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Abstract. Structured learning algorithms usually require inference during the train-

ing procedure. Due to their exponential size of output space, the parameter update is

performed only on a relatively small collection built from the “best” structures. The

k-best MIRA is an example of an online algorithm which seeks optimal parameters

by making updates on k structures with the highest score at a time. Following the

idea of using k-best structures during the learning process, in this paper we intro-

duce four new k-best extensions of max-margin structured algorithms. We discuss

their properties and connection, and evaluate all algorithms on two sequence label-

ing problems, the shallow parsing and named entity recognition. The experiments

show how the proposed algorithms are affected by the changes of k in terms of the

F-measure and computational time, and that the proposed algorithms can improve

results in comparison to the single best case. Moreover, the restriction to the single

best case produces a comparison of the existing algorithms.

Keywords: structured learning, sequence labeling, k-best approach, max-margin
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1. Introduction

Structured classification is a problem of learning a mapping from the input to the output

structured objects, where the output structures incorporate different relationships among

its classes. Its algorithms have been widely applied for solving sequence labeling prob-

lems where we need to assign a single label to each member of the observed sequence.

Popular sequence labeling problems in natural language processing are part-of-speech

tagging (assigning a linguistic category to each word), shallow parsing (detecting syntac-

tic chunk labels) and named entity recognition (detecting entities in sentences).

The general idea of the k-best approach is to restrict the learning process from the

structured space to its subset constructed only of its k elements with the highest scores,

since considering all elements from the original space would lead to an intractable learn-

ing process in real time. While the influence of the parameter k to the learning process

is not yet explored in theory, empirically it is shown that small values of k contribute

to the learning process, with slight degradation of performance for larger values. For k
equal to one, different learning methods are developed, while for higher values there is k-

best Margin Infused Relaxed Algorithm (MIRA). Following the advantages of the k-best

MIRA presented in [2], [8], [19], our motivation for the paper is to investigate different

possibilities of incorporating k-best structures into the learning process with the aim to
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get better results than the corresponding single best version, and to provide the theoret-

ical analysis of the introduced algorithms. Thus, we introduce four new k-best versions

to train the structural SVM as extensions of the popular single best algorithms: LaRank,

SDM, passive-aggressive and perceptron algorithm.

The main contributions of the paper are:

• Introducing four new k-best extensions of max-margin structured classifiers with a

discussion of their properties and connections.

• Providing theoretical analysis for the k-best versions. The restricted version of the

k-best passive-aggressive algorithm is introduced in order to satisfy theoretical guar-

antees in terms of cumulative prediction loss similar to the single best case.

• Providing empirical evaluation of the introduced k-best versions on different datasets.

Also, the restriction to the single best case provides a comparison of the existing

algorithms.

The paper is organized as follows: we first discuss the related work, and then in Sec-

tion 3, we define the basic notation and the primal-dual problem of max-margin structural

classifiers. After reviewing k-best MIRA, in Section 4, we introduce new k-best exten-

sions for structured classification. In Section 5, we present the results of k-best extensions

on two sequence labeling tasks and conclude the paper in the last section.

2. Related work

Sequence labeling problems have been traditionally solved with hidden Markov models

(HMMs) [9] by learning transition and emission probabilities and finding the optimal

sequence by dynamic programming. The limitation of the reach feature representation

in HMMs is overcome by its discriminative training such as Maximum entropy Markov

models (MEMMs) [24] and conditional random fields [25], which also further avoid the

label-bias problem in MEMMs. The combination of maximum margin discriminative

training and the HMMs results in the Hidden Markov SVM [3], which is later gener-

alized to the structured SVM [1]. All these discriminative training algorithms can be seen

as a minimization of a differently chosen regularized loss function.

Since the size of the output space in structured data is usually exponential, a full opti-

mization with exponentially many constraints is not possible in real time. There are sev-

eral approaches to dealing with such optimization. Taskar et al. [5] present an equivalent

polynomial-size formulation in the maximum margin Markov network (M3N) by intro-

ducing marginal variables. Joachims et al. [4] use the cutting plane method on the equiv-

alent formulation with one slack shared across all data and show that the dual problem

has a sparse solution. Finding a small set of constraints that is sufficient to approximate

a solution is usually done by increasing the working set of constraints through iterations.

Balamurugan et al. [13] present the sequential dual method (SDM) for structural SVMs in

which they sequentially add the constraint generated for the best structure and apply the

sequential minimal optimization (SMO) [14] with additional heuristics to increase speed.

Jaggi et al. [31] propose a block-coordinate version of Frank-Wolfe optimization as an

online algorithm with an efficiently computed optimal step size which has a duality gap

guarantee. Chang et al. [35] suggest a dual coordinate descent applied on L2 loss which

allows updating only one dual variable at a time. Bordes et al. [22] present the LaRank
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algorithm adapted to structured problems. After processing a new training example and

adding the corresponding constraint, it goes back and reprocesses the old examples by

optimizing them with the possibility of further increasing their working set of constraints,

in order to get training through the data in one pass. There are also online algorithms

adapted to the structured version, such as the perceptron [17] and the passive-aggressive

algorithm [7], suitable for large-scale problems.

While all previously mentioned approaches make a single increment to their working

set of constraints or just restrict the optimization to only one constraint, Crammer et al.

[2] first proposed the k-best version of the Margin Infused Relaxed Algorithm (MIRA) as

an online algorithm which restricts optimization not only to one but to k-best constraints.

The algorithm is designed to traverse through training examples, find the k-best structures

inside the example with the current parameters and then use these structures to update the

parameters before moving to the next example. The idea is to adjust the parameters us-

ing new structures, but keep the changes as small as possible in order to hold previously

obtained knowledge. At each example, after finding k outputs with the highest score, the

algorithm minimizes the norm of parameter change while satisfying constraints on gen-

erated outputs. Even though the algorithm traverses online through examples, inside each

example it performs full optimization subject to generated k constraints. The algorithm

was tested on different problems. Crammer et al. [2] present the results on handwriting

recognition, noun phrase chunking and named entity recognition (NER), showing that

k-best MIRA performs as well as batch methods such as CRFs and M3N, but converges

more quickly after a few iterations. McDonald et al. [8] use k-best MIRA for dependency

parsing, testing different values of k, and state that even small values of k are sufficient

to achieve close to best performance. Gimpel and Cohen [19] also test k-best MIRA on

NER and achieve similar results to the perceptron algorithm that were slightly better than

the CRF, while MIRA gave better results on the part-of-speech (POS) tagging than per-

ceptron for a reasonably small parameter k. Other related works include using a primal

sub-gradient method for the averaged sum loss [20] optimization, which is closely related

to the k-best variant of the Pegasos algorithm [34]. The k-best approach is also applied

in confidence weighted methods [32] and used for confidence in committee organization

[33], where k-best paths are used to extract the confidence of a particular label which is

included in the learning process to improve the results.

3. Structural support vector machines

Let X be an input alphabet and D = ((xn,yn))
N

n=1 a training set, where each xn ∈
X Tn represents an input sequence of length Tn with the corresponding structure yn. The

set of all possible structures over the sequence xn is denoted by Y (xn) and Y−n =
Y (xn) \ yn. In further discussion, we focus on the sequence labeling problem where

Y (xn) = YTn and Y represents a set of possible labels for an element of X . However,

everything presented in this paper, except for the discussion of the inference problem, will

hold for a general case of Y (xn). The linear classification problem is to learn a function

hw from the data D , which maps every sequence x over the alphabet X to an element of

Y (x) in the following form

hw(x) = argmax
y∈Y (x)

w
T
F(x,y), (1)
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where F(x,y) represents a global feature vector measuring the compatibility of x and y.

One way of finding such a function is to estimate w via the max-margin approach, which

minimizes L2-regularized empirical risk on D [15] leading to the following formulation

of the structural support vector machine in the primal space

min
w,ξ

1

2
‖w‖2 + C

N∑

n=1

ξn (2)

s.t. wT∆Fn(y) ≥ L(yn,y)− ξn, ∀n, ∀y ∈ Y (xn) (3)

where ∆Fn(y) = F(xn,yn) − F(xn,y). According to the constraints, the original

sequence yn should produce a greater score w
T
F(xn,yn) then any other sequence at

least for the size of the margin for that sequence. The cost function L(yn,y), used for

margin scaling, represents the cost of labeling the sequence xn with y instead of yn. To

handle a non-separable case, for each example xn we assign non-negative slack variables

ξn which control the penalty for its misclassification and the whole problem refers to N -

slack formulation with margin scaling. Since L(yn,yn) is equal to zero, the constraint

for the sequence yn in (3) produces ξn ≥ 0. The parameter C ∈ R
+ controls the trade-off

between the slack variable penalty and the size of the margin. As the cardinality of Y (xn)
is exponential, the direct optimization is untraceable. A straightforward transformation of

the primal problem (2)-(3), by introducing Lagrange multipliers λ = [λn,y]n,y∈Y (xn),

leads to the dual optimization problem

min
λ

1

2
λ
T
Kλ− λ

T
L (4)

s.t.
∑

y∈Y (xn)

λn,y = C, ∀n, λn,y ≥ 0, ∀n, ∀y ∈ Y (xn) (5)

where K is a kernel matrix defined with elements Kn,y,m,y′ = ∆Fn(y)
T∆Fm(y′) for

every y ∈ Y (xn), y′ ∈ Y (xm) and L is a vector with elements Ln,y = L(yn,y). The

primal parameters are expressed in terms of dual ones as

w =
N∑

n=1

∑

y∈Y (xn)

λn,y∆Fn(y). (6)

The constraints in (5) allow us to perform the optimization restricted to a single example

at a time [23]. Let αn denote changes in λn during the processing of the nth example,

i.e. let the change of parameters be made according to the update λ′
n,y ← λn,y +αn,y . In

order for new dual parameters λ′
n to be feasible, the sum of αn,y should be zero as well

as λ′
n,y ≥ 0. By dropping all terms in (4)-(5) which do not depend on αn, we can rewrite

this optimization restricted to the nth example with respect to the parameter change

min
αn

1

2
αT

nKnαn −αT

nℓn (7)

s.t.
∑

y∈Y (xn)

αn,y = 0, λn,y + αn,y ≥ 0, ∀y ∈ Y (xn) (8)
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where the vector ℓn = [ℓ(w; (xn,y))]y∈Y (xn) is defined with ℓ(w; (xn,y)) = L(yn,y)−
w

T∆Fn(y) and Kn is the block of the kernel matrix K corresponding to the nth exam-

ple. Note that ℓn depends on w, which corresponds to parameters λn,y according to (6),

and thus the parameters after the update will be

w
′ = w +

∑

y∈Y (xn)

αn,y∆Fn(y). (9)

The gradient of the dual function (7) is g(α) = [gn,y(α)], with elements

gn,y(α) =
∑

z∈Y (xn)

αn,zKn,y,z − ℓ(w; (xn,y)), (10)

which is used to express the violation of Karush-Kuhn-Tucker (KKT) conditions [11] for

the problem (7)-(8) as

max
y∈I0

gn,y(α) > min
y∈Y (xn)

gn,y(α) (11)

where I0 = {y ∈ Y (xn) : αn,y > −λn,y}. Again, the dual problem has exponentially

many constraints.

4. k-best extensions

In this section we will describe extensions to the k-best case of popular algorithms. We

start with reviewing the k-best MIRA from [2] and then introduce the k-best version of the

perceptron, LaRank algorithm, sequential dual method, and passive-aggressive algorithm.

We also introduce the restricted version of the passive-aggressive algorithm for which the

cumulative prediction loss is bound in a similar way as in single best version.

4.1. k-best MIRA

Crammer et al. [16] propose the Margin Infused Relaxed Algorithm (MIRA) originally

for multiclass problems, which was later extended to structured classification [2]. MIRA

is defined in an online manner. After receiving a new example (xn,yn), starting from

parameters wn, the algorithm is searching for new parameters w in order to keep the

norm of changing parameters as small as possible during the satisfaction of particular

constraints on the received example. In a special case, the constraints on the example can

be restricted to only one constraint corresponding to the predicted structure ỹ with the

involved cost function. This is known as 1-best variant of MIRA, which is also called

the online passive-aggressive (PA) algorithm [7]. The best sequence for xn is found with

respect to the loss function as

ỹ = argmax
y∈Y (xn)

ℓ(w; (xn,y)) = argmax
y∈Y (xn)

w
T
F(xn,y) + L(yn,y). (12)

MIRA was primarily designed for multiclass classification. In that case it belongs to

the family of ultraconservative online algorithms [16], which consider only the updates

of parameters corresponding to violated examples, i.e. to those examples that produce a
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Algorithm 1: k-best MIRA

Input : Training data: D = ((xn,yn))N
n=1, parameter C ∈ R

+, k ∈ N

Number of iterations: P
Output: Model parameters: w

w← 0;

for p← 1 to P do

foreach (xn,yn) in D do

Sn ← B
k
w

; /* find k-best sequences */
Find v as a solution of the optimization problem:

min
v,ξ

1

2
‖v −w‖2 + C

∑
y∈Sn

ξn,y

s.t. vT∆Fn(y) ≥ L(yn,y)− ξn,y, ξn,y ≥ 0, ∀y ∈ Sn

w ← v;

higher score than the original one. Working with the ultraconservative property in the case

of online structured classification leads to problems in optimization, due to the possibility

of a large number of violated constraints. This produces the need to consider the opti-

mization restricted only to the constraints for the first k sequences with the highest score,

leading to the following optimization problem1

min
w,ξn

1

2
‖w −wn‖2 + C

∑

y∈B
k
wn

ξn,y (13)

s.t. wT∆Fn(y) ≥ L(yn,y)− ξn,y, ξn,y ≥ 0, ∀y ∈ B
k
wn

(14)

where Bk
wn

represents the k-best set, formally defined as the set Bk
wn
⊂ Y (xn) that sat-

isfies ∀y′ ∈ Bk
wn

, ∀y′′ /∈ Bk
wn

=⇒ ℓ(wn; (x
n,y′)) ≥ ℓ(wn; (x

n,y′′)) and |Bk
wn
| =

min{k, |Y (xn)|}. Note that with this formulation the set is not uniquely defined. The

k-best MIRA is a general method which incorporates the k-best search in an online man-

ner through examples without any specification for solving the optimization problem (13)-

(14) inside the example. The pseudocode is presented in Algorithm 1.

4.2. k-best SDM for structural SVMs

In order to deal with a large dimensional problem (4)-(5), the sequential dual method

(SDM) for structural SVMs [13] makes an assumption that at optimum only a small num-

ber of constraints inside one example is active. It considers the scaled version of the

following sub-problem

min
αn

1

2
αT

nKnαn −αT

nℓn (15)

s.t.
∑

y∈Sn

αn,y = 0, αn,y ≥ −λn,y, ∀y ∈ Sn (16)

1 Crammer et al. in [2] define k-best MIRA for a linear separable problem and it is a straightfor-

ward extension to the linear non-separable case done by introducing slack variables ξn,y, which

we used here and also referred to it as k-best MIRA.
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where the set of examples Sn = {y ∈ Y (xn) : λn,y > 0} is incrementally built by

adding the sequence ỹ according to (12) that violates the margin the most on the current

nth example and Kn denotes a block of matrix K which corresponds to the nth example.

Specific heuristics are employed to control the growth of the set Sn in order to keep

the number of optimization constraints at a reasonable size. After reaching the desired

precision inside one example, the procedure continues to the next example to optimize,

where the optimization is performed by the sequential minimal optimization (SMO) [14].

Now we will describe the SDM extension to the k-best case. The algorithm traverses

through training examples and, at the nth example, its working set Sn is extended with

current k-best sequences including the original sequence yn. Then the SMO is applied

to optimize dual variables associated with sequences in Sn. It selects a pair of sequences

from Sn based on the ’maximum violating pair’ strategy and performs the optimization

until the KKT conditions become satisfied on Sn. The test of the KKT condition violation,

up to the precision τ , is

gn,y′′(α) > gn,y′(α) + τ, (17)

y′ = arg min
y∈Sn

gn,y(α), y′′ = argmax
y∈I′

0

gn,y(α), (18)

where I ′0 = {y ∈ Sn : αn,y > −λn,y}. The gradient of the dual function is expressed

by (10), where the sum over all elements of Y (xn) can be reduced for the sub-problem

(15)-(16) to the sum over the elements from Sn as

gn,y(α) =
∑

z∈Sn

αn,zKn,y,z − ℓ(w; (xn,y)) (19)

since αn,y is equal to zero if y does not belong to Sn. After selecting sequences y′ and

y′′ which violate KKT conditions the most using (18), we consider the updates of the

corresponding alpha parameters as αn,y′ ← αn,y′ + δ and αn,y′′ ← αn,y′′ − δ. The

optimization, now restricted to a single variable δ which must change the parameters so

that they remain feasible, can be expressed in the analytical form as

δ = max

(
−λn,y′ − αn,y′ ,min

(
λn,y′′ + αn,y′′ ,

gn,y′′(α)− gn,y′(α)

‖∆Fn(y′)−∆Fn(y′′)‖2
))

.

(20)

Note that after satisfying the KKT conditions for the set Sn and leaving that example,

unsatisfied conditions inside the example could still be possible, since y′ is found by min-

imization over Sn instead of Y (xn). As a time consuming operation, the minimization

over whole Y (xn) is done only when we extend the current set Sn by k new sequences.

These are the sequences corresponding to the lowest elements of the gradient of the dual

function. Since Sn is extended when we start processing the nth example, all αn,y will be

zero and thus these sequences are those with the highest ℓ(w; (xn, y)), e.i. the sequences

from Bk
w

.

In the end of the section, let us consider the difference between k-best MIRA op-

timized in dual space with the SMO and k-best SDM. As a consequence of a different

primal formulation, when it returns to an earlier example k-best MIRA will create a new

working set Sn while k-best SDM will update its previous set with new sequences (see

Algorithm 2). Thus only the first epoch will be the same. However, if we consider the



472 Dejan Mančev and Branimir Todorović

1-best version of these algorithms, MIRA will be equivalent to the PA algorithm, while

the SDM will have the first epoch through the data equivalent to MIRA and thus to the PA

algorithm. These equivalents can also be observed because 1-best SDM in the first pass

will choose sequences y′ = ỹ and y′′ = yn on the nth example to optimize, and as all

αn,y are zero at that moment and all λn,y are zero, except for λn,yn = C, the step δ in

(20) will be reduced to the step from (21). However, note that this equivalence consid-

ers setting τ to zero, but in practical application τ is set to be a small positive tolerance

because of numerical errors and the runtime of the algorithm.

4.3. k-best LaRank algorithm

The LaRank algorithm [21], introduced for multi-class problems, is a batch algorithm

which uses the SMO with specific operations describing how to select a pair of coefficients

for optimization. The algorithm has also been used for a structured output with a simpler

scheduling for selecting a pair for optimization in an online manner and this version is

called OLaRank [22]. We adopt the following notation: if an example [(xn,y)]y∈Y (xn)

has all dual variables λn,y = 0 equal to zero we will call it new example, otherwise we

will refer to it as an old example or support pattern. The algorithm with the exact inference

is used to solve the dual problem (4)-(5) by applying three basic operations:

PROCESSNEW Pick a new example [(xn,y)] and choose the pair of coefficients λn,yn

and λn,ỹ to optimize, where ỹ is found by (12),

PROCESSOLD Random pick a support pattern [(xn,y)] and choose the best pair of coef-

ficients λn,z and λn,ỹ to optimize according to the gradient vector,

OPTIMIZE Random pick a support pattern and choose the best pair of non-zero coeffi-

cients to optimize according to the gradient vector.

OLaRank applies the PROCESSNEW step followed by a specific number of nR REPRO-

CESS operations, where REPROCESS means applying ten OPTIMIZE steps after one PRO-

CESSOLD step. Note that nR = 0 reduces OLaRank to the previously described SDM for

the first epoch.

We introduced the k-best version of the previous algorithm, calling it k-best LaRank,

which optimizes the same dual problem with the SMO, which in a special case reduces to

the k-best SDM (see Fig. 1). k-best LaRank uses the following k-best variants (kBVs) of

operations:

kBV-PROCESSNEW Pick a new example [(xn,y)] and optimize coefficients which cor-

respond to its k-best sequences together with the original sequence yn.

kBV-PROCESSOLD Random pick a support pattern and optimize non-zero coefficients

together with new coefficients from k-best sequences.

kBV-OPTIMIZE Random pick a support pattern and perform the optimization inside this

pattern among non-zero coefficients,

with the same scheduling as in OLaRank. Let the optimization be performed inside a

pattern while the KKT conditions are violated more than τ , as in (17)-(18), by choosing

the sequence y′′ among the ys for which αn,y > −λn,y + κ, where τ and κ are small

positive tolerances. Similar to the single best case, we can bound the number of support

vectors that k-best LaRank will add during the training procedure.
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LaRank SDM PA Perceptron

k-best LaRank k-best SDM k-best PA k-best Perceptron

1) 2) 3)

4) 5) 6)

Fig. 1. Connections between learning algorithms and their k-best extensions for the first epoch.

1) and 4) nR = 0. 2) Described in the end of Section 4.2.

3) and 6) No cost (L = 0), fixed step size (δ = 1). The connection holds for more than one epoch.

5) Performs one SMO step on each k-best sequence inside an example in sequential order.

Proposition 1. During the first pass through the data withN examples, the k-best LaRank

will add no more than

min

{
N((nR + 1)k + 1),max{2ρNC

τ2
,
2NC

κτ
}
}

support vectors, where ρ = maxn,y∈Y (xn)‖∆Fn(y)‖2.

Proof. The first term follows directly from scheduling because each of kBV-PROCESSNEW

operations can add up to k + 1 support vectors, kBV-PROCESSOLD up to k support vec-

tors, nR times after each new example, while kBV-OPTIMIZE cannot add new support

vectors. No matter what k we choose, in three basic k-best LaRank operations all SMO

steps are performed only along the κτ -violation direction. Thus the k-best version also

belongs to the Approximate Stochastic Witness Direction Search (see appendix in [26]),

which reaches the κτ -optimality solution with no more than max{ 2ρNC
τ2 , 2NC

κτ
} SMO

operations [22] [21], i.e. support vectors.

Bordes et al. [22] express the regret bound of LaRank PROCESSNEW operation through

the data with the same value as the bound for the passive-aggressive algorithm. As nei-

ther PROCESSOLD nor OPTIMIZE operation can decrease the dual function, the same

bound is stated for the whole LaRank algorithm. Since the previous two operations are

not considered, the true regret should be much smaller. Similar results can be stated for

the k-best version. As the first SMO step in kBV-PROCESSNEW will increase the dual

function by the same value as PROCESSNEW, and as other SMO steps cannot decrease

the dual function, as well as kBV-PROCESSOLD and kBV-OPTIMIZE operations, the k-

best LaRank holds the same regret bound as the passive-aggressive algorithm. The pseudo

code is presented in Algorithm 3.
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Algorithm 2: k-best SDM

Input : Training data: D = ((xn,yn))
N

n=1, parameter: C ∈ R
+, k ∈ N

Number of iterations: P
Output: Model parameters: w

w← 0; λ← 0;

Sn ← {yn}, λn,yn ← C, ∀n = 1, . . . , N ;

for p← 1 to P do

for n← 1 to N do

kBV-PROCESSNEW(n, Sn, w, λ);

Algorithm 3: k-best LaRank

Input : Training data: D = ((xn,yn))
N

n=1, parameter: C ∈ R
+, k ∈ N

Output: Model parameters: w

w← 0; λ← 0;

Sn ← {yn}, λn,yn ← C, ∀n = 1, . . . , N ;

for n← 1 to N do

kBV-PROCESSNEW(n, Sn, w, λ);

for k ← 1 to nR do

kBV-REPROCESS((S1, . . . , Sn), w, λ);

Procedure kBV-ProcessNew(n, Sn, w, λ)

Sn ← Sn ∪Bk
w

; /* find k-best sequences of the nth example

*/
SMO(n, Sn, w, λ);

Procedure kBV-Reprocess((S1, . . . , Sn), w, λ)

kBV-PROCESSOLD((S1, . . . , Sn), w, λ);

for i← 1 to maxIter do

kBV-OPTIMIZE((S1, . . . , Sn), w, λ);

Procedure kBV-ProcessOld((S1, . . . , Sn), w, λ)

m← Random[1, n];

Sm ← Sm ∪Bk
w

; /* find k-best sequences of the mth
example */
SMO(m, Sm, w, λ);

Procedure kBV-Optimize((S1, . . . , Sn), w, λ)

m← Random[1, n];
SMO(m, Sm, w, λ);
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4.4. Passive-aggressive algorithms for k-best structural learning

The passive-aggressive (PA) is an online algorithm introduced in [7] and it solves the

optimization problem (13)-(14) for k = 1, i.e. by using only the constraint generated

from the best structure. We will refer to this algorithm as 1-best passive-aggressive or

1-best MIRA. Let us define the set of misclassified sequences with given parameters

Errwn
= {y ∈ Y−n : ℓ(wn; (x

n,y)) > 0}. This set will be used to decide weather

or not the sequence should be used for parameter change. In order to calculate the step

size, Crammer et al. [7] used the method of Lagrange multipliers on the problem (13)-

(14), which for the single best version has only two constraints: the constraint for the

structure with the highest score ỹ and the one for the original structure yn. The optimal

step size is then found in the closed form as

δ = min

{
max{0, ℓ(wn; (x

n, ỹ))}
‖∆Fn(ỹ)‖2

, C

}
. (21)

The 1-best passive-aggressive algorithm considers updating the parameters only for the

best sequence with the following behaviors as described in [7]:

i) passive behavior if the constraint in (14) for the best sequence of the current example

is satisfied, the algorithm is passive, making no update;

ii)aggressive behavior if it is not a case, the algorithm makes an aggressive update

w = wn + δ∆Fn(ỹ)

on the nth example in order to satisfy the single constraint on the best sequence ỹ ∈
Y (xn) found by (12).

Involving more than one constraint leads to k-best MIRA, where the optimization is

performed over corresponding k-best constraints. We define the sequence of optimization

problems inside one example in the online manner, where each of them is subject to only

one of k-best constraints. Since only one constraint is considered at a time, each one

can be solved analytically. Thus, we will sequentially traverse through k-best sequences,

optimize the sub-problem restricted to only one of the sequences

min
ξ,w

j+1
n

1

2
‖wj+1

n −w
j
n‖2 + Cξ (22)

s.t. wj+1
n

T

∆Fn(y
(n,j)) ≥ L(yn,y(n,j))− ξ, ξ ≥ 0, (23)

for j = 1, . . . , k and perform passive-aggressive updates

w
j+1
n = w

j
n + δn,j∆Fn(y

(n,j)), j = 1, . . . , k, (24)

where each step can be found in the closed form as

δn,j = min

{
max{0, ℓ(wj

n; (x
n,y(n,j)))}

‖∆Fn(y(n,j))‖2 , C

}
. (25)

With previous two formulas we define k-best passive-aggressive updates, supposing that

we start processing the nth example with parameters wn, which are used to produce k-

best sequences (y(n,1), . . . ,y(n,k)) = Bk
wn

. The parameters wj
n denote the intermediate
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states of parameters through the iterations between starting parameters wn = w
1
n and

parameters after the optimization on the nth examplewn+1 = w
k+1
n . While k-best MIRA

can be seen as a semi-online algorithm (online through examples and batch inside one

example) the k-best passive-aggressive algorithm is defined in a complete online manner

through the examples and also inside one example.

Cramer et. al [7] provide a cumulative prediction loss bound for the passive-aggressive

algorithm for cost-sensitive multiclass classification, which can also be applied to 1-best

PA algorithm for a structured output. Here, we will provide a similar bound for the k-best

case with a slightly different assumptions, where updates are additionally restricted from

k-best sequences. Let’s first define the prediction sequence ŷ
wn

found by parameters wn

on the nth example as

ŷ
wn

= argmax
y∈Y (xn)

w
T

nF(x
n,y). (26)

This sequence is also considered in Crammer et. al [7] for use in the PA approach, where

steps corresponding to ŷ and ỹ are called the prediction-based and the max-loss step,

respectively. We use this sequence to define the auxiliary set

Awn
= {y ∈ Y−n : ℓ(wn; (x

n,y)) ≥ ℓ(wn; (x
n, ŷ

wn
))}, (27)

which we need to define the restricted k-best passive-aggressive parameter updates as

w
j+1
n =

{
w

j
n + δn,j∆Fn(y

(n,j)) , if y(n,j) ∈ A
w

j
n

w
j
n , if y(n,j) /∈ A

w
j
n

, j = 1, . . . , k, (28)

and use it for k-best restricted passive aggressive (RPA) algorithm (see Algorithm 4). Let

all sequences from Bk
wn

on which we make a non-zero update according to updates (28)

be Sn = (y(n,i1), . . . ,y(n,i|Sn|)), for some indices 1 ≤ i1 < . . . < i|Sn| ≤ k where the

length of vector Sn is denoted with |Sn|. Further in this section, just for simplicity, we

will refer to these sequences as Sn = (y(n,1), . . . ,y(n,|Sn|)).

Lemma 1. Let (x1,y1), . . . , (xN ,yN) be a sequence of examples and let u be any pa-

rameter vector. For the restricted k-best PA update defined by (28), it follows

N∑

n=1

|Sn|∑

j=1

δn,j

(
2ℓ(wj

n; (x
n,y(n,j)))− δn,j‖∆Fn(y

(n,j))‖2 − 2ℓ(u; (xn,y(n,j)))
)
≤ ‖u‖2,

where Sn = (y(n,1), . . . ,y(n,|Sn|)) contains all sequences from Bk
w

1
n

on which we make

a non-zero update according to (28).

Proof. Defining γj
n as ‖wj

n − u‖2 − ‖wj+1
n − u‖2 and summing it over all n and j we

get

N∑

n=1

|Sn|∑

j=1

γj
n =

N∑

n=1

|Sn|∑

j=1

(
‖wj

n − u‖2 − ‖wj+1
n − u‖2

)

= ‖w1
1 − u‖2 − ‖w|SN |+1

N − u‖2 ≤ ‖w1
1 − u‖2 = ‖u‖2 (29)
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because w1
1 = 0 and w

1
n+1 = w

|Sn|+1
n . According to the definition of γj

n and the param-

eter change (28), we get that

γj
n = ‖wj

n − u‖2 − ‖wj+1
n − u‖2

= ‖wj
n − u‖2 − ‖wj

n − u+ δn,j∆Fn(y
(n,j))‖2

= −2δn,j(wj
n − u)T∆Fn(y

(n,j))− δ2n,j‖∆Fn(y
(n,j))‖2

= −2δn,j
(
w

j
n

T

∆Fn(y
(n,j))− L(y(n,j),yn)

)

+ 2δn,j

(
u
T∆Fn(y

(n,j))− L(y(n,j),yn)
)
− δ2n,j‖∆Fn(y

(n,j))‖2

= δn,j

(
2ℓ(wj

n; (x
n,y(n,j)))− δn,j‖∆Fn(y

(n,j))‖2 − 2ℓ(u; (xn,y(n,j)))
)

which after summing and using (29) provides the desired inequality.

Theorem 1. Let (x1,y1), . . . , (xN ,yN ) be a sequence of examples where ‖∆Fn(y)‖ ≤
1 and L(yn,y) ≤ C for all y ∈ Sn, n = 1, . . . , N . Then for any parameter vector u and

the restricted k-best update defined by (28), it follows

N∑

n=1

|Sn|∑

j=1

L(yn, ŷ
w

j
n
)2 ≤ ‖u‖2 + 2C

N∑

n=1

|Sn|∑

j=1

ℓ(u; (xn,y(n,j))), (30)

where Sn = (y(n,1), . . . ,y(n,|Sn|)) contains all sequences from Bk
w

1
n

on which we make

a non-zero update according to (28).

Proof. In proof we use abbreviations Ln,j = L(yn, ŷ
w

j
n
), ŷn,j = ŷ

w
j
n

and ℓn,j =

ℓ(wj
n; (x

n,y(n,j))). According to the definition (26) of the prediction sequence, it follows

w
j
n

T

F(xn, ŷn,j) ≥ w
j
n

T

F(xn,y), ∀y ∈ Y (xn)

which leads to inequality

Ln,j ≤ w
j
n

T

F(xn, ŷn,j)−w
j
n

T

F(xn,yn) + Ln,j = ℓ(wj
n; (x

n, ŷn,j)) ≤ ℓn,j (31)

where the last inequality in (31) comes from the definition of the set Sn, i.e. because of

y(n,j) ∈ A
w

j
n

. For each non-zero step δn,j it follows that ℓn,j > 0 and according to the

condition ‖∆Fn(y
(n,j))‖ ≤ 1, j = 1, . . . , |Sn|, we get

δn,j = min

{
max{0, ℓn,j}
‖∆Fn(y(n,j))‖2 , C

}
≥ min{ℓn,j, C}

which leads to

δn,jLn,j ≥ min{ℓn,jLn,j, CLn,j}
(31)

≥ min{L2
n,j, CLn,j} ≥ L2

n,j (32)

since Ln,j ≤ C. Summing (32) for all examples (n, j) on which we made the non-zero

update and using the inequality from (31) we get

N∑

n=1

|Sn|∑

j=1

L2
n,j ≤

N∑

n=1

|Sn|∑

j=1

δn,jLn,j ≤
N∑

n=1

|Sn|∑

j=1

δn,jℓn,j. (33)
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According to the definition of step size δn,j , it is upper bound by the parameter C, which

allows us to rewrite the inequality from Lemma 1 as

N∑

n=1

|Sn|∑

j=1

δn,j

(
2ℓn,j − δn,j‖∆Fn(y

(n,j))‖2
)
≤ ‖u‖2 + 2C

N∑

n=1

|Sn|∑

j=1

ℓ(u; (xn,y(n,j))).

Also, the definition of δn,j for every non zero step gives δn,j‖∆Fn(y
(n,j))‖2 ≤ ℓn,j and

thus the previous inequality becomes

N∑

n=1

|Sn|∑

j=1

δn,jℓn,j ≤ ‖u‖2 + 2C
N∑

n=1

|Sn|∑

j=1

ℓ(u; (xn,y(n,j))), (34)

which in combination with (33) provides the desired bound.

Corollary 1. Let the conditions from the previous theorem be satisfied, then it follows

N∑

n=1

|Sn|∑

j=1

L(yn, ŷ
w

j
n
)2 ≤ ‖u‖2 + 2C

N∑

n=1

|Sn|ℓn(u). (35)

where ℓn(u) = maxy∈Y (xn) ℓ(u; (x
n,y)).

In case of using only the best sequence, i.e. Sn = (ỹ), the bound from Corollary 1

reduces to the bound for 1-best case proved by Crammer et al. [7]. The proof of 1-best

case uses a property ℓ(wn; (x
n, ỹ)) ≥ ℓ(wn; (x

n, ŷ)) which is needed for inequality

(32). However, this inequality does not hold if we change ỹ with an arbitrary sequence

from k-best ones. In order to get a similar bound, updates must be restricted only to those

examples which belong to the set Awn
. Nevertheless, checking if a sentence belongs to

this set implies finding ŷ every time we change the parameters (see Algorithm 4) which

is computationally expensive. In the experiment section, we will consider both restricted

k-best PA and k-best PA updates, even though for latter the previously proved prediction

loss bound will not be satisfied.

4.5. k-best Perceptron

In case of not using a cost function, i.e. when L(yn,y) = 0 for all y ∈ Y (xn), the

passive-aggressive algorithm reduces to perceptron algorithm [17] with the fixed step

size for the best sequence. To keep the spirit of the online manner of the single best

perceptron, the k-best version should involve online traversing through k-best structures

(y(n,1), . . . ,y(n,k)) = Bk
wn

and sequential changes of parameters with the constant step

size for each structure which belongs to the error set, i.e. for each structure which produces

a higher score than the original structure. After finding the k-best structure, the following

series of parameter change is applied

w
j+1
n =

{
w

j
n +∆Fn(y

(n,j)) , if y(n,j) ∈ Err
w

j
n

w
j
n , if y(n,j) /∈ Err

w
j
n

, j = 1, . . . , k (36)

where Errwn
= {y ∈ Y (xn) : wT

n∆Fn(y) ≤ 0}. The condition under which the k-best

perceptron converges is the same as for 1-best case.
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Theorem 2. Let D = ((xn,yn))
N

n=1 be a training set and let’s suppose that there exist

a vector u and γ > 0 such that ‖u‖ = 1 and u
T∆Fn(y) ≥ γ for all training examples n

and for all y ∈ Y−n. For the k-best perceptron from Algorithm 4, it follows that

Number of mistakes ≤ R2

γ2

where R is a constant such that ∀n, ∀y ∈ Y−n, ‖∆Fn(y)‖ < R.

The proof is given in the Appendix and it is very similar to the standard structured per-

ceptron [17] since the property of the best sequence is not used in the proof.

In the case of inseparable data, there is also a theorem that bounds the number of

mistakes, proven in [18] for the online perceptron and extended in [17] for the structured

perceptron. The same bound holds for k-best variant.

Theorem 3. Let D = ((xn,yn))
N

n=1 be a training set, let u be any vector with ‖u‖ = 1
and γ > 0. Define

mn = u
T
F(xn,yn)− max

y∈Y−n

u
T
F(xn,y), ǫn = max{0, γ −mn}

and D =

√∑N

n=1 ǫ
2
n. For the first pass over the training set of k-best perceptron from

Algorithm 4,

Number of mistakes ≤
(
R+D

γ

)
,

where R is a constant such that ∀n, ∀y ∈ Y−n, ‖∆Fn(y)‖ < R.

The idea of the proof is to transform an inseparable case into a separable one, then apply

the theorem for a separable case to get the bound, and at the end show that the prediction

with the original parameters is the same as with the transformed parameters. The proof

is identical as in [17], where the only difference is that we apply Theorem 2 for k-best

perceptron when we get a separable case. For completeness the proof is given in the

Appendix.

5. Results and discussion

We present experimental results on two sequence labeling tasks, shallow parsing [6] on

CONLL-2000 corpus2 and named entity recognition in Spanish on CONLL-2002 corpus3

[27] and in English on MUC-7 corpus4 [28]. In further text, we will address algorithms

by their names removing the “k-best” prefix, and where needed, specifying the exact

parameter.

2 http://www.cnts.ua.ac.be/conll2000/chunking
3 http://www.cnts.ua.ac.be/conll2002/ner
4 https://catalog.ldc.upenn.edu/LDC2001T02
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Algorithm 4: k-best perceptron, k-best PA and k-best restricted PA (RPA)

Input : Training data: D = ((xn,yn))N
n=1, parameter C ∈ R

+, k ∈ N

Number of iterations: P
Output: Model parameters: w

w← 0;

for p← 1 to P do

foreach (xn,yn) in D do

S ← B
k
w

; update← true;

foreach y in S do

Err ←

{
w

T∆Fn(y) < L(yn,y) (PA, RPA)

w
T∆Fn(y) ≤ 0 (Perceptron)

if update then

ŷ ← argmaxy∈Y (xn) w
T
F(xn, y); (RPA)

Err ← Err and ℓ(w; (xn,y)) ≥ ℓ(w; (xn, ŷ)); (RPA)

if Err then

δ ←

{
min

{
ℓ(w; (xn,y))/ ‖∆Fn(y)‖

2, C
}

(PA, RPA)
1 (Perceptron)

w← w + δ ∆Fn(y); update← true;

else
update← false;

5.1. Problem description and features

Shallow parsing or chunking is a task of identifying non-overlapping text segments which

correspond to certain syntactic units (chunks), such as a noun phrase, verb phrase, preposi-

tional phrase, etc. The CONLL-2000 corpus contains around a quarter of a million words

already split for training and testing. Each word has a corresponding POS tag and a la-

bel. The labels are presented in BIO representation, where B stands for the beginning

of a chunk, I for the interior, and O means that a word does not belong to any chunk.

For each word we first detect its characteristics which we use as a local feature. We ex-

tract standard features like the detection of special characters, the detection of numbers,

the characteristic suffix of the word, belonging to a characteristic dictionary, whether the

word is capitalized or all caps. All bigrams are constructed for a word and its local feature

(including the POS tag) for the current and previous position, while unigrams are con-

structed only for the current position. These bigrams and unigrams with the combination

of the current and previous label are used to create a feature vector at the current position.

The results are presented in terms of F-measure, as a harmonic mean of a precision and

recall computed over tokens belonging to a chunk.

Named entity recognition (NER) is a task of detecting and classifying entities into

specified categories, such as names of persons, organizations, locations, times, dates, etc.

For NER in Spanish, the CoNLL-2002 corpus is divided into the training, test and devel-

opment part containing four types of entities: person, organization, location and miscella-

neous, while for NER in English, the corpus has additional four entity types: date, time,

money and percent, instead of the miscellaneous type. The feature vectors are created in
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Fig. 2. Training time comparison for different k-best algorithms on shallow parsing. The left panel

shows time through iterations for different values of the parameter k, where the algorithms are

denoted with colors, while k is represented with a line style: k = 1 with dots, k = 5 with a solid

line, and k = 10 with a dashed line. The right panel shows the F-measure through time for k = 1
(dashed line) and k = 5 (solid line), where the LaRank trained in one pass uses parameter nR = 10.

In the supplementary material, this figure is broken into several plots for better clarity.

the same way as in the shallow parsing problem. For NER in Spanish, the algorithms

are evaluated without any additional external knowledge of the language, while for En-

glish we used the same word characteristics for a local feature as in the shallow parsing

problem.

5.2. Time and accuracy comparison

We have implemented all described algorithms in C++. The experiments are performed on

a computer with Intel Core 2 Duo CPU 2.33 GHz and 8 GB RAM. We use A* decoding

with Viterbi scores for the heuristic function to find the k-best paths [10, 12]. To avoid

oscillations during the learning process, we have applied parameter averaging as described

in [17]. Such algorithms we will denote using the prefix avg. Fig. 2 shows the speed

comparison of the considered algorithms. All implemented algorithms share the same

structures and operators when working with feature and weight vectors, thus the speed

comparison shown in Fig. 2 can be considered reliable. The perceptron as the simplest

method is slightly faster than the PA algorithm but on the right panel we can see that the

other algorithm which incorporates the cost function provides better results. Recall that

the RPA algorithm needs an additional 1-best decoding, and as a result of the necessity for

additional decoding, for each k, its time deviates from the other algorithms with similar

time consumption, the PA, perceptron and MIRA. The SDM requires significantly more

time through iterations due to its continuously increasing active set of constraints. The

heuristics from [13], which control the set growth, can help reducing the training time.

Next, we tested the LaRank algorithm trained in one pass. The results are presented

in Fig. 3 for different values of parameters k and nR. Since the selection of examples

in REPROCESS operations is subject to random function, we presented the mean value

of F-measure with the corresponding standard deviation. In order to select regularization

parameter C for the shallow parsing problem and NER in English, we perform 5-fold
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Fig. 3. The results for k-best LaRank on shallow parsing (left), NER in Spanish (middle) and NER

in English (right), for different k specified in legend and for different values of parameter nR. Each

column height represents the mean value of F-measure over 20 repetitions and the corresponding

error bar represents the standard deviation.

cross-validation. We select the highest mean value of F-measure over 20 repetitions, and

then we use this optimal parameter in a test scenario. For NER in Spanish, we use the

development set to select the optimal parameter with the same scenario. The results on all

corpora suggest the advantage of k-best versions over the single best version, especially

with the lower values of parameter nR. Also, we can see that a higher number of nR has

a positive influence to the F-measure.

Further, for different values of parameter k we present a single number for each algo-

rithm where the other parameters (regularization parameter, number of training iterations)

are 5-fold cross-validated on the shallow parsing problem and NER in English, and esti-

mated on the development set for NER in Spanish. For shallow parsing we select the best

combination of the regularization parameter C ∈ {10−2, 10−1, 1, 10} and the number of

training iterations from set {5, 10, 15, 20}. For that problem, algorithms require less iter-

ations to converge, while 30 iterations are also added to the previous set for NER, as the

results were still improving after 20 iterations. Results are presented in Table 1. MIRA

was optimized with the SMO with the practical check of KKT conditions (17)-(18) by

setting tolerance τ = 10−10 for all values k and thus for k = 1 its results do not match

the PA algorithm. For k = 10 there is usually a degradation of results, possibly because

the inclusion of a lot of features into a training procedure via k-best sequences can raise

the problem of overfitting. Another problem with the higher k can rise in algorithms such

as the PA, RPA and perceptron algorithm which are defined in an online manner inside an

example, as opposite to MIRA and SDM which perform full optimization inside an ex-

ample. However, we can see that all k-best versions of algorithms make an improvement

over the single best case and the best results are usually achieved with smaller values

k = 2 and k = 5. We tested the statistical significance of these improvements of the

results by running McNemar’s test [30] on all datasets. With the confidence level 0.05 the

improvements of the k-best version over the single best one are significant for the Per-

ceptron, (R)PA algorithm and MIRA, while for the SDM they are not significant (more

details about this test in the supplementary file).
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Shallow parsing

k = 1 k = 2 k = 5 k = 10
Method C # F-measure C # F-measure C # F-measure C # F-measure

Perc. – 5 95.821 – 5 95.892 – 5 95.924 – 5 95.875
PA 1 10 96.093 10−2 15 96.097 10−2 15 96.069 10−2 15 96.056
RPA 1 10 96.093 10−2 20 96.099 10−2 20 96.079 10−2 15 96.057
MIRA 1 10 96.066 10−1 10 96.053 10−1 5 96.071 10−2 20 96.061
SDM 10−1 20 96.057 10−1 20 96.080 10−1 20 96.075 10−1 20 96.081

Named entity recognition (Spanish)

k = 1 k = 2 k = 5 k = 10
Method C # F-measure C # F-measure C # F-measure C # F-measure

Perc. – 30 75.886 – 30 76.019 – 30 76.204 – 30 76.122
PA 10−1 30 76.349 10−1 30 76.436 1 30 76.640 10−1 30 76.549
RPA 10−1 30 76.349 1 30 76.636 10−1 30 76.741 10−1 30 76.608
MIRA 1 30 76.262 1 30 76.334 1 30 76.312 10−1 30 76.328
SDM 1 30 75.840 1 30 76.028 1 30 76.194 1 30 76.145

Named entity recognition (English)

k = 1 k = 2 k = 5 k = 10
Method C # F-measure C # F-measure C # F-measure C # F-measure

Perc. – 20 90.918 – 15 90.966 – 10 91.136 – 20 91.122
PA 1 30 91.307 1 10 91.350 10−1 10 91.247 10−1 10 91.293
RPA 1 30 91.307 1 10 91.343 1 10 91.357 10−1 10 91.244
MIRA 1 10 91.324 10−2 30 91.393 10−1 5 91.447 10−2 30 91.399
SDM 10−1 30 91.377 10 15 91.487 10 10 91.415 10 10 91.435
Table 1. Results for different algorithms and their corresponding parameters (regularization pa-

rameters, parameter k, and the number of training epochs) obtained from 5-fold cross-validation

(shallow parsing and NER in English) and from the development set (NER in Spanish). For all

algorithms, the results are presented with averaged parameters, so the avg prefix is omitted in the

algorithm name. The number of training iterations is denoted with # and the tolerance for KKT

conditions τ is set to 10−10.

6. Conclusion

In this paper, we have presented four new k-best extensions of structural max-margin

classifiers. Unlike the existing k-best extension of MIRA, the proposed k-best passive-

aggressive (PA), k-best restricted passive aggressive (RPA) and k-best perceptron algo-

rithm are completely defined in an online manner, through examples and inside each ex-

ample as well. These algorithms perform well with small values of k on the presented

problems. They are easy to implement and, except for the RPA algorithm, very fast and

suitable for large scale problems. The k-best RPA is presented in order to satisfy a cumu-

lative loss bound similar to the one in the single best PA algorithm. On the other hand,

the k-best SDM performs full optimization inside each example where it collects support

vectors though iterations, making the algorithm highly computationally consuming. Even

though it remembers support vectors from previous epochs, it does not always achieve

better results than an online algorithm like MIRA. Finally, the extension of LaRank to the

k-best case provides notable improvements in comparison to the single best case and the

algorithm is suitable for training in one pass through the data.
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Appendix

(Proof of Theorem 2). For a sequence y ∈ Y−n a mistake is made with parameters w if

w
T∆Fn(y) ≤ 0. Let w(l) be a vector before the l-th mistake. Suppose that the mistake

is made on the n-th example, on the j-th sequence taken from k-best sequences generated

from parameters wn, i.e. on the sequence y(n,j) ∈ Bk
wn

where w(l) = w
j
n. According to

the algorithm, it follows that w(l+1) = w
(l) +∆Fn(y

(n,j)) and taking the inner product

of both sides with parameters u gives

u
T
w

(l+1) = u
T
w

(l) + u
T∆Fn(y

(n,j)) ≥ u
T
w

(l) + γ.

Since w
(1) = 0 and u

T
w

(1) = 0, it follows by induction that uT
w

(l+1) ≥ lγ, and using

u
T
w

(l+1) ≤ ‖u‖ ‖w(l+1)‖ gives us ‖w(l+1)‖ ≥ lγ. Further

‖w(l+1)‖2 = ‖w(l)‖2 + 2w(l)T∆Fn(y
(n,j)) + ‖∆Fn(y

(n,j))‖2 ≤ ‖w(l)‖2 +R2

because parametersw(l) make a mistake on y(n,j), i.e. w(l)T∆Fn(y
(n,j)) ≤ 0. By induc-

tion, we get ‖w(l+1)‖2 ≤ lR2. Combining the bounds ‖w(l+1)‖ ≥ lγ and ‖w(l+1)‖2 ≤
lR2 we get the upper bound for the number of mistakes

l2γ2 ≤ ‖w(l+1)‖2 ≤ lR2 =⇒ l ≤ R2

γ2
.

(Proof of Theorem 3). First, we extend the feature vector F(x,y) ∈ R
d to F(x,y) ∈

R
d+N such that Fi(x,y) = Fi(x,y), i = 1, . . . , d, and Fd+n(x,y) is equal to Z if

(x,y) = (xn,yn) and equal to zero otherwise, for n = 1, . . . , N . The vector u is ex-

tended to u ∈ R
d+N in a similar way: ui = ui, i = 1, . . . , d and ud+n = ǫn/Z ,

n = 1, . . . , N . Transformed vectors hold following properties

‖u‖2 = ‖u‖2 +
∑N

n=1 ǫ
2
n/Z

2 = 1 +D2/Z2

∀n, ∀y ∈ Y−n,u
T
F(xn,yn)− u

T
F(xn,y) ≥ γ

∀n, ∀y ∈ Y−n, ‖F(xn,yn)− F(xn,y)‖ < R2 + Z2

From the first two properties, it follows that parameters u/‖u‖ separate data D with the

margin γ/
√
1 +D2/Z2. Now, we can apply Theorem 2 and get that the number of mis-

takes of k-best perceptron running on extended space is at most 1
γ
(R2+Z2)(1+ D2

Z2 ). The

value Z =
√
RD minimizes the bound, giving us the statement of the theorem. Extended

parameters generated from the first pass of the algorithm make the same prediction as the

original parameters on test examples since the additional parameters affect only single

training data.
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