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Abstract. In this paper, we introduce the notion ofk-comma codes - a proper generalization of
the notion of comma-free codes. For a given positive integerk, a k-comma code is a setL over
an alphabetΣ with the property thatLΣkL ∩ Σ+LΣ+ = ∅. Informally, in ak-comma code, no
codeword can be a subword of the catenation of two other codewords separated by a “comma”
of lengthk. A k-comma code is indeed a code, that is, any sequence of codewords is uniquely
decipherable. We extend this notion to that ofk-spacer codes, with commas of length less than or
equal to a givenk. We obtain several basic properties ofk-comma codes and their generalizations,
k-comma intercodes, and some relationships between the families ofk-comma intercodes and other
classical families of codes, such as infix codes and bifix codes. Moreover, we introduce the notion
of n-k-comma intercodes, and obtain, for eachk ≥ 0, several hierarchical relationships among
the families ofn-k-comma intercodes, as well as a characterization of the family of 1-k-comma
intercodes.
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1. Introduction

The notion of codes is crucial in many areas such as information communication, data compression, and
cryptography. In such systems, it is required that, if a message is encoded by using words from a code,
then any arbitrary catenation of words should be uniquely decodable into codewords. Various codes
with specific algebraic properties, such as prefix codes, infix codes, and comma-free codes [1, 4, 15,
18], have been motivated and defined for various purposes. For instance, the definition of comma-free
codes [2, 5] followed the 1953 discovery of the double-helical structure of DNA, [17], as a proposed
mathematical solution to a problem which arose in connection with protein synthesis. The problem
was the following. There are 20 known types of aminoacids. The most plausible hypothesis at the
time, that each aminoacid is encoded by one three-letter DNAsequence, i.e., a 3-letter sequence over
the four-letter alphabet{A,C,G, T} raised the following question: From the possible43 = 64 three-
letter words over the DNA alphabet, which ones code for aminoacids and why? The hypothesis was
advanced, for example, [2, 5, 17] that the triplets coding for aminoacids form acomma-free code, i.e., a
set with the property that any sequence of codewords is uniquely decodable, as well as with the additional
property that no codeword is a subword of the catenation of two codewords. This hypothesis seemed to
be supported by the fact that the size of the maximal comma-free code over a four-letter alphabet, where
all words have length three, was found to be exactly 20. We nowknow, [13], that some aminoacids are
encoded by more than one triplet (codon), and that none of thesets consisting of choosing one codon
per aminoacid is comma-free. As Hayes remarked, while this is less elegant than any of the theoretical
codes proposed, it provides higher error-tolerance: “WithGamow’s overlapping codes, any mutation
could alter three adjacent amino acids at once, possibly disabling the protein. Comma-free codes are
even more brittle in this respect, since a mutated codon is likely to become nonsense and terminate the
translation” [7].

While in this case Nature proved that mathematical theoriesmay be beautiful and still wrong, comma-
free codes and their generalizations remain interesting and much studied concepts [8, 11, 16, 18, 19].
More recent developments in biology show that, although genetic information is encoded in DNA, genes
(coding segments) are usually interrupted by noncoding segments, formerly known as “junk segments”.
A generalization of comma-free codes, wherein a comma (noncoding segment) is defined as a word of
lengthk, and no codeword (gene, or coding segment) is a subword of twoother codewords separated by
a comma, may be of mathematical but also of biological interest.

In this paper, we generalize the notion of comma-free codes to k-comma codes, and further, tok-
spacer codes, which allow “commas” (corresponding to noncoding segments) of lengthsk ≥ 0, respec-
tively less than or equal tok, between two codewords. Sincek-comma codes are proper generalizations
of comma-free codes and comma codes [3] (which allow commas of length one), it is natural to investi-
gate their properties and the properties of their generalizations,k-comma intercodes, which are defined
analogously to intercodes (which generalize the comma-free codes). As consequences, some properties
of k-spacer codes are obtained from those ofk-comma codes andk-comma intercodes. For example, a
k-spacer code is an infix code, and hence a code. Also, due to ourresult, for somek ≥ 0, if the length of
the shortest words of a languageL is not longer thank, thenL cannot be ak-spacer code.

The paper is organized as follows. In Section 2, we give the formal definitions ofk-comma codes
andk-spacer codes, and show that they are in the family of infix codes. In Section 3, we generalize
k-comma codes tok-comma intercodes, and obtain a hierarchical relationshipamong the families of
bifix codes,k-comma intercodes, and infix codes. Moreover, we obtain several closure properties and
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the synchronously decipherability of the families ofk-comma intercodes and provide a polynomial time
algorithm to decide whether a given regular language is ak-comma intercode. As consequences, several
closure properties of families ofk-spacer codes and a polynomial time algorithm that determines whether
a regular language is ak-spacer code are obtained. In Section 4, we generalizek-comma intercodes into
n-k-comma intercodes and obtain hierarchical relationships among them. Moreover, we obtain a char-
acterization of the families of1-k-comma intercodes, and describe the family of 1-k-comma intercodes
by using the classic notions of bordered words, unbordered words, and primitive words.

We end this section by some preliminary definitions and notations used in the paper. An alphabetΣ
is a nonempty finite set of letters. A word overΣ is a sequence of letters inΣ. The length of a word
w, denoted by|w|, is the number of letters in this word. The empty word, denoted byλ, is the word of
length 0. A unary word is a word of the formaj , j ≥ 1, a ∈ Σ. The set of all words overΣ is denoted by
Σ∗, andΣ+ = Σ∗ \ {λ} is the set of all nonempty words. A language is a subset ofΣ∗. The catenation
of two languagesL1, L2 ⊆ Σ∗, denoted byL1L2, is defined asL1L2 = {uv | u ∈ L1, v ∈ L2}.

A word x ∈ Σ∗ is called an infix of a wordu ∈ Σ+ if u = zxy for some wordsy, z ∈ Σ∗. In
this definition, ifz andy are nonempty, thenx is called aproper infix of u. Similarly, a wordx ∈ Σ∗

is called a prefix (suffix) of a wordu ∈ Σ+ if u = xy (resp. u = zx) for some wordy ∈ Σ∗ (resp.
z ∈ Σ∗). In addition, ify (resp.z) is nonempty, thenx is called aproperprefix (resp. suffix) ofu. For a
wordu ∈ Σ∗, the set of its prefixes (suffixes) is denoted byPref(u) (resp.Suff(u)). For a wordu ∈ Σ∗,
we denote the prefix (suffix) of lengthn ≥ 0 of u by prefn(u) (resp.suffn(u)). These notations can be
naturally extended to languages, e.g.,Pref(L) = ∪u∈LPref(u).

A nonempty wordu ∈ Σ+ is said to beprimitive, also known asnon-periodic, if u = vn implies
n = 1 for anyv ∈ Σ+. Any nonempty word can be written as a power of a unique primitive word, which
is called theprimitive rootof the word.

It is well known that, if nonempty wordsx, y, z ∈ Σ+ satisfyxy = yz, then there existα, β ∈ Σ∗

such thatαβ is primitive,x = (αβ)i, y = (αβ)jα, andz = (βα)i for somei ≥ 1 andj ≥ 0.
A nonempty wordu ∈ Σ+ is said to beborderedif there exists a nonempty word which is both

proper prefix and proper suffix ofu. A bordered primitive wordis a primitive word which is bordered,
and it can be written asxyx for somex, y ∈ Σ+ [15].

2. K-comma codes

The classic notion of comma-free codes is defined as follows:A languageL ⊆ Σ+ is called a comma-
free code ifLL ∩ Σ+LΣ+ = ∅. Recently, [3], the notion of comma codes was introduced for solving
some language equations. A languageL ⊆ Σ+ is called acomma codeif LΣL∩Σ+LΣ+ = ∅. It is clear
that the following definition ofk-comma codes is a natural generalization of these two notions, which
can be interpreted as 0-comma codes and 1-comma codes, respectively.

Definition 2.1. For anyk ≥ 0, a setL ⊆ Σ+ is called ak-comma code ifLΣkL ∩ Σ+LΣ+ = ∅.

In this section, we first show that ak-comma code is in fact a code (Corollary 2.1), and that, for
any two integersk1, k2 ≥ 0, the family ofk1-comma codes and the family ofk2-comma codes are not
comparable (Proposition 2.1). Then, we extend the notion ofk-comma codes to that ofk-spacer codes,
and show that the families ofk-spacer codes form an infinite proper inclusion hierarchy (Proposition 2.2).
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Intuitively, a k-comma code is a setL such that none of its words can be a proper infix ofu1vu2
whereu1 andu2 are words inL, andv is a “comma” of lengthk. It is clear that any codeword of a
k-comma code must be longer thank. As examples, for anyk ≥ 0, L = {abia | i > k} is ak-comma
code.

We first establish a relationship between comma-free codes andk-comma codes, for anyk ≥ 0.

Lemma 2.1. For a languageL ⊆ Σ∗ and anyk ≥ 0, L is a k-comma code if and only ifLΣk is a
comma-free code.

Proof:
We assume thatLΣk is a comma-free code, and suppose thatL were not ak-comma code. Then there
existw1, w2, w3 ∈ L, v1 ∈ Σk, andx, y ∈ Σ+ such thatw1v1w2 = xw3y. By putting somev2 ∈ Σk at
the ends of both sides, we can reach a contradiction withLΣk being a comma-free code.

On the other hand, ifLΣk is not a comma-free code. Then we haveu1v1u2v2 = x′u3v3y
′ for some

u1, u2, u3 ∈ L, v1, v2, v3 ∈ Σk, andx′, y′ ∈ Σ+. Sincey′ is nonempty, we can cut the lastk letters of
both sides from this equation, and reach a contradiction that L is not ak-comma code. ⊓⊔

Recall that a nonempty setL ⊆ Σ+ is an infix code ifL ∩ (Σ∗LΣ+ ∪ Σ+LΣ∗) = ∅, and that a
comma-free code is an infix code [18]. The following relationship leads us to the fact thatk-comma
codes are actually codes.

Lemma 2.2. For a languageL ⊆ Σ∗, L is an infix code if and only ifLΣk is an infix code.

Proof:
The “only-if” direction is trivial because the family of infix codes is closed under concatenation. For
the “if” direction, assume thatLΣk is an infix code, and suppose thatL is not. Then there existu ∈ L

andx, y ∈ Σ∗ such thatxuy ∈ L andxy 6= λ. Then for anyv1 ∈ Σk, xuyv1 ∈ LΣk, which contains
uv2 ∈ LΣk as its factor, wherev2 is the prefix ofyv1 of length k. Sinceuv2 6= xuyv1, this is a
contradiction. ⊓⊔

The following corollary is immediate.

Corollary 2.1. For anyk ≥ 0, ak-comma code is an infix code, and hence a code.

Lemma 2.1 implies that the families ofk-comma codes are closely related to that of comma-free
codes. However, the following result shows that any two of these families are incomparable, which
means that, for any two integersn andm, 0 ≤ n < m, there exists ann-comma code which is not an
m-comma code, and vice versa.

Proposition 2.1. Let 0 ≤ n < m. The family ofn-comma codes and the family ofm-comma codes are
incomparable, but not disjoint.

Proof:
Let L1 = {abn+1a}. We can easily verify thatL1 is ann-comma code but not anm-comma code. On
the other hand, let us considerL2 = {ambam+nb}. This is anm-comma code but not ann-comma code.
Moreover, there is a language which is both ann-comma code and anm-comma code. An example is
L3 = {abm+1a}. ⊓⊔
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As a corollary, we cannot compare the classic family of comma-free codes with the other families of
k-comma codes.

Corollary 2.2. For anyk ≥ 1, the family ofk-comma codes and the family of comma-free codes are
incomparable.

Now we loosen the restriction on the length of commas, and definek-spacer codes.

Definition 2.2. For anyk ≥ 0, a languageL is called ak-spacer codeif LΣ≤kL ∩ Σ+LΣ+ = ∅.

It is clear that, if a language is ak-spacer code, it is ani-comma code for alli, 0 ≤ i ≤ k. Therefore,
for anyk ≥ 0, ak-spacer code is a comma-free code and hence an infix code. LetSk denote the family
of k-spacer codes, andCi denote the family of infix codes. Then we have the following relationship.

Proposition 2.2. Sk+1 ⊂ Sk ⊂ · · · ⊂ S0 ⊂ Ci holds.

Proof:
By definition,Sk+1 ⊆ Sk holds for anyk ≥ 0. To show that the inclusion is proper, note that{akb} is in
Sk but not inSk+1 for anyk ≥ 0. It is clear thatS0 is the family of 0-comma codes andS0 ⊆ Ci holds.
Moreover, due to Proposition 2.1, there exists a 1-comma code that is an infix code but not a 0-comma
code. Therefore, the inclusionS0 ⊆ Ci is proper. ⊓⊔

3. K-comma intercodes

Since ak-spacer code is an intersection of somek-comma codes, in this section, we obtain some clo-
sure properties (Proposition 3.7) and decidability results (Theorem 3.3) of the family ofk-spacer codes,
as consequences of those ofk-comma codes. In coding theory, the notion of comma-free codes was
extended to the more general one of intercodes [16].

Definition 3.1. For m ≥ 1, a nonempty setL ⊆ Σ+ is called anintercode of indexm if Lm+1 ∩
Σ+LmΣ+ = ∅.

It is clear that an intercode of index 1 is a comma-free code.
Similarly, we introduce the notion ofk-comma intercodes as a natural generalization of the notion

of k-comma codes, and then obtain several basic properties ofk-comma codes as consequences of those
of k-comma intercodes. In particular, we first show that thek-comma intercodes are actually codes,
and there exists an infinite inclusion hierarchy among the families of bifix codes,k-comma intercodes,
and infix codes. Moreover, we obtain several results aboutk-comma intercodes, such as closure prop-
erties (Propositions 3.3, 3.4, and 3.5), synchronously decipherability (Proposition 3.8), and an efficient
algorithm that determines whether a regular language is ak-comma intercode (Theorem 3.2).

The notion ofk-comma intercodes is defined as follows.

Definition 3.2. For k ≥ 0 andm ≥ 1, a nonempty setL ⊆ Σ+ is called ak-comma intercode of index
m if (LΣk)mL ∩ Σ+(LΣk)m−1LΣ+ = ∅.
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It is immediate that ak-comma intercode of index 1 is ak-comma code, and that a 0-comma intercode
is an intercode. For anyk ≥ 0, a languageL is called ak-comma intercodeif there exists an integer
m ≥ 1 such thatL is ak-comma intercode of indexm. The family ofk-comma intercodes is denoted by
Ik.

We will prove that, for anyk ≥ 0, ak-comma intercode is actually a code. Recall that a nonempty
setL ⊆ Σ+ is abifix codeif L ∩ LΣ+ = ∅ (prefix code) andL ∩ Σ+L = ∅ (suffix code).

Proposition 3.1. For anyk ≥ 0, ak-comma intercode is a bifix code.

Proof:
Let L be ak-comma intercode of indexm for somek ≥ 0 andm ≥ 1. Suppose thatL were not a
prefix code. Then we haveu,w ∈ L such thatw = uv for somev ∈ Σ+. This implies that for some
x1, . . . , xm ∈ Σk, wx1wx2 · · · xmw = wx1(wx2 · · · xmu)v ∈ Σ+(LΣk)m−1LΣ+, which contradicts
thatL is ak-comma intercode of indexm. In the same way, we can prove thatL is a suffix code. Thus,
L is a bifix code. ⊓⊔

Similar to Lemma 2.1, we establish a relationship between intercodes andk-comma intercodes.

Lemma 3.1. For a languageL ⊆ Σ∗ and any integersk ≥ 0 andm ≥ 1, L is ak-comma intercode of
indexm if and only ifLΣk is an intercode of indexm.

The families of intercodes of different indexes form an infinite proper inclusion hierarchy within
the family of bifix codes, i.e., the family of intercodes of indexm is a proper subset of the family of
intercodes of indexm + 1, for anym ≥ 1. Moreover, the family of all the intercodes of any index is a
proper subset of the family of bifix codes [15]. In the following, we prove that such an infinite proper
inclusion hierarchy exists among the families ofk-comma intercodes of different indexes for anyk ≥ 0.
We first prove the following lemma.

Lemma 3.2. Let L be ak-comma intercode for somek ≥ 0. Then any codeword inL must be longer
thank.

Proof:
Supposeu were a codeword inL of length at mostk. Then, we can find wordsx, y ∈ Σk with ux = yu.
For anym ≥ 1, (ux)mu = (yu)mu. This contradictsL being ak-comma intercode. ⊓⊔

Let Ik,m denote the family ofk-comma intercodes of indexm, for anyk ≥ 0 andm ≥ 1. We have
the following hierarchies.

Theorem 3.1. Ik,1 ⊂ Ik,2 ⊂ · · · ⊂ Ik,m ⊂ · · · ⊂ Cb holds for anyk ≥ 0.

Proof:
We first prove that, for anyk ≥ 0 andm ≥ 1, everyk-comma intercode of indexm is a k-comma
intercode of indexm+1. LetL be ak-comma intercode of indexm. By definition, we have(LΣk)mL∩
Σ+(LΣk)m−1LΣ+ = ∅. Suppose thatL were not ak-comma code of indexm+1. Then(LΣk)m+1L∩
Σ+(LΣk)mLΣ+ 6= ∅. That is, there existu1, . . . , um+2 ∈ L, v1, . . . , vm+1 ∈ L, x1, . . . , xm+1,
y1, . . . , ym ∈ Σk, andz1, z2 ∈ Σ+ such thatu1x1 · · · xm+1um+2 = z1v1y1 · · · ymvm+1z2.
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We claim that|z1| < |u1| and|z2| < |um+2| must hold. Supposez1 = u1z
′ for somez′ ∈ Σ∗, then

x1 · · · xm+1um+2 = z′v1y1 · · · ymvm+1z2. Sincev1 is in L, we have|v1| > |x1|. Then, we can easily
check thatv2y2 · · · vm+1 is an proper infix ofu2x2 · · · um+2, a contradiction. Similarly, we can prove
that |z2| < |um+2|.

However, even if|z1| < |u1| and |z2| < |um+2|, we still havev1y1 · · · ymvm+1 in Σ+u2x2 · · · xm
um+1Σ

+, and hence(LΣk)mL∩Σ+(LΣk)m−1LΣ+ 6= ∅. This is a contradiction. Thus,Ik,m ⊆ Ik,m+1.
We then prove that this inclusion is proper by giving examples of languagesL ∈ Ik,m+1 \ Ik,m.

Let Σ = {a, b} and ui = abi+ka for somei ≥ 1. Then, for somex1, . . . , xm+1 ∈ Σk, L =
{u1x1 · · · um+1xm+1um+2, u2, u3, . . . , um+1} satisfies the condition(LΣk)m+1L∩Σ+(LΣk)mLΣ+ =
∅, and henceL ∈ Ik,m+1. On the other hand,L 6∈ Ik,m, sinceu2x2 · · · um+1 is a proper infix of word
u1x1 · · · um+1xm+1um+2, and hence(LΣk)mL ∩ Σ+(LΣk)m−1LΣ+ 6= ∅.

Lastly, we can verify thatL′ = {aa, aba} is a bifix code but not ak-comma intercode of indexm for
anyk ≥ 0 andm ≥ 1. It is clear thatL′ cannot be ak-comma intercode of any index fork ≥ 2. Then,
for eitherk = 0 or k = 1, we haveaba(ak+2)m−1ak(aba) ∈ (L′Σk)mL′ ∩Σ+(L′Σk)m−1L′Σ+ for any
m ≥ 1. Therefore,Ik,m ⊂ Cb. ⊓⊔

Although an intercode of indexm+1 is not always an intercode of indexm, we show in the following
that, it is true for specific languages of the formuΣk.

Lemma 3.3. For a wordu ∈ Σ∗ and an integerm ≥ 1, uΣk is an intercode of indexm if and only if
uΣk is an intercode of indexm+ 1.

Proof:
It is well known that an intercode of indexm is an intercode of indexm+1, but its converse implication
is not always true. We prove that it is true for specific languages of the formuΣk. Under the assumption
thatuΣk is an intercode of indexm + 1, suppose thatuΣk were not an intercode of indexm. Due to
the assumption, Lemma 3.1 gives us thatu is a k-comma intercode and hence|u| > k. There exists
x1, · · · , xm+1, x

′
1, · · · , x

′
m ∈ Σk andy, z ∈ Σ+ such that

ux1ux2 · · · uxmuxm+1 = yux′1ux
′
2 · · · ux

′
mz. (1)

Note that|u| + k = |y| + |z|. We consider two cases depending on the length ofy. If |y| < |u|
(i.e., |z| > k), let z = usxm+1 with u = upus for someup, us ∈ Σ+. Thenux1ux2 · · · uxm−1up =
yux′1ux

′
2 · · · ux

′
m−1 andusxmup = ux′m. With these, we have

ux1ux2 · · · uxm−1(uxm)2uxm+1 = ux1 · · · uxm−1up(usxmup)
2usxm+1

= yux′1ux
′
2 · · · ux

′
m−1(ux

′
m)2z.

Thus,uΣk would not be an intercode of indexm+ 1, a contradiction.
Now we consider the second case when|y| ≥ |u|. Recall that|u| > k. Hence we can letx1 = ysup

anduys = y, whereup ∈ Pref(u) andys ∈ Suff(y). We can see in Eq. 1 thatx2 also has the suffixup
asx2 = wup for somew ∈ Σ∗. Thenux′1 = upuw andupux3 · · · uxm+1 = ux′2 · · · ux

′
mz, and we have

ux1(ux2)
2ux3 · · · uxm+1 = uysup(uwup)

2ux3 · · · uxm+1

= uys(upuw)
2upux3 · · · uxm+1

= y(ux′1)
2ux′2 · · · ux

′
mz.

Even in this case, we reached the same contradiction. ⊓⊔
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Bifix codes

I0,m+1

I0,m

I0,1

Ik,m+1

Ik,m

Ik,1

Ik+1,m+1

Ik+1,m

Ik+1,1

Infix codes

Figure 1. The inclusion hierarchy of the families of bifix codes,k-comma intercodes, and infix codes, where
arrows indicate proper inclusion

Due to Theorem 3.1, the languageL1 considered in the proof of Proposition 2.1 is ann-comma
intercode of any index. Moreover, we can verify that it is notanm-comma intercode for any index
wherem > n. On the other hand, the languageL2 in the same proof is anm-comma intercode of any
index but not ann-comma intercode for any index wheren < m. Hence, the following is clear.

Proposition 3.2. For anyk1, k2 ≥ 0 andm1,m2 ≥ 1, the family ofk1-comma intercodes of indexm1

and the family ofk2-comma intercodes of indexm2 are incomparable unlessk1 = k2.

Furthermore, due to Corollary 2.1 and Proposition 2.1, we know that, for anyk ≥ 0, there exists an
infix code that is not ak-comma code. Therefore, the family ofk-comma codes is a proper subset of the
family of infix codes for anyk ≥ 0. Thus, we can draw the proper inclusion hierarchy of the families of
bifix codes,k-comma intercodes, and infix codes as shown in Figure 1.

Next, we consider closure properties of the families ofk-comma intercodes of indexm for anyk ≥ 0
andm ≥ 1 and the families ofk-comma intercodes. Recall that a functionf : Σ∗

1 → Σ∗
2 is called a

homomorphism(onΣ∗
1) if h(xy) = h(x)h(y) for all x, y ∈ Σ∗

1. The homomorphismf is non-erasingif
f(w) = λ impliesw = λ. Then theinverse non-erasing homomorphismf−1 : Σ∗

2 → 2Σ
∗

1 is defined as:
for u ∈ Σ∗

2, f
−1(u) = {v ∈ Σ∗

1 | f(v) = u}, wheref is non-erasing.

Proposition 3.3. For anyk ≥ 0 andm ≥ 1, the families ofk-comma intercodes of indexm are not
closed under union, catenation, +, complement, or non-erasing homomorphism. The families ofk-
comma intercodes are not closed under these operations either. In contrast, they are closed under reversal
and intersection with an arbitrary set.

Proof:
Due to Theorem 3.1, we just need to show for each operation that the resulting languages of somek-
comma codes under the operation may not be a bifix code, or not ak-comma intercode of indexm for
anym ≥ 1. The union of twok-comma codes{ab1+ka} and{ab1+kab1+ka} is not a bifix code. We
can easily verify that the catenation ofAB of k-comma codesA = {aab1+ka} andB = {ab1+kaab}
is not ak-comma intercode of indexm for anym ≥ 1. For anyL ⊆ Σ+, L+ is not a bifix code. The
complement of ak-comma code{ab1+ka} is not a bifix code. Consider alphabetsΣ1 = {a, b} and
Σ2 = {a}, and letf : Σ∗

1 → Σ∗
2 be a non-erasing homomorphism defined asf(a) = f(b) = a. Thenf

maps ak-comma code{ab1+ka, ab2+ka} onto{a3+k, a4+k}, which is not a bifix code.
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By definition, it is clear that the families ofk-comma intercodes of indexm and the families ofk-
comma intercodes are closed under reversal or intersectionwith an arbitrary set. ⊓⊔

The closure properties of the family of intercodes and the families ofk-comma intercodes fork ≥ 1
under inverse non-erasing homomorphism are different.

Proposition 3.4. For anym ≥ 1, the family of intercodes (0-comma intercodes) of indexm is closed
under inverse non-erasing homomorphism, and therefore thefamily of intercodes is closed under this
operation.

Proof:
LetL be an intercode of indexm overΣ1. Suppose the family of intercodes of indexm were not closed
under inverse non-erasing homomorphism. Then, there exists a non-erasing homomorphismf : Σ∗

2 →
Σ∗
1 such thatf−1(L) is not an intercode of indexm. This implies that there existu1, · · · , um+1, v1, · · · ,

vm ∈ f−1(L) such thatu1 · · · um+1 ∈ Σ+
2 v1 · · · vmΣ+

2 . Sincef is non-erasing,f(u1) · · · f(um+1) ∈
Σ+
1 f(v1) · · · f(vm)Σ+

1 , a contradiction. ⊓⊔

For any positive integerk, the family ofk-comma intercodes is not closed under non-erasing homo-
morphism.

Proposition 3.5. For anyk ≥ 1 andm ≥ 1, the family ofk-comma intercodes of indexm is not closed
under non-erasing homomorphism. Moreover, the family ofk-comma intercodes is not closed under this
operation.

Proof:
Consider alphabetsΣ1 = {a} andΣ2 = {a, b}, and letf : Σ∗

1 → Σ∗
2 be a homomorphism defined as

f(a) = abk. We can verify thatL = {abkabk} is ak-comma code butf−1(L) = {aa} is not ak-comma
intercode of indexm for anym ≥ 1. ⊓⊔

Proposition 3.3 says that the catenation of twok-comma codes is not always ak-comma intercode.
So we investigate a condition under which the catenation of two languagesA andB becomes ak-comma
intercode under the assumption thatA ∪ B is an infix code. Under this assumption, an element ofAB

could be a proper infix of an element ofABΣkAB only in two ways as shown in Figure 2. The following
results offer additional conditions onA andB, which makeAB ak-comma code, and thereforek-comma
intercode for any index, by preventing both cases in Figure 2from occurring.

Proposition 3.6. For two languagesA,B ⊆ Σ∗, if A ∪ B is ak-comma code, thenAB is ak-comma
intercode of any index.

Proof:
Suppose thatAB were not ak-comma code. Then there existu1, u2, u3 ∈ A, v1, v2, v3 ∈ B, andw ∈ Σk

such thatu1v1wu2v2 = ru3v3s for somer, s ∈ Σ+. Sincek-comma codes are infix codes,A ∪ B is
an infix code. Thus, we have the two cases shown in Figure 2. Nevertheless, they cause a contradiction
with A∪B being ak-comma. Thus,AB is ak-comma code, and therefore ak-comma intercode for any
index. ⊓⊔
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x′ x y z z′

z′ z x y y′

Case 1

Case 2

u1 v1 w u2 v2

u3 v3

u1 v1 w u2 v2

u3 v3

Figure 2. Foru1, u2, u3 ∈ A and v1, v2, v3 ∈ B, if A ∪ B is an infix code,u3v3 can be a proper infix of
u1v1wu2v2 only in these two ways, wherew ∈ Σk. Note thatx′ andy in Case 1 can be empty at the same time,
andx andy′ in Case 2 can be empty at the same time.

Now, we consider closure properties of the families ofk-spacer codes. Since the family of0-spacer
codes is the family of comma-free codes, we only consider thecases whenk ≥ 1. By noticing the
languages in the proofs of Propositions 3.3 and 3.5 are alsok-spacer codes, the following result is im-
mediate.

Proposition 3.7. For anyk ≥ 1, the family ofk-spacer codes is not closed under union, catenation,
+, complement, non-erasing homomorphism, or inverse non-erasing homomorphism. In contrast, it is
closed under reversal and intersection with an arbitrary set.

Although the definitions and previous properties ofk-comma intercodes are obtained for anyk ≥ 0,
we show in the following that intercodes (k = 0) and their generalizations (k ≥ 1) are different in terms
of synchronous decoding delay. A codeL is synchronously decipherableif there is a non-negative integer
n such that for allu, v ∈ Σ∗ andx ∈ Ln, uxv ∈ L∗ impliesu, v ∈ L∗. If a codeL is synchronously
decipherable, then the smallest suchn is called thesynchronous decoding delayof L. It is known that,
for a codeL ⊆ Σ+, L is an intercode of indexn if and only if L is synchronously decipherable with
delay less than or equal ton [18]. In contrast, for anyk ≥ 1, k-comma intercodes do not have such a
property.

Proposition 3.8. Let L ⊆ Σ+ be ak-comma intercode of indexn, for somek ≥ 1 andn ≥ 1. ThenL
is not necessarily synchronously decipherable with delay less than or equal ton.

Proof:
ConsiderL = {ak+2bk, abkabk}, which is ak-comma intercode of index 1, and hence ak-comma
intercode of any index. For anyn ≥ 1, we haveak+2bk(abkabk)n = ak+1(abkabk)nabk ∈ Ln+1 and
(abkabk)n ∈ Ln, butak+1 andabk are not inL. Therefore,L is not with delayn. ⊓⊔

Since ak-spacer code is a comma-free code, it is synchronously decipherable with delay 1.
From the definition ofk-comma intercodes, we can easily decide if a given regular language is a

k-comma intercode of indexm, for a givenm, by using the closure properties of regular languages. A
natural question is whether there exists a method that solves the problem efficiently. In the following, we
show that there exists a polynomial time algorithm to do so.

Note that Han, Salomaa, and Wood [6] introduced an algorithmthat decides if a given finite automa-
ton (FA) accepts an intercode of a given indexm in m2O(|Q|2 + |δ|2) worst-case time (Lemma 3.2
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in [6]). Furthermore, without the specification ofm, their algorithm can determine whether the regular
language given by an FA is an intercode for some indexm ≥ 1, and if the answer is positive, then it can
find the smallest indexm such that the language is an intercode of indexm. The time complexity of this
algorithm isO(log|Q|(|Q|4 + |Q|2|δ|2)) in worst-case (Theorem 3.2 in [6]).

Due to Lemma 3.1, for a regular language given as a finite automaton and a given integerk, k ≥ 0,
we can determine whetherL is ak-comma intercode of a given indexm in m2O(|Q|2+ |δ|2) worst-case
time. Due to Lemma 3.2, we first check if the shortest word ofL is longer thank. If not, L can not
be ak-comma intercode of any index. If the answer is yes, then we give an answer to the question by
checking ifLΣk is an intercode of indexm. Thus, we obtain the following result.

Lemma 3.4. Given an FAA and an indexm ≥ 1, we can determine whetherL(A) is a k-comma
intercode of indexm in m2O(|Q|2 + |δ|2) worst-case time.

Similarly, for some givenk ≥ 0, and without the specification ofm, we can determine if a language
given by an FA is ak-comma intercode of some indexm ≥ 1 such that the language is ak-comma
intercode of indexm but not of indexm− 1.

Lemma 3.5. Given an FAA and somek ≥ 0, in O(log|Q|(|Q|4 + |Q|2|δ|2)) worst-case time, we can
determine whetherL(A) is ak-comma intercode for some indexm ≥ 1, and if the answer is positive we
can find the smallest indexm such thatL(A) is ak-comma intercode of indexm.

Furthermore, without the specification ofk andm, we can find allk such that a language given by
FA is ak-comma intercode of some indexm ≥ 1 such that the language is ak-comma intercode of index
m but not of indexm− 1. Sincek must be shorter than the shortest words in the language, we just need
to check all possiblek andk is bounded by the size of the FA.

Theorem 3.2. Given an FAA, inO(log|Q|(|Q|5+|Q|3|δ|2)) worst-case time, we can determine whether
L(A) is ak-comma intercode for allk ≥ 0 and indexm ≥ 1, and if the answer is positive we can find
the smallest indexm such thatL(A) is ak-comma intercode of indexm.

We know that a languageL cannot be ak-spacer code if its shortest words are not longer thank.
Thus, given an FAA, to determine ifL(A) is ak-spacer code for somek ≥ 0, we just need to find the
lengthl of the shortest words ofL(A), and then, check ifL is ani-comma code (i-comma intercode of
index 1) for alli, 0 ≤ i ≤ k, for somek < l. Sincek-spacer codes form a proper inclusion hierarchy
with respect to their index (Proposition 2.2), we can apply abinary search to find the largestk (if any) in
the range from 0 tol − 1, and thereforeL is ak′-spacer code for all0 ≤ k′ ≤ k. Based on the analysis,
we establish the following result.

Theorem 3.3. Given an FAA, in O(log|Q|(|Q|3 + |Q||δ|2) worst-case time, we can determine whether
L(A) is ak-spacer code for anyk ≥ 0, and if the answer is positive we can find the largest suchk.

4. N -k-comma intercodes

A languageL is ann-codeif every nonempty subset ofL of size at mostn is a code. The authors of [9]
obtained several properties about the combinatorial structure ofn-codes and showed that these codes
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form an infinite proper inclusion hierarchy, i.e., for any integern ≥ 1, the family of (n + 1)-codes is
a proper subset of the family ofn-codes. Later, they applied similar constructions to prefixand suffix
codes, and obtainedn-ps-codes [10]. However, unlike the hierarchy ofn-codes, the hierarchy ofn-ps-
codes collapses after only three steps, and turned out to be finite. In [12], the authors generalized the
notions of intercodes to those ofn-intercodes, established relationships among these codes, and obtained
an infinite inclusion hierarchy including both intercodes andn-intercodes.

In this section, we considern-k-comma intercodes. We show that, for anyk ≥ 0, there exists an
infinite inclusion hierarchy of the families ofn-k-comma intercodes andk-comma intercodes within the
family of bifix codes (Theorem 4.1). Moreover, we give a characterization of the family of1-k-comma
intercodes for anyk ≥ 0 (Proposition 4.2). Lastly, we describe the family of1-1-comma intercodes in
terms of bordered words, unbordered words, and primitive words (Proposition 4.3).

An n-k-comma intercode of indexm is a nonempty languageL ⊆ Σ+ such that every nonempty
subset ofL of cardinality at mostn is ak-comma intercode of indexm. For anyn ≥ 1 andk ≥ 0, a
languageL is called ann-k-comma intercodeif there exists an integerm ≥ 1 such thatL is ann-k-
comma intercode of indexm. Let In,k,m denote the family ofn-k-comma intercodes of indexm overΣ
and letIn,k,∞ =

⋃

m≥1 In,k,m denote the family ofn-k-comma intercodes. We have that

Ik,m =
⋂

n≥1

In,k,m andIk =
⋂

n≥1

In,k,∞.

Moreover, the following two lemmas are clear from the definition of n-k-comma intercode of indexm.

Lemma 4.1. For any integersn,m ≥ 1, andk ≥ 0, In+1,k,m ⊆ In,k,m.

Lemma 4.2. For any integersn,m ≥ 1, andk ≥ 0, Ik,m ⊆ In,k,m.

In the following, for eachk ≥ 0, we obtain several hierarchical relationships amongk-comma
intercodes,n-k-comma intercodes, and bifix codes.

Theorem 4.1. For anyk ≥ 0 and everyn,m ≥ 1, the following statements hold true:

1. I1,k,∞ and the family of bifix codes are incomparable.

2. Everyn-k-comma intercode withn ≥ 2 is a bifix code.

3. Ik,m = · · · = I2m+2,k,m = I2m+1,k,m ⊂ · · · ⊂ I2,k,m ⊂ I1,k,m.

4. Ik,m ⊂ Ik,m+1.

5. In,k,1 ⊆ In,k,2 ⊆ · · · ⊆ In,k,m ⊆ · · · .

6. If n ≥ 2m+ 1, In,k,m ⊂ In,k,m+1.

7. If n ≥ 2 andn ≤ 2m+ 1, In,k,m ⊂ In,k,m+1.

8. In+1,k,∞ ⊂ In,k,∞.

9. If n ≥ 2, thenIk,m ⊆ In,k,m ⊂ In,k,∞ ⊂ Cb andIk,m ⊂ Ik ⊂ In,k,∞.
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10. I2,k,∞ ⊂ I1,k,∞ ∩Cb.

Proof:
For (1), let us consider the two languagesL1 = {aa, aba} andL2 = {abk+1a, abk+1abk+1a}. We can
verify thatL1 is a bifix code but not inI1,k,∞, whileL2 is in I1,k,∞ but not a bifix code.

For (2), assume thatL is ann-k-comma intercode of indexm with n ≥ 2 for somem ≥ 1. Suppose
thatL is not a bifix code. Then, there exists two wordsu, v ∈ L such thatu = vz for somez ∈ Σ+. Let
L′ be a subset ofL of sizen such thatv, u ∈ L′. For somex ∈ Σk, we have that(ux)mu ∈ (L′Σk)mL′∩
Σ+(L′Σk)m−1L′Σ+, a contradiction. This implies thatIn,k,m ∈ Cb, and henceIn,k,∞ ∈ Cb.

For (3), due to Lemmas 4.1 and 4.2, it suffices to prove that (i)I2m+1,k,m ⊆ Ik,m and (ii) for any
1 ≤ n ≤ 2m+ 1, In,k,m \ In+1,k,m 6= ∅.

We first prove (i). ForL 6∈ Ik,m, then there existu1, u2, · · · , um, um+1 ∈ L, v1, v2, · · · , vm ∈ L,
x1, x2, · · · , xm, y1, y2, · · · , ym−1 ∈ Σk, andz, z′ ∈ Σ+ such that

u1x1u2x2 · · · umxmum+1 = zv1y1v2y2 · · · vm−1ym−1vmz′,

which implies thatL 6∈ I2m+1,k,m. Hence,I2m+1,k,m ⊆ Ik,m.
Then, we prove (ii). We give a construction for some languages Ln ∈ In,k,m \ In+1,k,m. Let

Σ = {a, b} andui = abk+ia for i ≥ 1. For some wordsx1, . . . , xn+1 ∈ Σk, defineLn in the following
ways:
if n ≤ m, then, as

{u2, u3, . . . , un+1, u1x1(u2x2)
m−n+1u3 · · · un+2},

if m < n < 2m andn is odd, then, as

{ujxjuj+1 | j = 1, . . . , n − 1} ∪ {un+1, unxn(un+1xn+1)
m−(n−1)/2un+2},

if m < n < 2m andn is even, then, as

{ujxjuj+1 | j = 1, . . . , n− 2} ∪ {un, un+1, un−1xn−1unxn(un+1xn+1)
m−n/2un+2},

if n = 2m, then, as
{ujxjuj+1 | j = 1, . . . , n+ 1}.

We can easily verify thatLn ∈ In,k,m \ In+1,k,m.
Statement (4) is proven in Theorem 3.1.
For (5), if L ∈ In,k,m, then for any subsetL′ of L with |L′| ≤ n, L′ ∈ Ik,m. Statement (4) implies

thatL′ ∈ Ik,m+1. Thus,L ∈ In,k,m+1.
For (6), statement (3) implies thatIn,k,m = Ik,m sincen ≥ 2m + 1. With statement (4) and

Lemma 4.2, we haveIn,k,m = Ik,m ⊂ Ik,m+1 ⊆ In,k,m+1.
To show (7), due to statement (5), we just need to show the inclusion is proper. We use the construc-

tion of languagesLn in (3), and we can verify thatLn−1 ∈ In,k,m+1 \ In,k,m.
For (8),In+1,k,∞ ⊆ In,k,∞ is an immediate consequence of the definition. To prove the inequality, we

give examples of languagesMn ∈ In,k,∞ \ In+1,k,∞. We still use the same wordsui defined previously.
For some wordsx1, · · · , xn+1 ∈ Σk, defineMn as

{ujxjuj+1 | j = 1, . . . , n} ∪ {un+1xn+1u1}.
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We can verify thatMn ∈ In,k,∞ \ In+1,k,∞ for anyn ≥ 1.
For (9), by definitions, the inclusionsIk,m ⊆ In,k,m ⊆ In,k,∞ andIk,m ⊆ Ik ⊆ In,k,∞ are imme-

diate. The inclusionIn,k,∞ ⊆ Cb follows from (2). The inequalitiesIn,k,m 6= In,k,∞, Ik,m 6= Ik, and
Ik 6= In,k,∞ follow from (7), (4), and (8), respectively. The inequalityIn,k,∞ 6= Cb follows from (10).

For (10), we haveI2,k,∞ ⊆ I1,k,∞ ∩ Cb by (2) and (8). For the inequality, as an example,M1

constructed in (8) is a language inI1,k,∞ ∩Cb, but not inI2,k,∞. ⊓⊔

Cb I1,k,1 = I1,k,2 = · · · = I1,k,∞

I2,k,1

I2,k,2

I2,k,3

I2,k,4

I2,k,∞

I1,k,∞ ∩Cb

I3,k,∞

I3,k,4

I3,k,3

I3,k,2

I3,k,1 = Ik,1

I4,k,∞

I4,k,4

I4,k,3

I4,k,2

I5,k,∞

I5,k,4

I5,k,3

I5,k,2 = Ik,2

I6,k,∞

I6,k,4

I6,k,3

I7,k,∞

I7,k,4

I7,k,3 = Ik,3

I2m+1,k,∞

I2m+1,k,m = Ik,m

Ik

Figure 3. The inclusion hierarchy ofk-comma intercodes,n-k-comma intercodes, and bifix codes, where arrows
indicate proper inclusion.

From statements 5, 6, and 7 in the previous theorem, we obtainthe following corollary.

Corollary 4.1. For any integersn ≥ 2 andk ≥ 0, the following strict set inclusion hierarchy exists

In,k,1 ⊂ In,k,2 ⊂ · · · In,k,m ⊂ · · · .

This hierarchy does not exist among the families of1-k-comma intercodes as proven below.

Proposition 4.1. I1,k,1 = I1,k,2 = · · · = I1,k,m = · · · .

Proof:
Due to statement 5 in Theorem 4.1, it suffices to proveI1,k,m+1 ⊆ I1,k,m. Let L ∈ I1,k,m+1. Then for
anyu ∈ L, {u} is ak-comma intercode of indexm + 1. Lemma 3.1 implies thatuΣk is an intercode
of indexm+ 1, and this language is an intercode of indexm due to Lemma 3.3. We apply Lemma 3.1
once again to obtain{u} is ak-comma intercode of indexm. Therefore,L ∈ I1,k,m. ⊓⊔
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We notice that the resulting languages in the proof of Propositions 3.3 are neither a bifix code nor
a 1-k-comma intercode of any index. Therefore, for anyn ≥ 1, k ≥ 0, andm ≥ 1, the family of
n-k-comma intercode of indexm is not closed under union, catenation, +, complement, or non-erasing
homomorphism. Similar to the proofs of Propositions 3.4 and3.5, we can show that the family ofn-
intercodes (n-0-comma intercodes) of any index is closed under inverse non-erasing homomorphism,
while, for anyk ≥ 1, the family ofn-k-comma intercodes of any index is not closed under the operation.

Let Q be the set of all primitive words. It is known that the set of 1-intercodes of indexm is equal
to the2Q \ ∅ for anym ≥ 1 [12]. In the next proposition, we show a stronger result. Foranyk ≥ 0, the
family of 1-k-comma intercodes is equal to2Xk \ ∅, whereXk is defined as:

Xk = {u ∈ Σ+ | uvu ∩ Σ+uΣ+ = ∅ wherev ∈ Σk}.

Note that,X0 = Q.

Proposition 4.2. For anyk ≥ 0, a languageL is a 1-k-comma intercode if and only ifL ∈ 2Xk \ ∅.

Proof:
Due to Proposition 4.1, we just need to show thatL is a 1-k-comma intercode of index 1 if and only if
L ∈ 2Xk \ ∅.

If L is a 1-k-comma intercode of index 1, then, for everyu ∈ L, {u} is a k-comma intercode of
index 1. Suppose thatL 6∈ 2Xk \ ∅. Then, there exists a wordw ∈ L such thatw 6∈ Xk. Thus,
wvw ∩ Σ+wΣ+ 6= ∅ for somev ∈ Σk, a contradiction to{w} being ak-comma intercode of index 1.

For the converse implication, letL be a non-empty subset ofXk. Suppose there were a wordu ∈ L

such that{u} is not ak-comma intercode of index 1. Then,uvu ∈ Σ+uΣ+ for somev ∈ Σk, which
implies thatu 6∈ Xk, a contradiction. ⊓⊔

In the following, we give a characterization ofX1 in terms of bordered words, unbordered words,
and primitive words. It is clear that, no unary word can be inX1, and the set of all unbordered words
of length at least 2, denoted byU>1, is a subset ofX1. Let N(>1) denote the set of all non-primitive
words whose primitive root is of length at least 2. The next result shows that no wordu in N(>1) can be
a proper infix ofuau, for anya ∈ Σ.

Lemma 4.3. N(>1) ⊆ X1.

Proof:
Suppose that there wereu ∈ N(>1) such thatu 6∈ X1. Letu = gi for some primitive wordg of length at
least 2 andi > 1. Also we can letu = usaup for someus ∈ Suff(u), a ∈ Σ, andup ∈ Pref(u). The
equationgi = usaup implies that thisa is inside one and only one of theseg’s. Sinceg2 cannot overlap
with g in any nontrivial way, eitherus or up is a power ofg. We only consider the case whenus = gj

for somej ≥ 1; the other can be proved in a similar way. Thenaup = gi−j . Sinceup ∈ Pref(gi), this
meansg is a power ofa, a contradiction with the primitivity ofg. ⊓⊔

Let QB be the set of all bordered primitive words. Any word inQB can be written asw = (αβ)kα

for some primitive wordαβ, andk ≥ 1. We partitionQB into two sets. The first one,Q(=1)
B , denotes

the set of all bordered primitive wordsw that can be written as(αβ)kα with |β| = 1. The second
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one is simply the complement,Q(>1)
B = QB \ Q

(=1)
B . For example,aaabaa, abbabba ∈ Q

(>1)
B while

aabaabaa ∈ Q
(=1)
B . This is because even though we can regardaabaabaa asαβα with α = a and

β = abaaba, we can also consider it as(α′β′)2α′, whereα′ = aa andβ′ = b.
The next result shows that every bordered primitive wordw that can only be written as(αβ)kα such

that αβ is primitive, k ≥ 1, and |β| cannot be 1, cannot be a proper infix ofwaw for any a ∈ Σ.
Formally, we have

Lemma 4.4. Q(>1)
B ⊆ X1.

Proof:
Suppose that there existsu ∈ Q

(>1)
B but u 6∈ X1. This means thatu = usaup for someus ∈ Suff(u)

andup ∈ Pref(u) anda, b ∈ Σ such thatu = upbus. The Parikh vector [14] of a word contains the
occurrences of each letter inΣ. Since the Parikh vectors ofup andus together contain the same number
of occurrences of each letter inusaup andupbus, we can obtaina = b and henceu = upaus. Due to a
well known result mentioned in Section 1, there existα, β ∈ Σ∗ such thatusa = (αβ)i andup = α(βα)j

for somei ≥ 1 andj ≥ 0 andβα is primitive. Thenua = upausa = upa(αβ)
i = α(βα)i+ja, and

hence the suffix of length|αβ|+1 of ua is bαβ = βαa. Again, based on the Parikh vector of this suffix,

b = a, i.e., aαβ = βαa. Note that|β| ≥ 2 becauseu ∈ Q
(>1)
B and hencea is a proper suffix ofβ.

Therefore, this equation means thatβα overlaps with its square in a nontrivial way, a contradiction with
its primitivity. ⊓⊔

The next result states that any wordw that is either a unary word or a bordered primitive word that
can be written as(αβ)kα with αβ being primitive,k ≥ 1, and|β| = 1, can be a proper infix ofwaw for
somea ∈ Σ.

Lemma 4.5.
(
Q

(=1)
B ∪ {ai | a ∈ Σ, i ≥ 1}

)
∩X1 = ∅.

Proof:
As mentioned above, any unary word cannot be inX1. Letw ∈ Q

(=1)
B . By definition, there existα ∈ Σ+

andb ∈ Σ such thatαb is primitive andw = (αb)kα for somek ≥ 1. Thenw is a proper infix ofwbw,
and hencew 6∈ X1. ⊓⊔

Note that
Σ+ = N(>1) ∪ {aa+| a ∈ Σ}

︸ ︷︷ ︸

non-primitive

∪Σ ∪ U>1 ∪Q
(=1)
B ∪Q

(>1)
B

︸ ︷︷ ︸

primitive

.

As a consequence of Lemmas 4.3, 4.4, and 4.5, we have the following proposition.

Proposition 4.3. X1 = U>1 ∪Q
(>1)
B ∪N(>1).

This proposition, by using several classic notions, characterizes the set of all wordsu that cannot
be a proper infix ofuau for anya ∈ Σ, as being either unbordered words of length greater than 1, or
bordered primitive words of the form(αβ)kα such thatαβ is primitive, k ≥ 1, and|β| cannot be 1, or
non-primitive words whose primitive root has length longerthan 1.
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5. Conclusion

In this paper, we introduced the notion ofk-comma codes, a generalization of comma-free codes, as well
as the notion ofk-spacer codes, andk-comma intercodes.

We established some relationships among families ofk-comma codes,k-comma intercodes, infix
codes, and bifix codes. Also, we obtained several closure properties of families ofk-comma intercodes,
and showed that we can determine efficiently whether a regular language given by a finite automaton is
ak-comma intercode of indexm for anyk ≥ 0 andm ≥ 1, or ak-spacer code for anyk ≥ 0.

Lastly, we introduced the notion ofn-k-comma intercodes and obtained several hierarchical rela-
tionships among families ofn-k-comma intercodes. Moreover, we gave a characterization ofthe family
of 1-k-comma intercodes for anyk ≥ 0, and describe the family of1-1-comma intercodes in terms of
several classic notions.

Future work includes experimental testing of, e.g., whether or not the language of genes of a certain
organism is indeed ak-spacer code for some valuek.
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