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ABSTRACT

In this paper, we propose a saliency-weighted stereoscopic JND
(SSJND) model constructed based on psychophysical experiments,
accounting for binocular disparity and spatial masking effects of the
human visual system (HVS). Specifically, a disparity-aware binoc-
ular JND model is first developed using psychophysical data, and
then is employed to estimate the JND threshold for non-occluded
pixel (NOP). In addition, to derive a reliable 3D-JND prediction,
we determine the visibility threshold for occluded pixel (OP) by
including a robust 2D-JND model. Finally, SSJND thresholds of
one view are obtained by weighting the resulting JND for NOP and
OP with their visual saliency. Based on subjective experiments, we
demonstrate that the proposed model outperforms the other 3D-JND
models in terms of perceptual quality at the same noise level.

Index Terms— Just noticeable difference, 3D image/video cod-
ing, quality assessment, spatial masking, visual saliency.

1. INTRODUCTION

The just noticeable difference (JND) is one of the most important
perceptual properties, referring to the minimum visibility threshold
below which the pixel intensity variations cannot be perceived by
the human visual system (HVS). For decades, the 2D-JND models
have been successfully developed and exploited in many applica-
tions [1]. However, their use for S3D applications is questionable.
They mostly rely on monocular vision, which does not fit with the
complexity of our 3D perception requiring specific models account-
ing for both monocular and binocular depth cues.

Accordingly, it becomes crucial to develop effective 3D-JND
models for perceptual improvement of 3D applications. So far, a
handful of 3D-JND models can be found in the literature [2–12].
Based on the S3D content format, the existing 3D-JND models are
classified into two categories: (1) texture-plus-depth-based models,
and (2) stereopair-based models.

The first category estimates the visibility thresholds using ei-
ther texture-plus-depth content [2,3,11,12], or multi-view video plus
depth (MVD) one [6–8]. For instance, De Silva et al. [2] propose a
JND in depth (JNDD) model which measures the threshold for depth
variation that a human can perceive on a 3D display. Similarly, to
avoid the impact of the monocular depth cues, Yang et al. [11] con-
duct psychophysical experiments (PEs) based on the dynamic Ran-
dom Dot Stereogram technique to measure the JNDD thresholds. In
a different vein, Lian et al. design a JND in multi-view (MJND)
model, specially for MVD, by combining spatial and temporal JND
with JNDD [6]. Likewise, Zhong et al. [8] propose a hybrid JND
(HJND) model integrating a 2D-JND model [13] together with depth
saliency.

The second category models [4,5,9,10] are developed using left
and right views of S3D images. For example, based on PEs, Zhao
et al. develop a binocular JND (BJND) model [4], which estimates
the visibility thresholds in inter-difference between the left and right
views, by modeling visual masking effects. Here, the binocular dis-
parity is not taken into account, making the model less reliable for
real-world images. To solve this issue, Kim et al. conduct PEs to
measure JND thresholds by considering both luminance adaptation
(LA) and binocular disparity effects [14]. Meanwhile, a joint JND
(JJND) model [5] is proposed on top of a 2D-JND model [13], re-
lying on the assumption that the HVS has different perceptions on
objects with different depth values. Although JJND accounts for
binocular depth cues, its performance is low for S3D images with
uniform depth maps. Recently, Xue et al. [10] propose a disparity-
based JND (DJND) model by combining the JND profile [15] with
both depth of focus blur and disparity information. DJND is less ef-
ficient for S3D images with a limited depth difference between fore-
ground and background regions. In conclusion, all the above second
category models are developed on top of existing 2D-JND models
instead of conducting PEs, except BJND and [14].

In this paper, we propose a saliency-weighted stereoscopic JND
(SSJND) model that belongs to the second category, based on our
findings obtained from PEs. Our model is two-fold: 1) a disparity-
aware binocular JND (DBJND) dedicated to non-occluded pixels
(NOPs) obtained from LA and contrast masking (CM) experiments
accounting for binocular perception, and 2) a 2D-JND model de-
voted to occluded pixels (OPs) in the stereo pair. A final step of
the proposed SSJND model consists of weighting the JND thresh-
olds by the pixel visual saliency to account for its modulator effect.
The obtained model is validated thanks to subjective experiments
and compared in terms of perceptual 3D image quality to a number
of 3D-JND models from the literature.

2. PSYCHOPHYSICAL EXPERIMENTS

According to [16], the HVS is able to quickly adjust to the level
of the background light in order to distinguish objects. This abil-
ity is known as luminance adaptation (LA). Furthermore, contrast
masking (CM) describes the masking effect of the HVS in presence
of two or more stimuli, if they are of similar contrast/spatial non-
uniformity [1]. With the aim to model LA and CM in the S3D con-
text by considering the binocular disparity, we designed two com-
prehensive PEs.

2.1. Stimuli

Fig. 1 illustrates the visual stimuli used in LA and CM experiments,
respectively. The difference between dl and dr denotes the binocular
disparity d. The peri-fovea is modeled by a region R1 with a fixed
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Fig. 1: Stereo pair patterns used in psychophysical experiments.

luminance level 72 pixels (px). The human retinal para-fovea and
fovea can cover the information within 5◦ and 2◦ of visual angles,
respectively, around the fixation point [17]. Consequently, our stim-
uli in LA/CM experiments contain a fixation cross and a square R2

with a visual field of 5◦ × 5◦ with a luminance level equal to Lb.

2.1.1. LA experiment

The fovea-covered region is represented by a dashed circle of 2◦. In
contrast to [4] and [14], the noise area R3/R

′
3 is randomly displayed

within the dashed circle so as to avoid the memorization of noise
locationwhich may underestimate the JND thresholds. Furthermore,
the luminance levels are set to Lb±Nl (R3) and Lb±Nr (R

′
3) with

Nl|r the noise amplitude injected in the left/right view.

2.1.2. CM experiment

The fovea-covered region is shown here by a 1.4◦ × 1.4◦ dashed
square (diagonal of 2◦). The noise area R5/R

′
5 is located on a ran-

domly chosen side of R4/R
′
4 perimeter with an intensity of Nl|r .

Besides, the luminance level of R4 is set to Lb − ∆L, where ∆L
denotes the luminance contrast between R2 and R4.

Considering the Percival’s zone of comfort [18] and the experi-
ments’ duration, we choose five disparity values (i.e., 0◦,±0.5◦,±1◦)
after several trials. Table 1 describes the attributes values of the
stimuli used in LA and CM experiments. We set Nl = 0 for LA
experiment to obtain the maximum visibility thresholds of the right
image. In total, there are 30 stimuli (6 luminance levels × 5 dis-
parities) in LA experiment, and 60 stimuli (3 luminance levels × 5
disparities × 2 contrast values × 2 noise amplitude levels) in CM
experiment.

Table 1: Stimulus attributes for LA and CM experiments.

Attribute LA CM
Noise amplitude Nl (px) 0 0, 2
Luminance contrast ∆L (px) − 16, 48

Background luminance Lb (px) 22, 32, 48
96, 144, 192 96, 144, 192

Disparity d (degree) -1, -0.5, 0, 0.5, 1

2.2. Subjects

Twenty-two subjects (ages ranging from 20 to 33) are invited for
both LA and CM experiments. Before the experiments, each subject
undergoes a visual acuity check based on the Freiburg Vision Test,
in addition to the Randot stereo test.

2.3. Apparatus

The experiments are conducted in the XLIM psychophysical test
room that is isolated from the outside diffuse light and noise.
The ambient illumination is adjusted to 65 lux measured by an
illuminance-meter. To display the 3D test images, we use a cal-
ibrated 46” Hyundai TriDef S465D monitor having HD (1920 ×
1080) resolution with a brightness set to 250 cd/m2. Polarized 3D
glasses are used. According to the ITU-R BT.2021-1 recommenda-
tions [19], the viewing distance between the subject and the monitor
is set to 1.7 m (approx. 3× the height of the display).

2.4. Procedure

The experiments are designed using the Psychtoolbox of Matlab
[20]. Each subject is informed about the purpose of the experiments,
and instructed on how to report the results by using the keyboard
thanks to a training sequence before the actual experiments. The
JND threshold of the right view is obtained in two steps according
to [21]. Step 1 determines the just noticeable noise of the right view
AJNN , whereas step 2 measures the just unnoticeable noise AJUN .
The noise amplitude of the right view is varying, while the left view
remains constant in order to generate an asymmetric noise.

In step 1, for a stimulus, the noise amplitude of the right image
Nr is initially set to 0 to make it invisible to subjects. Then, Nr is
increased with a step of As until it becomes just noticeable, and the
final value is saved as the subject’s AJNN . As was set to 0.0083
and 0.1 for LA and CM experiments, respectively. Subsequently,
Nr is increased to AJNN + A immediately to ensure that subjects
can easily detect the noise. A is set to 1.7 and 2.0 for LA and CM,
respectively.

In step 2, the subjects follow a reversed procedure. Initially, the
noise area is visible to subjects. Then, Nr is gradually decreased
fromAJNN +A by a level ofAs until the noise becomes just unno-
ticeable. The corresponding value is saved as the subject’s AJUN .
The JND threshold of the right view is finally obtained as the aver-
age of AJNN and AJUN . The procedure is repeated for the whole
set of stimuli and subjects are asked to take a rest every 15 minutes.

3. PSYCHOPHYSICAL DATA ANALYSIS AND MODELING

3.1. Data analysis

To derive a reliable 3D-JND model, we perform an outlier detection
[22]. To do so, subject’s responses screening is performed following
the ITU-R BT 1788 recommendations [23]. The decision criterion is
based on the correlation level between subject’s values and the mean
observations. Consequently, four subjects for LA and three for CM
are identified as outliers, and discarded for the further analysis.

With the aim to obtain consistent data for each subject, we pro-
ceed to the rejection of outlier observations for each subject [24].
The median-absolute-deviation method is used for LA experimental
data, because the distribution for each subject is approximately sym-
metric. At the opposite, the samples distribution for CM experimen-
tal data is mostly asymmetric for which the Tukey’s-fences method
is preferred. In addition, to confirm the reliability of the JND data
after outliers’ rejection, we adopt the Jarque-Bera test [25] to ver-
ify that all JND values of each stimulus follow a normal distribution
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Fig. 2: (a) JND thresholds for difference background luminance levels Lb and disparities d from LA experiment, (b) JND thresholds for
difference Lb and noise amplitudes of the left view Nl from CM experiment. (c) Average slopes of the two curves in (b) for each Lb.

(p − value > 0.05). Finally, the mean JND threshold is obtained
for each stimulus using the post-processed JND data.

To further investigate the effects of background luminance Lb
and disparity d on the JND values, we conduct a two-way analysis
of variance (ANOVA) with the null hypothesis of no statistical sig-
nificant difference between JND thresholds for different Lb and d.
It is worth noting that the effects of ∆L and Nl are not exploited,
because both of them have only two values (see Table 1). Before
ANOVA, we first validate the normality of the distributions with the
Shapiro-Wilk test [26] and the homogeneity of variances with the
Levene’s test [27].

The resulting F (1, 6) = 290.26, p < 0.001 for LA, and
F (1, 3) = 90.01, p < 0.001 for CM demonstrate that there is a
significant difference between the luminance levels in terms of JND
thresholds. Furthermore, for the binocular disparity, the analysis
indicates a significant effect for LA (F (1, 4) = 2.95, p = 0.04)
and no effect for CM (F (1, 4) = 0.56, p = 0.69). This is probably
caused by the influence of the luminance contrast and the left view
noise on JND threshold than by disparity in the complicated CM
experiment patterns.

3.2. 3D-JND modeling

In this section, the post-processed JND data from the conducted ex-
periments are used to derive a 3D-JND model by considering both
LA and CM effects, as well as the disparity. Based on the study
in [4], the BJND model serves as a framework for our proposed
model. Therefore, using Lb, ∆L, Nl and d (cf. Table 1), we de-
fine a disparity-aware binocular JND threshold of the right image
DBJNDr as:

DBJNDr = Trmax (Lb,∆L, d)

[
1− (

Nl

Trmax (Lb,∆L, d)
)λ

] 1
λ

,

(1)

with λ a parameter that controls the influence of Nl, and its estima-
tion will be discussed later. In additions, Trmax denotes the maxi-
mum JND threshold of the right image by considering both LA and
CM effects, and is calculated as follows:

Trmax = S(Lb)∆L+ T
′
rmax(Lb, d), (2)

where T
′
rmax is the LA JND threshold for Nl = 0. Fitting the data

of Fig. 2a requires a curve having two distinct intervals: one for
Lb ≤ 48 and the other for Lb ≥ 48. Lc represents the intersection
point between these two curves, and is equal to 33. As presented in

the top of Fig. 2a, the values of R-square and the root mean square
error (RMSE) indicate a good fitting. Hence, for different Lb and d,
T

′
rmax can be expressed as:

T
′
rmax =

{
c1(L2

b + c2Lb + c3d) + c4, Lb ∈ [0, Lc[
c5(L2

b + c6Lb + c7d) + c8, Lb ∈ ]Lc, 255]
(3)

where the damped least-square fitting method [28] used on LA ex-
perimental data allows to identify the different constants as c1 =
0.0043, c2 = 83.939, c3 = 0.344, c4 = 9.611, c5 = 0.0001,
c6 = 57.884, c7 = 2.333, and c8 = 2.536.

Moreover, to determine S(Lb) in (2), we first depict the average
JND values (for five disparity values) according to ∆L under differ-
ent Lb and Nl in Fig. 2b. It illustrates that the JND threshold of the
right image increases as the luminance level increases. Furthermore,
the JND threshold is inversely proportional to the amplitude of the
noise injected in the left image under the same Lb, except for the
case where Lb = 192. This is because high luminance intensity in
CM experiment may result in subjects’ misjudgment on the visibility
thresholds. The slopes of the two curves for each Lb are determined,
and are averaged as S in Eq.2. Fig. 2c shows the relation between S
and Lb based on the obtained CM data, and its corresponding fitting
function is modeled by:

S = c9(L2
b + c10Lb) + c11, (4)

where the fitting parameters c9, c10 and c11 are equal to −1.389 ×
10−6, 30.238 and 0.049, respectively. The disparity d in Eq. 4 is
not considered because of the lack of effect on CM JND values (see
Section 3.1). As a result, we estimate λ described in Eq. 1 by fitting
the JND values for Nl = 0 and Nl = 2, and obtain λ = 3.76 with
RMSE = 0.421.

In addition to the above effects, we consider the occlusions for
3D-JND modeling. To this end, image pixels are classified into non-
occluded (NOP) and occluded (OP) pixels based on [29]. Then, DB-
JND (Eq.1) is applied to NOP and a robust 2D-JND model [30] is
applied to OP. Besides, the studies in [31, 32] demonstrate that JND
thresholds are affected by the visual importance of objects in the
image, i.e., visual saliency (VS). Specifically, the salient regions,
which attract more visual attention, have lower visibility thresholds
than the non-salient ones. Thereby, we propose to employ a VS map
to weight different JND estimates for NOPs and OPs. The VS of
the S3D image is estimated using a promising 3D saliency detection
algorithm [33]. Finally, the proposed saliency-weighted stereo JND



(SSJND) model is defined as:

SSJNDl|r(k) =

{
Tl|r(k)(1 + α(Ts − S̄l|r(k))), S̄l|r(k) ∈ [0, Ts]
Tl|r(k)(1− α(S̄l|r(k)− Ts)), S̄l|r(k) ∈]Ts, 1]

(5)
where l | r refer to the left or right image, k is the kth pixel of the
image. Tl|r respectively corresponds to DBJNDl|r for NOPs and
JNDl|r for OPs. S̄ represents the visual saliency normalized in the
range of [0, 1]. In addition, the parameters Ts and α, bounded in [0,
1], control the impact of VS on SSJND. For the next section, we
set Ts = 0.5, and α = 0.6.

4. EXPERIMENTAL VALIDATION

In this section, we validate the performance of the proposed SSJND
model by comparing with three very recent 3D-JND models, i.e.,
BJND [4], JJND [5] and DJND [10], as well as the SSJND model
without considering saliency (DBJND).

To achieve this, we use twelve stereo pairs from the Middle-
bury stereo datasets [34]. Similar to [35] and [36], we compare
the perceptual quality between the noise-injected S3D images re-
lying on different 3D-JND models under the same noise level. Note
that the noise is injected only in the right image of the stereo pair
in order to simulate an asymmetric distortion. The S3D image I∗

contaminated by the JND-based noise is calculated as: I∗(k) =
I(k) +Cn ·Nrand(k) · JND(k), where I denotes the original im-
age. Cn is a control parameter that makes the same noise level for
different 3D-JND models leading to the same peak signal-to-noise
ratio (PSNR), i.e. PSNR ∈ [28dB, 29dB].

To subjectively compare our model to the state-of-the-art, we
use the same experimental setup as for previous PEs. The room
ambient illumination and the viewing distance are set to 100 lux and
1.8 m, respectively. Furthermore, eighteen subjects are invited to
participate the test. Note that two subjects (side-by-side) participate
to the test simultaneously while the influence of viewing direction
on the quality judgment will be investigated later. we opted for
the stimulus-comparison method described in the ITU-R BT.2021-
1 [19]. Firstly, a mid-grey image with zero disparity, containing the
image sequence number, is presented to the subjects for 2s. Then,
a couple of JND-based distorted 3D images (SSJND and SOTA
model) are shown with random position on a mid-gray background
for 10s. Subsequently, subjects are asked to provide a score depend-
ing on the preference: 0 (the same), 1 (slightly better), 2 (better),
3 (much better). These scores are then used to compute the mean
opinion score over all subjects for each S3D image. In addition,
we use the Pearson’s chi-squared test [37] to verify the statistical
significance of the comparative scores. The adopted null hypothesis
of this test is: ”there is no preference between the proposed SSJND
model and the other 3D-JND models”.

Table 2 shows the quality comparison results in terms of mean
opinion scores and p-values for each image. p−value < 0.05 for all
pair comparison cases rejects the null hypothesis, and thus validates
the statistical significant preference between the proposed model and
the other 3D-JND models. Overall, SSJND outperforms all the other
models on almost all the used images. Complex scenes may lead
to difficulties in VS estimation where SSJND may overestimate the
JND thresholds for smooth regions with high luminance intensity
when the latter regions are considered as non-salient.

Compared to the BJND, the proposed SSJND model consid-
ers occlusion effect, and thus globally provides better estimation for
S3D image containing large number of occluded pixels. In the same
vein, our model performs quite better than the JJND and DJND mod-
els in terms of average scores, because they are both developed based

Table 2: Quality comparison between our SSJND and state-of-the-
art models using 12 images from the Middlebury stereo datasets.

S3D
image

vs.DBJND vs. BJND [4] vs. JJND [5] vs. DJND [10]
M̄ p-value M̄ p-value M̄ p-value M̄ p-value

Art 0.39 0.0001 0.06 0.0001 1.44 0.0058 1.61 0.0015
Reindeer 0.72 0.0001 0.33 0.0001 2.56 0.0001 2.89 0.0001
Moebius 0.39 0.0001 -0.17 0.0001 2.06 0.0001 2.22 0.0001
Dolls 0.72 0.0002 0.50 0.0001 1.72 0.0001 0.94 0.0001
Aloe 0.39 0.0001 0.83 0.0006 0.78 0.0016 1.22 0.0027
Baby2 0.17 0.0034 0.11 0.0004 -0.50 0.0131 0.78 0.0001
Midd2 0.56 0.0001 0.22 0.0007 -0.94 0.0001 0.83 0.0002
Plastic 0.56 0.0001 0.28 0.0001 0.89 0.0045 0.44 0.0013
Motorcycle -0.11 0.0001 -0.17 0.0001 1.06 0.0001 1.94 0.0001
Piano -0.22 0.0001 0.28 0.0002 2.56 0.0001 2.33 0.0001
Playroom 0.44 0.0001 0.22 0.0006 1.89 0.0001 1.44 0.0001
Playtable 0.22 0.0001 0.56 0.0001 1.00 0.0052 1.44 0.0007
Average 0.32 0.0003 0.24 0.0002 1.12 0.0023 1.39 0.0005

on 2D-JND, which makes them less reliable than the 3D-JND model
based on PEs. As a conclusion, our SSJND model performs better
for almost the whole dataset except for some rare cases, where it
should be noticed that the difference is close to 0.

The results of ANOVA with the null hypothesis of no significant
difference of the subject position in terms of subjective scores, give
p − value = 0.28, 0.89, 0.78, and 0.99 respectively for the DB-
JND, BJND, JJND and DJND models, and indicate that the viewing
direction has not significant influence on subjective scores.

5. CONCLUSION

In this paper, we propose a saliency-weighted stereoscopic JND
(SSJND) model. To this end, we first conduct psychophysical
experiments in which we measure the visibility thresholds of the
asymmetric noise. The psychophysical data is used to develop a
disparity-aware binocular JND (DBJND) model allowing to es-
timate the JND thresholds for non-occluded pixels. The SSJND
profile is build on top of DBJND by including a 2D-JND model
for occluded-pixels and accounting for visual saliency. The exper-
imental validation shows that the proposed model outperforms the
other 3D-JND models in terms of perceptual quality at the same
noise level. A more reliable VS detection approach and an effective
VS-map-based weighting function will be investigated in the future
to improve the effectiveness of the proposed 3D-JND model.
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