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JUSTIFICATION AND EXTENSION OF DOOB’S HEURISTIC APPROACH
TO THE KOLMOGOROV-SMIRNOV THEOREMS!

By MonroE D. DONSKER

University of Minnesota

1. Introduction and summary. Doob [1] has given heuristically an appealing
methodology for deriving asymptotic theorems on the difference between the
empirical distribution function calculated from a sample and the actual dis-
tribution function of the population being sampled. In particular he has applied
these methods to deriving the well known theorems of Kolmogorov [2] and
Smirnov [3]. In this paper we give a justification of Doob’s approach to these
theorems and show that the method can be extended to a wide class of such
asymptotic theorems.

2. The justification for Kolmogorov’s theorem. Let z;, 22, - - - be mutually
independent, identically distributed random variables with distribution function
F(\), and let »,(\) be the number of z,’s among z;, 22, - - - , x, which are < .
In studying the difference between the empirical distribution function, »,(\)/n,
and F(\), Kolmogorov showed that if F(\) is continuous, the distribution of

(2.1) Lub. (”_L” - m))
—0 N+ n
is independent of F(A). For convenience, therefore, we will assume that the
variables are uniformly distributed on (0, 1), that is, F(\) = A for0 =\ £ 1.
Let’
(2.2) D% = lub. <l’ﬂ - x).
o<As1\ M

One of Kolmogorov’s theorems states

(2.3) lim P{(n’D% < o} =1 — ™,

n—>00

and for our purposes it will be sufficient to justify Doob’s method for this par-
ticular theorem since the justification of the method in general follows from it.
Following Doob, define

(24) za(t) = n! (V"Tm - t>, 0

IIA

t= 1.

IIA

! Research begun while the writer was a member of an ONR sponsored project in prob-
ability at Cornell University.
2 For ease of comparison, we are using Doob’s notation wherever possible.
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Clearly,
E{z.(t)} =0, 0

I\

t

A

1,
(2.5)
Eflza(t) — za(9)]'} = (¢ — 9)[1 = (¢ — 3)], 0=ss=t

Let {z(t)} be a one parameter family of random variables, 0 = ¢ £ 1, with the
properties:
(a) foreach7,if0 < < --+ < ¢; £ 1, the j-variate distribution of the vari-

IIA

1.

ables z(t,), z(t2), - - - , x(t;) is Gaussian;
(b) Efz()} =0, 0=<t=<1,
(26)  E{lz(t) — z@))} = (¢ — )L — ( = 9), 0Sss<tsl;
(c) P{z(0) = 0} = 1.

The z(¢) process can be selected so that with probability one it has continuous
sample functions. Let Y be the space of these sample functions. The z(f) process
selected here is such that forany j,if0 £t < --- <t, < l,and if (a1, 02, -+,
a;) is an arbitrary vector, we have from the central limit theorem
(27) hm P{x,.(tl) § al;i = 1, 2, "',j} = P{x(tl) é ai;i = 1, 2, LRI ,j}.

Doob’s heuristic argument consisted in assuming that in calculating asymp-
totic x,(f) process distributions when n — «, one could replace the z.(¢) proc-
ess by the z(f) process. In particular, with reference to (2.3), his assumption
was that
(2.8) lim P{n!D} < o} = P{D* < a},

n—%

where D = maxo<,<; 2(f). What we wish to show, therefore, is that

(2.9) lim P fl.u.b. [n’ (’éf—) - t>:‘ < a} = P{ max z(t) £ a}.

n—+00 0<t<1 0<t<1

Let E, be the event that for all ¢ in (0, 1), v,.(t) = an' 4+ nt, and let E be the

event that for all ¢ in (0, 1), z(t) < a. We can write (2.9) as

(2.10) lim P{E,} = P{E}.

Let E', be the event that for all 7 = 1,2, .- ,n, v(i/n) an' + 4, and let
E" be the event that foralli = 1,2, -+, n, v.(i/n) < an' + i — 1. We have,
clearly, £ C E, C E’, . In what follows we will show that

(2.11) lim P{E,} = P{E},

n—00

and an exactly similar argument shows lim,_» P{E%} = P{E}. Hence, we will

have shown (2.10).
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To show (2.11), let N be a Poisson distributed random variable with mean
n and independent of the random variables z; , ,, 23, - - - . We have, clearly,

(2.12) P{E.} = P{vy (%) < ant + 1=12 - ,n|N =n}

Let yi = wn(1/n), y: = vx(i/n) — ww((¢ — 1)/n),i = 2,3, - -+ , n. The variables
Y1, Y2, ", Yn are independent (cf. Kac [4]), are Poisson distributed with mean
Landifweletz; =y, — 1, =1,2,--- ,n, s =21+ 2.+ -+ + 2, then
Sm 18 a sum of independent variables and we can rewrite (2.12) as

(2.13) P{E,} = Pls;iSan’; i=1,2, ---,n]|s, = 0].

=

Now,

(214) 1 = P{E,) = 2 P{sis anki=1,2,---,7r — 1,5 > an'|s, = 0.
r==]

Let k& be a fixed positive integer; define n; = [jn/k],j = 0,1, 2, ---, k, and
let an ¢ > 0 be given. From (2.14) we obtain

k—1

l_P{E'ﬂ}=Z Z P{s;san‘;i:l’z’...’r_l,

=0 ni<r=mig

8 > ayn',ls,.,. — s | < ent|s, =0}
(2.15) +1 I |

k—1

+> X P{s.—éan*;i=1,2,0--,r—1,8,>an’,

J=0 n;i<r<ni
| $n;p0 — 8| 2 ent|ss = 0).
Let Pos(@) = Pls,, < an';j = 1,2, -+ , k| 5o = 0}. Clearly,
(2.16) P{E,} = P.i(e),

and also the first sum on the right of (2.15) is less than 1 — P, .(a — ¢). The
second sum on the right of (2.15) can be written as (cf. Chung [5], pp. 39-41)

n k—1

nle .
> X Pls=anhi=12-,r—15> an}

n" 90 mi<rE nin

| $n;0y — 8| = end) 5, = 0}

10 k—2
= Mle [Z Z P{s‘éanl;i=1’2’...,r—1,8r>an‘}

n® [ i=0 nj<r=njp

@17 | » P{|sny, — | 2 end, sn,,, = y}Plsn — s.,,, = —)
v

+ X Plsiganhi=1,2-,r—18> an}

nr-1<TS Nk -

|$n — 8| = end s, = 0}].
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To estimate the first term in the brackets we note that since the z;/s are dis-
tributed as follows:
e—l
P{z;=m—l}=—, m=011a21"!
m!
we have, noting the maximum term of the Poisson distribution,
(2.18) Plsa — su;,, = —y} < Aik'n7,

where A, is an absolute constant. Also, from Tchebycheff’s inequality we get
1
(219) 20 P{| snjpy — | 2 en‘,s,.i+1 =y} =P{|sn;,, — 8|2 en'} < e
v

The first term in the brackets on the right of (2.17) is therefore less
than Ak a3

The second term in the brackets on the right of (2.17) is less than

Z Z 8'—<~an i=1)2’.." r_]-)‘sr:y}P{sn_‘sr:—y},

ng— x<r5nu>an

and using similar estimates is shown to be less than Ak} where 4. is an
absolute constant. Thus, we have from (2.15)

n'e A3

/
(220) 1= PIEW S 1= Pula—o+ 20 20,

This together with (2.16) gives us

n!e" As ’
(2-21) P”,k(a - 6) - por m _S_ P{E”} é P,.,k(a).
From (2.7) we have
(2.22) lim Po(a) = P{x(}c) Sa, i=12 k}

If in (2.21) we hold k and ¢ fixed and let n — «, we get from (2.22) and Stirling’s
formula that

7 o V2r As . ’
P{x<E> Sa—¢ t1=12 ---,k}— e = 1}%’2}){1’7”}
< Iim P{E.} < P{x(%) Sa i=12 k}
In (2.23), if we hold e fixed and let k — « we get from the continuity of the
z(t) process that

(2:23)

P{z(t) S a —¢ te(0,1)} £ lim P{E,} < lim P{E,}

n-—>0 n-—»0

< Plz(t) < o, t€ (0, 1)}.



DOOB’S HEURISTIC APPROACH 281

Now finally, using the fact that the distribution function of maxog. z(¢) is
continuous, and letting e — 0 we obtain the desired statement (2.11).

3. Extension. Having shown that

(3.1) lim P{lub. z.(¢) S a} = P{ max z(¢) < a},

n—s0 0t 0<i<l
it is possible, using methods identical to those used by the writer in a recent
paper (Donsker [6]), to obtain a general theorem like (3.1), but where the func-
tional maXogi<1 z(¢) is replaced by an arbitrary functional F[z(f)] subject to
certain restrictions. Indeed, we can obtain the following theorem.

THEOREM. Let R be the space of real, single-valued functions g(t) which are con-
tinuous on 0 = ¢t < 1 except for at most a finite number of finite jumps. Let F[g] be
a functional defined on R and continuous in the uniform topology at almost all
points of Y°. Then,

(3.2) lim P{F[z.()] = a} = P{F[z(?)] = o}
at all points of continuity of the distribution function on the right.

This theorem is proved (precisely as is the main theorem in [6]) by first ob-
taining (3.2) for functionals of the form f(u; , us, - - -, ux), where u; = sup g(t)
for 1 — 1)/k < t < i/k and wry; = inf g(t) for @ — 1)/k <t S i/k, i = 1,
2, -+, k, where f(uy, us, - - -, ux) as a function of its 2k variables is bounded
on the whole space, Borel measurable and Riemann integrable on every finite
2k-dimensional interval. Such a theorem is obtainable from (3.1), and more-
over these functionals can be used to approximate functionals F[g] which are
bounded on R and continuous in the uniform topology at almost all points of Y.
The approximation is such that (3.2) can be obtained for this latter class of
functionals. Finally, the assumption that F(g) be bounded on R may be removed,
and hence we can obtain the theorem stated above, by considering the func-
tional ¢“7® and using the continuity theorem for characteristic functions.
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