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Summary 

(k-l)-mean significance levels of nonparametric mUltiple comparisons 

procedures 

by J.H. Dude Voshaar. 

We consider the nonparametric pairwise comparisons procedures derived from 

the Kruskal-Wallis test and from Friedman's test. For large samples the 

(k-l)-mean significance level is determined, i.e. the probability of con

cluding incorrectly that some of the first k-) samples are unequal. 

We show that this probability may be larger than the simultaneous 

significance level a. Even when the kth sample is a shift of the other 

k-l samples, it may exceed a, if the distributions are very skew. Here 

skewness is defined with Van Zwet's c-ordering of distribution functions. 



(K-I)-~ffiAN SIGNIFICANCE LEVELS OF NONPARAMETRIC MULTIPLE COMPARISONS PROCEDURES. 

by J.H. Oude Voshaar 

Eindhoven University of Technology 

Abreviated title: NONPARAMETRIC MULTIPLE COMPARISONS PROCEDURES. 

I. Introduction. 

Consider k samples of size n with continuous distribution functions F1, ••• ,Fk , 

The projection argument, by which the Scheffe simultaneous confidence intervals 

are derived from the F statistic, can also be applied to the Kruskal-Wallis 

statistic (see Miller (1966), p. 165-172), This leads to the following pairwise 

comparisons procedure, proposed by Nemenyi( 1963): conclude F. :;. F. for 
1 J th 

large values of la. - a.1 , where a. is the 
1 J 1 

mean of the ranks of the i sample. 

Throughout this paper we shall assume n to be large (except for section 8, 

where finite sample studies are treated) and under the nUlhypothesis 

= Fk • We have for n + ro: 

(1. I) P[ max la. - a. I < q~ {k(kn+l)/12}!] - 1 - a, 
Isi,jsk 1 J 

a 
where qk is the upper a point of the distribution of the range of k independent 

standard normal variables. So for large n the procedure prescribes: 

( 1 .2) conclude F. :;. F. if lB:. - iLl <'! qkcl {k(kn+l)/12}! 
1 J 1 J 

and the simultaneous significance level (sometimes called: experimentwise 

error rate) is approximately equal to a. 

We shall be concerned with the following problem: if. HO i~ not valid, but 

FI • ••• a Fk- 1 - F and Fk = G, what will in that case be the value of 

( I .3) a(F,G) := lim P[ max IRi - Rjl <'! q~ {k(kn+l)l12}i], 
n+ro lsi,jsk-l 

American Mathematical Society 1970 subject classifications. Primary 62J15, 
Secondary 62G99. 
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of distribution functions, skewness, strongly unimodal. 
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i.e. what is (for n ~ 00) the probability of concluding incorrectly that 

some of F , ••• ,F are different? Usually a(F,G) is called the (k-l)-mean 
1 k-l 

significance level. It is clear that it depends also on G, as the distri-

butions of Ri and Rj (I ~ itj s k-I) depend on Fk • 

In sections 3 and 4 we shall see that there exist pairs (FtG) such that 

a(F,G) is larger than a, even when G is a shift of F. In section 4 and 

later sections only shift alternatives are regarded and it turns out that 

a(F), defined by a(F) := sup a(F,F(.-a», is larger than a only if F is 
~~ 

very skew. Here skewness will be defined with the c-comparison of distribution 

functions, introduced by Van Zwet (1964). If F is less skew than the 

exponential distribution, that is: log F and log(l-F) both concave, then 

a(F) s a (section 6). 

If block effects are present, a similar mUltiple comparisons procedure 

can b~ derived from Friedman's test (see Miller (1966), p. ]72-178). Here 

the situation is quite similar to the previous one: the (k-I)-mean 

significance level may be larger than a, and more specifically: a*(F) 

is larger as F is skewer (section 7). 

An auxiliary result which we shall prove is the following one (see section 5): 

Let X have distribution function F and define 

(1.4) v(F) := sup var F(X-a) 
M~ 

c(F) := sup cov (F(X),F(X-a», 
M~ 

then we have: 
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2. Another expression for a(F,G) 

Up to and 'including section 6 we shall consider the case where no blocks are 

present, so let Xll""'Xln;"';~I""'~n be independent ran~om variables 

(k >- 3), where X .. has a continuous distribution function F .• Let R .. denote 
~J ~ ~J 

the rank of X .. among all observations and define R. by: 
~J ~ 

-1 
R. := n 
~ 

n 

I 
j=l 

R •• 
~J 

In order to determine a(F,G), we first must know the asymptotic distribution 
- -of the range of Rl""'~-l for the case Fl ..... = Fk- 1 .. F and Fk = G. 

Using theorem 2.1 of Hajek (1968) one can easily prove the asymptotic 

normality of the vector (Rl""'~-I) under this alternative <the proof is 

omitted here), 

If we define p,q and r by: 

(2.1) 

then, 

for 1 

(2.2) 

(2.3) 

(2.4) 

p :== fGdF 

q :"" JG
2

dF 

r := JFGdF 

after a tedious computation, the following·relationships can be found 
:::; i,j :::; k-l: 

tR ... Hkn+l) + (p-i)n 
~ 

- 1 2 2 1 1 
var Ri .. izk n + (2r-p-!)kn + (4p-2p +q-6r~)n + ~ 

- - 1 211 
COV(Ri,Rj ) = - izkn + (3p-p - 4r+r2)n - 12 . 

2 I - p+p -q+2r-
6 

So n-i(Rl""'~_I) has an asymptotically normal distribution with covariance 

matrix: 

a] a2· •••• a2 
a 1 

" 
• a2 

" a} 

where a 1 := 2 I 
k /12 + (2r - p - 4)k + 4p - 2p2 I + q - 6r + -and 6 
- k/12 + 3p - p 2 . 1 

a2 
:= - 4r +-12 
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If we define (see also Miller (1966), p. 46): 

and 
k-l 

R := (k-l)-l l R. 
L i=l 

then n-i(R
1 

- yR, ••• ,R
k

_
1 

- yR) has an asymptotically normal distribution 

with covariance matrix (al-a2)~_1 (where ~-1 denotes the identity matrix 

of size k-l). If we set b := a1-aZ' then we have thus found that the range 

of (nb)-!Rl, ••• ,(nb)-!~_l has asymptotically the same distribution as the 

range of k-l independent standard normal random variables. Henceforth 

this last range will be denoted by Qk-l' Since b depends on F and G, we 

~ shall write b(F,G) and we may conclude: 

(Z.5) 

where 

(2.6) 

Remarks: 

b(F,G) 212 
... k /12 + (2r - p - 6)(k - 1) + q - P 

1. If X has distribution function F, then: 

(2.7) 
2r - p = 2 cov (F(X),G(X» 

2 
q - P ... var G(X). 

2 ... 2. If F = G, then b(F,G) = k /12, so under HO we (naturally) have a(F,G) ~ a. 
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3. Maximum of a(F,G). 

Now we shall compute the maximum value of a(F,G) and we want to know whether it 

is larger than a. Remark that this may depend on k and a. From (2.6) we see 

that a(F,G) is maximal when b(F,G) is maximal. Writing 

(3. 1) 2r - p = j(2F - l)GdF , 

we see that 2r - p is maximal if F and G satisfy the following two conditions: 

(3.2) if F(x) < ! then G(x) = 0, and 

if F(x) > ! then G(x) = 1, 

that is: F.! on the support of G. 

Now it happens that q_p2 is maximized by the same pairs (F,G).so from (2.6) 
and (2.5) it follows that a(F,G) is maximal for the pairs (F~G) satisfying 

2 (3.2). As for these pairs 2r-p and q-p are both equal to 1/4 ,we conclude 

that the maximum value of a(F,G) is equal to: 

With the aid of a table of the c.d.f. of the range of independent standard 

normal variables, e.g. Harter (1969), we can find these values for several 

values of k and a. From table 3.1 we see that in general max a(F,G) is 

larger than (l • 

Table 3.1. 

Maximum values of a(F,G) for (l •• 01, .025 •• 05 and .10 

k=3 4 5 6 7 8 9 10 12 15 20 

(l- .01 .0153 .0181 .0182 .0178 .0172 .0167 .0162 .0158 .0151 .0143 .0134 

.025 .0303 .0361 .0386 .0385 .0379 .0372 .0365 .0358 .0347 .0334 .0318 

.05 .0512 .0643 .0682 .0690 .0688 .0682 .0674 .0667 .0652 .0633 .0612 

• 10 .0877 .1123 .1208 .1240 .1250 .1250 .1245 .1238 .1224 .1202 .1172 

Remark: 

If we keep in mind that b(F,G) = ~ lim var n-! (R. - R.) (1 ::; i,j ::;; k-l), 
1. J n+m 

then it is also clear intuitively, that b(F,G) is maximal if F and G 
th satisfy (3.2), since in that case the k sample is expected to receive 

the midrariks. 
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4. Shift alternatives 

From this moment we shall consider only pairs (F,G) for which there exists 

an a E R such that: 

(4.1) G(x) = F(x-a) for all x E R 

and again we ask ourselves whether a(F,G) may be larger than a. 

As now a(F,G) and b(F,G) in fact depend on Fand a, we shall modify our 

notation: 

a(F,a) := a(F,G) 

b(F,a) := b(F,G), 

where G is given by (4.1). 

If X has distribution function F, then we define: 

(4.2) 

(4.3) 

c(F,a) := cov(F(X),F(X-a» = J(F(x)-~)F(x-a)dF(x), 
v(F,a) := var F(X-a). 

Now we can rewrite (2.5) and (2.6): 

(4.4) a 2 ~ a(F,a) = P{Qk-l > qk(k /12b(F,a» }, 

where 

(4.5) b(F,a) = h k2 + (2c(F,a) - i) (k-l) + v(F,a) - IT' 
Furthermore we define: 

(4.6) a(F) ;= sup a(F,a) 
aElR 

and b(F), c(F) and v(F) analogously (see also (1.4». 

First we try to maximize c(F,a) over F and a. Suppose a ~ 0, then F(x-a) ~ F(x) 

for all x E R and consequently: 

(4.7) c(F ,a) ~ J (F(x) - DF(x - a)dF(x) ~ 
{xiF(x»I} . 

J 2 1 .5 
(F - 1F)dF = 48 • 

{F>!} 

5 If a < 0, then also c(F,a) < 48 for all F. 

5 
On the other hand 48 turns out to be the lowest upperbound, 

defined below in (4.8), we have c(Fm,D = is -&Cm- 1). 

since for F , 
m 

(4.8) F (x) := x + ! 
m 

x 
:= - + ~ m 

if 

if 

- I ~ x ~ 0 , 
m 

O~x~2' 



• 

- 7 -

Furthermore we have that lim v(F , D = 29/192 and hence by (4.5): 
1D:?«' m 

(4.9) sup b(F,a) > ..l. (k2 
+ !k + ft) - 12 , 

F,a 

which implies: 

(4.10) sup et(F) ~ P[Qk-1 > q~{k2 /(k2 5 ,! 
+ lk + 16») J. 

F 

Table 4.1 

Lower bounds for sup et(F). 
F 

1<=3 I 4 5 6 7 8 9 10 I 

et =.01 .0079 .0101 .0109 .0113 .0114 .0114 .0114 .0114 
.25 .0175 .0230 .0253 .0263 .0268 .0211 .0213 .0273 
.05 .0325 .0431 .0418 .050 J .0514 .0521 .0526 .0529 
.10 .0612 .0816 .0909 .0958 .0987 .1005 .1019 .1025 

12 15 

.0114 .0112 

.0213 .0272 

.0531 .0532 

.1034 .1039 

From table 4.1 we see that sup et(F) is larger than et for several values of et 
F 

and k. However the exeedances, if any, are rather small, much smaller than 

in the general case, treated in section 3 • 

It should be noticed here that (see Statistica Neerlandica (i977), 

page 189-191, solution of problem nr. 45): 

(4.11) sup v(F,a) = (3 - 15) 5/24 , 
F,a 

which value is reached (for m + (0) by the same F of (4.8) but for a .;. i. 
m 

However, the value in (4.11) is only slightly exeeding 29/192 and moreover 

2(k-l). c(F,a) is the dominant term in (4.5), so (4.10) is almost an 

equality, especially for k not too small. Consequently the lower bounds in 

table 4.1 are practically equal to sup et(F). 
F 

The next question is: which conditions on F are sufficient to guarantee 

et(F) s et? 

The first result stated here is due to professor R.Doornbos: 

20 

.0111 

.0270 

.0530 

.1041 
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Theorem 4.1: 

If F is symmetrical and unimodal, then c(F) ~ if and hence a(F) ~ a for the 

usual values of a and k. 

Short proof: 

Combining c(F) ~ l~ (proof omitted here) with (4.11), one will see that 

in (4.4) b(F,a) is not large enough to compensate the difference between 

o 

We would like to relax the conditions on F in theorem 4.1, especially the 

symmetry is often not fulfilled in practice. However, unimodality alone 

is not sufficient to ensure a(F) ~ a, since F of (4.8) is also unimodal. 
m 

Theorem 4.1, together with the extreme skewness of F , may suggest that 
m 

a(F) is larger when F is skewer. In the next sections we shall see that 

this guess puts us on the right track. 

Here skewness will not be the normed third moment, but it is defined with 

the c-comparison, introduced by Van Zwet (1964) • 
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S. Skewness and its relation to c(F) and v(F).· 

We shall confine ourselves to the class f of continuous distribution 

functions 

such that 

(5. 1 ) 

(5.2) 

(5" 3) 

F, for which there exists a finite 

the following three conditions are 

F(x2) - F(x
1

) = 1 , 

F is differentiable on 1]., 
F' > o on ~ " 

or infinite interval 1]. = .(x l ,x2) 

satisfied: 

On this class fa weak order relation is defined, which is called the 

c-comparison: 

Defini tion 5" 1 
-1 

If F l' F 2 E f then F 1 ~ F 2 .... F 2 F J convex on 1]. • 
) 

Fl ~ F2 should be interpretated as: F2 is skewer to the right than Ft' 

Property (lemma 4.1.3, Van Zwet (1964»: 

If fl and f2 are the densities of FI and F2 respectively, then: 

(5.4) 

-For F E: f we define F E f by: 

(5.5) F(x) := 1 - F(-x) for all x E :R. 

Then we can prove the following property: 

Lemma 5.1 

If F I , F2 E F then: FI ~ F2 """"F 2 ~ FI 

Proof: 

.. : F;I F1 (-X) convexinx implies: F- IF
2
(-X) concave inx. 

- -)- -I 
Hence (F l ) F2(x) = Fl F2(-x) is convex. 

- Note that F = F 0 

Using the c-comparison, we now define skewness on f: 

Definition 5.2: 

F2 is skewer than FI .. F2 < F < F or F < F < F
2

" 
c I c 2 2 c 1 c 

Notice that, if we only have Fl ci F2, Fl still may be very skew to the left. 
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Now we want to prove that c(F) and v(F) are increasing according as F is 

skewer. But first we have to state two lemmas: 

Lemma 5.2 

Lef f and g be real functions on an interval I c lR (g positive), such 

that fIg is nondecreasing on I. If furthermore x1,x2,x3,x4 E I, such that 

xl ~ x3 and x2 ~ x4' then: 

g 

Proof: Elementary calculus. 

Lemma 5.3 

Let f and g be real functions on (0,1) such that: 

(i) llf = llg <. 

o 

(ii) there exists Xo E (0, I) such that f ::; g on (O,xO) and f ~ g on (xO' 1). 

Then: • 

J x f(x)dx > J 
° 0 

x g(x)dx • 

This lemma is a special case of a theorem due to J.F. Steffenson (see 

Mitrinovic (1970), page J14, theorem 13). 

Theorem 5.1 

If F2 is skewer than F
J 

(F 1,F2 E F), then: 

(a) c(F
t
) ~ c(F

2
) 

(b) V(F
1

) ~ V(F
2

) • 

Proof: 

First we shall prove (a). After integration by parts (4.2) gives: 

(5.6) c(F,a) - J (u - !) F(F-I(u) - a) duo 

o 
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Suppose: 

(5.7) 

We shall start with showing: 

(5.8) F < 
1 c F2 ... 

1 1 

J (u 
-) [ (u -

-I 
sup - DF 1 (F 1 (u) - a)du :::; sup ~)F2(F2 (u) - a)du 
aE(O, ex» aE (0, ex» 

0 

which has been proved if for any a
1 

> 0 there exists a 2 > 0 such that the 

following two relationships are satisfied: 

(5.9) 
-I 

- a ) -I 
- a ) (O,n F 1 (F 1 (u) ~ F2(F

2 
(u) for u E 

1 2 

(5.10) 
-1 

- a ) -1 - a2) for U E 0,1) FI(F I (u) 1 
:::; F

2
(F

2 
(u) . 

For this we take a2 such that we have equalities for u - !. So: 

-I' -1 -1 
(s.II) a 2 := F2 (D - F2 (F

1
(F} (n - a

1
)} • 

I -1 ' To prove (5.10) we use lemma 5.2 with: f := (F;)' , g :- (F t ) , 

-1 -} 
XI := FI(F I (D - at)' x2:=~' x3:= F

1
(F t (u) - a

I
), x

4
:= u. Thenf/g is 

nondecreasing because of (5.4) and (5.7). To prove (5.9) we only need an~ 

interchangement of XI and x2 and of x3 and x
4

• Thus (5.8) has been proved. 

For negative a we have to make use of F2 6 Fl' By lemma 5.1 this is 

equivalent to FI ~ F2, so (5.8) gives: 

(5. 12) 

1 1 

sup J 
aE (0, ex» 0 

(u - !) F}(F~l(u) - a)du:::; sup f 
aE (O,ex» 0 

J (u - !) FJ(FJ(u) -

° 

1 

a)du = f 
° 

Hence (5.12) gives: 

(5. 13) -F < F ... 
2 c 1 

sup JI 
aE (-00,0) ° 

-} 
(u - !) F) (F 1 (u)-a)du :::; sup 

aE (0 ,ex» 
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Combining (5.8) and (5.13), we see that (5.7) implies: c(F I) ~ c(F 2). This 

is also implied by F2 2 FI ~ F2, as c(F2) = c(F2). So the proof of (a) 

has been completed. 

To prove (b), we take random variables Xl and X2 with distribution functions 
-J 

FI and F2• As F1(){1 - a) has distribution function HI(u) :,= FI(F} (u) + a), 

we have: 

1 

(5.14) -1 H, (u)du • 

(5.15) 2 c{CF (X - a» } = 1 -1 1 

and similarly for F2(X2 - a). 

1 

~ 1 F,(F;'Cu) + a)du • 

1 

1 - 2 J UFI(F~l(u) 
o 

+ a)du, 

Firs t we prove that F 1 ~ F 2 implies that for any a 1 > 0 there exists a2 2: 0 

such that 

(5.16) 

(5.17) 

1 

+ a1)du = J F2(F;1(u) 

o 

(a2 exists, since F} and F2 are continuous). 

Then (5.16) is satisfied if: 

I 

(5.18) 
J 

-1 
u F 1 (F 1 (u) + a)du ;:: 

° 
This follows ,from lemma 5.3 if we substitute: 

Condition (i) is satisfied by (5.17) and condition (ii) is satisfied 

because: 
-I 

1. According to (5.17) there exists Uo € (0,1) such that FI(F I (ua) + a 1) = 
-1 

F2(F2 (uO) T a2), as F) and F2 and there inverses are continuous. 

2. As FI ~ F2, we can use lemma 5.2 in the same way as in the proof of 

part (a) with! replaced by uo. This gives Fl(F~l(u) + a
l
) S F2(F;1(u) + a2) 

for u E (o,uo) and the reverse inequality for u € (u
O

' 1).' 
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Hence we now have: 

(5. 19) F 1 < F 2" sup var F 1 (Xl - a) 
c aE (0,"") 

~ sup var F
2

(X2 <- a). 
adO,oo) 

For negative a again we use F2 ~ Fl (or F] 2 F2)· As -Xl has distribution 

function F 1 and furthermore 

we find: 

F 2 ~ F 1 .. sup var F 1 (X 1 - a) ~ sup var F 2 (X2 - a). 
aE ( -00,0) aE (0,00) 

Together with (5.19) this completes the proof. o 
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p. Sufficient conditions on F such that a(F) < a. 

Now an application of theorem.5.1 to our mUltiple comparisons problem is given. 

Therefore we let F be the negative exponential distribution (which is 
e 

rather skew), so: 

(6. 1) 

Since 

(6.2) 

-x 
F (x) = 1 - e (x > 0) 

e 

c(F ) = 3/32 and v(F ) = 1/9, we have by (4.5): 
e e 

2 
b(F ,a) S k /12 + (2c(F ) - 1/6)(k-l) + v(F ) - 1/12 • e e e 

= (k2 
+ k/4 + 1/12)/12 

and substituted in (4.4), this gives the upperbounds for a(F ) in table 6.1 
e e (see below). In that table we see that a(F e) is smaller than a for the 

usual values of a and k. As F E F, we now have, by theorem 5.1, that 
2 e 

(k + k/4 + 1/12)/12 is also an upperbound for b(F,a), for all F € F 

which are less skew than the exponential distribution. 

Translation of "F less skew than F " gives: 
e 

Theorem 6.1 

If log F .and log (1 - F) are both concave, then a(F) ~ a (for the usual 

values of a and k) and upperbounds are given in table 6.1. 

Table 6.1 

Upper bounds for a (F) when log F and log (I - F) both concave 

k ... j 4 5 6 7 8 9 ]0 12 15 20 

a-.Ol .0053 .0073 .0083 .0088 .0092 .0094 .0095 .0097 .0098 .0099 .0100 

.025 .0127 .0176 .0200 .0214 .0223 .0229 .0234 .0237 .0241 .0245 .0248 

.05 .0249 .0345 .0393 .0422 .0440 .0453 .0462 .0468 .0478 .0486 .0493 

.10 .0496 .0682 .0777 .0834 .0870 .0895 .0914 .0928 .0947 .0965 .0979 

To show that this class of distribution functions is not too small, we 

remark that it contains all the strongly unimodal distributions: 

Corollary: 

If F is strongly unimodal, then log F and log (1 - F) both concave. So 

'table 6.1 is also valid for strongly unimodal F. 

Proof: 

Prekopa (1967) proved that strong unimodality (that is: log f concave) 

implies the log-concavity of F. F is strongly unimodal if and only if 

F is strongly unimodal, hence log (1 - F) is also concave. 0 
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Remarks: 

1. This corollary is the other version of theorem 4.1, we were looking 

for at the end of section 4. Symmetry is not required but unimodal is 

replaced by strongly unimodal. Nevertheless theorem 6.1 is more general. 

2. Again the situation of section 4 occurs: c(F ,a) and v(F ,a) are not 
e e 

maximal for the same value of a. However, since v(F ,a) is almost maximal 
e 

when c(F ,a) is maximal (7/64 versus 1/9), we see that the values in e 
table 6.1 are practically equal to a(F ). . e 

. 7. Friedman-type simultaneous rank tests 

Now we shall treat a multiple comparison procedure, also proposed by Nemenyi, 

but for another model, namely when blocks are present. Let X .. , i = 1, ••• ,k; 
1.J 

j = l, ... ,n be independent random variables, with continuous distribution 

functions Fij , whp.re we assume that there exist numbers 61,···,6k , Bl, ••• ,Bn 
and a distribution function F such that 

F .. (x) = F(x - 6. - S.) . 
1.J 1. . J 

The 8's are called block parameters and we want to know which a's are 

different. 

L t R d t th nk f X h J.th block (X ~) h e .. eno e e ra 0 ., among tel""" ;, t en we 
1J 1J J J . 

define: 

-
R~ := 

1. 

n 

L 
n j=1 

R •• 
1J 

Again n 1.S assumed to be large and under the nulhypothesis HO 

we have for n + 00: 

(7.1) p[ max IR. - R.I < q~ {k(k+l)/(12n)}i] - I - a 
l$i,j$k 1. J 

6 1 - ••• = 6k 

We are inters ted again in the (k-l )-mean significance level: suppose 

6 1 = .... = 6k- 1 and 6k = 61 + a (a ~ 0), what is that case the value 
* of a (F,a), defined by: 

(7.2) a*(F,a) := lim P [ max IR. - R.I ~ q~ {k(k+l)/(12n)}!] 
n+oo l$i,j$k-l 1. J 

and is it larger than a for some a,k,F and a1 
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. ,--- - * 
To answer this quest10n we shall compute the supremum of a (F,a) over F and a. 

The vectors (RJj""'~j) for j=l, ••• ,n are LLd., so (Rl""'~) has an 

asymptotically normal distribution for n -+ 00. After computation of the 

variances of Rl""'~-l the same arguments used in section 2 lead to: 

(7.3) 

Since 5/48 is the supremum of c(F,a) over F and a (see section 4), we have: 

(7.4) sup a*(F,a) = P[Qk-l > q~ {(k
2
+k)/(k

2 
+ ~)}!J 

f,a 

which values are given 1n table 7.1. 

Table 7.1: sup a(F.a) for several values of a and k. 
F,a 

6 7 I 8 I 9 I 10 I 12 I I 

.0107.01081.0109
1

.0110 101 .0 I 05 

242 .0251 .0257! .02601 .0263 .0265 
-
~71·0483 .0498 .0506 I .0511 .0518 

904 .0942 .0967 .09851.0997 .1013 

15 I 20 J 
.0110 .01091 

.0267 .0267 

.0523 .0524 

.1025 .1032 

We see that a*(F,a) may be larger than a, but the exeedance is never large. 

Once having this result, again the following question arises: if we define 

* a (F) by 

a* (F) := sup 
aEE. 

* a (F ,a) , 

which conditions on F are sufficient to guarantee a*(F) ~ a? From (7.3) 

and theorem 5.1, one can conclude: 

Theorem 7,1 

Remark that such a conclusion is not right for a(F), since a(F,a) depends 

on both c(F,a) and v(F,a), which are not always maximized by the same value 

of a (although in practice they almost are!), 

Again the comparison with the exponential distribution gives: 

Theorem 7.2 

* If log F and log (1 - F) both concave, then a (F) ~ a for the usual values 

of ct and k. 

* It turns out that a (F ) is slightly smaller than the values given in table 6.1. 
e 
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8. Finite sample studies. 

<.In order to investigate in how far the asymptotic results are valid for 

,fini te n, Monte Carlo studies have been made for n == 5 and k == 3, ••. , 10 in 

~he situation where block parameters are absent. Here I am .much indebted 

;:0 Kees van der Hoeven, who wrote the computer programs. 

>Firstly the exact critical values have been estimated (from 40.000 simulations 
,".,'" 

>{~nder HO for each k) in order to make the simultaneous significance level 
'"',,f.," " 

C,:;:ie~'qual to (l. It turned out that for n == 5 the critical value, used in (1.2) 

;:\,;:is an acceptable approximation. Its exact significance level was systematically 
,,': 'j>::'" ,: i ::~ 

,. .:;.somewhat smaller than (l, so it seems to be safe to use the asymptotic 

·Japproximation of (1.1), if exact critical value$" are not available. Another 

~dritical value, which is sometimes used, namely {h~_l k(kn+l)/6}!, where 

e'~~-l is the upper (l point of the distribution of the Kruskal-Wallis statistic, 

proved to be bad: the significance level is much smaller than the nominal 

especially for larger k. 

having obtained the exact critical values (of course randomization 

necessary), the (k-l)-mean significance levels have been estimated· for 

pair F,G given in (3.2) and also for a shift with an amount ~ of F 
::.::::' m 
?;;<~e£ined by (4.8), where m '7 00. For both alternatives also 40.000 simulations 

each k. 

the (k-l)-mean significance levels for n = 5 are systematically 

a little bit larger than the values given in the tables 3.1 amd 4.1, but 

difference was so small that one may conclude that already for n = 5 

levels behave as if n were infinitely. 
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9. Some final remarks 

As the (k-l)-mean significance levels of both mUltiple comparison methods 

do not exceed a very much, these results may not appear very alarming to a 

practical statistician, the more so as (for shift alternatives) a(F) and 
* a (F) are smaller than a for a large class of distribution functions 

(theorems 6.1 and 7.2). 

However, a serious disadvantage of the methods (and in fact that property 

allows the (k-l )-mean significance level to be larger than a) is the fact 

that the distribution of R. - R. (on which the comparison of the two 
~ J 

groups is based) depends also on the other F.'s respectively e,'s. 
l ~ 

The normal model procedures (e.g. the methods of Tukey and Scheff€) 

and also the nonparametric method proposed by Steel (1960) do not suffer 

from this anomaly. 
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