
Justification Oriented Proofs in OWL

Matthew Horridge, Bijan Parsia, and Ulrike Sattler

School of Computer Science,
The University of Manchester

Abstract. Justifications — that is, minimal entailing subsets of an on-
tology — are currently the dominant form of explanation provided by
ontology engineering environments, especially those focused on the Web
Ontology Language (OWL). Despite this, there are naturally occurring
justifications that can be very difficult to understand. In essence, justifi-
cations are merely the premises of a proof and, as such, do not articulate
the (often non-obvious) reasoning which connect those premises with the
conclusion. This paper presents justification oriented proofs as a poten-
tial solution to this problem.

1 Introduction and Motivation

Modern ontology development environments such as Protégé-4, the NeOn Toolkit,
Swoop, and Top Braid Composer, allow users to request explanations for entail-
ments (inferences) that they encounter when editing or browsing ontologies. In-
deed, the provision of explanation generating functionality is generally seen as
being a vital component in such tools. Over the last few years, justifications have
become the dominant form of explanation in these tools. This paper examines
justifications as a kind of explanation and highlights some problems with them.
It then presents justification lemmatisation as a non-standard reasoning service,
which can be used to augment a justification with intermediate inference steps,
and gives rise to a structure known as a justification oriented proof. Ultimately, a
justification oriented proof could be used as an input into some presentation de-
vice to help a person step though a justification that is otherwise too difficult for
them to understand.

1.1 Justifications as Explanations

A justification is a minimal subset of an ontology (a set of axioms) that is
sufficient for a given entailment to hold. As an example, consider the small
ontology O = {A � B, A(i), C � D}, which entails B(i), written O |= B(i)1. A
justification J for O |= B(i) is a minimal subset of O that entails B(i), in this
case J = {A � B, A(i)}.

The major benefit of justifications is that they pinpoint and isolate the hand-
fuls of axioms, in what could be a very large ontology, that cause the entailment
1 B(i) means i is an instance of B.

P.F. Patel-Schneider et al. (Eds.): ISWC 2010, Part I, LNCS 6496, pp. 354–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Justification Oriented Proofs in OWL 355

Person � ¬Movie

RRated � CatMovie

CatMovie � Movie

RRated ≡ (∃hasScript.ThrillerScript)

� (∀hasViolenceLevel.High)

Domain(hasViolenceLevel, Movie)

Fig. 1. A justification for Person � ⊥

InverseProperties(hasPet, isPetOf)

isPetOf(Rex, Mick)

Domain(hasPet, Person)

Male(Mick)

reads(Mick, DailyMirror)

drives(Mick, Q123ABC)

Van(Q123ABC)

Van � Vehicle

WhiteThing(Q123ABC)

Driver ≡ Person � ∃drives.Vehicle

Driver � Adult

Man ≡ Adult �Male � Person

WhiteVanMan ≡ Man � ∃drives.(Van �WhiteThing)

WhiteVanMan � ∀reads.Tabloid

Tabloid � Newspaper

Fig. 2. A justification for
Newspaper(DailyMirror)

to hold. For example, the SNOMED medical ontology contains roughly 400,000
axioms, but a justification for an entailment in this ontology is on average less
than ten axioms in size [2].

Unlike full blown proofs, justifications are conceptually simple structures with
a natural relation to the ontology development process—they are directly related
to what has been asserted or stated in an ontology. Justifications require very
little additional knowledge beyond the semantics of the language. This concep-
tual simplicity, coupled with the fact that the computation of justifications for
real ontologies tends to be practical [10], and the fact that off-the-shelf imple-
mentations of justification finding services exist, has most likely lead to the large
uptake of justifications as a type of explanation.

1.2 Problems with Justifications

However, despite the fact that justifications are a popular form of explanation
in the OWL world, observations show there are justifications that people find
difficult or impossible to understand. Indeed, the justifications shown in Figure 1
and Figure 2, both from real ontologies, gave many users trouble when trying to
understand how they lead to their respective entailments. Indeed, some people
questioned whether the justification shown in Figure 1 was a justification at all.

In the case of the justification shown in Figure 1, which is a justification for
Person � ⊥2 spotting that the justification entails Movie ≡ �3 is key to under-
standing how the justification works. Since everything is entailed to be a Movie,
and Person is disjoint with Movie, Person is disjoint with �, hence Person is

2 ⊥ is read as “bottom” and is the same as owl:Nothing.
3 � is read as “top” and is the same as owl:Thing.

owl:Nothing
owl:Thing

356 M. Horridge, B. Parsia, and U. Sattler

unsatisfiable. People who fail to realise that Movie ≡ � is also entailed generally
fail to understand how the justification gives rise to the entailment.

Similarly, the justification shown in Figure 2, is also rather difficult for people
to work through. There are fifteen axioms of many different types in the justifica-
tion. It is far from obvious how these axioms interplay with each other to result in
the entailment Tabloid(DailyMirror). When a user works through this justification,
they have to spot intermediate entailments, for example, WhiteVanMan(Mick) and
Person(Mick), in order to arrive at the conclusion Tabloid(DailyMirror)).

In a exploratory study [5], it was observed that many justifications for entail-
ments of interest in real ontologies can be understood by people with a variety
of backgrounds, and these kinds of justifications serve extremely well as explana-
tions. However, it was also observed that there are justifications that are difficult
or impossible for people to work through. Two obvious reasons for this are: (1)
People do not spot key entailments within justifications, that are necessary for
them to understand how the justification works (as is the case with the justifi-
cation in Figure 1, and (2) People find large justifications, with many types of
axioms, tedious and therefore difficult to work through (as is the case with the
justification in Figure 2). In other words, when people fail, or find it difficult,
to spot intermediate entailments, conclusions or steps they can fail to under-
stand why a justification supports the entailment in question, and hence fail to
understand why the entailment in question holds in their ontology.

1.3 From Justifications towards Proofs

The above notion of “intermediate steps” that could guide a person through
understanding a justification, raises the question of whether full blown proofs,
such as natural deduction style proofs with inference rules, should be used for
explaining entailments in OWL ontologies.

One of the typical claims about natural deduction is that it mimics human
reasoning—that is, it has a strong cognitive adequacy [18]. However, there is
ongoing debate in the field of cognitive psychology about how human reasoning
actually works. Some camps favour a “logic” or rule based account [16], while
others favour a “model” based account [8]. Even for simple cases of natural
language based deduction, it is unclear which account is correct. Moreover, other
research [14] shows that relatively untrained people—clearly without having a
complete set of deduction rules at their disposal—can successfully work through
surprisingly complex reasoning puzzles. It is therefore impossible to say whether
or not natural deduction and similar proof systems mimic human reasoning.
What is clear, is that representations that have a strong cognitive adequacy are
not necessarily useable. Hence, even if natural deduction has a strong cognitive
adequacy, there is no guarantee that it is usable as a form of explanation for
entailments in ontologies.

In summary, it is likely that natural deduction style proofs are not necessarily
the best form of explanation. On the other hand, justifications are an appealing
type of explanation. It is known that that a wide range of people can cope with
justifications [5]. This includes domain experts who have very little training or

Justification Oriented Proofs in OWL 357

background with the Description Logics that underpin OWL. Justifications ap-
peal to these kinds of people because they are conceptually simple—very little
training is needed in order to understand how justifications work. The same can-
not be said about natural deduction style proofs. Additionally, people are used
to seeing axioms, albeit in a frame-based style of presentation, and justifications
reflect this familiarity. If natural deduction style proofs were presented to people
such as domain experts, they would require special training in order to read the
proofs.

1.4 Justification Oriented Proofs

What is needed, is something that lies between justifications and proofs. Given
the popularity and conceptual simplicity of justifications, the work presented in
this paper uses them as building blocks for structures that begin to look like
proofs, but are independent of any calculus or deduction rules. In essence, inter-
mediate steps are introduced into a justification, which are themselves explained
with justifications. This results in a directed acyclic proof graph of the form
shown in Figure 3. Ultimately a justification is extended with “lemmas” into a
justification oriented proof.

The main idea behind a justification oriented proof is depicted in Figure 3.
The numbered lozenges represent axioms, with the leftmost lozenge, labelled η,
representing the entailment of interest. The white lozenges labelled with “1”
– “6” represent exactly the axioms that appear in the original justification J
for the entailment (and are therefore in the ontology as asserted axioms). Grey
shaded lozenges represent lemmas that are entailed by the deductive closure of J
but are not in J as asserted axioms. For a given node, its direct predecessors con-
stitute a justification for that node. This produces a weakly connected directed
acyclic graph, with one sink node that represents the entailment of interest and
a source node for each axiom in the justification. Hence, in the example shown in
Figure 3, J = {1, 2, 3, 4, 5, 6} is a justification for η with respect to the ontology
that entails η. Axiom 7 is a lemma for axioms 1, 2 and 3 (conversely, axioms 1,
2 and 3 are a justification for axiom 7). Axiom 8 is a lemma for axioms 3, 4 and
5 (conversely axioms 3, 4 and 5 are a justification for axiom 8). Together axioms
6, 7 and 8 constitute a justification for η i.e. the entailment. Notice that axiom
3 participates in different justifications for different lemmas.

Ultimately, the justification oriented proof guides a person through the un-
derstanding of the original justification. In essence, lemmas are intermediate
steps that may be non-obvious, but may be significant to understanding how
the justification results in the entailment. They also provide a chunking mech-
anism, which can help guide a user through a large and tedious to understand
justification.

1.5 Contributions

The main contribution of this paper is the novel framework that is presented for
constructing justification oriented proofs. This framework is rather different to

358 M. Horridge, B. Parsia, and U. Sattler

7

8

1

2

3

4

5

6η

Key:

= Axiom in original justification

= Justification entailment
= Lemma (not in original justification)

Fig. 3. A schematic of a Justification Oriented Proof — Predecessors of a node repre-
sent a justification for that node

other approaches: First, the framework does not use any deduction rules per se
to derive the intermediate steps or conclusions. The choice of steps is ultimately
governed by a pluggable justification complexity model which is used to choose
one justification over another during the proof construction. Details of a practical
model are supplied in this paper, but it is important to realise that this paper
shows that the idea of using a model to select intermediate steps works well in
practice. Second, the framework is entirely black-box based. Any reasoner, such
as FaCT++, HermiT, Pellet or Racer, that implements a decision procedure for
entailment checking for OWL 2 (or any other monotonic logic) may be used for
generating the proofs. In other words, the internals of the reasoner need not
be modified to extract some kind of intermediate proof. Third, and finally, the
presented framework ought to be easily adaptable to deal with other fragments
of First Order Logic that may or may not overlap the fragment that corresponds
to OWL 2.

2 Related Work

The idea of using proofs as forms of explanation is obviously not new. Indeed, in
some camps [3,11], proofs are essentially regarded as the main form of explana-
tion. However, the work that is presented in this paper is based on the intuitions
mentioned in the introduction. That is, it is arguably more practical and more
helpful to not show full blown proofs because (1) users already know and un-
derstand justifications, and (2) it avoids having to teach users a new calculus or
deduction rules.

In [7], Huang acknowledges that Natural Deduction proofs are too fine-grained
to be used as explanations, and introduces Natural Deduction Style Proofs at
the assertional level, where trivial steps are eliminated from proofs. Parallels
may be drawn with the basic motivations presented here. The main difference
here is that the proofs here are arguably targeted at an even higher level of
abstraction, and that an entirely black-box complexity model based approach is
used to generate the proofs rather than extracting them from a theorem prover.

Finally, in [17] Schlobach introduces optimal interpolants, and so called illus-
trations that are intended to bridge the gap between subsumee and subsumer
class expressions. The notion of lemmas and justifications oriented proofs as
presented here are in the spirit of Schlobach’s illustrations. However, the main

Justification Oriented Proofs in OWL 359

Table 1. OWL 2 Class, Object Property and Individual Axioms

C � D C ≡ D DisjointClasses(C1, . . . , Cn)
DisjointUnion(C, D1, . . . , Dn)

R � S R ≡ S DisjointProperties(R1, . . . , Rn)
InverseProperties(R, S) Domain(R, C) Range(R,C)
Functional(R) InverseFunctional(R) Transitive(R)
Symmetric(R) Asymmetric(R) Reflexive(R)
Irreflexive(R)

C(a) R(a, b) DifferentIndividuals(a, ..., an)
SameIndividual(a1, . . . , an)

difference is that Schlobach’s work primarily deals with subsumption between
two class expressions in isolation, whereas the work presented here deals with
arbitrary entailments that arise from a sets of axioms.

3 Preliminaries

OWL 2 and Description Logics The work presented in this paper focuses on
OWL 2. OWL 2 [12] is the latest standard in ontology languages from the W3C.
An OWL 2 ontology roughly corresponds to a SROIQ(D) [6] knowledge base.
For the purposes of this paper, an ontology is regarded as a finite set of axioms
{α0, . . . , αn} of the form shown in Table 14, where C and D are (possibly com-
plex) class expressions, R and S are (possibly inverse or complex) properties,
and a and b are individuals. (Note that subscripts are used to represent different
occurrences, or class expressions, properties etc.).

Definition 1 (Justification). J is a justification for O |= η if J ⊆ O, J |= η
and for all J ′ � J J ′ �|= η.

By a slight abuse of notation, the nomenclature used in this paper also refers
to a minimally entailing set of axioms (that is not necessarily a subset of an
ontology) as a justification.

The Structural Transformation — δ Much of the work presented in the remain-
der of the paper uses the “well known” structural transformation — referred to
here as δ. This transformation takes a set of axioms and flattens out each axiom
by introducing names for sub-concepts, transforming the axioms into an equi-
satisfiable set of axioms. The structural transformation was first described in
Plaisted and Greenbaum [15], with a version of the rewrite rules for description
logics given in [13]. For the sake of brevity, the structural transformation is not
defined here — the interested reader is referred to [13,4] for a full definition.

4 For the sake of brevity, axioms involving data properties and data ranges are not
presented here. However, the framework extends to these axioms in the obvious way.

360 M. Horridge, B. Parsia, and U. Sattler

4 Proof Generation Framework

In what follows the framework for generating justification oriented proofs is
presented. The framework consists of two main ideas: (1) The notion of justi-
fication lemmatisation. Subsets of a justification may be replaced with simple
summarising axioms, which are known as lemmas. One justification is lemma-
tised into another justification. (2) The notion of stitching a series of lemmatised
justifications into a justification oriented proof. First a definition of justification
lemmatisation is presented and then a definition for justification oriented proofs
is given.

4.1 Justification Lemmatisation

Given a justification J for an entailment η, the aim is to lemmatise J into J ′, so
that J ′ is less complex by some measure and for some purpose than J . With this
notion in hand, lemmas for justifications can now be defined. First, an informal
description is given, then a more precise definition is given in Definition 3.

Informally, a set of lemmas ΛS for a justification J for η is a set of axioms
that is entailed by J which can be used to replace some set S ⊆ J to give a
new justification J ′ = (J \S)∪ΛS for η. If, additionally, J ′ is less complex, by
some measure, than J . J ′ is called a lemmatisation of J .

Various restrictions are placed on the generation of the set of lemmas ΛS that
can lemmatise a justification J . These restrictions prevent “trivial” lemmati-
sations, an example of which will be given below. Before these restrictions are
discussed, it is useful to introduce the notion of a tidy set of axioms.

Intuitively, a set of axioms is tidy if it is consistent, contains no synonyms of
⊥ (where a class name is a synonym of ⊥ with respect to a set of axioms S if
S |= A � ⊥), and contains no synonyms of � (where a class name is a synonym
of � with respect to a set of axioms S if S |= � � A).

Definition 2 (Tidy sets of axioms). A set of axioms S is tidy if S �|= � �
⊥, S �|= A � ⊥ for all A ∈ Signature(S), and S �|= � � A for all A ∈
Signature(S).

The definition of lemmatisation that follows, mandates that a set of lemmas ΛS
must only be drawn from (i) the deductive closure of tidy subsets of the set
S ⊆ J , (ii) from the exact set of synonyms of ⊥ or � over S.

Without the above restrictions on the axioms in ΛS , it would be possible to
lemmatise a justification J to produce a justification J ′ that, in isolation, is
simple to understand, but otherwise bears little or no resemblance to J . For
example, consider J = {A � ∃R.B, B � E � ∃S.C, B � D � ∀S.¬C} as a
justification for A � ⊥. Suppose that any axioms entailed by J , could be used
as lemmas (i.e. there are no restrictions on the axioms that make up ΛS). In
this example, A is unsatisfiable in J , meaning that it would be possible for
J ′ = {A � E, A � ¬E} to be a lemmatisation of J . Here, J ′ is arguably easier
to understand than J , but bears little resemblance to J . In other words, A � E

Justification Oriented Proofs in OWL 361

and A � ¬E are not helpful lemmas for J |= A � ⊥. Similarly unhelpful results
arise if lemmas are drawn from inconsistent sets of axioms, or sets of axioms
that contain synonyms for �.

Given the above intuitions and the notion of tidy sets of axioms, the notion
of justification lemmatisation is defined as follows:

Definition 3 (Justification Lemmatisation). Let J be a justification for η
and S a set of axioms such that S ⊆ J . Let ΘS be the set of tidy subsets of
(S ∪ δ(S)). Recall that T � is the deductive closure of a set of axioms T . Let

ΛS ⊆
⋃

T ∈ΘS

T � ∪ {α |α is of the form A � ⊥ or � � A,
and ∃K ⊆ (S ∪ δ(S)) that is consistent and K |= α}

ΛS is a set of lemmas for a justification J for η if, for J ′ = (J \ S) ∪ ΛS

1. J ′ is a justification for η over J �, and,
2. Complexity(η,J ′) < Complexity(η,J).

The ability to lemmatise one justification into another justification is a key
process in constructing a justification oriented proof. Given a regular justification
J for η, J can be lemmatised into J1 for η. The axioms in J1 may then be
inspected to determine which of them are lemmas – lemmas are axioms that
are not in J . Given a lemma α ∈ J1 (α �∈ J) a new justification J2 ⊆ J
for α can be identified. If necessary, J2 can then be lemmatised into a simpler
justification for α. Axioms in J2 can then be inspected and the process can be
repeated as necessary. Ultimately the process builds up a justification oriented
proof. Justification oriented proofs are defined as follows:

Definition 4 (Justification Oriented Proof). A justification oriented proof
for a justification J for an entailment η in O is a weakly connected directed
acyclic graph G = (V, E) such that J ⊆ V ⊂ J � and either, G = ({η}, {〈η, η〉})
or,

1. η is the one and only sink node in G,
2. J is the exact set of source nodes in G, and
3. For a given node, the set of predecessor nodes are a justification for the node

over J �.

In summary, as shown in Figure 3, a node in a justification oriented proof that
has incoming edges, is either a lemma or the entailment (sink node) itself. Source
nodes (nodes with no predecessors) are the axioms in the original justification.
Finally, given one justification J for η, there may be multiple justification ori-
ented proofs, even if the set of lemmas in the proof is fixed.

It should be noted that, in the same way that raw unordered justifications
are not presented directly to end users, it is unlikely the graph which constitutes
a justification oriented proof should be presented directly to end users. Instead,
the graph can be used as an input into some interactive presentation device.

362 M. Horridge, B. Parsia, and U. Sattler

4.2 Complexity Models

As can be seen from Definition 3, justification lemmatisation depends upon the
notion of justification complexity. More specifically, it depends upon whether
one justification is more complex, by some measure and for some purpose, than
another justification. In this framework, complexity models are used to assign
complexity scores to justifications and determine whether one justification is
more complex, than another. The framework makes no commitment to a par-
ticular complexity model. Indeed, models are intended to be pluggable. A model
may depend upon the application in question and the intended audience. In the
work presented here, the primary aim is to produce justification oriented proofs,
which pick out difficult to spot lemmas, and chunk and summarise sets of het-
erogeneous axioms in justifications. With these goals in mind, a simple model is
presented later in this paper. However, before this model is presented, models
that deal with special use cases are first discussed. The main intention here, is to
give a feel for how different models can be appropriate for different applications,
and how different models may be plugged into the framework.

A Model for Deriving Proofs for Laconic Justifications. A laconic justi-
fication [4] is a justification whose axioms have no superfluous parts and whose
parts are as weak as possible. Given O |= η, a laconic justification oriented proof
consists of a sink node η, and predecessors of η which are either (1) leaf nodes rep-
resenting axioms contained in O, or (2) are nodes representing axioms entailed
by O, for which each one has a predecessor representing an axiom contained in
O. Given a justification J for η, a simple complexity model for computing such
proofs assigns a score of zero to (J ′, η) if J ′ is a laconic justification for η, a
score of zero to (J ′, α) if α �= η and α is in the laconic justification in question,
and J ′ is a singleton set containing an axiom from the original ontology, and
otherwise, a score of one.

A Model for Deriving Proofs for Root/Derived Unsatisfiable Classes.
Given an ontology O which contains unsatisfiable classes (O |= A � ⊥ for some
class name A in the signature of O), a root unsatisfiable class [9] is a class in
the signature of O whose unsatisfiability does not depend on the unsatisfiability
of any other class in the signature of O. A derived unsatisfiable class is a class
whose unsatisfiability depends on the unsatisfiability of some other class in the
signature of O. More precisely, given O |= A � ⊥, A is a derived unsatisfiable
class if there exists some class B such that O |= B � ⊥ and there is a justification
JA |= A � ⊥ and another justification JB |= B � ⊥ such that JB � JA,
otherwise, A is a root unsatisfiable class.

A suitable model that will lemmatise and “collapse” a subset that corresponds
to a justification for a root unsatisfiable class (corresponding to JB above) is
as follows: Given O |= A � ⊥, the model assigns a score of 1 to a justification
JA for O |= η if there exists a justification J ′ ⊂ J for J |= B � ⊥, where
J ′ �= {B � ⊥} and J ′′ = J \ J ′ ∪ {B � ⊥} is a justification for A � ⊥ over
the deductive closure of O, the model otherwise assigns a score of 0.

Justification Oriented Proofs in OWL 363

4.3 A General Model for Deriving Justification Oriented Proofs

For the purposes of introducing non-obvious and summarising intermediate steps
into justifications, a simple justification complexity model is presented in Table
2. This model was derived partly from intuitions on what makes justifications
difficult to understand, and partly from the observations made during a pi-
lot/exploratory study [5] in which people attempted to understand justifications
from real ontologies. The model uses various components to produce complexity
scores which are summed to produce an overall complexity score for a justi-
fication. Broadly speaking, there are two types of components: (1) Structural
components, such as C1, which require a syntactic analysis of a justification,
and (2) Semantic components, such as C4, which require entailment checking
to reveal non-obvious phenomena. Although the model presented in Table 2 is
rather simple, it is surprisingly effective in that it produces pleasing justification
oriented proofs.

5 An Algorithm for Generating Proofs

Given the above definitions, the main algorithms for generating proofs are pre-
sented below. There are three main algorithms: 1) GenerateProof, which takes
a justification as an input and outputs a proof; 2) LemmatiseJustification, which
takes a justification as an input and outputs either a lemmatised justification or
the justification itself; 3) ComputeJPlus, which takes a justification and computes
a set of axioms that are in the deductive closure of tidy subsets of the justifica-
tion from which lemmas may be drawn. The GenerateProof algorithm uses the
LemmatiseJustification as a sub-routine, and the LemmatiseJustification algorithm
uses the ComputeJPlus algorithm as a sub-routine. Note that due to space limi-
tations, the ComputeJPlus algorithm is not specified line by line in this paper—
instead, a definition of J + (Definition 5) is given below, and it is assumed that
the algorithm simply computes J + in accordance with this definition.

5.1 GenerateProof

The GenerateProof algorithm for computing justification oriented proofs is de-
picted in Figure 4. The basic idea is that, given an input of a justification J for
η, a lemmatised justification J ′ for η is computed. J ′ is then used to initialise
a justification oriented proof P . For each node λ in the proof corresponding to
an axiom in J ′, if λ is not in J then it is a lemma and a justification needs to
be computed for it. In this case a new justification J ′′ is computed for α′ over
J . Next, J ′′ is lemmatised to give J ′′′ which is inserted into the proof P . The
process then repeats for lemmas in P that do not have any predecessors until
none of the leaves in the proof are lemmas. Although not depicted in Figure 4,
it is important to note that, in order to comply with Definition 4, there is a test
in step 6 to determine whether inserting J ′′′ as a result of the lemmatisation
process into P would result in a cyclic graph instead of a DAG. If this is the

364 M. Horridge, B. Parsia, and U. Sattler

Table 2. A Simple Complexity Model for Generating Justification Oriented Proofs

Name Description

C1 AxiomTypes Counts the axiom types in J and η. The count is
multiplied by a weighting (10.0) and added to the
overall complexity score.

C2 ClassConstructors Counts the class constructors in J and η. The
count is multiplied by a weighting (10.0) and
added to the overall complexity score.

C3 UniversalImplication If α ∈ J and α is of the form ∀R.C � D or
D ≡ ∀R.C a constant (50.0) is added to the overall
complexity score.

C4 SynonymOfThing If J |= � � A for some A ∈ Signature(J) and
� � A �∈ J and � � A �= η then a constant
(50.0) is added to the complexity score.

C4 SynonymOfNothing If J |= A � ⊥ for some A ∈ Signature(J) and
A � ⊥ �∈ J and A � ⊥ �= η then a constant
(50.0) is added to the complexity score.

C5 DomainAndNoExistential If Domain(R,C) ∈ J and J �|= E � ∃R.D for
some class expressions E and D then a constant
(50.0) is added to the complexity score.

C6 ModalDepth The maximum modal depth of all class expres-
sions in J is multiplied by a weighting (50.0) and
added to the overall complexity score

C7 SignatureDifference For each A ∈ Signature(η), where A �∈
Signature(J) a weighting (50.0) is added to the
overall complexity score

C8 AxiomTypeDifference If the axiom type of η is not the set of axiom
types of J then a weighting (50.0) is added to the
overall complexity score

C9 ClassConstructorDifference For each class constructor in η that is not in the
set of class constructors of J , a weighting (50.0)
is added to the overall complexity score

case, then an alternative lemmatisation of J ′′ must be chosen (or if there are no
alternatives then J ′′ itself must be chosen) to insert into P . This enforcement of
non-cyclical proofs is also part of the mechanism that ensures the GenerateProof
algorithm terminates. A discussion on termination is presented later.

5.2 LemmatiseJustification

The LemmatiseJustification algorithm is presented in Algorithm 1. The algorithm
takes a justification J for η as its input and returns a justification L as its
output. Either L is a lemmatisation of J or L is equal to J . In essence, the
algorithm produces a lemmatised justification by computing a filter S on the
deductive closure of tidy subsets of J , which obviously includes axioms that
could lemmatise J . Justifications for η are then computed with respect to S.

Justification Oriented Proofs in OWL 365

Input J

λ

J'

Lemmatise J
to give J'

Initialise Proof
P with J'

Choose a lemma λ in P
without predecessors

and compute a justification
J'' (w.r.t. J) for it

Insert J'''
into P

Does P contain
lemmas without
predecessors?

J''

λ

Proof P
λ

λ

Lemmatise
J'' to give J'''

Final Proof

Key:

= Entailment for original justification

= Axiom in original justification

= Lemma (does not appear in original justification)

J'''

Finish

No

Yes

Fig. 4. GenerateProof – A Depiction of an Algorithm for Generating Justification Ori-
ented Proofs. Justification Lemmatisation is used as a Sub-routine.

A complexity score is computed for each justification L ⊆ S, which is compared
to the complexity of J . If the difference between the score for J and the score
for L is positive then L is selected as a lemmatisation of J . Algorithm 1 always
terminates due to the fact that S is finite in size and hence there are a finite
number of justifications for η with respect to S.

5.3 ComputeJPlus

Definition 3 mandates that, for a justification J , lemmas must be drawn from
the deductive closure of tidy subsets of J . However, the deductive closure of a
set of axioms is infinite. For practical purposes it is necessary to work with a
finite representative of the deductive closure that suffices for computing pleasing
lemmatisations and pleasing justification oriented proofs. In addition to these
practicalities, a finite representation of the deductive closure is needed because
the ability to draw lemmas from an infinite set of axioms could lead to non-
termination of the GenerateProof algorithm. In order to ensure termination, not
only is it necessary to disallow cycles in the proof, but it is also necessary to
introduce a filter on the deductive closure that produces a finite set of axioms,
J+ from which lemmas may be drawn. In essence, J+ is some finite subset of
the deductive closure of J .

Algorithm 1. LemmatiseJustification(J, η)
Function-1: LemmatiseJustification(J, η)

1: S ← ComputeJPlus(J, η) \ {η}
2: justs ← ComputeJustifications(S, η)
3: c1 ← ComputeComplexity(J, η)
4: L← J
5: for J′ ∈ justs do
6: c2 ← ComputeComplexity(J′, η)
7: if c2 < c1 then
8: L← J′

9: return L

366 M. Horridge, B. Parsia, and U. Sattler

The question is, given a justification J , what axioms should J + contain?
Although there is no definitive answer to this, it must be remembered that the
ultimate goal is to include enough in J+ so that it is possible to produce a series
of candidate lemmatised justifications, from which a “nice” one may be chosen
using a complexity model. With this in mind, there are a number of possible
options for J + generation:

Generation with Sub-Concepts. One possibility is to specify J+ so that it
contains axioms of the forms specified in Table 1, which are build up from sub-
concepts of axioms in J . However, while such a strategy can go a long way to
producing a set of axioms containing lemmas that could result in pleasing proofs,
there could be axioms, which might be lemmas of choice, that are not be con-
tained in the set. For example, given O = {A � ∃R.B, ∃R.B � C, Trans(R)} |=
A � C, a lemma of choice might be ∃R.A � ∃R.∃R.B (entailed by A � ∃R.B).
However, with the above schema, based on sub-concepts, the class expression on
the right hand side of the axiom (∃R.∃R.B) does not exists as a sub-concept in
J and so the axiom would never be generated. What is needed is a set of class
expressions that is rich enough so as to be able to build a rich set of axioms that
constitute candidate lemmas. This is achieved using nested sub-concepts:

Generation with Nested Sub-Concepts

Definition 5 (J +). For a justification J for η, let S be the set of sub-concepts
occurring in the axioms in J ∪ {η} plus � and ⊥. Let S′ be the smallest set of
class expressions such that S′ ⊇ S and S′ contains class expressions of the form:

– ¬C where C ∈ S′ and C is not negated.
– C1�· · ·�Ci or C1�· · ·�Ci for 2 ≤ i ≤ |S| and for any Cj ∈ {C1, . . . , Ci} it

is the case that Cj ∈ S or Cj = ¬C for some C ∈ S where C is not negated.

Now, let d = |J | × c where c is the maximum modal depth [1] of the class
expressions in S. Let R be a property in the signature of J and m be the sum
of all numbers occurring in cardinality restrictions. Let S′′ be the smallest set
of class expressions such that S′′ ⊇ S′ and S′′ contains class expressions of the
form:

– ∃R.C, ∀R.C, ≥ nR.C or ≤ nR.C, where C ∈ S′′, the modal depth of C is
no greater than d, and n ≤ m.

– ∃R.{a}, where a and R are in the signature of J or η.
– ¬C where C ∈ S′′ and C is not negated.

Given S′′, J + is now defined as the set of axioms of the form given in Table
1, where C and D are substituted for class expressions in S′′, R and S are
substituted for property expressions in J , a and b are substituted for individuals
in the signature of J , and for each axiom α ∈ J +, there exists a tidy subset
J ′ ⊆ J such that J ′ |= α.

Justification Oriented Proofs in OWL 367

The ComputeJPlus algorithm in now defined to compute J+ in accordance with
Definition 5. Since S is finite, S′′ is also finite and therefore J + is also finite.
Therefore, there are finite number of justifications for an entailment η with
respect to J+, hence GenerateProof algorithm is guaranteed to terminate.

6 The Feasibility of Computing Justification Oriented
Proofs

The GenerateProof algorithm and its sub-routines, and the complexity model
shown in Table 2 were implemented in Java using the OWL API. The algorithm
has two basic, but necessary, optimisations. First, J + is computed incremen-
tally and the number of entailment checks is minimised in the obvious way, for
example, if J �|= A � B then an entailment test is not performed for A � B�C.
Second, justifications in the LemmatiseJustification algorithm are computed one
by one rather than all at once. This means that if a justification J ′ is found as
a lemmatisation of J this justification is selected rather than continuing to look
for one of lower complexity. If necessary, J ′ could be lemmatised to produce a
justification of possibly lower complexity.

The implemented algorithm, with the Pellet reasoner, was tested against the
ontologies listed in Table 3. For each ontology, a maximum of 5 justifications for
entailments of the form A � B, A � ⊥ and A(a) were computed. Proofs were
then computed for these justifications. Times for computing the justifications,
and times for computing proofs were measured and averaged.

The implementation, although naive, with plenty of room for further opti-
misation, shows that it can be practical to compute proofs for entailments in
real ontologies. Generally speaking, if it is possible to compute a justification for
an entailment, it is possible to compute a justification oriented proof for that
justification and entailment. In all cases, the time required to compute the proof
is at least an order of magnitude higher than the time required to compute
a justification. The difference is particularly striking for the Tambis ontology,
where there were several justifications for which it took a significant time to per-
form entailment checking while computing J + and then compute justifications
over J+.

7 Examples

A selection of videos showing examples of justification oriented proofs may
be found online at http://www.cs.man.ac.uk/~horridgm/2010/iswc/proofs/
examples/. The examples illustrate the kinds of lemmas that get introduced into
proofs and illustrate what is possible using the complexity model presented in
Table 2. Figure 5 shows a justification oriented proof for the justification shown
in 1. It should be noted that the presentation style used for the examples is
merely for illustrative purposes. In the tree presentation used, the children of an
axiom represent a justification for that axiom.

http://www.cs.man.ac.uk/~horridgm/2010/iswc/proofs/examples/
http://www.cs.man.ac.uk/~horridgm/2010/iswc/proofs/examples/

368 M. Horridge, B. Parsia, and U. Sattler

Table 3. Mean Times for Computing Justifications and Proofs

Ontology Just. Size Just. Time Proof Time
Expressivity/Axioms (Mean/SD/Max) (mean ms) (mean ms)

Generations (ALCOIF/38) 4 / 2.1 / 8 31 2034
Economy (ALCH/1625) 2 / 0.6 / 6 32 144
People+Pets (ALCHOIN/108) 4 / 2.5 / 16 31 801
Tambis (SHIN/595) 8 / 4.1 / 21 1047 244987
Nautilus (ALCF/38) 3 / 2.0 / 6 20 758
Transport (ALCH/1157) 5 / 2.1 / 9 19 469
University (SOIN/52) 5 / 2.1 / 9 21 1738
PeriodicTable (ALU/100) 4 / 9.9 / 36 72 1026
Chemical (ALCHF/114) 8 / 1.2 / 11 38 3690

Entailment : Person � ⊥

Person � ¬Movie

� � Movie

∀hasViolenceLevel.⊥ � Movie

∀hasViolenceLevel.⊥ � RRated

RRated ≡ (∃hasScript.ThrillerScript)� (∀hasViolenceLevel.High)

RRated � Movie

RRated � CatMovie

CatMovie � Movie

∃hasViolenceLevel.� � Movie

Domain(hasViolenceLevel,Movie)

Fig. 5. A schematic of a justification oriented proof for the justification shown in
Figure 1

8 Conclusions and Future Work

This paper has presented justification oriented proofs as possible solution to the
problem of people understanding justifications. Justification lemmatisation has
been introduced as a new non-standard reasoning service, which is a key compo-
nent of for producing justification oriented proofs. Justification lemmatisation
is based on the notion of a justification having a certain complexity for a given
task. In the approach taken here, a simple complexity model based on various
structural and non-structural phenomena was used as a basis for producing jus-
tification oriented proofs for entailments in real ontologies. Although, there is
plenty of room for optimisation, some initial experiments on a series of published
ontologies indicate that it is practical to compute justification oriented proofs
for entailments in real ontologies.

It must be emphasised that the main contribution of this paper has been
to formalise the notions of justification lemmatisation, justification oriented
proofs and using complexity models to generate pleasing proofs. Preliminary user
feedback, garnered from poster presentations at various conferences, has been

Justification Oriented Proofs in OWL 369

very positive. However, as future work, a series of detailed user studies will be
carried out to ascertain the specific benefit of justification oriented proofs to
end users. Smooth presentation and interaction mechanisms will be designed to
support this evaluation.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook (2003)

2. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED 2008 (2008)

3. Borgida, A., Calvanese, D., Rodriguez, M.: Explanation in DL-Lite. In: DL 2008
(2008)

4. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Hei-
delberg (2008)

5. Horridge, M., Parsia, B., Sattler, U.: Lemmas for justifications in OWL. In: DL
2009 (2009)

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR
2006 (2006)

7. Huang, X.: Reconstructing proofs at the assertion level. In: Bundy, A. (ed.) CADE
1994. LNCS, vol. 814, pp. 738–752. Springer, Heidelberg (1994)

8. Johnson-Laird, P.N., Byrne, R.M.J.: Deduction. Psychology Press, San Diego (1991)
9. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, The Grad-

uate School of the University of Maryland (2006)
10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of

OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

11. Kwong, F.K.H.: Practical approach to explaining ALC subsumption. Technical
report, The University of Manchester (2005)

12. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language struc-
tural specification and functional style syntax. W3C Recommendation, W3C –
World Wide Web Consortium (October 2009)

13. Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using
hypertableaux. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp.
67–83. Springer, Heidelberg (2007)

14. Newstead, S.E., Brandon, P., Handley, S.J., Dennis, I., Evans, J.S.B.: Predicting
the Difficult of Complex Logical Reasoning Problems, vol. 12. Psychology Press,
San Diego (2006)

15. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation.
Journal of Symbolic Computation (1986)

16. Rips, L.J.: The Psychology of Proof. MIT Press, Cambridge (1994)
17. Schlobach, S.: Explaining subsumption by optimal interpolation. In: Alferes, J.J.,

Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 413–425. Springer,
Heidelberg (2004)

18. Strube, G.: The role of cognitive science in knowledge engineering. In: Proc. of
Contemporary Knowledge Engineering and Cognition (1992)

	Justification Oriented Proofs in OWL
	Introduction and Motivation
	Justifications as Explanations
	Problems with Justifications
	From Justifications towards Proofs
	Justification Oriented Proofs
	Contributions

	Related Work
	Preliminaries
	Proof Generation Framework
	Justification Lemmatisation
	Complexity Models
	A General Model for Deriving Justification Oriented Proofs

	An Algorithm for Generating Proofs
	GenerateProof
	LemmatiseJustification
	ComputeJPlus

	The Feasibility of Computing Justification Oriented Proofs
	Examples
	Conclusions and Future Work
	References

