
22 IT Pro September/October 2009 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/09/$26.00 © 2009 IEEE

ONTOLOGIES

Thomas C. Jepsen
IT consultant

This tutorial article describes some definitions of “ontology” as it

relates to computer applications and gives an overview of some

common ontology-based applications.

F
inding a precise definition of an ontol-
ogy as it applies to computer applications
can be a trying experience. According to
Merriam-Webster’s Dictionary, an ontol-

ogy is “the branch of metaphysics dealing with
the nature of being or reality.” Moving on to the
Object Management Group’s Ontology Definition
Metamodel document,1 we learn that an ontology
is a “specification of a conceptualization.” Finally,
turning in desperation to the W3C’s Web Ontolo-
gy Language Overview,2 we discover that an ontol-
ogy is “the representation of meaning of terms in
vocabularies and the relationships between those
terms.” All of this is so confusing—just what is an
ontology, anyway?

Perhaps a good practical definition would be
that an ontology is a method of representing items
of knowledge (ideas, facts, things—whatever) in a
way that defines the relationships and classifica-
tions of concepts within a specified domain of
knowledge. It’s this ability to define a variety of
useful relationships among items of knowledge,
and to implement these relationships in software,
that make an ontology such a powerful gadget in
the knowledge manager’s toolkit.

History of Ontologies
Part of the difficulty in defining just what an on-
tology is lies in the fact that the word ontology
comes from philosophy, where it refers to the
study of being or existence. European medieval
scholars, for example, devised an argument for
the existence of God that they referred to as the
ontological argument. (The ontological argument
for God’s existence, as stated by Anselm of Can-
terbury [1033–1109] and others, asserted that the
Supreme Being was the highest term in a scale of
terms ranging from the lowest form of being to
infinity, referred to as the “Great Chain of Be-
ing.” So if we use modern ontology language to
describe Anselm’s argument, God is the ultimate
Thing class, and all lower beings, from the an-
gels down to the microbes, are nested subclasses
of Thing.) From a more modern perspective, on-
tologies came to be of interest to computer sci-
entists in the 1970s as they began to develop the
field of artificial intelligence. They realized that
if you could create a domain of knowledge and
establish formal relationships among the items of
knowledge in the domain, you could perform cer-
tain types of automated reasoning. Tom Gruber,

Just What Is an
Ontology, Anyway?

 computer.org/ITPro 2 3

a computer scientist as Stanford Uni-
versity, formally introduced the term
ontology to computer science in a
1993 paper.3

Gruber’s work and that of other
computer scientists led to the devel-
opment of several formal ontology
languages. DARPA, for example, de-
veloped DAML (the DARPA Agent
Markup Language) for Semantic Web
applications; DAML + OIL (Ontology
Inference Layer), a syntax layered on
RDF and XML, served as the basis for
the W3C’s Web Ontology Language,
or OWL. (As you’ve probably noted by
now, ontologies rely heavily on nested
acronyms to define their lineage, sort
of a tip of the hat to the original ontological argu-
ment for the Great Chain of Being.) The W3C’s
Web Ontology Working Group formed in 2001
and released the first OWL specifications in
2004. I will refer to OWL as a typical ontology
language for the remainder of this article. (But,
really, it’s not that simple because OWL has three
separate flavors: OWL Lite, a simple syntax that
provides classification capabilities; OWL DL, a
computationally complete version that supports
description logic; and OWL Full, a version that
provides compatibility with RDF schema. Unless
otherwise noted, the descriptions in this article
refer to OWL Lite.)

Ontology Properties
and Characteristics
Like object-oriented programming, ontologies
use classes and instances to represent knowledge
items, but implementations of these two meta-
models use classes in significantly different ways.
For example, a class is a fundamental artifact
(classifier) in the Unified Modeling Language
(UML) that describes a set of objects that share
the same specifications of features, constraints,
and semantics. An instance of a class is an object;
instances of UML classes inherit their behavior
from the class definition, and all objects in UML
are instances of named classes. In OWL, we can
think of a class as a set, and the instances of the
OWL class (OWLThings), referred to collectively
as the class extension, as members of that set.
OWL also has a universal class, Thing; all indi-
viduals are members of Thing, and all classes are

subclasses of it. However, in OWL, an individual
can be an instance of Thing and not an instance
of any other class.

The real power of ontologies lies in the ability to
create relationships among classes and instances,
and to assign properties to those relationships
that let us make inferences about them. Consid-
er, for example, a set of cheeses—Brie, cheddar,
Emmenthaler, Gruyère, mozzarella, and Stilton.
Consider also a set of countries—England, Swit-
zerland, Italy, and France. It’s easy to imagine a
relationship labeled “is made in” between each
cheese and a country, as in Figure 1.

We can infer several facts from these relation-
ships—for example, we can see that an instance
either belongs to the set of cheeses or the set of
countries, but can’t be both a cheese and a coun-
try. In ontology language, we can say that the
class of cheeses and the class of countries are
disjoint—there are no instances that belong to
both. These relationships can help us do some
reasoning: the property isMadeIn tells us that if
we’re looking for Emmenthaler, we know that it’s
made in Switzerland, so we can expect to find it
there. Conversely, we know that if we’re in Eng-
land looking for a cheese, we can expect to find
Stilton and cheddar. This is because we can infer
that isMadeIn has an inverse property (we can
call it hasProduct, for example) that relates the
two instances in the opposite direction.

Classes can also be subclasses of another class.
Thus, Cheeses can be a subclass of Food, which
might include meat, fish, vegetables, and fruits.
This lets us say with certainty that because Brie

Brie

Cheddar

Emmenthaler

Stilton

Switzerland

England

France

Mozzarella

Gruyère

Italy

isMadeIn

isMadeIn

isMadeIn
isMadein

isMadeIn

isMadeIn

Cheeses

Countries

Figure 1. Cheeses and countries. Relationships among classes and

instances illustrate the use of properties.

24 IT Pro September/October 2009

ONTOLOGIES

is a Cheese, and all Cheeses are Food, then Brie
is also a Food. (This relationship is called neces-
sary implication.) OWL allows equivalent classes
to exist—that is, two classes can be stated to be
the same and to contain the same instances. For
example, we might create a class called From-
ages, which can contain all the same instances
as Cheeses.

We can see from Figure 1 that cheddar is made
in England; however, the figure doesn’t tell us if
cheddar is also made in the US or in Bulgaria.
In OWL, this is unknowable because like most
ontology languages, OWL follows the open world
assumption—any assertion not explicitly stated
is undecidable; the closed world assumption is that
any assertion not explicitly stated is assumed to

be false. Hotel reservation systems, for example,
are based on the closed world assumption—if my
name isn’t on the reservation list, I don’t have
a room for the night. Similarly, although Fig-
ure 1 indicates that Brie and Gruyère are made
in France, it doesn’t tell us if these are the only
cheeses made in France. We would need addi-
tional information to determine this. In the US,
we often refer to Emmenthaler as “Swiss cheese.”
This poses no problem for OWL, which is quite
happy to refer to the same cheese by either name.
This is because OWL doesn’t use the unique name
assumption (UNA), which states that all individu-
als must have a unique name.

Types of Ontologies
Ontologies tend to be of two general types: tran-
scendent ontologies, which are authoritative and
defined externally from the applications that
use them, and immanent ontologies, in which the
structure is defined by the domain’s knowledge
content. An example of a transcendent ontology
would be the periodic table used in chemistry;
the structure is rigidly defined by a long-standing

body of scientific knowledge and rarely altered. If
we look at the periodic table, we note that it’s or-
ganized in columns and rows—the noble gases,
such as helium and neon, the halogens, such as
chlorine and fluorine, and so forth. Any new ele-
ment would have to be added to an already exist-
ing category, and all the chemists in the world
would have to agree that, yes, this really is a new
element and it belongs in this specific category.
Adding a new element is a relatively rare oc-
currence, and adding a new family of elements
seems extremely unlikely. It’s a tribute to Dmitri
Mendeleev’s intuition that the structure he cre-
ated 140 years ago is still in use in essentially its
original form. An example of an immanent on-
tology would be an ontology of all the items in a
daily newspaper; its structure would change on
a daily basis, dependent on that day’s news. One
day’s ontology might include articles on a natural
disaster; the next day’s might include a report of
an economic crisis.

You might ask, which kind is best? As usual, it
all depends. Many designers start out to imple-
ment what they believe to be transcendent ontol-
ogies, only to discover that what they believed to
be fixed categories have suddenly grown, shrunk,
or morphed into something else. As Clay Shirky
points out in his much-cited blog piece, “Ontolo-
gy Is Overrated: Categories, Links and Tags,” de-
signers of classification systems often make the
mistake of unconsciously reflecting their own
prejudices in the systems they implement (www.
shirky.com/writings/ontology_overrated.html).
For example, the Dewey Decimal system, long
used by librarians to classify books by subject,
reflected the Eurocentric bias of its creators by
allocating most of its codes to subjects related to
European history and culture. The importance of
categories tends to change over time as cultures
change and new innovations arise. An ontology
of programming languages created in 1980, for
example, would include COBOL, Fortran, and C,
but C++, Java, Python, and Ruby on Rails would
be conspicuously absent. Very few ontologies are
truly transcendent in the sense of having fixed
categories that rarely, if ever, change.

How Is an Ontology
Different from a Hierarchy?
We’re all aware that big things can contain small
things; this concept is easily accommodated with-

An example of an immanent

ontology would be an ontology of all

the items in a daily newspaper; its

structure would change on a daily

basis, dependent on that day’s news.

 computer.org/ITPro 2 5

in ontologies by using classes,
subclasses, and superclasses
to show hierarchical relation-
ships. Thus, as I’ve already
shown, we can create a class of
foods that includes subclasses
of fruits, vegetables, meat,
fish, and cheeses. Within each
subclass, we might identify
a property found in certain
individuals—for instance, we
might find examples of fruits,
vegetables, and cheeses that
are orange in color. Within a
true hierarchical structure,
it’s difficult to show that this
property is common across
the subclasses: we might end
up creating separate subclass-
es of orange fruits, orange veg-
etables, and orange cheeses.
In an ontology, however, we
can simply create a new class of orange food
items and make it a subclass of fruits, vegetables,
and cheeses, all at the same time, as Figure 2
illustrates.

Reasoners

Because the relationships used in ontologies are
formally defined, it’s possible to use a reasoner
to perform automated reasoning—for example, a
reasoner can determine if one class is a subclass
of another class. This makes it possible to find
the ontology’s inferred class hierarchy and deter-
mine if a given class has any possible instances.
In the orange food ontology example, a reasoner
can determine that the class of oranges, carrots,
and cheddar is a valid subclass of Food, and that
it contains at least three members.

Visual Representations

Of the many good reasons for using visual lan-
guages for knowledge representation, one is that
an ontology might contain relationships that
aren’t easily expressible in pure text or formal
logic. Another is that it’s often easier to represent
complex relationships with a picture that can
be understood on an intuitive level. Generally
speaking, visual languages for knowledge rep-
resentation consist of nodes connected by arcs.
However, to eliminate ambiguity, we must apply

some formal rules—starting and ending points,
directionality, node function, and cardinality of
relationships must all be defined.

One form of visual knowledge representation
for ontologies is the semantic network, or con-
cept map. A semantic network is a graph made
of nodes connected by arcs. The nodes represent
objects or concepts in a domain, and the arcs rep-
resent relationships among the nodes. Typical re-
lationships might include (but are not limited to)
is-a-type-of, is-related-to, or is-an-instance-of.

One of the most common tools for visual
representation of ontologies is Protégé, a free,
open source ontology editor and knowledgebase
framework (http://protege.stanford.edu). Protégé
is based on a Meta Object Facility- (MOF-) com-
patible metamodel, and its ontologies can be ex-
ported in RDF, OWL, or XML schema format.
Figure 3 shows an example in Protégé of an OWL
semantic network that shows the relationship of
different types of pizza.

Protégé provides tools for visualizing ontolo-
gies as well as for constructing them; Figure
3, for example, uses a visualization tool called
OWLViz to provide a visual representation
of an ontology and its relationships. Protégé
also allows for automated reasoning; RACER
is a reasoner frequently used with it (www.sts.
tu-harburg.de/~r.f.moeller/racer/). In fact, the

Fruits

Vegetables

Cheeses

Oranges

Carrots

Cheddar

Food

Fruits

Oranges

Vegetables

Carrots

Cheeses

Cheddar

(b) Hierarchical view

(a) Ontology view

Food

Figure 2. Hierarchical view vs. ontological view. (a) Ontologies represent

common properties across subclasses, whereas (b) hierarchies reflect a more

top-down approach.

26 IT Pro September/October 2009

ONTOLOGIES

Protégé user interface allows for side-by-side
viewing of asserted and inferred class hierar-
chies using RACER.

Practical Applications for Ontologies
Ontologies are particularly well-suited for re-
search in areas with vast amounts of available
data, where the relationships to be explored aren’t
hierarchical, such as in biomedical research. A
good example is pharmaceutical research—it’s
possible to create an ontology of pharmaceuticals
and their chemical composition, their intended
therapeutic use, and genetic variations among in-
dividual patients. Using this approach, scientists
can see relationships between a patient’s individ-
ual genome and the efficacy of a specific medica-
tion in a treatment regimen, and then fine-tune
the treatment to make it more effective.

Gene Ontology

Genetic information tends to be scattered across
multiple databases, making retrieval and analy-
sis more difficult. One project that attempts
to deal with this is the Gene Ontology (www.
geneontology.org/GO.doc.shtml), which began
in 1998 as a collaborative effort among three
model organism databases—FlyBase, the Sac-
charomyces Genome Database (SGD), and the
Mouse Genome Database (MGD)—to merge

the information contained in
separate databases for droso-
phila (fruitfly), saccharomyces
(yeast), and mouse genomes.
It has since grown to include
more than 17 individual data-
bases of genetic information.
The Gene Ontology main-
tains three ontologies that
describe gene products in
terms of their associated bi-
ological processes, cellular
components, and molecular
functions in a species-inde-
pendent manner. In addition
to maintaining the ontolo-
gies, the project’s researchers
provide gene annotation and
develop tools to facilitate ac-
cess and search.

The Gene Ontology makes
extensive use of some of the

fundamental characteristics of ontologies. Be-
cause we might refer to a single genetic entity by
multiple names, the ontologies use synonyms to
broaden or narrow the scope of inquiry as neces-
sary. Child terms (subclasses) might be related to
multiple parent terms (superclasses), for example.
The ontologies use five basic types of relation-
ships: is_a, part_of, regulates, positively_regu-
lates, and negatively_regulates.

SNOMED-CT

Standardized Nomenclature for Medicine-Clini-
cal Terminology (SNOMED-CT) is an ontology
of clinical terminology used in healthcare. It’s
the world’s most comprehensive clinical termi-
nology database, comprising 350,000+ terms,
and is maintained by the International Health
Terminology Standards Development Organiza-
tion (IHTSDO; www.ihtsdo.org).

SNOMED-CT is a good example of a tran-
scendent ontology. It consists of concepts that
represent clinical meanings, each with a numeri-
cal concept ID and a human-readable fully speci-
fied name (FSN). Each FSN contains a semantic
tag that indicates the clinical category (such as
Person, Disorder) it belongs to, and each con-
cept has a preferred term defined for it that cap-
tures the common expression used by clinicians.
Unlike FSNs, however, preferred terms aren’t

Figure 3. Example semantic network representation in Protégé. This visual

representation of an ontology uses an OWL semantic network to show the

relationships among different types of pizza.

 computer.org/ITPro 2 7

uniquely identified because a term can have dif-
ferent meanings in different contexts. A concept
can also have multiple synonyms associated with
it, which represent different names for the same
thing—for example, “heart attack” and “cardiac
infarction” are synonyms for the same concept/
FSN, “myocardial infarction.” Relationships in
SNOMED-CT can be of four types: defining,
qualifying, historical, and additional. The main
defining relationship is the IS_A relationship,
which SNOMED-CT uses to define subtype/
supertype hierarchical relationships.

SNOMED-CT uses defining attributes to
model concept definitions. An attribute’s domain
is the hierarchy (or hierarchies) to which the at-
tribute applies. An attribute’s range is the set of
values that it can possess. Some common attri-
butes include finding site, which describes an
anatomical structure; causative agent, which de-
fines the direct causative agent of a disease; and
severity, which represents the level of severity for
a clinical finding.

SNOMED-CT’s value lies not only in the way
it helps standardize medical terminology, but
in its ability to automate many functions re-
lated to medical record administration. Use of
SNOMED-CT concept IDs and FSNs enables
much of the work involved in patient billing to be
automated and makes it easier to collect data for
research purposes.

O
ntologies, as I pointed out earlier, have be-
come an important tool in the knowledge
manager’s toolkit. Their ability to find

needles of pertinent relationships in haystacks of
data is particularly critical in an age when we’re all
being inundated with a firehose of information on
a daily basis. You have to wonder what the medieval
philosophers would say if they could see what their
ruminations on existence have evolved into.

References
 1. Ontology Definition Metamodel, OMG document num-

ber ptc/2007-09-09, Object Management Group,

Nov. 2007.

 2. “OWL Web Ontology Overview,” W3C Recommen-

dation, 10 Feb. 2004; www.w3.org/TR/2004/REC-

owl-features-20040210/.

 3. T. Gruber, “Toward Principles for the Design of

Ontologies Used for Knowledge Sharing,” Int’l J.

Human-Computer Studies, vol. 43, nos. 5–6, 1995, pp.

907–928.

Thomas C. Jepsen is an IT consultant in Chapel Hill,

North Carolina. He also serves as the programming lan-

guages editor for IT Professional and chair of IEEE-USA’s

Medical Technology Policy Committee. Jepsen’s current re-

search interests include healthcare IT standards and devel-

opment of service-oriented architecture (SOA) applications.

He’s the author of Distributed Storage Networks: Ar-

chitecture, Protocols and Management (John Wiley

& Sons, 2003), editor of Java in Telecommunications:

Solutions for Next Generation Networks (John Wiley

& Sons, 2001), and contributing author of Systems En-

gineering Approach to Medical Automation (Artech

House, 2008). Contact him at tjepsen@ieee.org.

Reach
Higher

Advancing in the IEEE Computer

Society can elevate your standing

in the profession.

•	 Application	in	Senior-grade	
 membership recognizes ten

 years or more of professional

 expertise.

•	 Nomination	to	Fellow-grade	
 membership recognizes

 exemplary accomplishments

 in computer engineering.

GIVE YOUR CAREER A BOOST

n

UPGRADE YOUR MEMBERSHIP

www.computer.org/

join/grades.htm

