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ABSTRACT T h ~ r t y  years ago Thorson (1966 Neth J Sea Res 3 267-293) calculated that juvenile mor- 

tallty in manne  bivalves could exceed 98 6 %  Subsequently juvenile mortality rates have been 

assumed to be  high and to influence the evolution of life history traits However there have been no 

attempts to establish whether high luvenile mortality IS common or to determine if lnterspecific trends 

in l uven~ le  mortality exist To address t h ~ s  Issue we revlewed 30 studies of age-specif~c mortality 

among bivalves, gastropods, barnacles ascid~ans,  bryozoans and echinoderms High juvenile mortality 

is widespread among benthic marlne Invertebrates with 20 of the 30 s t u d ~ e s  reporting levels of luve- 

n ~ l e  mortal~ty > 9 0 %  Mortal~ty is part~cularly h ~ g h  during the first moments of luvenile life and can 

exceed 30% during the f~ r s t  day Pool~ng surv~vorship data from all species revealed a general trend 

with survivorsh~p decreasing exponentially during the first days or weeks of juvenile life until by the 

age of 4 mo, virtually all cohorts were reduced to <20% of their ~nit ial  numbers ~nortality remained low 

thereafter We suggest that extreme vulnerability at the onset of luvenile life is a shared t r a ~ t  that is 

largely responsible for the surv~vorship trend Natural variation within this trend would be largely due  

to variation in intensity of mortality factors Predation and desiccation are well-documented causes of 

juvenile mortality, but the current lack of data on factors such as ultraviolet radiation, diseases and 

lnternal causes (energy depletion developmental and physiological defects) precludes a ranking of 

factors as se lec t~ve pressures Methods used to quantify juvenile mortality vary cons~derably in the 

level of resolution they can achieve wth in  the early luvenile perlod Studies of early juvenile mortality 

should ideally monitor the fate of individuals from the onset of luvenile l ~ f e  using sampling intervals 

51  d Mapping and imaging techniques can provide accurate results for sess~le  organisms, whereas 

mark and recapture can be  effective for motile animals w ~ t h  l ~ m ~ t e d  dispersal Early juvenile mortahty 

has been shown to influence population abundance and distnbution as  well as  community structure 

Juvenile mortality is also expected to be  an  important determinant of age  at  matunty, but only among 

species ma tu r~ng  within 4 mo of postlarval l ~ f e  since mortality remalns low after the age  of 4 mo A com- 

pilation of data on age  at  first reproduction In 92 species revealed a b~modal  grouping of species 22% 

of species matunng within 45 d after beg inn~ng  luvenile life and 60% maturlng after at least 1 yr The 

influence of luven~le  mortality on age  at  inaturlty will d~ f fe r  substantially among these 2 groups and will 

therefore not be  equal or directly comparable among all species Given the magnitude of early juvenile 

mortality and the similarities in mortality patterns across diverse taxa and habitats a better under- 

standing of early ]uvenile mortality should help researchers to understand how population parameters 

are  regulated and help elucidate the s~gnificance of traits that characterize populations and specles 

KEY WORDS: blortality factors . Survivorship . Early juvenile . Selective pressures . Population 

parameters Life history t r a~ t s  . Age at matunty 

INTRODUCTION subtidal mudflats mlght survive long enough to reach a 

size of 2 mm At thls level of mortality, the processes 

In a seminal paper published 3 decades ago, Thorson responsible for mortality durlng juvenlle llfe could 

(1966) suggested that mortality rates could be hlgh have major repercussions on population parameters 

among newly established juvenile invertebrates He such as abundance and dlstrlbution Hlgh juvenlle 

calculated that less than 1 4 % of bivalves settling on mortality could also constitute a drlvlng force in the 

evolutionary development of a species, as postulated 

'E mail lgosseli@usthk ust hk in models linking age  at first reproduction (e  g Stearns 
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& Koella 1986) with levels of juvenile mortality. But 

while high juvenile mortality has been reported, there 

have been no attempts to establish whether high juve- 

nile mortality is common or to identify interspecific 

trends in juvenile mortality. 

Since Thorson's study, new information on the ecol- 

ogy of juveniles has revealed that the processes oper- 

ating during the early part of juvenile life differ from 

those operating at any other time of life. Werner & 

Gilliam (1984), for instance, found that many aquatic 

animals shifted their diet and habitat use at some point 

during the juvenile period. More recently, detailed 

studies of early juvenile lobsters (Homarus ameri- 

canus, Wahle & Steneck 1991, Cobb & Wahle 1994; 

Panulirus argus, Smith & Herrnkind 1992) and snails 

(Nucella emarginata, Gosselin 1994) have shown early 

juveniles to be ecologically distinct from late juveniles 

and adults. Early juveniles differed from individuals at 

other periods of life in their use of microhabitat and 

food resources and in vulnerability to mortality factors. 

Available information for other benthic invertebrates 

suggests the early juvenile period is an  ecologically 

distinct phase in many species, particularly those with 

motile juveniles (cf. Gosselin 1994). The patterns and 

the effects of juvenile mortality would therefore be 

regulated at least in part by processes that are specific 

to the early juvenile period. 

In this paper, we examine the significance of juve- 

nile mortality for benthic marine invertebrates by 

reviewing published reports of natural levels and 

causes of juvenile mortality and its implications for 

population parameters and 1 life history trait. Given 

that a variety of approaches have been used to quan- 

tify juvenile mortality, w e  also document the uses and 

limitations of the most commonly employed methods. 

The specific objectives of this paper are  to (1) docu- 

ment the natural levels of juvenile mortality and iden- 

tify interspecific trends among benthic invertebrates, 

(2) critically review the methods used to quantify nat- 

ural juvenile mortality, (3) identify the causes of juve- 

nile mortality, and (4) examine the implications of 

juvenile mortality for population parameters and age  

a t  maturity. 

CONTEXT AND FOCUS 

We review 30 studies reporting age-specific mortal- 

ity data for at  least the early period of juvenile life in 

natural or near-natural field conditions. The resolution 

of these studies varies widely, from rough estimates 

based on 'snap-shot' samples to precise survivorship 

curves starting at the onset of independent benthic life. 

There is also considerable variation in the duration of 

the studies. Finally, biological differences add to the 

complexity of the analysis, particularly differences in 

duration of the juvenile period among taxa. For 

instance, the first 2 mo after settlement constitute only 

a small portion of juvenile life in the seastar Pisaster 

ochraceus, which matures -5 yr after settlement 

(Menge 1974), but 2 mo are  sufficient for newly settled 

ascidians Didemnum candidum to reach maturity and 

release gametes (Hurlbut 1991a). Although direct com- 

parisons of results from different studies are  limited by 

these circumstances, the data are nevertheless amen- 

able to a broader investigation of mortality patterns 

among benthic invertebrates, on which the present 

review will focus. 

MAGNITUDE AND TIMING OF JUVENILE 

MORTALITY 

Levels of juvenile mortality exceeding 90% were 

reported in 20 of the 30 papers reviewed herein and 

were observed in bivalves, gastropods, barnacles, asci- 

dians, bryozoans and echinoderms (Table 1). Seven- 

teen studies report cases of juvenile mortality 298%. 

Of particular interest is the high mortality observed 

immediately after settlement in 3 barnacles and 2 asci- 

dians (Table 1).  In all 5 species, cases of mortality 

230% were recorded during the first 1 to 1.5 d after 

settlement. The highest first-day mortality was re- 

ported for Chthamalusfragilis (Young 1991): 53 to 78% 

of individuals settling on the cordgrass Spartina 

alterniflora did not survive the first day in their new 

habitat. In an  elegant study, Stoner (1990) directly ob- 

served the release, dispersal and settlement of individ- 

ual Diplosoma sirnilis larvae on natural substrata in the 

field and  then monitored their fate on a daily basis for 

the following 26 d: 50% of these settlers died during 

the first day after settlement. In newly settled Balanus 

glandula, 38% died during the first day after settle- 

ment (Gosselin & Qian 1996). Mortality rates in D. sim- 

ilis and B, glandula dropped sharply after the first day, 

indicating that a brief initial period as short as 24 h fol- 

lowing the transition to independent benthic life can 

be  a critical period for survival. 

To verify the existence of general patterns in juvenile 

mortality, a survivorship curve was produced by pool- 

ing data from all the studies listed in Table 1. The 

resulting graph, which presents data for the juvenile 

period only, reveals a clear interspecific trend of sur- 

vival as a function of age (Fig. 1) .  Survivorship de- 

creased exponentially during the first days or weeks of 

juvenile life, and by the age  of 4 mo virtually all cohorts 

were reduced to 520% of their initial numbers. This 

trend might be  partly due  to a methodological bias 

(e.g. there is less data for the 2 to 12 mo age  interval 

than for the first 2 mo). However, the coherence of the 
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A. Lowest 

survivorship 

values 

B. Highest 

survivorship 

values 

Age (days) 

O B~valves  

Gastropods 

Ascidians & Bryozoans 

A Barnacles 

O Echinoderrns 

Fig. 1. Survivorship of benthic marine invertebrates during 
the juvenile period. Age = 0 corresponds to the onset of juve- 
nile life. All data plotted herein were extracted from the 30 
studies listed in Table 1 To integrate these results into a sin- 
gle figure, 4 age lrltervals (delimited by dashed vert~cal lines 
at ages = 7, 61, and 183 d) were subjectively determined 
based on age periods for which most data were available. 
Each study contributed a maximum of 4 data points to the fig- 
ure, 1 point per age interval. Since several studies report mor- 
tality or survivorshp data as a range, and occasionally for a 
range of ages, the data are represented in 2 graphs: (A) dis- 
plays the lowest survivorship values (highest mortality, short- 
est age interval) reported in each study, (B) displays the 

highest survivorship values 

data contrasts with the diversity of methods and sam- 

pling intervals, suggesting that the pattern is not a 

methodological artifact. We conclude that high mortal- 

ity shortly after the onset of juvenile life is a common 

occurrence among benthic invertebrates. 

The existence of this common trend in juvenile mor- 

tality is fascinating, as it suggests that juvenile sur- 

vivorship across taxa and habitats could be regulated 

by a common set of processes. Since the intensity of 

most mortality factors differs widely among habitats, 

the trend is unlikely to be attributable to similarities in 

causes of death. Rather, the more basic issue of vulner- 

ability could be  the unifying element. The initial sharp 

decline in mortality rates over the first 1 to 2 d may 

result from rapid anatomical, physiological, and possi- 

bly behavioural changes at  the start of juvenile life, 

allowing the young individual to cope with the new 

environment it then faces (Gosselin & Qian 1996). Indi- 

viduals generally begin juvenile life with minimal or 

incomplete protective structures, such as shell, cara- 

pace, or tegument. In addition, changes in mortality 

rates during the first hours or days may be due to 

a rapid elimination of individuals located in un- 

favourable sites. Beyond the first days of juvenile life, 

mortality rates could be largely dependent on body 

size, a major determinant of vulnerability. Growth 

could therefore be responsible for much of the common 

trend in juvenile mortality since most species begin 

juvenile life as meiofauna. The gradual levelling off of 

survivorship would be a result of the juveniles reach- 

ing critical sizes at  which vulnerability to physical and 

biological constraints is substantially reduced (e.g. 
Wahle & Steneck 1992, Gosselin 1994). 

Although the data in Fig. 1 reveal an  upper limit to 

juvenile survivorship, mortality levels varied within 

this trend. Methodological differences undoubtedly 

account for part of this variation, but in many field 

studies substantial variation was also common among 

replicates for a given species, indicating that spatial 

and temporal variation in natural mortality is often 

important. Variation in intensity of mortality factors is 

likely to be a major cause of this natural variation in 

mortality. This hypothesis is supported by data linking 

variation in juvenile mortality to tidal height (Roegner 

& Mann 1995), habitat (Davis 1987, Osman et al. 1989, 

Rowley 1990, Young 1991), and season (Grosberg 

1988, Roegner & Mann 1995). In addition, the occur- 

rence of either dominant or very small year classes in 

benthic populations has been attributed to unusually 

benign or harsh conditions at  the time of early juvenile 

development (Connell 1961a, MacKenzie et al. 1985, 

Sebens & Lewis 1985). 

Data for 3 species did not conform to the general 

trend (Table 1, Fig. 1). Mortality of the gastropod Ner- 

ita atramentosa was reported to be insignificant dur- 

ing the first 2 yr after settlement (Underwood 1975), 

whereas in the antarctic opisthobranch Philine gibba 

- 4 5 %  would survive to the age of 3 mo (Seager 1983). 

In a third species, the bivalve Albra tenuis, 50% and 

24 % of individuals were reported to survive the first 2 

and 4 mo, respectively (Bachelet 1989), values that 

are  somewhat above the general trend. These 3 

reports, however, were based on cohort studies with 

long sampling intervals (Table l ) ,  a methodology that 

does not reliably quantify mortality during the first 

weeks of juvenile life (see 'Cohort monitoring'). It is 

therefore possible that even these species conform to 

the pattern of high early mortality. Nevertheless, the 

prospect that a few species may achieve high sur- 

vivorship during the early juvenile period is intrigu- 

ing, as this suggests outcomes other than high early 

mortality are possible. 
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METHODS FOR QUANTIFYING EARLY JUVENILE 

MORTALITY 

The accurate determination of the timing (relative to 

age) and magnitude of mortality are necessary to cor- 

rectly assess when selective pressures are  most intense 

and to accurately quantify their effect. The pattern of 

mortality plotted in Fig. 1 therefore has 2 methodolog- 

ical implications for studies of juvenile mortality. First, 

studies that do  not quantify mortality from the onset of 

juvenile life may significantly underestimate juvenile 

mortality, miss critical events that impact population 

parameters, and incorrectly estimate the relative 

importance of larval and postlarval processes. Of the 

30 studies listed in Table 1 only 6 (21 %) quantified 

mortality from the onset (-first 24 h) of juvenile life; 

most juvenile mortality data may therefore be under- 

estimates. 

Secondly, since the early period of high mortality 

may last from a few days to up to 4 mo, a detailed sur- 

vivorship curve is necessary to determine when the 

most intense selective pressures are in effect. The 

degree to which this second goal is reached is directly 

linked to sampling frequency. By increasing sampling 

frequency during the early juvenile period (e.g. to 

daily, tidally or hourly sampling), the resolution of the 

survivorship curve is improved, up  to the point where 

observations become frequent enough to significantly 

interfere with natural events. Assessments of juvenile 

mortality, however, have often been based on sam- 

pling intervals ranging from weeks (Table 1; see also 

Muus 1973, Keough & Downes 1982, Grosberg 1988, 

Qian & Chia 1994) to months (Table 1; see also Denley 

& Underwood 1979, Osman 1987, Keough 1989) or 

even up  to a year (Table 1).  Low sampling frequencies 

have the additional disadvantage of providing a 

greater window for other processes to alter juvenile 

densities and thereby confound mortality estimates: 

net immigration or the establishment of new juveniles 

cause an  underestimation of mortality, whereas net 

emigration leads to an overestimation of juvenile mor- 

tality. Longer intervals also provide more time for early 

juveniles to become established, die, and disappear 

before being recorded (Minchinton & Scheibling 1993, 

Gosselin & Qian 1996). For example, the thin shells of 

early juvenile Macoma balthica, a soft-sediment 

bivalve, can completely dissolve within only 5 d after 

the individual's death (Elmgren et  al. 1986). As a rule 

of thumb, the most reliable way of quantifying juvenile 

mortality is to monitor the fate of individuals from the 

onset of independent benthic life, using sampling 

intervals 5 1  d. 

The various methods used to quantify juvenile mor- 

tality in the field differ considerably in the level of res- 

olution they can achieve. The 4 methods most com- 

monly used to quantify natural rates of juvenile mortal- 

ity are  examined below. Tethering techniques, which 

have serious drawbacks for quantifying natural mortal- 

ity (Barshaw & Able 1990, Barbeau & Scheibling 1994, 

Peterson & Black 1994, Zimmer-Faust et  al. 1994), a re  

not reviewed herein. 

Mapping 

The mapping technique consists of manually record- 

ing the positions, usually on flexible transparent plastic 

sheets, of all sessile individuals within a given area,  

noting whether they a re  dead or alive, and repeating 

the procedure at  regular intervals. The major advan- 

tage of the method is that it allows the observer to 

monitor all individuals, including those hidden by sur- 

face irregularities or by other organisms, and to 

directly verify the identity and status of each individ- 

ual, which is not always possible with imaging tech- 

niques. Although searching and mapping are time 

consuming, this is nevertheless the most reliable way 

of quantifying juvenile mortality of sessile organisms 

attached to flat or slightly irregular surfaces. 

Imag ing 

Photography is the most commonly used imaging 

technique, although video recording has also been 

suggested for monitoring juveniles (Wright et al. 1991). 

Close-up images of benthic substrata provide a perma- 

nent record of sessile organisms that can subseq~iently 

be analyzed with digital or image analyzers. Images 

constitute a record of size, shape, and distribution of 

the juveniles, as well a s  characteristics of their imme- 

diate environment, that may help establish the causes 

of mortality. The images are 2-dimensional, however, 

and therefore individuals hidden by surface irregulari- 

ties will not be  detected. Larger individuals are  re- 

corded more clearly, and consequently there is poten- 

tial for underestimating the arrival and mortality of 

small, new juveniles. Imaging techniques are most 

appropriate when the juveniles are  well-spaced and 

easily identified, when weather and  substratum condi- 

tions do not interfere with the clarity of the images, and 

when the resolution of the images is sufficient to detect 

even (and especially) the smallest recruits. 

Mark and recapture 

When mapping or imaging techniques cannot be  

used, as is the case with motile individuals, mark and 

recapture may be the only way to monitor animals over 
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tlme and associate t h e ~ r  fate with elements of their his- 

tory ( e .g ,  lnitial location, age ,  body slze, llneage). The 

simplest approach to mark and recapture is to simulta- 

neously label many early juveniles, for instance by 

staining (Levin 1990, Qian & Chia 1994) or by paintlng 

external hard structures such as gastropod shells 

(Boulding & Van Alstyne 1993) The fate of individuals, 

however, cannot be determined if all receive the same 

label. Individualized marks have been applied to small 

juveniles with hard external structures (Gosselln 1993) 

but have yet to be used to determine natural mortallty 

rates in the field. A comparable method used in 2 stud- 

ies of sessile animals (Table 1) consists of marking the 

substratum near each individual to enable relocation 

on subsequent inspections. In motile species, recap- 

ture is complicated by the small size, dispersal, cryptic 

distribution, and short persistence time of dead bodies 

of most early juveniles. Consequently, the fate of miss- 

lng individuals can be uncertain. Since handllng and 

marking can have deleterious or beneficial effects on 

survival, a preliminary study should be done to quan- 

tify the effects of the method. Mark and recapture 

promises to be useful for short-term studies of motile 

juveniles with limited dispersal if marking can be 

accomplished without excessive disturbance to the or- 

ganisms. 

Cohort monitoring 

It is not always possible to repeatedly monitor a 

given set of individuals over tlme An alternative is to 

sample the population at Intervals without attempting 

to relocate the same individuals In such cases, the unlt 

being monitored IS the cohort rather than the ~ndlvid- 

ual, and decreases In density over t ~ m e  are interpreted 

as mortality Cohort monltorlng has been the most 

commonly used method of studying juvenile mortal~ty 

(17 of 30 studles) In its simplest form, cohort monltor- 

ing consists of 2 sampllngs, once before and once after 

a given lnterval (Splght 1975, Osman et a1 1989, 

McShane 1991) Such 'snap-shot evaluations are slm- 

ple and demand relatively llttle tlme but are sensltlve 

to atypical events and p rov~de  no informatlon on the 

variability of mortality over tlme A more commonly 

used approach 1s based on histogram analysis and con- 

s ~ s t s  of the establishment of slze- or age-frequency dls- 

tnbutions for a tlme senes of samples When cohorts 

overlap, slze measurements are necessary to dlstin- 

gulsh cohorts by graphical or mathematical procedures 

(modal analysls Macdonald & Pitcher 1979, Fournler 81 

Breen 1983, Grant et a1 1987) 

Slnce lndivldual organisms are not mon~tored over 

time, searching and handling are reduced and habitats 

are  not disturbed pnor to sampling There are impor- 

tant limitations, however, to cohort monitoring tech- 

niques The arrival of new juveniles 1s not always in 

sufficiently discrete pulses to monitor distlnct cohorts, 

or sample sizes required for cohort analysis can be 

unfeaslbly large (Grant et al. 1987). In addition, migra- 

tion, settlement, or hatching of new juveniles during 

the study wlll interfere wlth mortallty determinations 

unless these processes are also quantified. Migration 

can be substantial even among early juveniles gener- 

ally thought to have limited motility (e .g .  Emerson & 

Grant 1991, Martel & Chia 1991a, b) .  Cohort studies 

are generally not effective for measunng mortality 

during the potentially critical first days of early juve- 

nile life because ~t is rarely possible to distinguish 

between cohorts on a very short time scale (e.g. daily 

cohorts). Nevertheless, cohort monitoring may be the 

only way of obtaining mortality estimates for highly 

motile juven~les or where sampling excessively dis- 

turbs the organism and its environment, as can be the 

case for infaunal juveniles. 

In conclusion, mapping is the most reliable way of 

quantifying mortality through the early juvenile 

period, although estimates from photographic records 

can be satisfactory under appropriate conditions. Both 

methods, however, are only applicable to sessile or- 

ganisms. No study has yet monitored the fate of indi- 

vidual early juveniles of motlle species in the field. 

This situation might be partly resolved by improving 

marking techniques to mark and recapture juveniles 

with limited dispersal. Data obtained by monitoring 

cohorts rather than individuals can be used as rough 

estimates of early juvenile mortality but generally do 

not reveal the precise timing or intensity of mortality 

and cannot be used to accurately describe changes in 

mortality rate over periods of a few days or less. Since 

the biological significance of mortality data is hlghly 

dependent on the method, sampling frequency, and 

age of study organisms, reports should include de- 

tailed informatlon on the methodology as well as the 

age  of the juveniles when they first appear in the sam- 

ples. Future reports should also provide untransformed 

mortality data to facilitate comparisons with other pub- 

lished results. 

CAUSES OF EARLY JUVENILE MORTALITY 

The data compiled herein (Fig. 1) show that juvenlle 

mortallty is highest early in juvenile life. In addition, 

the processes operating early in the juvenile period, 

including those reguldting mortality, differ from those 

operating at any other time of life (Gosselin 1994). This 

suggests that mortallty factors specific to the early 

juvenile phase may be important determinants of pop- 

ulation parameters as well as driving forces in the evo- 
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lutionary development of the species. This section aims 

to identify all factors reported as causes or potential 

causes of early juvenile mortality as a first step towards 

characterizing the selective pressures operating dur- 

ing this period of life. To date,  5 biotic factors (preda- 

tion, competition, energy depletion, disease, develop- 

mental complication) and 5 abiotic factors (desiccation, 

temperature, salinity, water motion, solar radiation) 

have been suggested a s  causes of early juvenile mor- 

tality. 

Biotic factors 

Predation, including cannibalism (Hines et  al. 1990, 

Fernandez et al. 1993a) and ingestion or crushing by 

grazers ('bulldozing'; Connell 1961a, Dayton 197 l ) ,  is 

often assumed to be the single most important cause 

of early juvenile mortality (Thorson 1966, Splght 

1976, Keough & Downes 1982, Stoner 1990, Hurlbut 

1991a, b, Fernandez et al. 1993b). Early juveniles are  

indeed vulnerable to predation and may be killed in 

great numbers if exposed to predators, as shown in 

bivalves (Thorson 1966, Elmgren et  al. 1986, Pohle et  

al. 1991), gastropods (Gosselin & Chia 1995a, b, Ray & 

Stoner 1995), decapod crustaceans (Smith & Herrnkind 

1992, Barshaw et al. 1994), echinoderms (Highsmith 

1982), and ascidians (Young & Chia 1984, Osman et al. 

1990, 1992, O s n ~ a n  & Whitlach 1995). Decapod crus- 

tacean predators are often identified as a major source 

of predation on early juveniles (Thorson 1966, Moller & 

Rosenberg 1983, MacKenzie et  al. 1985, Ojeda & Dear- 

born 1991, Guillou & Tartu 1994, Gosselin & Chia 

1995a). The potentially large impact of decapods re- 

sults from their generally high abundances, broad dis- 

tribution in both intertidal and subtidal habitats, high 

motility, their ability to crush protective structures, and 

their need to process large amounts of food. Juvenile 

invertebrates may nevertheless be consumed by 

predators from a broad spectrum of taxa. The impact of 

pelagic predators, particularly fish, is rarely examined 

but could be substantial (e.g. Ojeda & Dearborn 1991, 

Wahle & Steneck 1992, Fernandez et  al. 1993b). 

Competition for space by undercutting, overgrowth, 

or aggressive contacts among sessile organisms can be 

a direct cause of early juvenile mortality, and can 

involve inter- or intraspecific interactions (ascidians, 

Young & Chia 1984, Davis 1987; barnacles, Hatton 

1938, Connell 1961a, b, Denley & Underwood 1979). 

Competition for space can also be an indirect cause of 

mortality: at high densities, many juveniles of the 

limpet Patella cochlear were located on the shells of 

adults, and high mortality occurred when they 

attempted to make the transition from shell to rock sur- 

face (Branch 1974, 1975a). These interactions are  most 

frequent when recruitment is intense and growth rates 

are high, therefore leading to density-dependent mor- 

tality (Connell 1961a, 1985). Competition for space 

should be a minor cause of death among juveniles in 

many populations that do not experience density- 

dependent mortality. 

Competition for food can lead to reduced early juve- 

nile growth (oysters, Zajac et al 1989; oysters and 

ascidians, Osman et  al. 1990; amphipods, Hill 1992) 

but there is only equivocal evidence that it causes early 

juvenile mortality in the field (oysters, Osman et  al. 

1989, Zajac et  al. 1989; snails, Branch & Branch 1980; 

amphipods, Hill 1992). Laboratory studies have shown 

that food availability to early juveniles can affect their 

growth and survival (oysters, Zajac et  a1 1989; abalone, 

McBride 1990; snails, Gosselin & Chia 1994), but there 

is no evidence yet that food is limiting for early juve- 

niles in the field. 

Survival through the first days of juvenile life can 

also depend on the amount of energy reserves remain- 

ing after metamorphosis, since feeding in some species 

is initially insufficient to meet the needs of the early 

juvenile (oysters, Whyte et  al. 1992). Feeding by early 

juveniles may be delayed or assimilation of food may 

be incomplete due  to a transition in metabolism (clams, 

Guillou & Tartu 1994). Early juvenile survival might 

therefore be dependent on the amount of energy accu- 

mulated during the larval phase or remaining from the 

initial content of the egg.  There is in fact considerable 

variation in duration of survival without food during 

the early juvenile period. Newly hatched Nucella 

emarginata, a muricid snail, can survive 50 to 120 d of 

starvation (Gosselin & Chia 1994), while hatchling 

Oceanebra sp. (Luckens 1970) and  Urosalpinx cinerea 

(Rittschof et al. 1983), also muricids, survive a week or 

less without food. The importance of energy depletion 

as a cause of early mortality may therefore vary sub- 

stantially among species. 

Diseases have caused high mortality in late juvenile 

seastars Acanthaster planci (Zann et al. 1987) and in 

juvenile oysters 525  m m  (Davis & Barber 1994). Blooms 

of toxic dinoflagellates also kill juvenile oysters (Luck- 

enbach et  al. 1993). Generally, however, little is known 

of the prevalence of diseases and parasites or of the 

impact of toxic phytoplankton on juveniles. The 

ephemeral nature of remains of dead early juveniles, 

largely due  to their rapid invasion by protozoans and 

bacteria, render positive identification of these factors 

difficult. These factors may nevertheless be important, 

and a better understanding of their contribution to 

early juvenile mortality is needed. 

In many species, a considerable reorganization of 

the body occurs at  metamorphosis (e.g. see Chia & 

Burke 1978). During this process, developmental com- 

plications that are genetically determined or induced 
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by environmental conditions such as temperature ex- 

tremes, salinity extremes, or ultraviolet radiation might 

produce dysfunctional juveniles. Physiological defects 

have been proposed as posslble causes of mortality in 

cases where traditional biotic and abiotic mortality fac- 

tors could not account for early juvenile mortality 

(MacKenzle 1981, Gosselin & Chia 1995a, Roegner & 

Mann 1995, Gosselin & Qian 1996). 

Abiotic factors 

While predation is the most documented cause of 

mortality, abiotic factors might be locally more impor- 

tant, as in intertidal habitats where conditions fluctu- 

ate to extremes over just a few hours, or in bays and 

estuaries where seasonal changes in physical condi- 

tions are amplified by freshwater runoff and greater 

thermal fluctuations relative to the open ocean. 

Early juveniles inhabiting the intertidal zone, when 

emersed, can lose water much faster than adults 

because of the greater surface-to-volume ratio of small 

individuals (Foster 1971, Wolcott 1973). Early juveniles 

are consequently much more vulnerable to desiccation 

stress than adults (barnacles, Foster 1971; llmpets, 

Davies 1969, Wolcott 1973, Branch 197513; snails, Gos- 

selin & Chia 1995a). Early juvenile mortality in the 

field has been attributed to desiccation in barnacles 

(Denley & Underwood 1979), limpets (Wolcott 1973, 

Branch 197513, Lewis & Bowman 1975) and snails 

(Behrens 1972). 

Thermal tolerance is also lower in early juveniles 

than in adults (Kinne 1970, Gosselin & Chia 1995a), but 

field temperatures are reported to be within early juve- 

nile tolerance limits (crabs, Brown et al. 1992; limpets, 

Wolcott 1973; snails, Gosselin & Chia 1995a; seastars, 

Chen & Chen 1993). For instance, the occurrence of 

temperature extremes over a 3 yr period did not corre- 

spond to increased levels of mortality In the bivalve 

Cerastoderma edule (Guillou & Tartu 1994). It is not 

clear, however, whether thermal tolerance limits of 

early juveniles are exceeded in tropical and polar cli- 

mates, since most studies to date have examined 

organisms from temperate habitats. In addition, sub- 

optimal temperatures may be indirectly responsible for 

early juvenile mortality by aggravating the effects of 

other factors such as reduced salinity and desiccation 

(Wolcott 1973, Gosselin & Chia 1995a). 

Persistent low sallnity levels cause early juvenile 

mortality in crabs (Brown et al. 1992, Brown & Bert 

1993), snails (Berry & Hunt 1980), urchins (Himmel- 

man et al. 1984), and seastars (Chen & Chen 1993). 

Nevertheless, short-term reductions in salinity (e.g. 

during a low tide) were not lethal to early juvenile 

limpets (Wolcott 1973) or snails (Berry & Hunt 19801, 

and tolerance limits of early juveniles have in some 

cases been found to exceed the range of conditions 

occurring in the natural habitat (crabs, Brown et al. 

1992; seastars, Chen & Chen 1993). Low salinity 

becomes a greater threat to early juveniles when com- 

bined with suboptimal temperatures (Berry & Hunt 

1980, Brown et al. 1992, Brown & Bert 1993, Chen & 

Chen 1993). 

Water motion can cause early juvenile mortality in a 

variety of ways. For instance, mortality can be caused 

by the transport and deposition of sand (abalone, 

Schiel 1993) or silt (ascidians, Young & Chia 1984) on 

early juveniles. Recently settled barnacles can also be 

killed as a result of scouring by waterborne material 

(Connell 1961a) or dislodgement by algal fronds mov- 

ing with the waves ('algal whiplash', Lewis 1964, 

Hawkins 1983). However, dislodgement of non-sessile 

animals by wave action (Behrens 1972, Sarver 1979, 

Gosselin & Chia 1995a) should not simply be equated 

with death. Indeed, most early juveniles sink very 

slowly due to their large surface-to-volume ratio and, 

in several bivalve and gastropod species, to the release 

of a thin mucous thread which allows them to reattach 

or drift until they encounter a favorable habitat (Sig- 

urdsson et al. 1976, Vahl 1983, Martel & Chia 1991a, b, 

Armonies 1992, 1994). 

Solar radiation, particularly the ultraviolet compo- 

nent, can cause mortality in encapsulated gastropod 

larvae developing in intertidal (Rawlings 1996) and 

shallow subtidal habitats (Biermann et al. 1992) and in 

planktonic larvae in coral reef-waters (Gleason & 

Wellington 1995). Exposure to natural UV radiation 

can also cause rapid mortality in postlarval phases of a 

variety of 'shade-loving' species, including bryozoans 

and ascidians (age and size not specified, Jokiel 1980). 

Among animals with protective shells, tubes or pig- 

mentation, the less-protected early juveniles may be 

highly vulnerable (Jokiel 1980). The actual effects of 

solar radiation on early juven~les have yet to be deter- 

mined. 

In conclusion, the available information suggests 

that desiccation (intertidal habitats) and predation are 

widespread and may often be the most important 

causes of early juvenile mortality. Their importance as 

selective pressures is supported by studies indicating a 

close association of early juveniles with structurally 

complex microhabitats (Bayne 1964, Sarver 1979, 

Wahle & Steneck 1991, Smith & Herrnkind 1992, Sandt 

& Stoner 1993, Gosselin & Chia 1995b) which consti- 

tute refuges from these factors (Gosselin & Chia 

1995b). However, some early juveniles remain ex- 

posed to predators and desiccation throughout juve- 

n ~ l e  life, particularly juveniles of sessile species. This 

suggests either that predation and desiccation have 

not been important selective pressures on early juve- 
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niles of these species or that other solutions have been 

found (e.g. physiological or chemical defenses): in both 

cases, other factors may presently be responsible for 

more mortality than are predation or desiccation. At 

present, however, there is insufficient information on 

the occurrence of most other factors or on the fre- 

quency of exposure of early juveniles to determine 

their relative importance as causes of death. Factors 

such as solar radiation, diseases, and 'internal' causes 

(energy depletion, physiological defects appearing 

during metamorphosis) may have a significant effect 

on survival in some populations. 

IMPLICATIONS OF JUVENILE MORTALITY 

Population parameters 

The high levels of early juvenile mortality reported 

in Table 1 are clearly sufficient to cause profound 

transforn~ations of cohorts. Small variations in early 

juvenile mortality should therefore have significant 

repercussions on population size. Field studies have 

shown that early juvenile mortality does indeed have a 

determining effect on benthic population parameters 

(Connell 1985, Osman et al. 1990, 1992, Osman & 

Whitlach 1995, Roegner & Mann 1995). Mortality dur- 

ing the early juvenile period has been shown to regu- 

late population size (lobsters, Smith & Herrnkind 1992; 

polychaetes, Qian & Chia 1994; crabs, Eggleston & 

Armstrong 1995; oysters, Roegner & Mann 1995) and 

distribution (hydroids, Yund et al. 1987; nudibranchs, 

Sarver 1979; barnacles, Connell 1985; urchins, Rowley 

1989; abalones, McShane 1991; oysters, Roegner & 

Mann 1995). Even among benthic macroalgae, colo- 

nization of free space can largely depend on the sur- 

vival of a few individuals through an early postsettle- 

ment period (cf. review by Vadas et al. 1992). In 

addition, early juvenile mortality can have a determin- 

ing effect on community composition (Osman et al. 

1992, 0lafsson et al. 1994, Osman & Whitlach 1995). 

Although cohorts generally sustain heavy losses dur- 

ing the larval period, mortality during the early juve- 

nile phase can exceed larval mortality. In the ascidian 

Diplosoma similis, for instance, mortality during the 

brief planktonic larval period, lasting 515 min, was 

29% whereas mortality during the first day following 

settlement was 50% (Stoner 1990). The processes 

involved in early juvenile mortality can also be at least 

as important as larval processes (dispersal, mortality, 

settlement) in determining the distribution and abun- 

dance of adults (urchins, Rowley 1989; abalone, 

McShane 1991; ascidians, Osman et  al. 1992; poly- 

chaetes, Qian & Chia 1994). 

Any event that would influence the number of indi- 

viduals surviving to the end of this early period would 

thus have a greater effect on survival to first reproduc- 

tion than comparable events in later periods of life, a 

conclusion also reached by Osman (1987) for the ver- 

metid Serpulorbis squamigerus. A trait that would 

enhance early juvenile survivorship even slightly 

should therefore be more strongly favoured than a trait 

producing a similar enhancement of survival at  later 

stages of life. In evolutionary terms, early juvenile 

traits should be more dynamic and responsive to envi- 

ronmental change than traits occurring later in life. 

Age at maturity 

One postulate of life history theory is that demo- 

graphic pressures, including juvenile mortality, are a 

major evolutionary determinant of age  at maturity 

(Bell 1980, Stearns & Koella 1986, Stearns 1992). If age 

at maturity is reduced, fewer individuals may die 

before reaching matunty. When Increased survivor- 

ship to maturity due  to earlier maturation outweighs 

the physiological and developmental costs (cf. Stearns 

1992) of this change, then earlier maturation is 

favoured. Although age at maturity can be influenced 

by a variety of factors, such as growth rate, fecundity, 

and developmental, phylogenetic and environmental 

constraints (Roff 1984, Stearns & Koella 1986, Stearns 

1992, Hutchings 1993), the timing and magnitude of 

juvenile mortality are nevertheless believed to be 

major determinants of age at maturity. 

Some life history models regarding age  at  maturity 

assume that, after the larval period, a constant propor- 

tion of the population dies in each time unit (Roff 1984, 

Stearns 1992), and that mortality rates reach low, sta- 

ble levels only at maturity (but see Stearns & Koella 

1986). The data reviewed herein indicate these 

assumptions often do not hold anlong benthic marine 

invertebrates. Instead, survivorship decreases expo- 

nentially in most species dunng an initial period last- 

ing up to -4 mo (Fig. 1). The selective pressure exerted 

by juvenile mortality is therefore highly age  depen- 

dent, being most intense during a brief initial period, 

rather than constant or linearly decreasing as a func- 

tion of age.  

Demographic pressure favouring a change in age  at 

maturity will be greatest when a small change in age  at 

maturity produces a large change in number of indi- 

viduals surviving to matunty. Using a generalized sur- 

vivorship curve (Fig. 2) patterned on Fig. 1, we observe 

that a reduction in age  at  maturity during a period of 

high mortality, from an age  a to a-l, could lead to a 

substantial increase in number of individuals reaching 
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Age (postlarval) 

Fig. 2. Implications for age at maturity of a survivorship curve 
with an initial period of exponential decrease. This general- 
ized model of age-specific survivorship is based on data 
shown in Fig. 1 A reduction in age at maturity in a species 
maturing during the exponential phase (e.g from a to a-l) is 
shown to result in a greater increase (i,) in survival to matu- 
rity than an equdl change (e.g. from P to bl) in a species 

maturing after the exponential phase 

maturity (i,). A similar reduction in age at maturity 

from a later age P to P-1 would result in a much 

smaller increase (ip) in survival to maturity. Given the 

pattern of mortality described in Fig. 1, juvenile mor- 

tality is l~kely to have little influence on age at maturity 

in species maturing beyond the age of 4 mo since mor- 

tality then remains low. However, species maturing 

earlier might experience much stronger selection in 

favour of an earlier age a t  maturity. Juvenile mortality 

would therefore have a more restricted influence on 

age at maturity than had been postulated. Juvenile 

mortality may be a major determinant of age at matu- 

rity only in species maturing within -4 mo, whereas in 

late maturing species juvenile mortality may play a 

minor role, if at all. Age at maturity among early and 

late maturing species could thus be largely controlled 

by different factors. 

The postulate that juvenile mortality is a determi- 

nant of age at maturity has not been verified with 

empirical data for benthic marine invertebrates. We 

therefore collated published data on age at first repro- 

duction for 92 species of benthic marine invertebrates 

distributed among 6 phyla (Appendix 1). Significantly, 

benthic marine invertebrates were largely partitioned 

into 2 groups (Fig. 3A); 21.7 % of these species matured 

within 4 5  d after beginning juvenile life, whereas 

59.8 % matured after at least 1 yr. With the exception of 

a modest peak at 6 mo, frequencies of age at first 

reproduction beyond the first 4 mo remained low up to 

the age of 12 mo (Fig 3A). The influence of juvenile 

mortality on age at maturity is expected to differ sub- 

stantially among these 2 groups and, as  a result, the 

timing of age at maturity in the 2 groups could be 

largely controlled by different selective pressures. 

If the pattern of juvenile mortality is a major deter- 

minant of age at maturity among species maturing 

within -4 mo of juvenlle life, then the distribution of 

ages at maturity within this period should be skewed 

towards early ages. Frequencies of age at first repro- 

duction among age classes 5 4  mo (Fig. 3B) were 

indeed skewed towards younger age classes. Twenty 

species began to reproduce before or at the age of 45 d ,  

but only 6 did so during the following 75 d (i.e. to the 

age of 4 mo; Fig. 3B). Physiological and developmental 

constraints would ultimately set the minimum limit for 

age a t  maturity, resulting in the observed clustering of 

species within the first weeks of postlarval life, with 

frequencies peaking at 15 to 30 d (Fig. 3B). Unfortu- 

nately, the direct relationship of survivorship as a func- 

tion of age at first reproduction could not be deter- 

mined because there were few species for which both 

parameters had been fully documented. Nevertheless, 

these age at first reproduction results are consistent 

with the hypothesis that juvenile mortality has influ- 

enced age at maturity in species maturing within 

-4 mo. 

1 2  3 J 5 6 7 8 9 1 0 1 1  I Z > I y r  

Age at maturity (mo) 

1-15 30 45 60 75 90 105 I20 135 

Age at maturity fd) 

Fig. 3. Frequency distribution of age at first reproduction 
among benthic marine invertebrates, as obtained from pub- 

lished reports (data and sources listed in Appendix 1) Age 
represents the hme elapsed since the onset of juvenlle life, 
and thus does not include the egg-to-juvenile period. (A) All 
species pooled with 30 d intervals. (B) Species with age at 

maturity 2135 d pooled with 15 d intervals 
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CONCLUSION 

Heavy mortality during the larval phase has often 

been used as an  argument to justify or encourage lar- 

val biology studies because the processes at  work dur- 

ing the larval phase should play a n  important role in 

the evolution of the species. The same argument can 

also be made for the early juvenile phase. High early 

juvenile mortality is widespread among benthic 

marine invertebrates. We suggest that extreme vulner- 

ability at  the onset of juvenile life to a range of mortal- 

ity factors is a shared trait that is largely responsible for 

the common pattern of exponential decrease in sur- 

vivorship during juvenile life. Natural variation within 

this pattern, however, would be largely a consequence 

of variation in intensitv of mortalitv factors. A better 

Although selective pressures specifically operating 

early in juvenile life may influence the evolutionary 

development of age  a t  maturity, the effect of juvenile 

mortality is likely to be limited to species maturing 

within -4 mo and will therefore not be  equal or directly 

comparable among all species. Our limited knowledge 

of juvenile mortality factors, which precludes a rank- 

ing of factors a s  causes of mortality, may be the most 

important obstacle to progress in understanding the 

adaptive and evolutionary significance of juvenile and 

life history traits. 
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Appendix 1. Age at f~rst reproduction of 92 species of benthlc marine invertebrates. Age is defined here as starting at the onset 
of juvenile life 

Taxa 

ANNELIDA, POLYCHAETA 
Dinophilus gyrocjliatus 
Ophryotrocha diadema 

Pseudopolydora kempi japonica 
Ophryotrocha maculata 

Ophryotrocha puerilis 
Romanchella pustulata 

Armandia brevis 
Capitella sp. I 
Slreblospio benedicti 
Kinbergonuphis simoni 
Typosyllis pulchra 
Eteone longa 
Nereis vexillosa 
Melinna palmata 

MOLLUSCA, POLYPLACOPHORA 
Lepidochitona fernaldi 
A4opalia rnucosa 
Onithochiton quercinus 

Plaxiphora albida 

MOLLUSCA, BIVALVIA 
Mytilus trossulus 
(published as M. edulis) 

Spisula solidissima 
Bankia setacea 
Mytilus californian us 
Lasaea subviridis 
Tapes philippinarum 
Albra tenujs 

ldas argenteus 
Crassostrea virginica 
Calyptogena magnifica 

Age at first reproduction Source 

Akesson & Costlow (1991) 

Akesson (1976) 
Miyohara (1979) 

Akesson (1973) 
Akesson (1967) 
Canete & Ambler (1990) 
Hermans ( l  966) 
Bridges et al. (1994) 

Bridges et al. (1994) 
Hsieh & Simon (1991) 
Heacox (1980) 
Rasnlussen (1973) 
Roe (1975) 
Grehan (1991) 

Eernisse (1984) 
Heath (1907) 
Otway (1994) 
Otway (1994) 

Suchanek (1981) 
Chintala & Grassle (1995) 
Quayle (1955, 1959) 
Suchanek (1981) 
Strathmann (1987) 
Holland & Chew (1974) 
Bachelet (1989) 
Dean (1993) 
Galtsoff (1964) 
Kennish & Lutz (1992) 

I I 

[Appendix continued on nex t  page) 
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Appendix l (continued) 

Taxa Age at first reproduction Source 

MOLLUSCA. BIVALVIA (continued) 

Cerastoderma edule 

Lithophaga lithophaga 
Nitidotellina nitidula 

Phacosoma japonicum 

Tresus nuttallii 

Tresus capax 

Panope abrupta 

Modiolus modiolus 

Chlamys islandica 

Arctica islandica 

MOLLUSCA, GASTROPODA 

Alderia modesta 
Olea hansineensis 

Phestilla sibogae 

Doridella stein bergae 

Eubranchus rustyus 
Stylocheilus longicauda 

Aplysia juliana 

Aplysia dactylomeda 

Littorina sp. 

Dolabella auricularia 

Lacuna vlncta 

Lacuna palljdula 

Littorina littorea 
Tritonia diomedea 

Lottia digitalis 

Retusa obtusa 

Um bonium costatum 

Um bonium vestiarium 
Bembicium vittatum 

Trichotropsis cancella fa  
Nucella emarginata 

Littorina nigrolineata 

Littorina rudis 

Nerita atramentosa 

Nucella canahculata 

Nucella lap~llus 

Drupella cornus 

Littorina neritoides 

Haliotis discus hannai 

Haliotis laeviga fa 

Haljotis ruber 

Haliotis iris 

Strombus gigas 

Philine gibba 

Haliotis tuberculata 
Nucella lamellosa 

Buccinum undatum 

Busycon carica 

ARTHROPODA, CRUSTACEA 

Chthamalus fissus 

Chthamalus anisopoma 
Semibalanus balanoides 

Pollicipes polymerus 
Dorhynchus thomsoni 

Tetraclita squamosa 

UROCHORDATA. ASCIDIACEA 

Botryllus schlosseri 

Didemnum candidum 

10 d 
2-3 wk 

20 d 
3-4 wk 
3-5 wk 

27 dd 

35-45 da 

66 dd 
-140 dd 

180-294 d d  

-7 mo 
-8 mo 

8.5 moe 
277 d d  

-1 yr 
-l yr 

1 Yr 
-l yr 

1 Y r  

1 Y r  

1 Y r  
18 mo" 

18 moe 

20 mo 

2-3 yr 
2-3 yr 
2.5-3.5 yr 

3 yre  

3 Y r  
-3 yr 

-3-4 yr 

-3-4 yr 

3.2-3.3 yr 
3.75 yr 

-4 yr 

4 Y r  
4-7 yr 

9 yr" 

Seed & Brown (1977) 
Galinou-Mitsoudi & Sinis (1994) 

Kawai et al. (1993) 

Sato (1994) 
Campbell et al. (1990) 

Bourne & Smith (1972) 

Andersen (1971) 

Seed & Brown (1977) 

Pedersen (1994) 

Rowel1 et al .  (1990) 

Seeleman (1967) 

Chia & Skeel (1973) 
Miller & Hadfield (1990) 

Strathmann (1987) 

Robilliard (1971) 
Switzer-Dunlap & Hadfield (1979) 

Hadfield & Switzer-Dunlap (1990) 

Switzer-Dunlap & Hadfield (1979) 

Boulding & Van Alstyne (1993) 

Switzer-Dunlap & Hadfield (1979) 

Smith (1973) 

Smith (1973) 

Hughes & Roberts (1980) 

Kempf & Willows (1977) 

Choat & Black (1979) 
Berry (1989) 

Noda et al. (1995) 

Berry (1989) 
Black et al. (1994) 

Yonge (1962) 

Spight (1982) 
Hughes & Roberts (1980) 

Hughes & Roberts (1980) 

Underwood [l975) 

Splght (1975) 

Crothers (1985) 

Black & Johnson (1994) 

Hughes & Roberts (1980) 

Sakai (1962) 

Shepherd & Laws (1974) 

Shepherd & Laws (1974) 

Poore (1973) 

Appeldoorn (1990) 

Seager (1983) 

Poore (1973) 

Spight (1975) 

Gendron (1992) 

Castagna & Kraeuter (1994) 

Page (1984) 

Lively (1986) 

ConneU ( 1985) 

Page (1986) 
Hartnoll & h c e  (1985) 

Hines (1978) 

Grosberg (1988) 

Hurlbut (1991a) 
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Appendix l (continued) 

Taxa Age at  first reproduction Source 

BRYOZOA 
Buyula neritjna -35 d Keough (1986) 

ECHINODERMATA 
Strongylocentrotus purpuratus 2 Yr Gonor (1972) 
Strongylocentrotus droebachiensis 2-3 yr Munk (1992) 
Centrostephanus rodgersii -3 yr King e t  al. (1994) 

Cucumaria pseudocurata -3 yr Rutherford (1973) 
Amphiura filiformis 3 Yr Muus (1981) 

Amphiura chiajei -4 yr Munday & Keegan (1992) 
Pisaster ochraceus 5 Yr Menge (1974) 

'Data obtained from laboratory reared individuals 
bSpjsula solidissima was previously reported to mature after 1 4  yr (Ropes 1979, Sephton & Bryan 1990) 
'Range of ages  a t  maturity corresponds to site-specific differences 
dData for male / female 
eMean age  at  maturity 
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