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Abstract. In this paper, we introduce the notion bfcomma codes - a proper generalization of
the notion of comma-free codes. For a given positive intégex k-comma code is a sdt over

an alphabek with the property thalt.x*L N X+ LY+ = (. Informally, in ak-comma code, no
codeword can be a subword of the catenation of two other codtsaseparated by a “comma”
of lengthk. A k-comma code is indeed a code, that is, any sequence of cadieveouniquely
decipherable. We extend this notion to thatvedpacer codes, with commas of length less than or
equal to a giverk. We obtain several basic propertiesite€omma codes and their generalizations,
k-comma intercodes, and some relationships between thédarmf k-comma intercodes and other
classical families of codes, such as infix codes and bifix soMoreover, we introduce the notion
of n-k-comma intercodes, and obtain, for edch> 0, several hierarchical relationships among
the families ofn-k-comma intercodes, as well as a characterization of thelfamhil-%-comma
intercodes.
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1. Introduction

The notion of codes is crucial in many areas such as infoomatbmmunication, data compression, and
cryptography. In such systems, it is required that, if a mgsss encoded by using words from a code,
then any arbitrary catenation of words should be uniqueljodable into codewords. Various codes
with specific algebraic properties, such as prefix codess gdies, and comma-free codes [1, 4, 15,
18], have been motivated and defined for various purposesinst@nce, the definition of comma-free
codes [2, 5] followed the 1953 discovery of the double-ta¢lgtructure of DNA, [17], as a proposed
mathematical solution to a problem which arose in connectiith protein synthesis. The problem
was the following. There are 20 known types of aminoacidse most plausible hypothesis at the
time, that each aminoacid is encoded by one three-letter B&tience, i.e., a 3-letter sequence over
the four-letter alphabefA, C, G, T} raised the following question: From the possidfe= 64 three-
letter words over the DNA alphabet, which ones code for aatits and why? The hypothesis was
advanced, for example, [2, 5, 17] that the triplets codingafminoacids form @omma-free coda.e., a
set with the property that any sequence of codewords is ehigiecodable, as well as with the additional
property that no codeword is a subword of the catenation ofdedewords. This hypothesis seemed to
be supported by the fact that the size of the maximal comemdode over a four-letter alphabet, where
all words have length three, was found to be exactly 20. We krmow, [13], that some aminoacids are
encoded by more than one triplet (codon), and that none ofdtgeconsisting of choosing one codon
per aminoacid is comma-free. As Hayes remarked, while #hiiess elegant than any of the theoretical
codes proposed, it provides higher error-tolerance: “Vd@tmow’s overlapping codes, any mutation
could alter three adjacent amino acids at once, possibabliigy the protein. Comma-free codes are
even more brittle in this respect, since a mutated codokedylito become nonsense and terminate the
translation” [7].

While in this case Nature proved that mathematical theoniag be beautiful and still wrong, comma-
free codes and their generalizations remain interestingnamch studied concepts [8, 11, 16, 18, 19].
More recent developments in biology show that, althougletieinformation is encoded in DNA, genes
(coding segments) are usually interrupted by noncodingisets, formerly known as “junk segments”.
A generalization of comma-free codes, wherein a comma @ding segment) is defined as a word of
lengthk, and no codeword (gene, or coding segment) is a subword obtiwer codewords separated by
a comma, may be of mathematical but also of biological istere

In this paper, we generalize the notion of comma-free coddsdomma codes, and further, ko
spacer codes, which allow “commas” (corresponding to ndimgpsegments) of lengthis > 0, respec-
tively less than or equal th, between two codewords. Sinkecomma codes are proper generalizations
of comma-free codes and comma codes [3] (which allow comrhsgth one), it is natural to investi-
gate their properties and the properties of their genertédias, k.-comma intercodes, which are defined
analogously to intercodes (which generalize the commadogles). As consequences, some properties
of k-spacer codes are obtained from thosé&-@bmma codes ank-comma intercodes. For example, a
k-spacer code is an infix code, and hence a code. Also, due tesult, for somé: > 0, if the length of
the shortest words of a languagés not longer thark, then L cannot be &-spacer code.

The paper is organized as follows. In Section 2, we give thedb definitions ofk-comma codes
and k-spacer codes, and show that they are in the family of infixesodn Section 3, we generalize
k-comma codes t&-comma intercodes, and obtain a hierarchical relationahijong the families of
bifix codes,k-comma intercodes, and infix codes. Moreover, we obtainrate®sure properties and



Bo Cui, Lila Kari, and Shinnosuke Seki-Comma Codes and Their Generalizations 1003

the synchronously decipherability of the familiesite€omma intercodes and provide a polynomial time
algorithm to decide whether a given regular languagekiscamma intercode. As consequences, several
closure properties of families éfspacer codes and a polynomial time algorithm that detersnivhether
aregular language isfaspacer code are obtained. In Section 4, we generdiz@mma intercodes into
n-k-comma intercodes and obtain hierarchical relationshipsrey them. Moreover, we obtain a char-
acterization of the families af-k-comma intercodes, and describe the family df-temma intercodes
by using the classic notions of bordered words, unborder@dsy and primitive words.

We end this section by some preliminary definitions and matatused in the paper. An alphabet
is a nonempty finite set of letters. A word ovEris a sequence of letters M. The length of a word
w, denoted byw|, is the number of letters in this word. The empty word, dethdite A, is the word of
length 0. A unary word is a word of the form, j > 1, a € . The set of all words oveX is denoted by
¥*, andXt = X* \ {\} is the set of all nonempty words. A language is a subs&t*ofThe catenation
of two languaged.;, Lo C ¥*, denoted byl Lo, is defined ad.1 Lo = {uv | u € Ly,v € Lo}.

A word z € X* is called an infix of a wordy € X if u = zzy for some wordsgy, z € ¥*. In
this definition, ifz andy are nonempty, them is called aproperinfix of «. Similarly, a wordz € >*
is called a prefix (suffix) of a word € X7 if u = zy (resp. v = zz) for some wordy € ©* (resp.

z € ¥¥). In addition, ify (resp.z) is nonempty, then: is called aproper prefix (resp. suffix) of.. For a
wordu € ¥*, the set of its prefixes (suffixes) is denotedByef (u) (resp.Suff(u)). For a wordu € ¥*,
we denote the prefix (suffix) of length > 0 of u by pref,, (u) (resp.suff, (u)). These notations can be
naturally extended to languages, eRyef (L) = UyerPref(u).

A nonempty wordu € X7 is said to beprimitive, also known ason-periodic if © = v™ implies
n = 1foranyv € X*. Any nonempty word can be written as a power of a unique piimniord, which
is called theprimitive rootof the word.

It is well known that, if nonempty words, y, z € X1 satisfyxy = yz, then there exist,, 5 € ©*
such thatg3 is primitive, z = (a8)!, y = (a8)’ o, andz = (Ba)" for somei > 1 andj > 0.

A nonempty wordu € ¥ is said to beborderedif there exists a nonempty word which is both
proper prefix and proper suffix af. A bordered primitive words a primitive word which is bordered,
and it can be written agyx for somez, y € 1 [15].

2. K-comma codes

The classic notion of comma-free codes is defined as folléwisnguageL C ¥ is called a comma-
free code ifLL N X TLY™ = (). Recently, [3], the notion of comma codes was introduced dbriisy
some language equations. A langudgg >t is called acomma codée LY LNXTLYT = (. Itis clear
that the following definition oft-comma codes is a natural generalization of these two mgtiwhich
can be interpreted as 0-comma codes and 1-comma codes;tiesge

Definition 2.1. For anyk > 0, a setl C X1 is called ak-comma code i.Y*L N ST LET = ().

In this section, we first show that’/acomma code is in fact a code (Corollary 2.1), and that, for
any two integers:;, ko > 0, the family of k;-comma codes and the family é§-comma codes are not
comparable (Proposition 2.1). Then, we extend the notidnr@dmma codes to that éf-spacer codes,
and show that the families éfspacer codes form an infinite proper inclusion hierarchgg§bsition 2.2).
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Intuitively, a k-comma code is a sdt such that none of its words can be a proper infix.pfuo
whereu; andus are words inL, andv is a “comma” of lengthk. It is clear that any codeword of a
k-comma code must be longer thanAs examples, for any > 0, L = {abia | i > k} is ak-comma
code.

We first establish a relationship between comma-free codgs-aomma codes, for any > 0.

Lemma 2.1. For a languagd, C ¥* and anyk > 0, L is ak-comma code if and only it.x* is a
comma-free code.

Proof:
We assume thaktX* is a comma-free code, and suppose thatere not ak-comma code. Then there
existwy, wo, w3 € L, v1 € ¥¥, andx,y € 1 such thatw,v,ws = zwsy. By putting somes, € ©* at
the ends of both sides, we can reach a contradiction ixith being a comma-free code.

On the other hand, i£.X* is not a comma-free code. Then we haye;usve = 2’'uzvsy’ for some
w1, ug,u3 € L, v1,v9,v3 € ¥, anda’,y’ € . Sincey’ is nonempty, we can cut the lastetters of
both sides from this equation, and reach a contradictioniiha not ak-comma code. O

Recall that a nonempty sét C ¥ is an infix code ifL N (X*LY* U XTLY*) = (), and that a
comma-free code is an infix code [18]. The following relatibip leads us to the fact thatcomma
codes are actually codes.

Lemma 2.2. For a languagd. C ©*, L is an infix code if and only if.X* is an infix code.

Proof:

The “only-if” direction is trivial because the family of inficodes is closed under concatenation. For
the “if” direction, assume that X* is an infix code, and suppose thais not. Then there exist € L
andz,y € ¥* such thatruy € L andzy # A. Then for anyv, € XF, zuyv; € LXF, which contains
wvy € LYF as its factor, wherey, is the prefix ofyv; of length k. Sinceuvs # zuyvy, this is a
contradiction. O

The following corollary is immediate.

Corollary 2.1. For anyk > 0, ak-comma code is an infix code, and hence a code.

Lemma 2.1 implies that the families @fcomma codes are closely related to that of comma-free
codes. However, the following result shows that any two efsthfamilies are incomparable, which
means that, for any two integersandm, 0 < n < m, there exists am-comma code which is not an
m-~comma code, and vice versa.

Proposition 2.1. Let 0 < n < m. The family ofn-comma codes and the family of-comma codes are
incomparable, but not disjoint.

Proof:

Let L; = {ab"*'a}. We can easily verify thak; is ann-comma code but not am-comma code. On

the other hand, let us consides = {a"ba™""b}. This is anm-comma code but not as-comma code.

Moreover, there is a language which is bothvanomma code and am-comma code. An example is
L3 = {ab™a}. 0
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As a corollary, we cannot compare the classic family of confirea codes with the other families of
k-comma codes.

Corollary 2.2. For anyk > 1, the family of k-comma codes and the family of comma-free codes are
incomparable.

Now we loosen the restriction on the length of commas, anahegéfspacer codes.

Definition 2.2. For anyk > 0, a languagéd. is called ak-spacer codéf LY<FL N S+HLET = ().

It is clear that, if a language iskaspacer code, it is ancomma code for all, 0 < i < k. Therefore,
foranyk > 0, ak-spacer code is a comma-free code and hence an infix codé; ld=note the family
of k-spacer codes, and; denote the family of infix codes. Then we have the followinigtienship.

Proposition 2.2, Sx.1 C S C --- C Sp C C; holds.

Proof:

By definition, Si+1 € Sy holds for anyk > 0. To show that the inclusion is proper, note tl{na’fb} isin

Sk but not inSy; for anyk > 0. Itis clear thatS is the family of 0-comma codes arty C C; holds.
Moreover, due to Proposition 2.1, there exists a 1-comma toak is an infix code but not a 0-comma
code. Therefore, the inclusidsy C C; is proper. O

3. K-comma intercodes

Since ak-spacer code is an intersection of solreomma codes, in this section, we obtain some clo-
sure properties (Proposition 3.7) and decidability res{itheorem 3.3) of the family df-spacer codes,
as consequences of thosekstomma codes. In coding theory, the notion of comma-freeesatlas
extended to the more general one of intercodes [16].

Definition 3.1. For m > 1, a nonempty sef. C X% is called anintercode of indexn if L™t N
strmyt =,

It is clear that an intercode of index 1 is a comma-free code.

Similarly, we introduce the notion gf-comma intercodes as a natural generalization of the notion
of k-comma codes, and then obtain several basic propertiesomma codes as consequences of those
of k-comma intercodes. In particular, we first show that Aheomma intercodes are actually codes,
and there exists an infinite inclusion hierarchy among thalfes of bifix codes-comma intercodes,
and infix codes. Moreover, we obtain several results ahezdmma intercodes, such as closure prop-
erties (Propositions 3.3, 3.4, and 3.5), synchronouslyptiecability (Proposition 3.8), and an efficient
algorithm that determines whether a regular language:is@mma intercode (Theorem 3.2).

The notion ofk-comma intercodes is defined as follows.

Definition 3.2. Fork > 0 andm > 1, a nonempty sef. C X7 is called ak-comma intercode of index
mif (LYF)mL N SHLEFm1Let = .
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Itis immediate that &-comma intercode of index 1 issacomma code, and that a 0-comma intercode
is an intercode. For any > 0, a languagel is called ak-comma intercodéf there exists an integer
m > 1 such thatL is ak-comma intercode of index. The family ofk-comma intercodes is denoted by
I

We will prove that, for anyt > 0, a k-comma intercode is actually a code. Recall that a nonempty
setL C X7 is abifix codeif L N LY+ = () (prefix code) and. N X7 L = () (suffix code).

Proposition 3.1. For anyk > 0, ak-comma intercode is a bifix code.

Proof:
Let L be ak-comma intercode of index: for somek > 0 andm > 1. Suppose thal were not a
prefix code. Then we have,w € L such thatw = uv for somev € ¥*. This implies that for some

T1, .. Ty € XF, wriwey - xpw = wry(wrs - - - zpu)v € SHLEF)MTLLYT, which contradicts
that L is ak-comma intercode of index. In the same way, we can prove thats a suffix code. Thus,
L is a bifix code. a

Similar to Lemma 2.1, we establish a relationship betwetardindes an@-comma intercodes.

Lemma 3.1. For a languagd. C ¥* and any integeré > 0 andm > 1, L is ak-comma intercode of
indexm if and only if LY* is an intercode of indexa.

The families of intercodes of different indexes form an itérproper inclusion hierarchy within
the family of bifix codes, i.e., the family of intercodes oflax m is a proper subset of the family of
intercodes of indexn + 1, for anym > 1. Moreover, the family of all the intercodes of any index is a
proper subset of the family of bifix codes [15]. In the followi we prove that such an infinite proper
inclusion hierarchy exists among the familiesse€omma intercodes of different indexes for @ny 0.
We first prove the following lemma.

Lemma 3.2. Let L be ak-comma intercode for son¥e > 0. Then any codeword i, must be longer
thank.

Proof:
Suppose: were a codeword ith, of length at most. Then, we can find words, y € >* with uz = yu.
For anym > 1, (ux)™u = (yu)™u. This contradictd. being ak-comma intercode. 0

Let I}, ,,, denote the family of:-comma intercodes of index, for anyk > 0 andm > 1. We have
the following hierarchies.

Theorem 3.1. I}y C I 2 C -+ C It C --- C Cy holds for anyk > 0.

Proof:

We first prove that, for any: > 0 andm > 1, everyk-comma intercode of index: is a k-comma
intercode of indexn + 1. Let L be ak-comma intercode of index. By definition, we havg Lx*)™ N
YH(LEF)ym=1 LY+ = (). Suppose thak were not a-comma code of index: + 1. Then(LX*)™+1 LN
SHLEF™LET #£ (. That is, there existy, ..., umy2 € L, U1,...,Umg1 € L, T1,..., Ty,
Uiy Ym € BF, andzy, 2o € ©F such thatuy 1 - - 2y 1 Umpo = 210191 - - YmUmt122-
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We claim that|z1| < |u1]| and|zz| < |um,t2| must hold. Suppose, = w2’ for somez’ € ¥*, then
X1 Tpp1Umt2 = 20191+ YmUmt122. Sincevy isin L, we havejvy| > |z1]. Then, we can easily
check thatvsys - - - vy, 11 IS @n proper infix ofuszs - - - u, 12, @ contradiction. Similarly, we can prove
that|zo| < |um42].

However, even ifiz;| < |u1| and|za| < |uma2|, we still haveviy - - Ymvme1 i0 ST usxs - - 2
U127, and hencé LY¥)m L NS+ (LEF)m=L LY+ =£ . This is a contradiction. Thus ,, € T 1.

We then prove that this inclusion is proper by giving exarapé languaged. € Iy 41 \ Ik m-
Let X = {a,b} andu; = ab*t*a for somei > 1. Then, for somery,..., 2,11 € XF, L =
{ulxl c U 1 T4 1 Um 42, U2, U3, - . . ,um+1} satisfies the COﬂditiOf\LEk)erlLﬂE+(L2k)mLE+ =
0, and hencd. € Ij, ,11. On the other hand], & Iy ,,, sinceusxs - - - upm+1 iS @ proper infix of word
ULL] - U1 Tt 1 Ut 2, AN hencgLYF)™ L N S (LEF)m 1LY+ £ (.

Lastly, we can verify thal’ = {aa, aba} is a bifix code but not &-comma intercode of index for
anyk > 0 andm > 1. Itis clear thatL’ cannot be d&-comma intercode of any index fér> 2. Then,
for eitherk = 0 or k = 1, we haveaba(a**2)"~a*(aba) € (L'SF)" L' NS+ (L/SF)ym—1L/S+ for any
m > 1. Therefore [}, ,, C C,. O

Although an intercode of index.+1 is not always an intercode of index, we show in the following
that, it is true for specific languages of the fouB*.

Lemma 3.3. For a wordu € ¥* and an integem > 1, uX* is an intercode of index: if and only if
uX¥ is an intercode of index: + 1.

Proof:

It is well known that an intercode of index is an intercode of index: + 1, but its converse implication
is not always true. We prove that it is true for specific larggsaof the formuX*. Under the assumption
thatuX* is an intercode of index: + 1, suppose thatX* were not an intercode of index. Due to
the assumption, Lemma 3.1 gives us that a k-comma intercode and hen¢e| > k. There exists
T1, e Tmg1, T, 2, € XF andy, 2 € ¥F such that

m?- )
Note that|u| + & = |y| + |z|. We consider two cases depending on the lengtl.off |y| < |u
(i.e., |z| > k), letz = uszyi1 With u = uyu, for someu,, us € XF. Thenuziuzs - - uTm—_1up =
yuzhuxh - uxl, | anduszp,u, = ux,,. With these, we have

UTIULY * * * UL UT 41 = yu:ﬂ’luacé R T

2 2
UTIULD - - ULy 1 (U ) “UT g1 = UL - - ULy 1 Up(Us Ty Up ) “Us Ty 41

_ roo / /2
= yuxjuzxy---ux,, _(uzx, ) z.

Thus,uX* would not be an intercode of index + 1, a contradiction.

Now we consider the second case wign> |u|. Recall thatu| > k. Hence we can let; = y,u,
anduys = y, whereu,, € Pref(u) andy, € Suff(y). We can see in Eq. 1 that also has the suffix,,
aszy = wu, for somew € ¥*. Thenuz)| = uyuw anduyuxs - - - uTp41 = uxh - - - ux,, z, and we have

uml(ux2)2u:v3 ULy = uysup(uwup)2u:63 S UL
= uys(upuw)Qupumg e UTa1
= y(uz))?

Even in this case, we reached the same contradiction. O

/ /
ULy - -~ UT

m-
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Bifix codes

Iy mt1 I mi1 Iyt ms1
Tom Infix codes Iim Iii1m

Ioa Iia Iy

Figure 1. The inclusion hierarchy of the families of bifix @sdk-comma intercodes, and infix codes, where
arrows indicate proper inclusion

Due to Theorem 3.1, the languade considered in the proof of Proposition 2.1 is artomma
intercode of any index. Moreover, we can verify that it is aotm-comma intercode for any index
wherem > n. On the other hand, the languafje in the same proof is am-comma intercode of any
index but not am-comma intercode for any index whete< m. Hence, the following is clear.

Proposition 3.2. For anyky, ko > 0 andmy,mo > 1, the family ofk;-comma intercodes of index,
and the family ofk,-comma intercodes of index, are incomparable unleds = k.

Furthermore, due to Corollary 2.1 and Propaosition 2.1, wenkthat, for anyk > 0, there exists an
infix code that is not &-comma code. Therefore, the family bfcomma codes is a proper subset of the
family of infix codes for anyt > 0. Thus, we can draw the proper inclusion hierarchy of the lfemof
bifix codes,k-comma intercodes, and infix codes as shown in Figure 1.

Next, we consider closure properties of the families-@bmma intercodes of index for anyk > 0
andm > 1 and the families ok-comma intercodes. Recall that a functign 7 — X% is called a
homomorphisnton X37) if h(xy) = h(z)h(y) for all z,y € ¥;. The homomorphisnf is non-erasingf
f(w) = Ximpliesw = \. Then theinverse non-erasing homomorphisgin' : ¥3 — 2*1 is defined as:
foru € 5, f~1(u) = {v € 3% | f(v) = u}, wheref is non-erasing.

Proposition 3.3. For anyk > 0 andm > 1, the families ofk-comma intercodes of index. are not
closed under union, catenation, +, complement, or nonrgrdsomomorphism. The families df-
comma intercodes are not closed under these operatioes. ditttontrast, they are closed under reversal
and intersection with an arbitrary set.

Proof:

Due to Theorem 3.1, we just need to show for each operatidrtiibaresulting languages of sormke
comma codes under the operation may not be a bifix code, or hatomnma intercode of index for
anym > 1. The union of twok-comma codegab'**a} and {ab'**ab'**a} is not a bifix code. We
can easily verify that the catenation 43 of k-comma codest = {aab't*a} andB = {ab'**aab}
is not ak-comma intercode of index for anym > 1. For anyL C X*, LT is not a bifix code. The
complement of &-comma code{ab'**a} is not a bifix code. Consider alphabets = {a,b} and
Yo = {a}, and letf : ¥7 — X% be a non-erasing homomorphism definedfés) = f(b) = a. Thenf
maps ak-comma codgab'**a, ab**a} onto {a®>T* a***}, which is not a bifix code.
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By definition, it is clear that the families é¢f-comma intercodes of index and the families ok-
comma intercodes are closed under reversal or interseesttbran arbitrary set. O

The closure properties of the family of intercodes and theilfas of k-comma intercodes fot > 1
under inverse non-erasing homomorphism are different.

Proposition 3.4. For anym > 1, the family of intercodesOtcomma intercodes) of index is closed
under inverse non-erasing homomorphism, and thereforéathiy of intercodes is closed under this
operation.

Proof:
Let L be an intercode of index overX;. Suppose the family of intercodes of indexwere not closed
under inverse non-erasing homomorphism. Then, theresexiabn-erasing homomorphisfn: 5 —

¥% such thatf ~!(L) is not an intercode of index. This implies that there existy, - - - , up, 11,01, - - ,
v € f7Y(L) such thatuy - - - upy1 € B3 v1 -+ v, X5 . Sincef is non-erasingf(u1) - -« f(ums1) €
YT f(v1)--- f(vm)XT, a contradiction. O

For any positive integek, the family of k.-comma intercodes is not closed under non-erasing homo-
morphism.

Proposition 3.5. For anyk > 1 andm > 1, the family of k-comma intercodes of index is not closed
under non-erasing homomorphism. Moreover, the family-obmma intercodes is not closed under this
operation.

Proof:

Consider alphabets; = {a} and¥y = {a,b}, and letf : ¥ — X% be a homomorphism defined as
f(a) = ab®. We can verify thal, = {ab*ab*} is ak-comma code buf ' (L) = {aa} is not ak-comma
intercode of indexn for anym > 1. O

Proposition 3.3 says that the catenation of #woomma codes is not alwayskacomma intercode.
So we investigate a condition under which the catenatiowofanguagest and B becomes &-comma
intercode under the assumption thty B is an infix code. Under this assumption, an element &f
could be a proper infix of an element.ABX* AB only in two ways as shown in Figure 2. The following
results offer additional conditions ochand B, which makeA B ak-comma code, and therefokecomma
intercode for any index, by preventing both cases in Figurera occurring.

Proposition 3.6. For two languagest, B C ¥*, if AU B is ak-comma code, thed B is ak-comma
intercode of any index.

Proof:

Suppose thatl B were not &-comma code. Then there exist, uy, us € A, v1,v2,v3 € B, andw € XF
such thatu;viwugvy = rugvzs for somer, s € ©*. Sincek-comma codes are infix coded,U B is

an infix code. Thus, we have the two cases shown in Figure 2emimless, they cause a contradiction
with AU B being ak-comma. ThusAB is ak-comma code, and therefor&cacomma intercode for any
index. O
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L ul | /Ul \w\ u2 | /U2 |
! [ [ !
A R N T
I u3 T /U3 1
Case 1l
L ul | /Ul \w\ u2 | /U2 |
VA Y | y o
I L 1 1 1 1 |
I u3 T U3 1
Case 2

Figure 2. Forui,us,us € A andvy,v2,v3 € B, if AU B is an infix code,ugvz can be a proper infix of
uv wugvy only in these two ways, where € X*. Note thatz’ andy in Case 1 can be empty at the same time,
andz andy’ in Case 2 can be empty at the same time.

Now, we consider closure properties of the familiegefpacer codes. Since the family @Epacer
codes is the family of comma-free codes, we only considerciges wherk > 1. By noticing the
languages in the proofs of Propositions 3.3 and 3.5 arelatgmacer codes, the following result is im-
mediate.

Proposition 3.7. For anyk > 1, the family of k-spacer codes is not closed under union, catenation,
+, complement, non-erasing homomorphism, or inverse masirgg homomorphism. In contrast, it is
closed under reversal and intersection with an arbitrary se

Although the definitions and previous propertiescafomma intercodes are obtained for @y 0,
we show in the following that intercodes & 0) and their generalizationg > 1) are different in terms
of synchronous decoding delay. A collés synchronously decipherabiigthere is a non-negative integer
n such that for alk,,v € ¥* andx € L™, uxv € L* impliesu,v € L*. If a codeL is synchronously
decipherable, then the smallest sucls called thesynchronous decoding delay L. It is known that,
for a codeL C X1, L is an intercode of index if and only if L is synchronously decipherable with
delay less than or equal t0[18]. In contrast, for anyt > 1, k-comma intercodes do not have such a

property.

Proposition 3.8. Let L C ¥ be ak-comma intercode of index, for somek > 1 andn > 1. ThenL
is not necessarily synchronously decipherable with dedag than or equal te.

Proof:

Consider, = {a**2b* abfab*}, which is ak-comma intercode of index 1, and hencé-gaomma
intercode of any index. For any > 1, we havea*+2b* (abFab®) = o*+1(abFab?)"ab® € L**! and
(abFab®)™ € L™, buta*+! andab® are not inL. Therefore,L is not with delayn. O

Since ak-spacer code is a comma-free code, it is synchronously leple with delay 1.

From the definition oft-comma intercodes, we can easily decide if a given regutayuage is a
k-comma intercode of index, for a givenm, by using the closure properties of regular languages. A
natural question is whether there exists a method thatstiveproblem efficiently. In the following, we
show that there exists a polynomial time algorithm to do so.

Note that Han, Salomaa, and Wood [6] introduced an algorttiahdecides if a given finite automa-
ton (FA) accepts an intercode of a given indexin m20(|Q|* + |6|?) worst-case time (Lemma 3.2
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in [6]). Furthermore, without the specification of, their algorithm can determine whether the regular
language given by an FA is an intercode for some index 1, and if the answer is positive, then it can
find the smallest index: such that the language is an intercode of ingexThe time complexity of this
algorithm isO(log|Q|(|Q|* + |Q|?|5]?)) in worst-case (Theorem 3.2 in [6]).

Due to Lemma 3.1, for a regular language given as a finite aattmmand a given integér, k£ > 0,
we can determine whethéris ak-comma intercode of a given index in m20O(|Q|? + |§|?) worst-case
time. Due to Lemma 3.2, we first check if the shortest word.d$ longer tharnk. If not, L can not
be ak-comma intercode of any index. If the answer is yes, then we gh answer to the question by
checking ifLX* is an intercode of index:. Thus, we obtain the following result.

Lemma 3.4. Given an FAA and an indexn > 1, we can determine whethdi(A) is a k-comma
intercode of indexn in m20(|Q|? + |4]?) worst-case time.

Similarly, for some giverk > 0, and without the specification of, we can determine if a language
given by an FA is a&-comma intercode of some index > 1 such that the language iskacomma
intercode of indexn but not of indexm — 1.

Lemma 3.5. Given an FAA and some: > 0, in O(log|Q|(|Q|* + |Q|?|§|?)) worst-case time, we can
determine whethek(A) is ak-comma intercode for some index > 1, and if the answer is positive we
can find the smallest index such thatl.(A) is ak-comma intercode of index.

Furthermore, without the specification bfandm, we can find allt such that a language given by
FA is ak-comma intercode of some index > 1 such that the language igcacomma intercode of index
m but not of indexm — 1. Sincek must be shorter than the shortest words in the language,svaged
to check all possiblé andk is bounded by the size of the FA.

Theorem 3.2. Given an FAA, in O(log|Q|(|Q|>+|Q|3|6|?)) worst-case time, we can determine whether
L(A) is ak-comma intercode for at > 0 and indexm > 1, and if the answer is positive we can find
the smallest index: such that.(A) is ak-comma intercode of index.

We know that a languagé cannot be &-spacer code if its shortest words are not longer than
Thus, given an FA4, to determine ifL(A) is ak-spacer code for somee > 0, we just need to find the
length! of the shortest words af(A), and then, check if. is ani-comma codeifcomma intercode of
index 1) for alli, 0 < i < k, for somek < [. Sincek-spacer codes form a proper inclusion hierarchy
with respect to their index (Proposition 2.2), we can apdbjrary search to find the larges{(if any) in
the range from 0 td — 1, and thereford. is ak’-spacer code for al)l < k¥’ < k. Based on the analysis,
we establish the following result.

Theorem 3.3. Given an FAA, in O(log|Q|(|Q|® + |Q]|6]?) worst-case time, we can determine whether
L(A) is ak-spacer code for ang > 0, and if the answer is positive we can find the largest such

4. N-k-comma intercodes

A languagelL is ann-codeif every nonempty subset df of size at most is a code. The authors of [9]
obtained several properties about the combinatorial stre®f n-codes and showed that these codes
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form an infinite proper inclusion hierarchy, i.e., for anyeigern > 1, the family of (n 4 1)-codes is

a proper subset of the family ef-codes. Later, they applied similar constructions to prafig suffix
codes, and obtainegps-codes [10]. However, unlike the hierarchyefcodes, the hierarchy of-ps-
codes collapses after only three steps, and turned out taite fin [12], the authors generalized the
notions of intercodes to those wfintercodes, established relationships among these cadeé®btained
an infinite inclusion hierarchy including both intercodesl a-intercodes.

In this section, we considet-k-comma intercodes. We show that, for any> 0, there exists an
infinite inclusion hierarchy of the families ef-k-comma intercodes aridcomma intercodes within the
family of bifix codes (Theorem 4.1). Moreover, we give a cletggzation of the family ofl -k-comma
intercodes for any: > 0 (Proposition 4.2). Lastly, we describe the familylei-comma intercodes in
terms of bordered words, unbordered words, and primitivede/@Proposition 4.3).

An n-k-comma intercode of index is a nonempty languageé C X+ such that every nonempty
subset ofL of cardinality at most is a k-comma intercode of index. For anyn > 1 andk > 0, a
languagelL is called ann-k-comma intercoddf there exists an integen > 1 such thatl is ann-k-
comma intercode of index. Let I, j ,, denote the family ofi-k-comma intercodes of index overX
and letl,, ;. o« = U,,,>1 In,k,m denote the family ofi-k-comma intercodes. We have that

Ik,m = ﬂ [n,k,m and[k = ﬂ In,k:,oo-
n>1 n>1

Moreover, the following two lemmas are clear from the deifinitof n-k-comma intercode of index.

Lemma 4.1. For any integers, m > 1, andk > 0, 1,41 km € In km-

Lemma 4.2. For any integers,, m > 1, andk > 0, Iy, C Iy g m-

In the following, for eachk > 0, we obtain several hierarchical relationships améngpmma
intercodesn-k-comma intercodes, and bifix codes.

Theorem 4.1. For anyk > 0 and everyn, m > 1, the following statements hold true:

=

. 11 1 oo @nd the family of bifix codes are incomparable.
Everyn-k-comma intercode with > 2 is a bifix code.

Iy = = o2 km = Iomy1km C -0 C Lo gm C 11 gm-
Iy C Igy1-

Inp1 S lhpo2C - ClyigmC: .

Ifn>2m+1, Likm C Ingmil-

Ifn>2andn <2m+1, I km C Inkmti-

In—i—l,k,oo - In,k,oo-

© © N o 0o M w D

Ifn>2,thenly ,, € L pm C Ly koo C Cpandly , C I, C Ip koo
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10. IQ,k,oo C 117]9700 N C.

Proof:
For (1), let us consider the two languages = {aa, aba} and Ly = {ab**'a,ab’+1abiT1a}. We can
verify that L is a bifix code but not iy ;, ., while Ly isin I, j . but not a bifix code.

For (2), assume thdt is ann-k-comma intercode of index with n > 2 for somem > 1. Suppose
that L is not a bifix code. Then, there exists two word® € L such thatu = vz for somez € . Let
L' be a subset of of sizen such that, u € L. For somer € ¥*, we have thatuz)™u € (L'S¥)™L'n
YH(L/Ek)ym=1L/¥F, a contradiction. This implies thdl, ;. ,, € Cp, and hencd,, x « € Cp.

For (3), due to Lemmas 4.1 and 4.2, it suffices to prove thabfi).1 1 m € Ir. and (i) for any
I1<n<2m+1, [n,k,m \ InJrl,k:,m ie 0.

We first prove (i). FoIL & Iy, ,,,, then there existiy, ua, -+ , U, Ums1 € L, v1,v2,- -+ , 0y € L,
L1, T2, Ty Y1 Y2, -+ Ym—1 € BF, andz, 2/ € ¥T such that

/
UITIULTY * * - UM TmUm41 = 2V1Y102Y2 - Um—1Ym—-1Um=< ,

which implies thatl & Io,, 11 x,m- HeENCe loy 1 km € L m-

Then, we prove (ii). We give a construction for some langsabg € I, km \ In+1,km- Lt
¥ = {a,b} andu; = ab**ia for i > 1. For some words:, ..., z,,1 € X*, defineL,, in the following
ways:
if n < m, then, as

m—n—i—lu

{u2,u3,---,Un+1,U15'31(u25'32) 3 "un+2},

if m < n < 2m andn is odd, then, as

)m—(n—l)/Q

{ujxjujJrl | J=1...,n— 1} U {unJrla unxn(unJrlanrl un+2}a

if m < n < 2m andn is even, then, as
. —n/2
{ijju]qu | J=1...,n— 2} U {una Un+1, unflxnflunxn(unJrlanrl)m n/ un+2}a

if n = 2m, then, as
{uj:njujJrl | j=1....n+ 1}

We can easily verify thak,, € I, jm \ In+1.km-

Statement (4) is proven in Theorem 3.1.

For (5), if L € I, i, m, then for any subsel’ of L with [L'| < n, L’ € I} ,,,. Statement (4) implies
thatL' € Iy ;p41. Thus,L € I, i1

For (6), statement (3) implies thdt, . ,, = Ii,, Sincen > 2m + 1. With statement (4) and
Lemma 4.2, we havé, . m = Ipm C L mt1 S Lnjemt1-

To show (7), due to statement (5), we just need to show thasiui is proper. We use the construc-
tion of languaged.,, in (3), and we can verify that,, 1 € I, m+1 \ Ink.m-

For (8),1,+1,k,00 € In k00 isanimmediate consequence of the definition. To prove tgLiality, we
give examples of languagéd,, € I, k.o \ In+1,k,00- We still use the same words defined previously.
For some words:y, - - - , 41 € XF, definelM,, as

{ujrjuj |7 =1,...,n} U{unp1@nprur }-
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We can verify thatVl,, € I, k.0 \ In41,k,00 fOr anyn > 1.

For (9), by definitions, the inclusions, ,,, C I, x.m € In koo @ndIy,, C I C I, 1 o are imme-
diate. The inclusion,, .. C C} follows from (2). The inequalities,, 1 ,, # In koc0: Ik,m # Ir, and
Ii, # I, 1, follow from (7), (4), and (8), respectively. The inequality;, ., # Cj follows from (10).

For (10), we havely ;oo C 11 %00 N Cy by (2) and (8). For the inequality, as an examplé,;

constructed in (8) is a language in;, - N Cy, but not inly j; . O

Cy hgi=lig2=""=I

gl ke
‘ o
- ”’ Ik
‘~:;(J>’,"/
P IQerl,k,m = Ik,m
I7 3= Ik 3

Is o= Ii2

Iy 1 !
I3 1= 1Ix

Figure 3. The inclusion hierarchy éicomma intercodes;-k-comma intercodes, and bifix codes, where arrows
indicate proper inclusion.

From statements 5, 6, and 7 in the previous theorem, we ditt@ifollowing corollary.

Corollary 4.1. For any integers. > 2 andk > 0, the following strict set inclusion hierarchy exists
In,k,l C In,k,Q c-- In,k,m C-e
This hierarchy does not exist among the families-é¢f-comma intercodes as proven below.
Proposition4.1. I 1 =lLigyo ==l gm="""
Proof:
Due to statement 5 in Theorem 4.1, it suffices to prove,,+1 € I1 km. LetL € I j m41. Then for
anyu € L, {u} is ak-comma intercode of index + 1. Lemma 3.1 implies that>* is an intercode

of indexm + 1, and this language is an intercode of indexdue to Lemma 3.3. We apply Lemma 3.1
once again to obtaif.} is ak-comma intercode of index. Therefore,L € I j, .. O
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We notice that the resulting languages in the proof of Pritipas 3.3 are neither a bifix code nor
a 1-k-comma intercode of any index. Therefore, for any> 1, k¥ > 0, andm > 1, the family of
n-k-comma intercode of index is not closed under union, catenation, +, complement, oraraging
homomorphism. Similar to the proofs of Propositions 3.4 @r] we can show that the family af
intercodes 7-0-comma intercodes) of any index is closed under inverseemasing homomorphism,
while, for anyk > 1, the family ofn-k-comma intercodes of any index is not closed under the dparat

Let @) be the set of all primitive words. It is known that the set ahfiercodes of indexn is equal
to the2? \ () for anym > 1 [12]. In the next proposition, we show a stronger result. &wrk > 0, the
family of 1-k-comma intercodes is equal 26 \ (), whereX, is defined as:

Xp ={ue Xt |uwwunStust = @ wherev € ¥},
Note that, Xy = Q.
Proposition 4.2. For anyk > 0, a languagd. is a 14-comma intercode if and only if, € 2% \ ().

Proof:
Due to Proposition 4.1, we just need to show thas a 14-comma intercode of index 1 if and only if
L € 2%k \ 0.

If L is a 14-comma intercode of index 1, then, for everye L, {u} is ak-comma intercode of
index 1. Suppose that ¢ 2Xk \ @. Then, there exists a word € L such thatw ¢ Xj. Thus,
wow N STwEt # () for somev € ¥*, a contradiction tdw} being ak-comma intercode of index 1.

For the converse implication, Iét be a non-empty subset &f,. Suppose there were a wotide L
such that{v} is not ak-comma intercode of index 1. Themyu € S +uX* for somev € ©*, which
implies thatu ¢ X}, a contradiction. O

In the following, we give a characterization af, in terms of bordered words, unbordered words,
and primitive words. It is clear that, no unary word can beXin and the set of all unbordered words
of length at least 2, denoted I5y~!, is a subset of(;. Let N1y denote the set of all non-primitive
words whose primitive root is of length at least 2. The negtleshows that no word in N,y can be
a proper infix ofuau, for anya € 3.

Lemma 4.3. N(>1) C Xj.

Proof:

Suppose that there wetec Ny such thatu ¢ X;. Letu = ¢' for some primitive wordy of length at
least 2 and > 1. Also we can letu = usau, for someu, € Suff(u), a € X, andu, € Pref(u). The
equationg’ = usau, implies that thisz is inside one and only one of thegs. Sinceg? cannot overlap
with g in any nontrivial way, either or u, is a power ofg. We only consider the case whep = ¢
for some;j > 1; the other can be proved in a similar way. Ther, = g"~/. Sinceu, € Pref(g"), this
meansg; is a power ofa, a contradiction with the primitivity of. O

Let Q@ be the set of all bordered primitive words. Any word@y can be written as = (a8)*a

for some primitive wordh3, andk > 1. We partition) g into two sets. The first on@?l), denotes
the set of all bordered primitive words that can be written aén3)*a with || = 1. The second
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one is simply the complemer@gl) =Q@p\ Qfgzl). For examplegaabaa, abbabba € le) while

aabaabaa € QSB:”. This is because even though we can regarthabaa as afa with o = a and
3 = abaaba, we can also consider it 48’ 5')%a/, wherea/ = aa andj’ = b.

The next result shows that every bordered primitive worithat can only be written asv3)*« such
that o5 is primitive, £k > 1, and|3| cannot be 1, cannot be a proper infix wéw for anya € X.
Formally, we have

Lemma 4.4. le) C X;.

Proof:

Suppose that there exisisc butu ¢ X;. This means that = uau, for someu, € Suff(u)
andu, € Pref(u) anda,b € 3 such thatu = u,bus. The Parikh vector [14] of a word contains the
occurrences of each letter i Since the Parikh vectors af, andu, together contain the same number
of occurrences of each letter inau, andu,bu,, we can obtaim = b and hence: = uyaus. Due to a
well known result mentioned in Section 1, there exisB € X* such thatsa = (a3)* andu, = a(Ba)?

for somei > 1 andj > 0 and B« is primitive. Thenua = uyausa = uya(aB)’ = a(Ba)™*7a, and
hence the suffix of lengtfw S| + 1 of ua is baf = faa. Again, based on the Parikh vector of this suffix,
b = a,ie.,aaf = Baa. Note that|3| > 2 because: € le) and hence: is a proper suffix ofs.
Therefore, this equation means titat overlaps with its square in a nontrivial way, a contraditctieith

its primitivity. O

(>1)
B

The next result states that any wardthat is either a unary word or a bordered primitive word that
can be written aga3)* o with o3 being primitive,k > 1, and|3| = 1, can be a proper infix abaw for
someqa € X,

Lemma 4.5. (Q5 Y U{af |aex,i>1})NX, =0.

Proof:

As mentioned above, any unary word cannot b&in Letw € QSB:U. By definition, there exist: € X+
andb € X such thainb is primitive andw = (ab)*« for somek > 1. Thenw is a proper infix ofwbw,
and hencev ¢ X;. O

Note that
S = Ny Ufaa®|a € SYUS VT U QT ubY.

non-primitive primitive

As a consequence of Lemmas 4.3, 4.4, and 4.5, we have theifodigroposition.

Proposition 4.3. X; = U~ U le) U N(s1)-

This proposition, by using several classic notions, charaes the set of all words that cannot
be a proper infix ofuau for anya € X, as being either unbordered words of length greater tham 1, o
bordered primitive words of the formxﬁ)’“a such thatg is primitive, £ > 1, and|3| cannot be 1, or
non-primitive words whose primitive root has length lontiean 1.
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5. Conclusion

In this paper, we introduced the notion/stomma codes, a generalization of comma-free codes, as well
as the notion of-spacer codes, arldcomma intercodes.

We established some relationships among families-obmma codesk-comma intercodes, infix
codes, and bifix codes. Also, we obtained several closuneepties of families of-comma intercodes,
and showed that we can determine efficiently whether a re¢artiguage given by a finite automaton is
ak-comma intercode of index for anyk > 0 andm > 1, or ak-spacer code for any > 0.

Lastly, we introduced the notion ef-k-comma intercodes and obtained several hierarchical rela-
tionships among families of-k-comma intercodes. Moreover, we gave a characterizatidimecfamily
of 1-k-comma intercodes for anly > 0, and describe the family af-1-comma intercodes in terms of
several classic notions.

Future work includes experimental testing of, e.g., whetenot the language of genes of a certain
organism is indeed A-spacer code for some valée
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