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ONTOLOGIES
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This tutorial article describes some definitions of “ontology” as it 

relates to computer applications and gives an overview of some 

common ontology-based applications. 

F
inding a precise definition of an ontol-
ogy as it applies to computer applications 
can be a trying experience. According to 
Merriam-Webster’s Dictionary, an ontol-

ogy is “the branch of metaphysics dealing with 
the nature of being or reality.” Moving on to the 
Object Management Group’s Ontology Definition 
Metamodel document,1 we learn that an ontology 
is a “specification of a conceptualization.” Finally, 
turning in desperation to the W3C’s Web Ontolo-
gy Language Overview,2 we discover that an ontol-
ogy is “the representation of meaning of terms in 
vocabularies and the relationships between those 
terms.” All of this is so confusing—just what is an 
ontology, anyway?

Perhaps a good practical definition would be 
that an ontology is a method of representing items 
of knowledge (ideas, facts, things—whatever) in a 
way that defines the relationships and classifica-
tions of concepts within a specified domain of 
knowledge. It’s this ability to define a variety of 
useful relationships among items of knowledge, 
and to implement these relationships in software, 
that make an ontology such a powerful gadget in 
the knowledge manager’s toolkit. 

History of Ontologies
Part of the difficulty in defining just what an on-
tology is lies in the fact that the word ontology 
comes from philosophy, where it refers to the 
study of being or existence. European medieval 
scholars, for example, devised an argument for 
the existence of God that they referred to as the 
ontological argument. (The ontological argument 
for God’s existence, as stated by Anselm of Can-
terbury [1033–1109] and others, asserted that the 
Supreme Being was the highest term in a scale of 
terms ranging from the lowest form of being to 
infinity, referred to as the “Great Chain of Be-
ing.” So if we use modern ontology language to 
describe Anselm’s argument, God is the ultimate 
Thing class, and all lower beings, from the an-
gels down to the microbes, are nested subclasses 
of Thing.) From a more modern perspective, on-
tologies came to be of interest to computer sci-
entists in the 1970s as they began to develop the 
field of artificial intelligence. They realized that 
if you could create a domain of knowledge and 
establish formal relationships among the items of 
knowledge in the domain, you could perform cer-
tain types of automated reasoning. Tom Gruber, 
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a computer scientist as Stanford Uni-
versity, formally introduced the term 
ontology to computer science in a 
1993 paper.3

Gruber’s work and that of other 
computer scientists led to the devel-
opment of several formal ontology 
languages. DARPA, for example, de-
veloped DAML (the DARPA Agent 
Markup Language) for Semantic Web 
applications; DAML + OIL (Ontology 
Inference Layer), a syntax layered on 
RDF and XML, served as the basis for 
the W3C’s Web Ontology Language, 
or OWL. (As you’ve probably noted by 
now, ontologies rely heavily on nested 
acronyms to define their lineage, sort 
of a tip of the hat to the original ontological argu-
ment for the Great Chain of Being.) The W3C’s 
Web Ontology Working Group formed in 2001 
and released the first OWL specifications in 
2004. I will refer to OWL as a typical ontology 
language for the remainder of this article. (But, 
really, it’s not that simple because OWL has three 
separate flavors: OWL Lite, a simple syntax that 
provides classification capabilities; OWL DL, a 
computationally complete version that supports 
description logic; and OWL Full, a version that 
provides compatibility with RDF schema. Unless 
otherwise noted, the descriptions in this article 
refer to OWL Lite.)

Ontology Properties 
and Characteristics
Like object-oriented programming, ontologies 
use classes and instances to represent knowledge 
items, but implementations of these two meta-
models use classes in significantly different ways. 
For example, a class is a fundamental artifact 
(classifier) in the Unified Modeling Language 
(UML) that describes a set of objects that share 
the same specifications of features, constraints, 
and semantics. An instance of a class is an object; 
instances of UML classes inherit their behavior 
from the class definition, and all objects in UML 
are instances of named classes. In OWL, we can 
think of a class as a set, and the instances of the 
OWL class (OWLThings), referred to collectively 
as the class extension, as members of that set. 
OWL also has a universal class, Thing; all indi-
viduals are members of Thing, and all classes are 

subclasses of it. However, in OWL, an individual 
can be an instance of Thing and not an instance 
of any other class. 

The real power of ontologies lies in the ability to 
create relationships among classes and instances, 
and to assign properties to those relationships 
that let us make inferences about them. Consid-
er, for example, a set of cheeses—Brie, cheddar, 
Emmenthaler, Gruyère, mozzarella, and Stilton. 
Consider also a set of countries—England, Swit-
zerland, Italy, and France. It’s easy to imagine a 
relationship labeled “is made in” between each 
cheese and a country, as in Figure 1.

We can infer several facts from these relation-
ships—for example, we can see that an instance 
either belongs to the set of cheeses or the set of 
countries, but can’t be both a cheese and a coun-
try. In ontology language, we can say that the 
class of cheeses and the class of countries are 
disjoint—there are no instances that belong to 
both. These relationships can help us do some 
reasoning: the property isMadeIn tells us that if 
we’re looking for Emmenthaler, we know that it’s 
made in Switzerland, so we can expect to find it 
there. Conversely, we know that if we’re in Eng-
land looking for a cheese, we can expect to find 
Stilton and cheddar. This is because we can infer 
that isMadeIn has an inverse property (we can 
call it hasProduct, for example) that relates the 
two instances in the opposite direction.

Classes can also be subclasses of another class. 
Thus, Cheeses can be a subclass of Food, which 
might include meat, fish, vegetables, and fruits. 
This lets us say with certainty that because Brie 
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Figure 1. Cheeses and countries. Relationships among classes and 

instances illustrate the use of properties.
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is a Cheese, and all Cheeses are Food, then Brie 
is also a Food. (This relationship is called neces-
sary implication.) OWL allows equivalent classes 
to exist—that is, two classes can be stated to be 
the same and to contain the same instances. For 
example, we might create a class called From-
ages, which can contain all the same instances 
as Cheeses. 

We can see from Figure 1 that cheddar is made 
in England; however, the figure doesn’t tell us if 
cheddar is also made in the US or in Bulgaria. 
In OWL, this is unknowable because like most 
ontology languages, OWL follows the open world 
assumption—any assertion not explicitly stated 
is undecidable; the closed world assumption is that 
any assertion not explicitly stated is assumed to 

be false. Hotel reservation systems, for example, 
are based on the closed world assumption—if my 
name isn’t on the reservation list, I don’t have 
a room for the night. Similarly, although Fig-
ure 1 indicates that Brie and Gruyère are made 
in France, it doesn’t tell us if these are the only 
cheeses made in France. We would need addi-
tional information to determine this. In the US, 
we often refer to Emmenthaler as “Swiss cheese.” 
This poses no problem for OWL, which is quite 
happy to refer to the same cheese by either name. 
This is because OWL doesn’t use the unique name 
assumption (UNA), which states that all individu-
als must have a unique name.

Types of Ontologies
Ontologies tend to be of two general types: tran-
scendent ontologies, which are authoritative and 
defined externally from the applications that 
use them, and immanent ontologies, in which the 
structure is defined by the domain’s knowledge 
content. An example of a transcendent ontology 
would be the periodic table used in chemistry; 
the structure is rigidly defined by a long-standing 

body of scientific knowledge and rarely altered. If 
we look at the periodic table, we note that it’s or-
ganized in columns and rows—the noble gases, 
such as helium and neon, the halogens, such as 
chlorine and fluorine, and so forth. Any new ele-
ment would have to be added to an already exist-
ing category, and all the chemists in the world 
would have to agree that, yes, this really is a new 
element and it belongs in this specific category. 
Adding a new element is a relatively rare oc-
currence, and adding a new family of elements 
seems extremely unlikely. It’s a tribute to Dmitri 
Mendeleev’s intuition that the structure he cre-
ated 140 years ago is still in use in essentially its 
original form. An example of an immanent on-
tology would be an ontology of all the items in a 
daily newspaper; its structure would change on 
a daily basis, dependent on that day’s news. One 
day’s ontology might include articles on a natural 
disaster; the next day’s might include a report of 
an economic crisis. 

You might ask, which kind is best? As usual, it 
all depends. Many designers start out to imple-
ment what they believe to be transcendent ontol-
ogies, only to discover that what they believed to 
be fixed categories have suddenly grown, shrunk, 
or morphed into something else. As Clay Shirky 
points out in his much-cited blog piece, “Ontolo-
gy Is Overrated: Categories, Links and Tags,” de-
signers of classification systems often make the 
mistake of unconsciously reflecting their own 
prejudices in the systems they implement (www.
shirky.com/writings/ontology_overrated.html). 
For example, the Dewey Decimal system, long 
used by librarians to classify books by subject, 
reflected the Eurocentric bias of its creators by 
allocating most of its codes to subjects related to 
European history and culture. The importance of 
categories tends to change over time as cultures 
change and new innovations arise. An ontology 
of programming languages created in 1980, for 
example, would include COBOL, Fortran, and C, 
but C++, Java, Python, and Ruby on Rails would 
be conspicuously absent. Very few ontologies are 
truly transcendent in the sense of having fixed 
categories that rarely, if ever, change. 

How Is an Ontology  
Different from a Hierarchy?
We’re all aware that big things can contain small 
things; this concept is easily accommodated with-
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in ontologies by using classes, 
subclasses, and superclasses 
to show hierarchical relation-
ships. Thus, as I’ve already 
shown, we can create a class of 
foods that includes subclasses 
of fruits, vegetables, meat, 
fish, and cheeses. Within each 
subclass, we might identify 
a property found in certain 
individuals—for instance, we 
might find examples of fruits, 
vegetables, and cheeses that 
are orange in color. Within a 
true hierarchical structure, 
it’s difficult to show that this 
property is common across 
the subclasses: we might end 
up creating separate subclass-
es of orange fruits, orange veg-
etables, and orange cheeses. 
In an ontology, however, we 
can simply create a new class of orange food 
items and make it a subclass of fruits, vegetables, 
and cheeses, all at the same time, as Figure 2 
illustrates.

Reasoners

Because the relationships used in ontologies are 
formally defined, it’s possible to use a reasoner 
to perform automated reasoning—for example, a 
reasoner can determine if one class is a subclass 
of another class. This makes it possible to find 
the ontology’s inferred class hierarchy and deter-
mine if a given class has any possible instances. 
In the orange food ontology example, a reasoner 
can determine that the class of oranges, carrots, 
and cheddar is a valid subclass of Food, and that 
it contains at least three members.

Visual Representations

Of the many good reasons for using visual lan-
guages for knowledge representation, one is that 
an ontology might contain relationships that 
aren’t easily expressible in pure text or formal 
logic. Another is that it’s often easier to represent 
complex relationships with a picture that can 
be understood on an intuitive level. Generally 
speaking, visual languages for knowledge rep-
resentation consist of nodes connected by arcs. 
However, to eliminate ambiguity, we must apply 

some formal rules—starting and ending points, 
directionality, node function, and cardinality of 
relationships must all be defined.

One form of visual knowledge representation 
for ontologies is the semantic network, or con-
cept map. A semantic network is a graph made 
of nodes connected by arcs. The nodes represent 
objects or concepts in a domain, and the arcs rep-
resent relationships among the nodes. Typical re-
lationships might include (but are not limited to) 
is-a-type-of, is-related-to, or is-an-instance-of.

One of the most common tools for visual 
representation of ontologies is Protégé, a free, 
open source ontology editor and knowledgebase 
framework (http://protege.stanford.edu). Protégé 
is based on a Meta Object Facility- (MOF-) com-
patible metamodel, and its ontologies can be ex-
ported in RDF, OWL, or XML schema format. 
Figure 3 shows an example in Protégé of an OWL 
semantic network that shows the relationship of 
different types of pizza.

Protégé provides tools for visualizing ontolo-
gies as well as for constructing them; Figure 
3, for example, uses a visualization tool called 
OWLViz to provide a visual representation 
of an ontology and its relationships. Protégé 
also allows for automated reasoning; RACER 
is a reasoner frequently used with it (www.sts. 
tu-harburg.de/~r.f.moeller/racer/). In fact, the 
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Figure 2. Hierarchical view vs. ontological view. (a) Ontologies represent 

common properties across subclasses, whereas (b) hierarchies reflect a more 

top-down approach.
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Protégé user interface allows for side-by-side 
viewing of asserted and inferred class hierar-
chies using RACER.

Practical Applications for Ontologies
Ontologies are particularly well-suited for re-
search in areas with vast amounts of available 
data, where the relationships to be explored aren’t 
hierarchical, such as in biomedical research. A 
good example is pharmaceutical research—it’s 
possible to create an ontology of pharmaceuticals 
and their chemical composition, their intended 
therapeutic use, and genetic variations among in-
dividual patients. Using this approach, scientists 
can see relationships between a patient’s individ-
ual genome and the efficacy of a specific medica-
tion in a treatment regimen, and then fine-tune 
the treatment to make it more effective.

Gene Ontology

Genetic information tends to be scattered across 
multiple databases, making retrieval and analy-
sis more difficult. One project that attempts 
to deal with this is the Gene Ontology (www.
geneontology.org/GO.doc.shtml), which began 
in 1998 as a collaborative effort among three 
model organism databases—FlyBase, the Sac-
charomyces Genome Database (SGD), and the 
Mouse Genome Database (MGD)—to merge 

the information contained in 
separate databases for droso-
phila (fruitfly), saccharomyces 
(yeast), and mouse genomes. 
It has since grown to include 
more than 17 individual data-
bases of genetic information. 
The Gene Ontology main-
tains three ontologies that 
describe gene products in 
terms of their associated bi-
ological processes, cellular 
components, and molecular 
functions in a species-inde-
pendent manner. In addition 
to maintaining the ontolo-
gies, the project’s researchers 
provide gene annotation and 
develop tools to facilitate ac-
cess and search.

The Gene Ontology makes 
extensive use of some of the 

fundamental characteristics of ontologies. Be-
cause we might refer to a single genetic entity by 
multiple names, the ontologies use synonyms to 
broaden or narrow the scope of inquiry as neces-
sary. Child terms (subclasses) might be related to 
multiple parent terms (superclasses), for example. 
The ontologies use five basic types of relation-
ships: is_a, part_of, regulates, positively_regu-
lates, and negatively_regulates. 

SNOMED-CT

Standardized Nomenclature for Medicine-Clini-
cal Terminology (SNOMED-CT) is an ontology 
of clinical terminology used in healthcare. It’s 
the world’s most comprehensive clinical termi-
nology database, comprising 350,000+ terms, 
and is maintained by the International Health 
Terminology Standards Development Organiza-
tion (IHTSDO; www.ihtsdo.org). 

SNOMED-CT is a good example of a tran-
scendent ontology. It consists of concepts that 
represent clinical meanings, each with a numeri-
cal concept ID and a human-readable fully speci-
fied name (FSN). Each FSN contains a semantic 
tag that indicates the clinical category (such as 
Person, Disorder) it belongs to, and each con-
cept has a preferred term defined for it that cap-
tures the common expression used by clinicians. 
Unlike FSNs, however, preferred terms aren’t 

Figure 3. Example semantic network representation in Protégé. This visual 

representation of an ontology uses an OWL semantic network to show the 

relationships among different types of pizza.
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uniquely identified because a term can have dif-
ferent meanings in different contexts. A concept 
can also have multiple synonyms associated with 
it, which represent different names for the same 
thing—for example, “heart attack” and “cardiac 
infarction” are synonyms for the same concept/
FSN, “myocardial infarction.” Relationships in 
SNOMED-CT can be of four types: defining, 
qualifying, historical, and additional. The main 
defining relationship is the IS_A relationship, 
which SNOMED-CT uses to define subtype/ 
supertype hierarchical relationships.

SNOMED-CT uses defining attributes to 
model concept definitions. An attribute’s domain 
is the hierarchy (or hierarchies) to which the at-
tribute applies. An attribute’s range is the set of 
values that it can possess. Some common attri-
butes include finding site, which describes an 
anatomical structure; causative agent, which de-
fines the direct causative agent of a disease; and 
severity, which represents the level of severity for 
a clinical finding. 

SNOMED-CT’s value lies not only in the way 
it helps standardize medical terminology, but 
in its ability to automate many functions re-
lated to medical record administration. Use of 
SNOMED-CT concept IDs and FSNs enables 
much of the work involved in patient billing to be 
automated and makes it easier to collect data for 
research purposes.

O
ntologies, as I pointed out earlier, have be-
come an important tool in the knowledge 
manager’s toolkit. Their ability to find 

needles of pertinent relationships in haystacks of 
data is particularly critical in an age when we’re all 
being inundated with a firehose of information on 
a daily basis. You have to wonder what the medieval 
philosophers would say if they could see what their 
ruminations on existence have evolved into. 
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