to be resistant with high probability to all attacks that
consume a given amount of resources. The probability and resource amounts are
treated as parameters. For this exposition we denote the tuple of parameters the
security level. A proof of security in this approach derives the security level for
the protocol essentially as a function of the security levels of the underlying
primitives. Intuitively, a protocol is secure if the security level of the protocol
are not much smaller than the security levels of the underlying primitives. As in
the formal-methods approach, a proof of security in the cryptographic reduction
approach does not imply that the protocol is resistant to all feasible attacks.
However, it does imply that any efficient attack on the protocol can be con-
verted into an efficient attack on one of the underlying primitives. Essentially
a proof in the cryptographic reduction approach shows that the intractability
of attacking the protocol follows if the underlying cryptographic primitives are
assumed to be intractable to break. The security of the protocol thus rests solely
on the security assumptions on the primitives and not on any implicit or hidden
assumptions.

The formal-methods approach, being automatable, has the advantage that it
is less susceptible to human errors and oversights in analysis. However, when
verifiable proofs are attainable via the cryptographic reduction approach they
provide more quantitative information about the relationship between the se-
curity of the cryptographic primitives and the security of the protocols. This
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quantitative information is often very important when determining the oper-
ating parameters of the protocol.

We stress that neither approach provides full analysis of an implementation
of the protocol. In particular, issues like coding errors, buffer overflows, and the
like are not treated. These should be dealt with carefully, using different tools,
on an implementation-by-implementation basis.

Our analysis follows the cryptographic reduction approach. We welcome any
additional analysis. In particular, analysis based on formal methods would be
a useful complement.

We separate the analysis of the “core security” of the protocol from the anal-
ysis of added security features such as DoS protection and identity protection.
We discuss first the core security.

4.1 Security of Key-Agreement Protocols

JFK was designed for application environments, such as IPsec, in which many
sessions of the same protocol may be active in a given host concurrently. In such
a setting the protocol in each host must have a method of multiplexing among
various active concurrent sessions. For simplicity, here we assume that each
flow has an implicit or explicit session identifier of the initiator’s, denoted sI ,
which is unique among all active sessions in host I , and that each flow, except
perhaps the first, has an implicit or explicit session identifier of the respon-
der’s, denoted sR , which is unique among all active sessions in host R. And we
denote the session id s as the pair (sI , sR). The cryptographic security issues for
concurrent sessions of key-agreement protocols were first formalized by Bellare
and Rogaway [1993]. The starting point for our treatment and analysis is based
on that of Canetti and Krawczyk [2001], which in turn is based on Bellare and
Rogaway [1993]. See these papers for more references and comparisons with
other analytical work. We briefly sketch the security model below which we
denote the SK-security model [Canetti and Krawczyk 2001].

Very roughly, the core security of a key-exchange protocol boils down to two
requirements, correctness and pseudorandomness, which may be summarized
as follows.

Session-Key-Agreement Requirements: If party A generates a key K A associated
with a session-identifier s and peer identity B, and party B generates a key K B
associated with the same session identifier s and peer A, then

(1) Correctness: K A must be equal to K B.
(2) Pseudorandomness: K A must be indistinguishable from a truly random

string to all parties except A, and B, and those parties that have broken
into A or B or have compromised that session of A or B.

These requirements must remain true even in the presence of adversaries.
There are two essential ideas in modeling the adversary in the SK-security
model. The first is to model the network as a star with the adversary at the
hub. All messages sent from one host intended for another host first go to
the adversary. Furthermore, the adversary can modify, reroute, stall, reorder,
inject, and/or drop any and all messages. This captures the adversary’s ability to
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mount “man-in-the-middle” attacks, as well as eavesdropping on packets before
sending them on their way to the intended recipient. The second modification is
to allow the adversary to control the timing of events and thus, for example, to
control the interleaving of sessions made possible by the concurrent capability
of the protocol. In this model the protocol is event/message driven. In particular,
a protocol session in a host may be initiated by an initiate-session event in the
host itself, in which case the host is the initiator in that protocol session. Such
an event specifies the intended responder for that session. A protocol session
in a host may also be initiated by the receipt of a message from the adversary
(i.e., ostensibly from another host), in which case the host is the responder in
that protocol session. The adversary is given the power to issue initiate-session
events to hosts in any fashion it sees fit. Recall the adversary also controls the
timing of the sending and receiving of all messages. The adversary can thus
create arbitrary interleavings of messages of multiple sessions within the same
host.

As alluded to above, a key-agreement protocol is said to be SK-secure if it
meets the security requirements above even in the face of an adversary with
the above powers that runs in a feasible amount of time. But to be a bit more
precise we need to expand on the pseudorandomness requirement, which is to
say we need to describe the meaning of pseudorandomness in our context, and
the capabilities given to the adversary in its attempt to distinguish a session key
from a truly random string. In addition to dynamically initiating sessions and
controlling the timing/content of all received messages, the adversary is allowed
to make session-key queries. That is, it is allowed to dynamically query a host of
its choosing and receive the session key of its choosing of any thus-far completed
sessions of that host. (This models compromise of a key by some other protocol
that uses the key and perhaps leaks information about it.) The adversary is also
allowed to make session-state queries and long-term key queries (which model
different levels of break-ins to the parties). That is, it is allowed to dynamically
query and receive the internal information of the session and the long-term
keys of the hosts of its choosing. Note that after the adversary has received the
long-term keys of a host, all of the session keys subsequently agreed to with
that host will be known to the adversary. The adversary must at some point
ask for a challenge query. That is, it dynamically chooses a host and a thus-far
completed session as the test session. It receives in response a challenge string
that is either the session key of the test session or a random string of the same
length with equal probability. The adversary may continue to query and receive
session keys or long-term keys after it has made its challenge query. Eventually,
the adversary must output an answer that is either “random string” or “session
key.” The goal of an adversary is for its probability of being correct to exceed 1/2
by as much as possible. The session keys of a protocol meet the pseudorandom
requirement as long as the probability that any feasible adversary is correct is
at most 1/2 plus a negligible amount.

The alert reader will notice that the adversary can always win the above
game with probability 1 unless some additional restrictions are imposed. In
particular, the adversary is not allowed to have queried at any time either
endpoint host of the test session for the session key of that session or for the
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long-term keys of that host. But these are the only restrictions placed on the
behavior of the adversary.

Note that a protocol that is secure in this sense is very robust. For example,
if an adversary, even one that sees every message between every host, breaks
into one session, the rest of the session keys agreed to by the various hosts
do not become compromised in any discernible way. In a very strong sense the
session keys among all of the sessions behave as independent random strings
in terms of computational distinguishability. There is no discernible correlation
even between session keys of concurrent sessions in the same host. In fact, as
was shown in Canetti and Krawczyk [2002b], this notion of security guarantees
strong secure composability properties.

We stress that this is only a rough sketch of the requirement. For full details
see Canetti and Krawczyk [2001, 2002a].

We first discuss the protocols in the restricted case where the parties do not
reuse the private DH exponents for multiple sessions.

4.1.1 The Core Cryptographic Protocol of JFKi. The basic cryptographic
core of this protocol is the same as the ISO 9798-3 protocol. This protocol can
be briefly summarized as below. For subsequent discussion, B plays the role of
the initiator and A plays the role of responder. We call this protocol JFKi′

A← B : NB, B, gb (1)
A→ B : NA, NB, A, ga, SA[NA, NB, ga, gb, B] (2)
A← B : NA, NB, SB[NA, NB, ga, gb, A] (3)

A salient point about this protocol is that each party signs, in addition to the
nonces and the two public DH exponents, the identity of the peer. If the peer’s
identity is not signed then the protocol is completely broken. JFKi inherits the
same basic core security. In addition, JFKi adds a preliminary cookie mecha-
nism for DoS protection (which results in adding one flow to the protocol and
having the responder in JFKi play the role of A), and encrypts the last two mes-
sages in order to provide identity protection for the initiator. We will discuss
these additions further below.

The session key for JFKi′ is derived from a pseudorandom function H with
key gab and input NA, NB and output of the appropriate length for the subse-
quent session.

The JFKi′ protocol was analyzed and proven secure in Canetti and Krawczyk
[2001]. That is, Canetti and Krawczyk [2001] show that the protocol is SK-
secure if the signature scheme is secure, the pseudorandom function H is se-
cure, and the decisional Diffie–Hellman (DDH) assumption holds. As we later
will need to strengthen this latter assumption we discuss it briefly below.

The DDH problem for the cyclic group G is as follows. With equal probability
the input is either a DH tuple (g , ga, gb, gab) or a “random tuple” (g , ga, gb, gr ),
where g is a generator of G, and where a, b, and r are random in {1, 2, . . . , |G|}.
The output is a declaration saying that the input is a DH tuple or that the
input is a random tuple. The DDH assumption holds for a group G if for all
feasible algorithms the probability that the algorithm is correct at most 1/2
plus a negligible amount.
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4.1.2 The core cryptographic protocol of JFKr. The basic cryptographic
core of JFKr follows the design of the SIGMA protocol [Krawczyk 2002] (which
also serves as the basis to the signature mode of IKE). SIGMA was analyzed
and proven secure in Canetti and Krawczyk [2002a]. This basic protocol, called
JFKr′ for in the ensuing discussion, can be briefly summarized as follows:

A← B : NB, gb (1)
A→ B : NA, NB, A, ga, SA[NA, NB, ga, gb],

HKa (NA, NB, A) (2)
A← B : NA, NB, B, SB[NA, NB, ga, gb],

HKa (NA, NB, B) (3)

Here, neither party signs the identity of its peer. Instead, each party includes
a MAC applied to its own identity (concatenated with NA and NB). The key
for the MAC and the session key are derived as in JFKr from a pseudorandom
function H with key gab and inputs NA, NB, “2” and NA, NB, “0”, respectively.

The proof of security of JFKr′ [Canetti and Krawczyk 2002a] assumes that
the signature scheme is secure, that H is a secure MAC, that H used for key
derivation is a secure pseudorandom function, and that the DDH assumption
holds. Note that the function used for the MAC on the wire need not be the
same as the function used for key derivation. For protocol simplicity we have
assumed they are the same.

In the next section, we discuss the security implications of the encryption
of the third and fourth flows in the JFK protocols. In the subsequent section,
we define a formal model of identity protection and discuss how it is achieved
by virtue of the security of the encryption. Finally, we discuss the security
implications of the DoS protection mechanisms employed in the JFK protocols.

4.2 Adding Encryption to the Protocols

In this section, we discuss the security issues associated encrypting and MAC-
ing the last two flows. The impetus for adding encryption to the third and
fourth flows of the JFK protocols is identity protection which we will discuss
more formally in the next section. And proving that these flows actually enjoy
the appropriate encryption property is an important step in proving identity
protection, as we will discuss below. But the parties may want other informa-
tion, such as policy information, to remain confidential in these flows as well.
Thus, the confidentiality property of these flows is important in its own right.

In both JFKi and JFKr, the third and fourth flows are encrypted and then
MACed. The encryption is assumed to be secure against adaptive chosen plain-
text attacks (CPA encryption). If the keys for the encryption and the MAC
can be shown to be pseudorandom then CPA encryption followed by a secure
MAC yields a confidentiality scheme that is secure against adaptive chosen ci-
phertexts attacks. Thus the confidentiality property of these flows rests on the
pseudorandomness of the encryption and MAC keys.

Recall that the keys for the encryption and the MAC are derived by
Hgir (NI , NR , “1”) and Hgir (NI , NR , “2”) whereas the session key is derived
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by Hgir (NI , NR , “0”). The pseudorandomness of these values depends on the
pseudorandomness of the DH value gir , which in turn depends on the DDH as-
sumption. It is tempting to conclude that since the session key has been proven
to be pseudorandom for protocols essentially identical to JFKi and JFKr except
that the encryption and MACing are not present, that the encryption and MAC
keys are also pseudorandom given that they are derived in the same manner.
It is also tempting to conclude that since the security of the session keys of,
say, JFKi′ and JFKr′ are secure that this immediately implies that the ses-
sion keys of JFKi and JFKr are secure. Unfortunately, given the details of the
model described above, this does not follow. The essential reasons are as fol-
lows. In the standard SK-security model described above, the adversary only
queries for the session key in a host if that session is completed in that host. But
the adversary may attempt to break the confidentiality of, say, the third flow
without allowing the session to complete. Moreover, in JFKi and JFKr more
artifacts of gir (i.e., the encryptions and MACs using keys derived from gir ) are
available to the adversary than in JFKi′ and JFKr′. Intuitively, these artifacts
seem to be computationally useless to the adversary. Indeed, they would be
if gir were pseudorandom but this is what we are trying to prove in the first
place.

To break this circular reasoning, we must prove something stronger than
what is proven in the SK-security model of Canetti and Krawczyk [2001]. We
must effectively show that gir is pseudorandom in a well-defined sense before
it is used to derive the encryption and MAC keys. Intuitively, this guarantees
that the encryptions and MACs thus leak no discernible information about gir

for the remainder of the session. Thus, gir remains pseudorandom until the
end of the session and the hosts can use it to derive a pseudorandom session
key. In such a case, we would have the simultaneous pseudorandomness of all
of the keys.

More formally, we augment the SK-security model beyond that in Canetti
and Krawczyk [2001] as follows. For JFKi and JFKr we allow the adversary
to make a session-symmetric-keys query for Ka and Ke of a session after either
the initiator has sent the third flow or after the responder has received the
third flow. We also allow the adversary to ask for a session-symmetric-keys
test for a host and session of its choosing in which it is presented with equal
probability either the Ka and Ke of that session or a random string of the
same length. As with the session-symmetric-keys query, the test is either after
the initiator has sent the third flow or the responder has received the third
flow. After asking for the test, the adversary may continue to make session-
symmetric-keys queries, session-key queries, and long-term key queries. The
adversary must eventually output an answer that is either “random string”
or “session symmetric keys.” The goal of an adversary is for its probability of
being correct to exceed 1/2 by as much as possible. The encryption and MAC
keys of our protocols are pseudorandom as long as the probability that any
feasible adversary is correct exceeds 1/2 by only a negligible amount. The only
restriction is that the adversary may not make session-symmetric-keys queries
or long-term key queries of the “matching” host of the session-symmetric-keys
test. This restriction can be described precisely but we omit the details here.
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We can prove the simultaneous pseudorandomness of the encryption keys,
the MAC keys, and the security of the session keys (i.e., correctness and pseu-
dorandomness) for both JFKi and JFKr. The proof of security assumes that the
signature scheme is secure, that H is a secure MAC, that the encryption scheme
is secure against adaptive plaintext attacks, that the H used for key derivation
is a secure pseudorandom function, and that the DDH assumption holds.

The security of the encryption and MACs of the JFK protocols goes most
of the way toward providing identity protection. Nonetheless, there are some
additional subtitles that are useful to formalize and we do so below.

Using the security of the encryption and MAC of the JFK protocols the fol-
lowing can be shown to follow. Both JFKi and JFKr provide identity protection
against passive adversaries. Furthermore, JFKr provides identity protection
against active adversaries for the responder and JFKi provides identity protec-
tion against active adversaries for the initiator.

4.3 DoS Protection

There are two elements to the DoS protection in JFKi and JFKr. The first is the
cookie in the responder’s first reply that enables the responder to not have to
store any per session state. The addition of this cookie to the core cryptographic
protocols above does not reduce the security. That is, an adversary that breaks
the protocol with the cookie can be used to create an adversary that breaks the
protocol without the cookie. This reduction is straightforward and the details
are omitted here. We thus consider below the variants of JFKi and JFKr, which
do not include these cookies.

The second element of DoS protection is to not require the responder to
perform any public-key operations in its first reply. To achieve this we do two
things. First we add an extra flow at the beginning of the protocol that effectively
reverses the roles of A and B in JFKi′ and JFKr′ above. In particular, the
responder does not have to produce a fresh signature for each of its first replies
as in JFKi′ and JFKr′. Second, we allow the responder (and initiator) to reuse
a DH value as often as it sees fit before erasing it and using a new DH value.

The addition of the extra round does not affect the security analysis for the
session keys beyond that of, say, JFKi′ and JFKr′ above. However, allowing
the reuse of DH values creates two main difficulties. The first requires further
changes to the security model above and the second requires a stronger as-
sumption on the cryptographic primitives. We will discuss these issues in turn
below.

4.3.1 PFS and Adaptive Forward Secrecy. A standard security require-
ment for a secret key-agreement protocol is PFS [Günther 1989; Diffie et al.
1992a]. Intuitively, PFS guarantees that compromises of a host at time t do
not allow an adversary to determine session keys that have been generated
and subsequently erased before time t. The models discussed above capture
this property, in part. Specifically, even if an adversary sees all of the session
keys generated by a host after it chooses a test session in that host, the session
key of the test session is still indistinguishable from random for an SK-secure
protocol.
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In the case when the hosts always use a fresh, random DH value for each
session, the models are easily modified to capture all of the PFS requirement. All
that is necessary is the partial removal of a restriction placed on the adversary.
In the models above, the adversary is not allowed to have made a long-term
key query of either of the hosts of the completed test session, either before it
made the test session or after. To model PFS, the adversary is allowed to make
long-term key queries (in addition to the session-key queries that it is already
allowed) of the hosts of a test session after the session is complete (but it is still
not allowed to have made a long-term key query of either of the hosts of the test
session before the test session is begun). A protocol achieves PFS security if it is
secure against this more powerful adversary. Assuming that all hosts delete gir

as soon as possible, JFKi and JFKr achieve PFS when they use fresh, random
DH values for each session.

We now discuss the security of JFKi and JFKr in the case that hosts reuse
their DH exponent and value over multiple KE-sessions within a given time
period. This provides some measure of protection against DoS attacks. But it
comes at the price of slightly weakening the PFS. To see this suppose that
the test session of the adversary involves a responder that was using the DH
exponent and value r and gr , respectively, for that session. Suppose that the
responder continues to use these values and the adversary subsequently breaks
into this host. In this case the adversary can clearly compromise the test session
key.

In spite of this, the JFK protocols with DH reuse still enjoy an “intermediate”
level of forward secrecy, which we call adaptive forward secrecy (AFS). The
intuition is as follows. We consider that the DH exponent and value are used in
phases by a host. During a phase, a single DH exponent and value are used for
all sessions that are initiated in that phase. A host may choose new DH values
and begin a new phase at any time, and it may make that decision to start a new
phase in an adaptive manner. (We assume here that when a new phase starts,
the DH values of the previous stage are erased and any received messages
generated by sessions started with previous DH values receive a failure reply.
We can also model protocols that keep several DH values in memory for received
messages but for simplicity we do not consider that here.)

Clearly, with such a protocol, if an adversary breaks into a host even at the
end of a phase, all of the session keys generated during that phase would be
compromised. But some protocols may have the property that even if a host
is broken into during a phase, all session keys generated during all previous
phases remain secure. Protocols with this property are said to have AFS.

To formalize AFS, we modify the basic definition of SK-security yet again
(this modification comes instead of the modification leading to the definition of
PFS). The modification is as follows.

On top of its usual capabilities in the SK model, we provide the adversary
with a new capability: At any time during the computation, the adversary can
activate a new AFS phase in a host of its choosing. In response, the protocol
may instruct the host to perform some protocol steps.

The distinguishing game for the adversary is the same as in the first SK
security definition but with a new restriction on the adversary’s long-term key
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queries. There cannot be a long-term key query of either host of the test session
at any time during either AFS phase in which the test session was initiated
and completed.

A natural four round variant of JFKr and JFKi without the encryption and
MACing for identity protection but with DH reuse can be shown to have AFS
security under the DDH assumption. However, as we will discuss below, the
DDH assumption is not sufficient for AFS security or identity protection when
the third and fourth flows of the JFK protocols are encrypted and MACed.

4.3.2 The Malleability of DH Values. Reusing the DH values for multiple
sessions may potentially cause another problem, which is unrelated to forward
secrecy, and has to do with the “core security” of the protocol. Let us sketch this
potential problem and the way we deal with it in the analysis.

Consider the following scenario in JFKi. The adversary starts a new AFS
phase in hosts I and R and records an entire session-key protocol, where I and
R play the role of the initiator and responder, respectively. The adversary sub-
sequently gives an initiate-session event to I with responder R. The adversary
receives the first flow from I but does not pass it on to R. Instead, it sends
back to I a replay of R ’s previous flow 2 but with I ’s new nonce and a new DH
value, say, g2r . Note that the adversary can easily compute this given just the
gr it saw in the first complete session. I receives this message, calculates new
encryption and MAC keys using H with function key g2ir , and sends flow 3 to
the adversary.

This is precisely where a problem occurs with the standard security as-
sumptions of our the cryptographic primitives. The security of a pseudoran-
dom function such as H assumes that the function keys used by H are ran-
dom and independent. But here the adversary has induced I to compute H
using a pair of function keys that are random but not independent. In fact,
the dependence is set by the adversary. This is an example of the malleability
of the DH key exchange. In this example one function key is the square of
the other.

To achieve a proof of AFS security and identity protection when DH values
are reused in the JFK protocols we require stronger assumptions on our cryp-
tographic primitives. Rather than using the standard pseudorandom function
security assumption for H and the standard DDH assumption, we use what we
call the combined H/DDH security assumption. Roughly, this assumption is as
follows. An adversary is given g , gr , and gi, for random i and r, and in addition
is given Hgir (x) for a known x potentially of its choosing. Combined H/DDH se-
curity requires that this value remains computationally indistinguishable from
a random value even when the adversary queries for and is given the values of
Hk( y) for y ’s of its choosing and k’s of the form ur or vi, for u or v of its choosing
in G. The only restriction is that it may not choose y = x and u = gi or y = x
and v = gr since in these cases the query would return the value Hgir (x) itself.

As an example, since the adversary knows gi, it can compute a u of the form
gik for a k of its choosing. It can subsequently query H with key gikr . While the
exact value of the two keys remains unknown to the adversary, it does know
that the second key is a kth power of the original DH key.
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Fig. 1. Four-message StS key-agreement protocol.

Using this combined H/DDH assumption, in concert with secure signatures,
encryption, and MACS, we can show that the JFK protocols with DH reuse
achieve AFS security and identity protection.

5. RELATED WORK

The basis for most key-agreement protocols based on public-key signatures
has been the Station-to-Station (StS) [Diffie et al. 1992a] protocol. In its
simplest form, shown in Figure 1, this consists of a DH exchange, followed
by a public-key signature authentication step, typically using the RSA algo-
rithm in conjunction with some certificate scheme such as X.509. In most
implementations, the second message is used to piggy-back the responder’s
authentication information, resulting in a three-message protocol, shown in
Figure 2. Other forms of authentication may be used instead of public-key sig-
natures (e.g., Kerberos[Miller et al. 1987] tickets, or preshared secrets), but
these are typically applicable in more constrained environments. While the
short version of the protocol has been proven to be the most efficient [Gong
1995] in terms of messages and computation, it suffers from some obvious DoS
vulnerabilities.

5.1 Internet Key Exchange (IKE)

The Internet key-exchange (IKE) protocol [Harkins and Carrel 1998] is the
current IETF standard for key establishment and SA parameter negotiation.
IKE is based on the ISAKMP [Maughan et al. 1998] framework, which provides
encoding and processing rules for a set of payloads commonly used by security
protocols, and the Oakley protocol, which describes an adaptation of the StS
protocol for use with IPsec.2 The public-key encryption modes of IKE are based
on SKEME [Krawczyk 1996].

2We remark, however, that the actual cryptographic core of IKE’s signature mode is somewhat dif-
ferent than Oakley. In Oakley the peer authentication is guaranteed by having each party explicitly
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Fig. 2. Three-message StS key-agreement protocol.

IKE is a two-phase protocol: during the first phase, a secure channel be-
tween the two key-management daemons is established. Parameters such as
an authentication method, encryption/hash algorithms, and a DH group are ne-
gotiated at this point. This set of parameters is called a “Phase I SA.” Using this
information, the peers authenticate each other and compute key material us-
ing the DH algorithm. Authentication can be based on public-key signatures,
public-key encryption, or preshared passphrases. There are efforts to extend
this to support Kerberos tickets [Miller et al. 1987] and handheld authenti-
cators. It should also be noted that IKE can support other key establishment
mechanisms (besides DH), although none has been proposed yet.3

Furthermore, there are two variations of the Phase I message exchange,
called “main mode” and “aggressive mode.” Main mode provides identity pro-
tection, by transmitting the identities of the peers encrypted, at the cost of
three message round trips (see Figure 3). Aggressive mode provides somewhat
weaker guarantees, but requires only three messages (see Figure 4).

As a result, aggressive mode is very susceptible to untraceable4 DoS attacks
against both computational and memory resources [Simpson 1999]. Main mode
is also susceptible to untraceable memory exhaustion DoS attacks, which must
be compensated for in the implementation using heuristics for detection and
avoidance. To wit:

—The responder has to create state upon receiving the first message from the
initiator, since the Phase I SA information is exchanged at that point. This
allows for a DoS attack on the responder’s memory, using random source-IP
addresses to send a flood of requests. To counter this, the responder could

sign the peer identity. In contrast, IKE guarantees peer authentication by having each party MAC
its own identity using a key derived from the agreed DH secret. This method of peer authentication
is based on the SIGMA design [Krawczyk 2002].
3There is ongoing work (still in its early stages) in the IETF to use IKE as a transport mechanism
for Kerberos tickets, for use in protecting IPsec traffic.
4The attacker can use a forged address when sending the first message in the exchange.
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Fig. 3. IKE main mode exchange with certificates.

Fig. 4. IKE aggressive mode exchange with certificates.

employ mechanisms similar to those employed in countering TCP SYN at-
tacks [Heberlein and Bishop 1996; CERT 1996; Schuba et al. 1997]. JFK
maintains no state at all after receiving the first message.

—An initiator who is willing to go through the first message round trip (and
thus identify her address) can cause the responder to do a DH exponential
generation as well as the secret key computation on reception of the third
message of the protocol. The initiator could do the same with the fifth mes-
sage of the protocol, by including a large number of bogus certificates, if the
responder blindly verifies all signatures. JFK mitigates the effects of this
attack by reusing the same exponential across different sessions.
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The second phase of the IKE protocol is commonly called “quick mode” and
results in IPsec SAs being established between the two negotiating parties,
through a three-message exchange. Parameters such as the IP security protocol
to use (ESP/AH), security algorithms, the type of traffic that will be protected,
and so on, are negotiated at this stage. Since the two parties have authenticated
each other and established a shared key during Phase I, quick mode messages
are encrypted and authenticated using that information. Furthermore, it is
possible to derive the IPsec SA keying material from the shared key established
during the Phase I DH exchange. To the extent that multiple IPsec SAs between
the same two hosts are needed, this two-phase approach results in faster and
more lightweight negotiations (since the same authentication information and
keying material is reused).

Unfortunately, two hosts typically establish SAs protecting all the traffic
between them, limiting the benefits of the two-phase protocol to lightweight
rekeying. If PFS is desired, this benefit is further diluted.

Another problem of the two-phase nature of IKE manifests itself when IPsec
is used for fine-grained access control to network services. In such a mode,
credentials exchanged in the IKE protocol are used to authorize users when
connecting to specific services. Here, a complete Phase I & Phase II exchange
will have to be done for each connection (or, more generally, traffic class) to be
protected, since credentials, such as public-key certificates, are only exchanged
during Phase I.

IKE protects the identities of the initiator and responder from eaves-
droppers.5 The identities include public keys, certificates, and other informa-
tion that would allow an eavesdropper to determine which principals are try-
ing to communicate. These identities can be independent of the IP addresses of
the IKE daemons that are negotiating (e.g., temporary addresses acquired via
DHCP, public workstations with smartcard dongles, and so on). However, since
the initiator reveals her identity first (in message (5) of Main Mode), an attacker
can pose as the responder until that point in the protocol. The attackers cannot
complete the protocol (since they do not possess the responder’s private key),
but they can determine the initiator’s identity. This attack is not possible on the
responder, since she can verify the identity of the initiator before revealing her
identity (in message (6) of Main Mode). However, since most responders would
correspond to servers (firewalls, web servers, and so on), the identity protec-
tion provided to them seems not as useful as protecting the initiator’s identity.6

Fixing the protocol to provide identity protection for the initiator would involve
reducing it to five messages and having the responder send the contents of mes-
sage (6) in message (4), with the positive side-effect of reducing the number of
messages, but breaking the message symmetry and protocol modularity.

Finally, thanks to the desire to support multiple authentication mechanisms
and different modes of operation (Aggressive versus Main mode, Phase I/II
distinction), both the protocol specification and the implementations tend to

5Identity protection is provided only in Main Mode (also known as Identity Protection Mode);
Aggressive Mode does not provide identity protection for the initiator.
6One case where protecting the responder’s identity can be more useful is in peer-to-peer scenarios.
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be bulky and fairly complicated. These are undesirable properties for a critical
component of the IPsec architecture.

Several works, including Ferguson and Schneier [1999], Kaufman and
Perlman [2000], and Kaufman et al. [2001], point out many deficiencies in
the IKE protocol, specification, and common implementations. They suggest
removing several features of the protocol (e.g., aggressive mode, public-key
encryption mode, and so on), restore the idea of stateless cookies, and pro-
tect the initiator’s (instead of the responder’s) identity from an active at-
tacker. They also suggest some other features, such as one-way authentica-
tion (similar to what is common practice when using SSL/TLS [Dierks and
Allen 1999] on the web). These major modifications would bring the IKE
protocol closer to JFK, although they would not completely address the DoS
issues.

A measure of the complexity of IKE can be found in the analyses done in
Meadows Meadows [1999a, 2000]. No less than 13 different subprotocols are
identified in IKE, making understanding, implementation, and analysis of IKE
challenging. While the analysis did not reveal any attacks that would com-
promise the security of the protocol, it did identify various potential attacks
(DoS and otherwise) that are possible under some valid interpretations of the
specification and implementation decisions.

Some work has been done towards addressing, or at least examining, the
DoS problems found in IKE Matsuura and Imai [1999, 2000] and, more gen-
erally, in public-key-authentication protocols [Leiwo et al. 2000; Jakobsson
and Juels 1999]. Various recommendations on protocol design include use of
client puzzles [Juels and Brainard 1999; Aura et al. 2000], stateless cookies
[Oppliger 1999], forcing clients to store server state, rearranging the order
of computations in a protocol [Hirose and Matsuura 1999], and the use of a
formal-methods framework for analyzing the properties of protocols with re-
spect to DoS attacks [Meadows 1999b]. The advantages of being stateless, at
least in the beginning of a protocol run, were recognized in the security pro-
tocol context in Janson et al. [1997] and Aura and Nikander [1997]. The lat-
ter presented a three-message version of IKE, similar to JFK, that did not
provide the same level of DoS protection as JFK does, and had no identity
protection.

5.2 IKEv2

IKEv2 [Harkins et al. 2002] is another proposal for replacing the original IKE
protocol. The cryptographic core of the protocol, as shown in Figure 5, is very
similar to JFKr. The main differences between IKEv2 and JFKr are:

—IKEv2 implements DoS protection by optionally allowing the responder
to respond to a message (1) with a cookie, which the sender has to in-
clude in a new message (1). Under normal conditions, the exchange would
consist of the four messages shown; however, if the responder detects a
DoS attack, it can start requiring the extra round trip. One claimed ben-
efit of this extra round trip is the ability to avoid memory-based DoS
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Fig. 5. IKEv2 protocol exchange.

attacks against the fragmentation/reassembly part of the networking stack.
(Briefly, the idea behind such an attack is that an attacker can send many
incomplete fragments that fill out the reassembly queue of the respon-
der, denying service to other legitimate initiators. In IKEv2, because the
“large” messages are the last two in the exchange, it is possible for the
implementation to instruct the operating system to place fragments re-
ceived from peers that completed a round trip to a separate, reserved
reassembly queue.)

—IKEv2 supports a Phase II exchange, similar to the Phase I/Phase II separa-
tion in the original IKE protocol. It supports creating subsequent IPsec SAs
with a single round trip, as well as SA-teardown using this Phase II.

—IKEv2 proposals contain multiple options that can be combined in arbitrary
ways; JFK, in contrast, takes the approach of using ciphersuites, similar to
the SSL/TLS protocols [Dierks and Allen 1999].

—IKEv2 supports legacy authentication mechanisms (in particular, preshared
keys). JFK does not, by design, support other authentication mechanisms,
as discussed in Section 3; while it is easy to do so (and we have a variant of
JFKr that can do this without loss of security), we feel that the added value
compared to the incurred complexity does not justify the inclusion of this
feature in JFK.

Apart from these main differences, there are a number of superficial ones
(e.g., the “wire” format) that are more a matter of taste than of difference in
protocol design philosophy. The authors of the two proposals have helped create
a joint draft [Hoffman 2002], submitted to the IETF IPsec Working Group. In
that draft, a set of design options reflecting the differences in the two protocols
is presented to the working group. Concurrent with the writing of this paper,
and based on this draft, a unified proposal is being written. This unified pro-
posal combines properties from both JFK and IKEv2. It adopts the approach of
setting up a SA within two round trips, while providing DoS protection for the
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responder (and, in particular, allowing the responder to be almost completely
stateless between the sending of message (2) and the receipt of message (3).)

5.3 Other Protocols

The predecessor to IKE, Photuris [Karn and Simpson 1999], first introduced
the concept of cookies to counter “blind” DoS attacks. The protocol itself is a
six-message variation of the StS protocol. It is similar to IKE in the message
layout and purpose, except that the SA information has been moved to the third
message. For rekeying, a two-message exchange can be used to request a uni-
directional SPI (thus, to completely rekey, four messages are needed). Photuris
is vulnerable to the same computation-based DoS attack as IKE, mentioned
above. Nonetheless, one of the variants of this protocol has four messages and
provided DoS protection via stateless cookies.

SKEME [Krawczyk 1996] shares many of the requirements for JFK, and
many aspects of its design were adopted in IKE. It serves more as a set of
protocol building blocks, rather than a specific protocol instance. Depending on
the specific requirements for the key-management protocol, these blocks could
be combined in several ways. An interesting aspect of SKEME is its avoidance
of digital signatures; public-key encryption is used instead, to provide authen-
tication assurances. The reason behind this was to allow both parties of the
protocol to be able to repudiate the exchange.

SKIP [Aziz and Patterson 1995] was an early proposal for an IPsec key-
management mechanism. It uses long-term DH public keys to derive long-term
shared keys between parties, which is used to distribute session keys between
the two parties. The distribution of the session key occurs in-band, that is, the
session key is encrypted with the long-term key and is injected in the encrypted
packet header. While this scheme has good synchronization properties in terms
of rekeying, the base version lacks any provision for PFS. It was later provided
via an extension [Aziz 1996]. However, as the authors admit, this extension
detracts from the original properties of SKIP. Furthermore, there is no identity
protection provided, since the certificates used to verify the DH public keys
are (by design) publicly available, and the source/destination master identities
are contained in each packet (so that a receiver can retrieve the sender’s DH
certificate). The latter can be used to mount a DoS attack on a receiver, by
forcing them to retrieve and verify a DH certificate, and then compute the DH
shared secret.

The host identity payload (HIP) [Moskowitz 2001] uses cryptographic public
keys as the host identifiers, and introduces a set of protocols for establishing
SAs for use in IPsec. The HIP protocol is a four-packet exchange, and uses
client puzzles to limit the number of sessions an attacker can initiate. HIP
also allows for reuse of the DH value over a period of time, to handle a high
rate of sessions. For rekeying, a HIP packet protected by an existing IPsec
session is used. HIP does not provide identity protection, and it depends on the
existence of an out-of-band mechanism for distributing keys and certificates,
or on extra HIP messages for exchanging this information (thus, the message
count is effectively 6, or even 8, for most common usage scenarios).

ACM Transactions on Information and System Security, Vol. 7, No. 2, May 2004.



Just Fast Keying: Key Agreement in a Hostile Internet • 271

6. CONCLUSION

Over the years, many different key-exchange protocols have been proposed.
Some have had security flaws; others have not met certain requirements.

JFK addresses the first issue by simplicity, and by a proof of correctness.
(Again, full details of this are deferred to the analysis paper.) We submit that
proof techniques have advanced enough that new protocols should not be de-
ployed without such an analysis. We also note that the details of the JFK proto-
col changed in order to accommodate the proof: tossing a protocol over the wall
to the theoreticians is not a recipe for success. But even a proof of correctness is
not a substitute for simplicity of design; apart from the chance of errors in the
formal analysis, a complex protocol implies a complex implementation, with all
the attendant issues of buggy code and interoperability problems.

The requirements issue is less tractable because it is not possible to foresee
how threat models or operational needs will change over time. Thus, StS is not
suitable for an environment where DoS attacks are a concern. Another compar-
atively recent requirement is identity protection. But the precise need—whose
identity should be protected, and under what threat model—is still unclear,
hence the need for both JFKi and JFKr.

Finally, and perhaps most important, we show that some attributes often
touted as necessities are, in fact, susceptible to a cost–benefit analysis. Every-
one understands that cryptographic primitives are not arbitrarily strong, and
that cost considerations are often used in deciding on algorithms, key lengths,
block sizes, and so on. We show that DoS-resistance and PFS have similar char-
acteristics, and that it is possible to improve some aspects of a protocol (most
notably the number of round trips required) by treating others as parameters
of the system, rather than as absolutes.
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