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ABSTRACT

We present the quantum and classical mechanics formalisms for a particle with a position-dependent mass in the context of a deformed
algebraic structure (named κ-algebra), motivated by the Kappa-statistics. From this structure, we obtain deformed versions of the posi-
tion and momentum operators, which allow us to define a point canonical transformation that maps a particle with a constant mass
in a deformed space into a particle with a position-dependent mass in the standard space. We illustrate the formalism with a parti-
cle confined in an infinite potential well and the Mathews–Lakshmanan oscillator, exhibiting uncertainty relations depending on the
deformation.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014553

I. INTRODUCTION

Minimum length scales are of crucial importance in several areas of physics, such as quantum gravity, string theory, and rela-
tivity, fundamentally due to the techniques developed for removing divergences in field theories maintaining the parameters lengths
as universal constants of the theory in question (for a review, see, for instance, Ref. 1). In this sense, the seek for these minimum
lengths in quantum mechanics has been translated into generalizations of the standard commutation relationship between the posi-
tion and the momentum.2 Further studies in noncommuting quantum spaces led to a Schrödinger equation with a position-dependent
effective mass (PDM).3 Along the last decades, the PDM systems have attracted attention because of their wide range of applicability
in semiconductor theory,4–7 nonlinear optics,8 quantum liquids,9,10 inversion potential for NH3 in density functional theory,11 particle
physics,12 many body theory,13 molecular physics,14 Wigner functions,15 relativistic quantummechanics,16 superintegrable systems,17 nuclear
physics,18 magnetic monopoles,19,20 astrophysics,21 nonlinear oscillations,22–31 factorization methods and supersymmetry,32–36 coherent
states,37–39 etc.

Complementarily, it has been found that the mathematical foundations of the PDM systems rely on the assumption of the non-
commutativity between the mass operator m(x̂) and the linear momentum operator p̂, thus giving place to the ordering problem for the
kinetic energy operator.4,40–47 In addition, the development of generalized translation operators motivated the introduction of a position-
dependent linear momentum for characterizing a particle with a PDM7,48–56 that can be related to a generalized algebraic structure (called
q-algebra57) inherited from the mathematical background of nonextensive statistics.58 Concerning these formal structures, the κ-deformed
statistics, originated from the κ-exponential and κ-logarithm functions, allows us to develop an algebraic structure, called κ-algebra,59–74

with similar properties to those of the q-algebra. In particular, the κ-statistics has been employed in plasma physics,75 astrophysics,76
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paramagnetic systems,77 nonlinear diffusion,78 social systems,79 complex networks,80 analysis of human DNA,81 blackbody radiation,82

quantum entanglement,83 etc.
In this work, we employ the κ-algebra for generalizing classical and quantum mechanics with the aim of studying the properties

of the resulting noncommuting space originated by the deformation. Between these properties, we found that the κ-deformed space,
classical and quantum, allows us to characterize a PDM system with the mass being univocally determined by the κ-algebra. The
work is organized as follows: In Sec. II, we review the properties of the κ-algebra that are used in the rest of the article. Next, we
present in Sec. III the dynamics resulting from a generic PDM, and then, we specialize with the mass function m(x) associated with
the κ-algebra. Here, we obtain the Schrödinger equation associated with the κ-derivative, and we show that all the standard proper-
ties remain to be valid in the deformed structure such as the continuity equation, the wave-function normalization, and the classical
limit. In Sec. IV, we illustrate our proposal with a particle in an infinite potential well. In Sec. V, we use the κ-deformed formalism
to revisit the problem of the Mathews–Lakshmanan oscillator.22–31 Finally, in Sec. VI, we draw some conclusions and outline future
perspectives.

II. REVIEW OF THE κ-ALGEBRA

The κ-statistics emerges from a generalization of the Boltzmann–Gibbs entropy derived by means of a kinetic interaction principle
that allows us to characterize nonlinear kinetics in particle systems (see, for instance, Ref. 59 for more details). In the last two decades, several
theoretical developments have shown that the κ-formalism preserves features such as Legendre transform in thermodynamics,62 H-theorem,63

Lesche stability, and64 composition law of the κ-entropy,65 among others. The mathematical background of the κ-deformed formalism is
based on generalizations of the standard exponential and logarithm functions, from which it is possible to introduce deformed versions
of algebraic operators and calculus,59–61 trigonometric and hyperbolic functions,66,67 Fourier transform,68 Gaussian law of error,69 Stirling
approximation and Gamma function,70 Cantor set,71 Lambert W-function,72 information geometry,73 and other possible exponential and
logarithm functions.74

More specifically, the so-called κ-exponential is a deformation of the ordinary exponential function, defined by59–61

expκu ≡ (κu +√1 + κ2u2)1/κ ≙ exp(1
κ
arcsinh(κu)), (κ ∈ R). (1)

The inverse function of the κ-exponential is the κ-logarithm, given by

lnκu ≡
uκ − u−κ

2κ
≙
1

κ
sinh(κ ln u), (u > 0). (2)

In the limit κ→ 0, the ordinary exponential and logarithmic functions are recovered, i.e., exp0 x ≙ exp x and ln0 x ≙ ln x. These functions

satisfy the properties expκ(a)expκ(b) ≙ expκ(a
κ
⊕ b), expκ(a)/expκ(b) ≙ expκ(a κ

⊖ b), lnκ(ab) ≙ lnκ(a)
κ
⊕ lnκ(b), and lnκ(a/b) ≙ lnκ(a) κ

⊖ lnκ(b),

where the symbol
κ
⊕ represents the κ-addition operator defined by a

κ
⊕ b ≡ a

√
1 + κ2b2 + b

√
1 + κ2a2 and

κ
⊖ represents the κ-subtraction,

a
κ
⊖ b ≡ a

√
1 + κ2b2 − b

√
1 + κ2a2.59,66

A κ-deformed calculus has been introduced in Ref. 59 from the deformed differential

dκu ≡ lim
u′→u

u
′
κ
⊖u ≙

du√
1 + κ2u2

+O((du)
2
). (3)

The definition of a deformed variable uκ (also named deformed κ-number) is

uκ ≡
1

κ
arcsinh(κu) ≙ ln∥expκ(u)∥, (4)

which implies dκu ≙ duκ, i.e., the deformed differential of an ordinary variable u can be rewritten as with the ordinary differential of a deformed
variable uκ. In this way, one defines the κ-derivative operator by

Dκ f (u) ≡ lim
u′→u

f (u′) − f (u)

u′
κ
⊖u

≙

√
1 + κ2u2

d f (u)

du
, (5)

with the κ-exponential being an eigenfunction of Dκ, Dκ expκ u ≙ expκ u. Similarly, the dual κ-derivative is defined by
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D̃κ f (u) ≡ lim
u′→u

f (u′)
κ
⊖ f (u)

u′ − u
≙

1√
1 + κ2∥ f (u)∥2

d f (u)

du
, (6)

which satisfies D̃κ lnκu ≙ 1/u. These operators obey D̃κx(y) ≙ ∥Dκy(x)∥−1. In particular, we have Dκu ≙ (D̃κu)
−1
≙

√
1 + κ2u2. From Eqs. (5)

and (6), we see that the standard derivative is recovered as κ→ 0. The deformed derivative operator (5) can be seen as the variation of
the function f (u) with respect to a nonlinear variation of the independent variable u, i.e., Dκ f (u) ≙ df (u)/duκ. On the other hand, the dual
deformed derivative operator (6) is the rate of change of a nonlinear variation of the function f (u) with respect to the standard variation of
the independent variable u, D̃κ f (u) ≙ dκ f (u)/du. The deformed second derivatives satisfy

D
2
κ f (u) ≙

√
1 + κ2u2

d

du
[√1 + κ2u2

d f

du
] (7)

and

D̃
2
κ f (u) ≙

1√
1 + κ2∥ f (u)∥2

d

du

⎧⎪⎪⎨⎪⎪⎩
1√

1 + κ2∥ f (u)∥2
d f

du

⎫⎪⎪⎬⎪⎪⎭. (8)

These rules can be extended to deformed derivatives of higher order.

III. κ-DEFORMED DYNAMICS OF A SYSTEM WITH POSITION-DEPENDENT MASS

A. κ-Deformed classical formalism

Let us first consider the problem of a particle with a position-dependent mass (PDM) m(x) in 1D for the classical formalism. The
Hamiltonian of the system is

H(x, p) ≙
p2

2m(x)
+ V(x), (9)

whose the linear momentum is p ≙ m(x)ẋ, which leads to the equation of motion

m(x)ẍ +
1

2
m
′

(x)ẋ
2
≙ F(x), (10)

with F(x) ≙ −dV/dx being the force acting on the particle, where ẋ ≙ dx/dt, ẍ ≙ d2x/dt2, and m′(x) ≙ dm/dx give velocity, acceleration, and
mass gradient, respectively. The point canonical transformation (PCT)

η ≙ ∫
x
√

m(y)

m0
dy and Π ≙

√
m0

m(x)
p (11)

maps the Hamiltonian (9) of a particle with the PDM m(x) in the usual phase space (x, p) into another Hamiltonian of a particle with a
constant massm0 represented in the deformed phase space (η,Π),

K(η,Π) ≙
1

2m0
Π

2
+U(η), (12)

where U(η) ≙ V(x(η)) is the potential expressed in the deformed space-coordinate η. Whenm(x) ≙ m0, both representations coincide.
Let us consider, in particular, the mass function

m(x) ≙
m0

1 + κ2x2
, (13)

where the parameter κ has units of inverse length and controls the dependence of the mass with position, where κ ≙ 0 corresponds to the
standard case. Thus, the equation of motion (10) becomes

m0[ ẍ

(1 + κ2x2)
−

κ2xẋ2

(1 + κ2x2)2
] ≙ F(x). (14)
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This equation can be compactly rewritten in the form of a deformed Newton’s second law,

m0D̃
2
κx(t) ≙ F(x). (15)

Moreover, for the mass function (13), the κ-deformed spatial coordinate and its conjugated linear momentum are

η ≙
1

κ
arcsinh(κx) ≡ xκ (16a)

and

Π ≙

√
1 + κ2x2p ≡ Πκ, (16b)

with Poisson brackets {xκ,Πκ}x,p ≙ 1. The deformed displacement dκx of a particle with the non-constant mass m(x), given in Eq. (13), is

mapped into the usual displacement dxκ in a deformed space xκ, provided with a constant massm0: dκx ≡ (x + dx)
κ
⊖ x ≙ dx/√1 + κ2x2, up to

first order. The time evolution of the system is governed by the dual derivative, i.e. D̃κx(t) ≙ ẋ/√1 + κ2x2.

B. κ-Deformed quantum formalism

In the quantization of a PDM system, an ordering ambiguity arises for defining the kinetic energy operator in terms of the mass operator
m(x̂) and the linear momentum p̂. There are several ways to define a Hermitian kinetic energy operator, and a general two-parameter form is
given by

T̂ ≙
1

4
{∥m(x̂)∥−αp̂∥m(x̂)∥−1+α+βp̂∥m(x̂)∥−β + ∥m(x̂)∥−β p̂∥m(x̂)∥−1+α+βp̂∥m(x̂)∥−α}. (17)

For more details, see the discussions, for instance, of von Roos,4 Lévy-Leblond,40 and others. Among many particular cases in the literature,
we point out the proposals by Ben Daniel and Duke (α ≙ β ≙ 0),41 Gora and Williams (α ≙ 1,β ≙ 0),42 Zhu and Kroemer (α ≙ β ≙ 1

2
),43 and

Li and Kuhn (α ≙ 1
2
,β ≙ 0).44 Morrow and Brownstein45 showed that only the case α ≙ β satisfies the conditions of continuity of the wave-

function at the boundaries of a heterojunction in crystals. In particular, Mustafa and Mazharimousavi46 showed that the case α ≙ β ≙ 1
4
allows

the mapping of a quantum Hamiltonian with a PDM into a Hamiltonian with a constant mass by means a PCT. More precisely, considering
the quantum Hamiltonian

Ĥ(x̂, p̂) ≙
1

2
∥m(x̂)∥− 1

4 p̂∥m(x̂)∥− 1
2 p̂∥m(x̂)∥− 1

4 + V(x̂), (18)

the Schrödinger equation ih̵ ∂

∂t
∣Ψ⟩ ≙ Ĥ∣Ψ⟩ in the position representation {∣x̂⟩} reads

ih̵
∂Ψ(x, t)

∂t
≙ (− h̵2

2m0

4

√
m0

m(x)

∂

∂x

√
m0

m(x)

∂

∂x
4

√
m0

m(x)
+ V(x))Ψ(x, t), (19)

with Ψ(x, t) ≙ ψ(x)e−iEt/h̵ and E being the eigenvalue corresponding to the eigenfunction ψ(x) of Ĥ. It is straightforwardly verified that the
probability density ρ(x, t) ≡ ∣Ψ(x, t)∣2 satisfies the continuity equation

∂ρ(x, t)

∂t
≙ −

∂J(x, t)

∂x
, (20)

where the probability current is

J(x, t) ≡ Re{Ψ∗(x, t)( h̵
i

∂

∂x
)[ 1

m(x)
Ψ(x, t)] }. (21)

Equation (19) can be conveniently rewritten by means of the transformation Ψ(x, t) ≙ 4
√
m(x)/m0Φ(x, t) as

ih̵
∂Φ(x, t)

∂t
≙

⎡⎢⎢⎢⎢⎣−
h̵2

2m0
(√ m0

m(x)

∂

∂x
)2 + V(x)

⎤⎥⎥⎥⎥⎦Φ(x, t). (22)
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Let us consider, in particular, the mass function (13). The modified wave-function Φ(x, t) ≙
4
√
1 + κ2x2Ψ(x, t) obeys a κ-deformed

Schrödinger wave-equation

ih̵
∂Φ(x, t)

∂t
≙ −

h̵2

2m0
D

2
κΦ(x, t) + V(x)Φ(x, t), (23)

withDκ ≙

√
1 + κ2x2∂x, which is the analog of the κ-derivative operator (5). Using Eq. (8), we obtain

ih̵
∂Φ(x, t)

∂t
≙ −

h̵2(1 + κ2x2)

2m0

∂
2
Φ(x, t)

∂x2
−
h̵2κ2x

2m0

∂Φ(x, t)

∂x
+ V(x)Φ(x, t). (24)

Equation (23) is indeed equivalent to a Schrödinger-like equation for Φ(x, t) with the non-Hermitian Hamiltonian operator

Ĥκ ≙
1

2m0
p̂
2
κ + V(x̂), (25)

where p̂κ ≡ −ih̵Dκ ≙

√
1 + κ2x̂2p̂ stands for a κ-deformed non-Hermitian momentum operator and obeys the commutation relation

∥x̂, p̂κ∥ ≙ ih̵√1̂ + κ2x̂2. (26)

This leads to the generalized uncertainty principle ΔxΔpκ ≥
h̵
2
⟨√1 + κx̂2⟩. We notice that if the standard wave-function Ψ(x, t) is normalized,

then Φ(x, t) is normalized under a κ-deformed integral. Indeed, we have

∫
x f

xi
Ψ
∗

(x, t)Ψ(x, t)dx ≙ ∫
x f

xi
Φ
∗

(x, t)Φ(x, t)dκx ≙ 1. (27)

Besides, we obtain the κ-deformed continuity equation

∂%(x, t)

∂t
+DκJ (x, t) ≙ 0, (28)

with %(x, t) ≙ ∣Φ(x, t)∣2 and
J (x, t) ≡ Re{Φ∗(x, t)( h̵

i
Dκ)[Φ(x, t)

m0
] }. (29)

It is worth noting that there is an equivalence between the Schrödinger equation for the Hermitian system (18) with the mass func-
tion m(x) given by (13) and the non-Hermitian one (25) expressed in terms of a κ-deformed momentum operator, where Ψ(x, t) must be

replaced by Φ(x, t) ≙
4
√
1 + κ2x2Ψ(x, t). Moreover, we see that in the description of quantum systems with the mass function (13) in terms

of the modified wave-function Φ(x, t), the usual derivative and integral with respect to the variable x are replaced by their corresponding κ-
deformed versions. Analogous features apply in the classical formalism, with the motion equation expressed in terms of the dual κ-derivative
[see Eq. (15)].

Using the change of variable x → xκ ≙ ln∥expκ(x)∥ [see Eq. (4)], Eq. (23) can be rewritten in the κ-deformed space as

ih̵
∂Λ(xκ, t)

∂t
≙ −

h̵2

2m0

∂
2
Λ(xκ, t)

∂x2κ
+U(xκ)Λ(xκ, t), (30)

with Λ(xκ, t) ≙ Φ(x(xκ), t) and U(xκ) ≙ V(x(xκ)) being a modified potential in terms of the original one V and the inverse transformation
x ≙ x(xκ), respectively. Therefore, the wave-equation for Ψ(x, t) of a system with a PDM (13) with the potential V(x) in the standard space{∣x̂⟩} is mapped into an equation for Λ(xκ, t) with the potential U(xκ) ≙ V(x(xκ)) in the deformed space {∣x̂κ⟩}. The quantum Hamiltonian
associated with the Schrödinger wave-equation (30) is K̂(x̂κ, Π̂κ) ≙

1
2m0

Π̂
2
κ +U(x̂κ), which can be obtained by applying the point canonical

transformation (x̂, p̂)→ (x̂κ, Π̂κ) on the quantum Hamiltonian (18), where

x̂κ ≙
1

κ
arcsinh(κx̂), (31a)

Π̂κ ≙
4
√
1 + κ2x̂2 p̂

4
√
1 + κ2x̂2 ≙

1

2
(p̂

†
κ + p̂κ), (31b)
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with ∥x̂κ, Π̂κ∥ ≙ ih̵1̂. In addition, we have that Π̂κ is in accordance with the definition of a PDM pseudo-momentum operator introduced in
Ref. 46. Thus, the dynamical variables (11) are the classical counterparts of the Hermitian operators (31).

From the eigenvalue equation Π̂κ∣k⟩ ≙ h̵k∣k⟩, the eigenfunctions in the representation {∣x̂⟩} result in
ψk(x) ≙

C
4
√
1 + κ2x2

∥expκ(x)∥ik
≙

C
4
√
1 + κ2x2

exp[ ik
κ
arcsinh(κx)], (32)

where C is a constant. As in the non deformed case (κ ≙ 0), the function ψk(x) is not normalizable. Even though, a deformed wave-packet can
be defined from the κ-deformed Fourier transform68

ψ(x) ≙
1

4
√
1 + κ2x2

∫
+∞

−∞

g(k)e
ik
κ
arcsinh(κx)

dk, (33)

where g(k) is the distribution function of the wave-vectors k. It is verified straightforwardly that the corresponding wave-packet of the operator

p̂κ is φ(x) ≙ ∫ +∞
−∞

g(k)∥expκ(x)∥ikdk. The wave-packet in the representation of the deformed space is ϕ(xκ) ≙ φ(x(xκ)) ≙
4
√
1 + κ2x2ψ(x(xκ))

≙ ∫ +∞
−∞

g(k)eikxκdk. From the Plancherel theorem, we have

g(k) ≙
1

2π∫
+∞

−∞

ϕ(xκ)e
−ikxκdxκ

≙
1

2π∫
+∞

−∞

φ(x)∥expκ(x)∥−ikdκx
≙

1

2π∫
+∞

−∞

ψ(x)
4
√
1 + κ2x2

e
−

ik
κ
arcsinh(κx)

dx. (34)

IV. PARTICLE IN AN INFINITE POTENTIAL WELL

In Secs. IV and V, we illustrate the quantum and classical κ-deformed formalism with two paradigmatic examples.

A. Classical case

First, we consider the problem of a particle confined in an infinite square potential well between x ≙ 0 and x ≙ L. If H(x, p) ≙ E is

the energy of the classical particle, then the linear momentum is p(x) ≙ ±
√
2m0E/(1 + κ2x2) and the velocity is v(x) ≙ ±v0

√
1 + κ2x2, with

v0 ≙
√
2E/m0. For v(0) ≙ v0 and 0 < x < L, the position as a function of time is x(t) ≙ lnκ∥exp(v0t)∥. Hence, the classical probability density

ρclassic(x)dx ∝ dx/v to find the particle within the interval ∥x, x + dx∥ is
ρclassic(x)dx ≙

κ

ln(κL +√1 + κ2L2)
dx√

1 + κ2x2
, (35)

from which the uniform distribution ρclassic(x) ≙ 1/L is recovered when κ→ 0. The first and the secondmoments of the position and the linear
momentum for the classical distribution (35) are

x

L
≙

√
1 + κ2L2 − 1

κL ln(κL +√1 + κ2L2) , (36a)

x2

L2
≙

1

2κ2L2

⎡⎢⎢⎢⎢⎢⎣
κL
√
1 + κ2L2

ln(κL +√1 + κ2L2) − 1
⎤⎥⎥⎥⎥⎥⎦
, (36b)

p ≙ 0, (36c)

p2 ≙ 2m0E

⎡⎢⎢⎢⎢⎢⎣
κL√

1 + κ2L2 ln (κL +√1 + κ2L2)
⎤⎥⎥⎥⎥⎥⎦
. (36d)
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We can verify that limκ→0x ≙ L/2, limκ→0x2 ≙ L
2/3, and limκ→0p2 ≙ 2m0E. From the change of variable x → xκ, the PDM particle confined in

an interval ∥0,L∥ is mapped into a particle with a constant mass in ∥0,Lκ∥, where Lκ ≙ arcsinh(κL)/κ corresponds to the length of the box in
the deformed space.

B. Quantum case

Let us now analyze the problem in the κ-deformed quantum formalism. Considering Φ(x, t) ≙ φ(x)e−iEt/h̵, this leads to the time-

independent Schrödinger-like equation − h̵2

2m0
D2
κφ(x) ≙ Eφ(x), whose eigenfunctions are given by

φn(x) ≙
4
√
1 + κ2x2ψn(x) ≙ Cκ sin[kκ,n

κ
arcsinh(κx)] (37)

for 0 ≤ x ≤ L, and φn(x) ≙ 0 elsewhere, with C2
κ ≙ 2/Lκ and kκ,n ≙ nπ/Lκ, where n is an integer number and Lκ ≙ κ

−1arcsinh(κL). The energy
levels corresponding to these eigenfunctions are

En ≙
h̵2π2n2κ2

2m0arcsinh
2(κL)

≙ ε0[ κL

arcsinh(κL)
]2n2, (38)

with ε0 ≙ h̵
2π2/(2m0L

2). The effect of the deformation parameter κ corresponds to a contraction of the space (Lκ < L for κ ≠ 0), and conse-
quently, this leads to an increase in the energy levels of the particle. In Fig. 1, we illustrate the energy levels of the particle as a function of the
quantum number for different values of κ.

The probability densities of the stationary states in the position space are

ρn(x) ≙ ∣ψn(x)∣2 ≙ 2κ

arcsinh(κL)

1√
1 + κ2x2

sin
2[kκ,n

κ
arcsinh(κx)]. (39)

Substituting Eq. (37) into the inverse Fourier transform (34), we obtain the eigenfunctions for the particle confined in a box in momentum
space k,

gn(k) ≙ n

√
Lκ

2
[1 + (−1)n+1e−ikLκ

(kLκ)2 − (nπ)2
]. (40)

Consequently, its associated probability density results in

γn(k) ≙ ∣gn(k)∣2 ≙ n2Lκ 1 − cos(nπ) cos(kLκ)∥(kLκ)2 − (nπ)2∥2 . (41)

Interestingly, the eigenfunctions (40) and the probability densities (41) have the same form as in the case of a particle with a constant mass
but with Lκ instead of L. In Fig. 2, we plot the eigenfunctions ψn(x) and their probability densities in the coordinate and momentum spaces,

FIG. 1. Energy levels of a particle with the PDM m(x) = m0/(1 + κ2x2) in an infinite square well of size L, for different quantum numbers n and values of κ, given in terms of

the nondeformed fundamental energy ε0 =
̵h2π2

2m0L2 . The values of the energies are discrete, and the solid lines help in guiding the eyes.
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FIG. 2. Eigenfunctions ψn(x) [(a)–(c)], probability densities ρn(x) = ∣ψn(x)∣2 [(d)–(f)], and γn(k) = ∣gn(k)∣2 [(g)–(i)] for a particle with the PDM m(x) = m0/(1 + κ2x2) and
confined in an infinite square well for different parameters κL (the usual case, κL = 0, is shown for comparison). [(a), (d), and (g)] n = 1 (ground state), [(b), (e), and (h)] n = 2
(first excited state), and [(c), (f), and (i)] n = 3 (second excited state).

ρn(x) and γn(k), for the three states of lower energy and for some values of the deformation parameter κ. We can see that as κ increases, ρn(x)
becomes more asymmetric and γn(k) spread more along its domain. In Fig. 3, we show that the average value of the quantum probability
density ρn(x) approaches to the classical probability density ρclassic(x) (illustrated here for n ≙ 20) in accordance with the correspondence
principle. The distribution γn(k) is also shown for the same state n ≙ 20.

The eigenfunctions (37) constitute an orthonormal set of functions that obey the inner product ∫ L
0 φn(x)φn′ (x)dκx ≙ δn,n′ so that any

continuous function in the interval ∥0,L∥ can be written as a linear combination

f (x) ≙
∞

∑
n=1

cn sin[nπ arcsinh(κx)
arcsinh(κL)

], (42)

FIG. 3. Probability densities (a) ρn(x) = ∣ψn(x)∣2 and (b) γn(k) = ∣gn(k)∣2 of a particle with the PDM confined in an infinite square well for κL = 3.0 and for the eigenstate

n = 20. In panel (a), the classical distribution [Eq. (35)] is shown for comparison, and the dotted upper line is 2κL/∥arcsinh(κx)
√

1 + κ2x2∥.
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with the coefficients cn of the series given by

cn ≙
2κ

arcsinh(κL)∫
L

0
f (x) sin[nπ arcsinh(κx)

arcsinh(κL)
]dκx. (43)

Concerning the Sturm–Liouville problem, Braga and Costa Filho54 introduced a Fourier series in terms of deformed trigonometric functions
that emerge from the formalism studied in Ref. 48. Likewise, we have that the κ-deformed Fourier series (42) has the same structure like the
one proposed by Scarfone in Ref. 66, considering the κ-deformed mathematics. For the particular case f (x) ≙ 1, we have f (x) ≙ limN→∞ f N(x)
with

f N(x) ≙
4

π

N

∑
l=0

1

2l + 1
sin[(2l + 1)π

arcsinh(κx)

arcsinh(κL)
]. (44)

Similarly, as was done in Ref. 54, we consider as a quantitative measure of the error the function defined by R(N) ≙ ∫ L
0 ∥ f (x) − f N(x)∥2dκx. In

Fig. 4, we show that when N becomes large, the partial sum f N(x) converges to f (x) ≙ 1, as well as R(N) goes to zero.
Expected values of x̂ and Π̂κ for stationary states can be obtained from usual internal products of the eigenfunctions ψn(x) or, equiv-

alently, from the deformed internal products of the modified eigenfunctions φ(x), i.e., ⟨x̂l⟩ ≙ ∫ ψ∗n (x)x̂lψn(x)dx ≙ ∫ φ∗n (x)x̂lφn(x)dκx and⟨Π̂l
κ⟩ ≙ ∫ ψ∗n (x)Π̂l

κψn(x)dx ≙ ∫ φ∗n (x)p̂lκφn(x)dκx,, in which l is a positive integer. The expectation values ⟨x̂⟩, ⟨x̂2⟩, ⟨p̂⟩, and ⟨p̂2⟩ for the
eigenstates of the particle in a one dimensional infinite potential well are, respectively,

⟨x̂⟩
L
≙

(
√
1 + κ2L2 − 1)(2πn)2

κL ln(κL +√1 + κ2L2)∥ln2(κL +√1 + κ2L2) + (2πn)2∥ , (45a)

⟨x̂2⟩
L2
≙

1

2κ2L2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κL
√
1 + κ2L2(nπ)2

ln (κL +√1 + κ2L2)∥ln2(κL +√1 + κ2L2) + (nπ)2∥ − 1
⎫⎪⎪⎪⎬⎪⎪⎪⎭, (45b)

⟨p̂⟩ ≙ 0, (45c)

⟨p̂2⟩ ≙ h̵2[k2κ,nI1,0(1) + κ2(1
2
I1,0(1) −

5

4
I1,1(1) − I3,0(1) + 5I3,1(1))], (45d)

with Ij,l(z) ≙ 2∫ z
0 sech

2j(λκu)tanh
2l(λκu)sin

2(nπu)du and λκ ≙ κLκ. The analytical form of the functions Ij,l(z) is expressed by means of the
Appell hypergeometric function of two variables (http://functions.wolfram.com/ElementaryFunctions/Sech/21/01/14/01/10/01/0001/), and
due to its complicated expression, it becomes convenient to write the expectation value (45d) in terms of Ij,l(z).

We can see that in the limit n→∞, Eq. (45) coincides with Eq. (36), which expresses the consistency of the classical limit. We can also

verify that in the limit κ→ 0, we recover the usual results ⟨x̂⟩→ L
2
, ⟨x̂2⟩→ L2

3
−

L2

2n2π2
, and ⟨p̂2⟩→ h̵2k2n with En ≙ h̵

2k2n/2m0 (kn ≡ k0,n ≙ nπ/L).
It is straightforward to verify that the expectation values of the pseudo-momentum satisfy

FIG. 4. (a) Partial sum f N(x) (κ-deformed Fourier series) [Eq. (44)] for N = 1, 2, 5, and 50. (b) Mean square error of the approximation R(N) for the range from N = 1–50
(in the log–log graph inset: N = 1–103).
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FIG. 5. Uncertainty in the function of κL of (a) the position Δx and (b) the momentum Δp along with the uncertainty relations [(c) and (d)] ΔxΔp and ΔxΔk for a particle with
a PDM confined in a box for the ground state and the first two excited ones.

⟨Π̂κ⟩ ≙ h̵⟨k⟩ ≙ 0, (46a)

⟨Π̂2
κ⟩ ≙ h̵⟨k2⟩ ≙ (nπh̵

Lκ
)2, (46b)

with ⟨Π̂2
κ⟩ and ⟨p̂2⟩ different for κ ≠ 0. In Fig. 5, we plot the uncertainty relation for different values of κ. Once the operators x̂ and p̂ are

Hermitian and canonically conjugated, the uncertainty relation is satisfied for different values of κ, i.e., ΔxΔp ≥ h̵
2
. We can also see that the

position and wave-vector satisfy the uncertainty relation ΔxΔk ≥ 1
2
. In Figs. 5(c) and 5(d), the minimum of the uncertainty relation is attained

for κ ≙ 0. Similar features have been observed in other system provided with a PDM. In Ref. 56, the Cramér–Rao, Fisher–Shannon, and
LópezRuiz–Mancini–Calbet (LMC) complexities have been investigated for the problem of a particle with a PDM and confined in an infinite
potential well within the framework of the q-algebra. In the context of these complexities, the conjugated variables exhibit a behavior similar to
the standard Heisenberg uncertainty principle. For different states, the uncertainty relation associated with the Cramér–Rao, Fisher–Shannon,
and LMC complexities exhibits a minimum lower bound when the mass of the particle is constant (i.e., with a null space deformation). This
result is expectedly reasonable since the q-exponential58 and the κ-exponential functions present a similar behavior when their deformation
parameters recover the standard exponential (q→ 1 and κ→ 0).

V. κ-DEFORMED OSCILLATOR WITH POSITION-DEPENDENT MASS

A. κ-Deformed classical oscillator

Now, we consider a particle with the position-dependent mass (13) subjected to the potential V(x) ≙ 1
2
m(x)ω2

0x
2. This problem is known

as the Mathews–Lakshmanan oscillator,22 where the classical Hamiltonian is given by

H(x, p) ≙
(1 + κ2x2)p2

2m0
+

m0ω
2
0x

2

2(1 + κ2x2)
. (47)

The deformed second Newton’s law (15) for this oscillator becomes

D̃
2
κx(t) ≙ −

ω2
0x

(1 + κ2x2)2
, (48)
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or more explicitly,

(1 + κ
2
x
2
)ẍ + ω

2
0x − κ

2
ẋ
2
x ≙ 0. (49)

The solution of Eq. (48) [or equivalently (49)] is

x(t) ≙ Aκ cos(Ωκt + δ0), (50)

with Aκ ≙ A0/√1 − κ2A2
0 being the amplitude of the oscillation, Ωκ ≙ ω0

√
1 − κ2A2

0 being the angular frequency, and A2
0 ≙ 2E/m0ω

2
0. The

potential of this oscillator has a finite well depth Wκ ≙ m0ω
2
0/2κ2. Since E/Wκ ≙ κ

2A2
0, the oscillator has a closed (open) path in the phase

space for 0 < κ2A2
0 < 1 (κ

2A2
0 > 1), according to Ref. 22. The point canonical transformation given in Eqs. (16) maps the Hamiltonian (47) into

that of an anharmonic oscillator of the form

K(xκ,Πκ) ≙
1

2m0
Π

2
κ +Wκ tanh

2
(κxκ), (51)

with κ being a continuous parameter that controls the anharmonicity of the potential. In Fig. 6, we plot the phase spaces (x, p) and
(xκ,Πκ) for different values of κA0. The bounded motion in the interval −Aκ < x < Aκ of the standard space turns out into the inter-
val −xκ,max < xκ < xκ,max ≙ κ

−1atanh(κA0) in the deformed space. Besides, the unbounded motion has the interval of the linear momen-

tum 0 < ∣p∣ < m0ω0A0 turned into m0ω0A0

√
1 − 1

κ2A2
0

< ∣Πκ∣ < m0ω0A0. As the dimensionless parameter κA0 increases from 0 to 1.1

within the interval ∥0.9, 1.1∥, it is observed that the horizontal axes of the ellipses become infinite, thus giving place to an unbounded
motion.

By means of the WKB approximation, we can obtain the energy levels of the corresponding quantum system. Using this method, we
have

(n + 1

2
) h̵
2
≙

1

2π∫
Aκ

−Aκ

p(x)dx ≙
m0Ωκ

2π ∫
Aκ

−Aκ

√
A2
κ − x2

1 + κ2x2
dx

≙
m0ΩκA

2
κ

4π ∫
2π

0

sin2θκ

1 + κ2A2
κ cos2θκ

dθκ

≙
m0Ωκ

2κ2
(√1 + κ2A2

κ − 1) (52)

with n ≙ 0, 1, 2, . . .. Since E ≙ 1
2
m0Ω

2
κA

2
κ, we obtain

En ≙ h̵ω0(n + 1

2
) − h̵2κ2

2m0
(n + 1

2
)2, (53)

which corresponds to the energy levels of an anharmonic oscillator.
From Eq. (50), the classical density probability of finding the particle between x and x + dx results ρclassic(x) ≙

1

π
√

A2
κ−x

2
. The first and

second moments of the position and the linear momentum in terms of the amplitude or the energy for the deformed oscillator are

FIG. 6. Phase spaces of the κ-deformed oscillator in the (a) usual canonical coordinates (x, p) and the (b) deformed canonical ones (xκ,Πκ) for κA0 = 0, 0.5, 0.9, and 1.1.
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x ≙ 0, (54a)

x2 ≙
A2
κ

2
≙

E

m0ω2
0(1 − 2Eκ2

m0ω
2
0

) , (54b)

p ≙ 0, (54c)

p2 ≙
m0ω

2
0A

2
κ

2(1 + κ2A2
κ)3/2

≙ m0E

¿ÁÁÀ1 −
2Eκ2

m0ω2
0

. (54d)

The mean values of the kinetic and potential energies satisfy the relationship

T ≙ E −V ≙
m0ω

2
0

2κ2
1√

1 + κ2A2
κ

⎛⎝1 − 1√
1 + κ2A2

κ

⎞⎠, (55)

with V ≙ ∫ ρclassic(x)V(x)dx. Since V ≙ T/√1 − κ2A2
0, we have that the virial theorem (V ≙ T) is satisfied only for κA0 ≙ 0, which

implies κ ≙ 0.

B. κ-Deformed quantum oscillator

The corresponding κ-deformed time-independent Schrödinger equation for the PDM oscillator is23

−
h̵2

2m0
D

2
κφ(x) +

1

2

m0ω
2
0x

2

(1 + κ2x2)
φ(x) ≙ Eφ(x). (56)

Making the change of variable x → xκ ≙ κ
−1 arcsinh(κx) [see Eq. (4)], we obtain a particle with the constant massm0 subjected to the Pöschl–

Teller potential

−
h̵2

2m0

d2 ϕ(xκ)

dx2κ
−
h̵2κ2

m0

ν(ν + 1)

2
sech

2
(κxκ)ϕ(xκ) ≙ ϵϕ(xκ), (57)

with ϵ ≙ E − h̵ω0/2κ2a20, ν(ν + 1) ≙ 1/κ4a40, and a20 ≙ h̵/m0ω0. The solutions of Eq. (57) are

ϕ(xκ) ≙

√
κμ(ν − μ)!

(ν + μ)!
P
μ
ν (tanh(κxκ)), (58)

where μ ≙ ν − n, n is an integer, and P
μ
ν are the associated Legendre polynomials. Then, the eigenfunctions for the κ-deformed oscillator in the

space representation x are

ψn(x) ≙

√
κ(ν − n)n!

(2ν − n)!

1
4
√
1 + κ2x2

P
ν−n
ν ( κx√

1 + κ2x2
). (59)

The energy levels are given by

En ≙ h̵ωκ(n + 1

2
) − h̵2κ2

2m0
(n + 1

2
)2 − h̵2κ2

8m0
, (60)

with ωκ ≙ ω0

√
1 + h̵2κ4

4m2
0
ω2
0

. It should be noted that the quantum energy levels differ from those obtained using the WKB approximation

[Eq. (53)] by the constant term − h̵2κ2

8m0
and the frequency of small oscillationsω0 replaced byωκ. This modification in the frequency is associated

with the symmetrization problem of the classical Hamiltonian in order to construct its corresponding Hamiltonian operator in the quantum
formalism (see Ref. 23 for more details). However, in the limit h̵→ 0 with n≫ 1, Eq. (60) recovers the semi-classical approximation, Eq. (53).

In Fig. 7, an illustration of the potential V(x) ≙
m0ω

2
0x

2

2(1+κ2x2)
along with the energy levels for some values of κA0 is shown. In Fig. 8, we show the

wave-functions and the probability densities for the four lower energy states and for some values of κa0. The values of κa0 chosen are such
that ν(ν + 1) ≙ 1/κ4a40 is satisfied with the ν integer. We consider ν ≙ 4, 5, 10, and∞ in such a way that the corresponding values of κa0 are
20−1/4, 30−1/4, 110−1/4, and 0.
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FIG. 7. (a) Potential V(x) =
m0ω

2
0
x2

2(1+κ2x2)
for κA0 = 0, 0.3, 0.5, and 1.1 with A2

0 = 2E/m0ω
2
0. (b) Energy levels of the κ-deformed oscillator for κa0 = 1/ 4

√
110 with a2

0 = h̵/m0ω0

and ε0 = h̵ω0/2.

From the Legendre differential equation

(1 − u
2
)
d2P

μ
ν (u)

du2
− 2u

dP
μ
ν (u)

du
+ [ν(ν + 1) −

μ2

1 − u2
]Pμν (u) ≙ 0, (61)

the identities [see Eqs. (2) and (3) in page 965 of the Ref. 84], we obtain the expectation values of ⟨x̂⟩, ⟨x̂2⟩, ⟨p̂⟩, and ⟨p̂2⟩, which are

⟨x̂⟩ ≙ 0, (62a)

⟨x̂2⟩ ≙ En +
h̵2κ2

2m0

m0ω2
0(1 − 2Enκ2

m0ω
2
0

−
h̵2κ4

m2
0
ω2
0

)
≙

h̵

m0ω0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωκ
ω0
(n + 1

2
) − κ2a20

2
(n2 + n − 1

2
)

1 − 2κ2a20[ωκω0
(n + 1

2
) − κ2a2

0

2
(n2 + n − 1

2
)]
⎫⎪⎪⎪⎬⎪⎪⎪⎭, (62b)

⟨p̂⟩ ≙ 0, (62c)

⟨p̂2⟩ ≙ m0(En − h̵2κ2

4m0
) z2 − (2n + 1)z

z2 − 4

≙ m0h̵ω0[ωκ
ω0
(n + 1

2
) − κ2a20

2
(n

2
+ n + 1)] z2 − (2n + 1)z

z2 − 4
, (62d)

with z ≡ 2ν + 1 ≙

√
1 +

4m2
0
ω2
0

κ4 h̵2
.

In the limit κ→ 0, i.e., z →∞, the usual cases ⟨x̂2⟩ ≙ h̵
m0ω0
(n + 1

2
) and ⟨p̂2⟩ ≙ m0h̵ω0(n + 1

2
) are recovered. According to the principle of

correspondence, in the limit of large quantum numbers (or equivalently h̵→ 0), we have En → E and ωκ → ω0, and it is immediately verified

that Eqs. (62b) and (62d) coincide with Eqs. (54b) and (54d), respectively. Indeed, when h̵→ 0, one obtains that z ≈ 2m0ω0/h̵κ2 ≫ 1, and we
have

lim
h̵→0
⟨p̂2⟩ ≙ lim

h̵→0
m0En(1 − 2n + 1

z
)

≙ lim
h̵→0

m0En

√
1 −

2κ2En

m0ω2
κ

−
h̵2κ4

4m0ω2
κ

≙ m0En

√
1 −

2κ2En

m0ω2
κ

+O(h̵
2
). (63)

J. Math. Phys. 61, 082105 (2020); doi: 10.1063/5.0014553 61, 082105-13

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

FIG. 8. Eigenfunctions ψn(x) (upper line) and probability densities ρn(x) = ∣ψn(x)∣2 (bottom line) for a κ-deformed oscillator particle for the values of κa0 such that ν(ν + 1)

= 1/(κa0)
4 with ν = 4, 5, 10, and∞ in such a way that the corresponding values of κa0 are 20−1/4, 30−1/4, 110−1/4, and 0. [(a) and (b)] n = 0 (ground state), [(c) and (d)]

n = 1 (first excited state), [(e) and (f)] n = 2 (second excited state), and [(g) and (h)] n = 3 (third excited state).

The expectation values of the kinetic and potential energies satisfy

⟨T̂⟩ ≙ En − ⟨V̂⟩ ≙ m0ω
2
0

2κ2
1√

1 + κ2a2n,κ

⎛⎝ω0

ωκ
−

1√
1 + κ2a2n,κ

⎞⎠, (64)

with En ≙
m0ω

2
0a

2
n,κ

2(1+κ2a2n,κ)
and the quantum amplitude
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FIG. 9. Uncertainty of (a) the position Δx and (b) the momentum Δp of the product (c) ΔxΔp, as a function of κa0, for the quantum states with n = 0, 1, 2, and 3. The standard
uncertainty relation ΔxΔp = (n + 1

2
)h̵ is recovered for κa0 → 0.

an,κ ≙ a0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωκ
ω0
(2n + 1) − κ2a20(n2 + n + 1

2
)

1 − κ2a20[ωκω0
(2n + 1) − κ2a20(n2 + n + 1

2
)]
⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/2

. (65)

In the classical limit, one has that an,κ → Aκ once En → E, so the expectation value (64) recovers its classical average value (55). In Fig. 9, we
show the uncertainty relation of the κ-deformed oscillator, along with the uncertainties Δx and Δp of x and p, for the ground state and the
first three excited ones. As expected, while Δx increases as the dimensionless deformation parameter κa0 varies within the interval ∥−1, 1∥, Δp
decreases and vice versa. In turn, this implies a generalized κ-uncertainty inequality [Fig. 9(c)], which is an increasing function of the quantum
number n, and it also grows fast as κa0 varies. The symmetry exhibited around the axis κa0 ≙ 0 in the curves of Fig. 9 is a consequence of the
invariance of the mass function (and then of the Hamiltonian too) given by Eq. (13) against the transformation κ→ −κ.

VI. CONCLUSIONS

We have presented the quantum and the classical mechanics that results from assuming a position-dependent mass related to the
κ-algebra, which is the mathematical background underlying κ-statistics. Indeed, we have characterized both the quantum and classical for-
malism of a particle with a PDM determined univocally by the κ-algebra. The consistency of the κ-deformed formalism is manifested in the
following arguments.

The κ-deformed Schrödinger equation turns out to be equivalent to a Schrödinger-like equation for a deformed wave-function provided
with a κ-deformed non-Hermitian momentum operator. Within the κ-formalism, one can define deformed versions of the continuity equa-
tion, the Fourier transform, etc. In particular, a deformed Newton’s second law in terms of the deformed dual κ-derivative [Eq. (15)] follows
in the classical limit.

We have illustrated the approach with the problems of a particle confined in an infinite potential well and a κ-deformed oscillator, which
is equivalent to the Mathews–Lakshmanan oscillator (in the standard space) or to the Pösch–Teller potential problem (in the κ-deformed
space), provided with the change of variable x → xκ. We have obtained the distributions for the classical case as well as the eigenfunctions and
eigenenergies for the quantum case. Although we have applied the mapping approach to a κ-deformed space in order to study the quantum
Mathews–Lakshmanan oscillator, it is important to mention that other equivalent approaches can be found in the literature. For instance,
factorization methods, supersymmetry, and coherent states have also been investigated for this nonlinear oscillator (see Refs. 34–38 and
references therein).

Analogous to the quantum oscillator and the Hermite polynomials, the eigenvalues equation for the κ-deformed quantum oscillator is
expressed in terms of the Legendre polynomials. Expectedly, in both examples, we have reported the localization and delocalization of the
probability density functions corresponding to the conjugated variables x and p, from which the uncertainty relation follows (Figs. 5 and 9),
with the particularity that the lower bound is an increasing function of the deformation parameter κ, satisfied by the ground state and the first
three excited ones. This could be physically interpreted as if the quantum role of the deformation (or equivalently, of the non-constant mass)
is to increase the intrinsic correlation between the conjugated operators x̂ and p̂. In addition, for the case of the κ-deformed oscillator, we have
studied the effect of the deformation parameter κ on the phase space in the usual coordinates (x, p) and in the deformed ones (xκ,Πκ). It is
verified that for a certain range of values of κ, the motion is unbounded (Fig. 6).

We consider that the techniques employed in this work could stimulate the seek of other generalizations of classical and quantum
mechanical aspects, as has been reported in recent research studies by means of the q-algebra.7,48–56
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16O. Aydoǧdu, A. Arda, and R. Sever, J. Math. Phys. 53, 042106 (2012).
17M. F. Rañada, Phys. Lett. A 380, 2204 (2016).
18M. Alimohammadi, H. Hassanabadi, and S. Zare, Nucl. Phys. A 960, 78 (2017).
19A. G. M. Schmidt and A. L. de Jesus, J. Math. Phys. 59, 102101 (2018).
20A. L. de Jesus and A. G. M. Schmidt, J. Math. Phys. 60, 122102 (2019).
21D. O. Richstone and M. D. Potter, Astrophys. J. 254, 451 (1982).
22P. M. Mathews and M. Lakshmanan, Q. Appl. Math. 32, 215 (1974).
23P. M. Mathews and M. Lakshmanan, II Nuovo Cimento A 26, 299 (1975).
24A. K. Tiwari, S. N. Pandey, M. Senthilvelan, and M. Lakshmanan, J. Math. Phys. 54, 053506 (2013).
25B. Bagchi, A. Ghose Choudhury, and P. Guha, J. Math. Phys. 56, 012105 (2015).
26J. F. Cariñena, M. F. Rañada, and M. Santander, Ann. Phys. 322, 434 (2007).
27N. Amir and S. Iqbal, J. Math. Phys. 56, 062108 (2015).
28V. Chithiika Ruby, V. K. Chandrasekar, M. Senthilvelan, and M. Lakshmanan, J. Math. Phys. 56, 012103 (2015).
29A. Schulze-Halberg and B. Roy, J. Math. Phys. 57, 102103 (2016).
30S. Karthiga, V. Chithiika Ruby, M. Senthilvelan, and M. Lakshmanan, J. Math. Phys. 58, 102110 (2017).
31A. Khlevniuk and V. Tymchyshyn, J. Math. Phys. 59(8), 082901 (2018).
32R. Bravo and M. S. Plyushchay, Phys. Rev. D 93, 105023 (2016).
33O. Mustafa, Phys. Lett. A 384, 126265 (2020).
34N. Amir and S. Iqbal, J. Math. Phys. 57, 062105 (2016).
35B. Midya and B. Roy, J. Phys. A: Math. Theor. 42(28), 285301 (2009).
36S. Karthiga, V. Chithiika Ruby, and M. Senthilvelan, Phys. Lett. A 382(25), 1645 (2018).
37N. Amir and S. Iqbal, Commun. Theor. Phys. 66, 615 (2016).
38M. Tchoffo, F. B. Migueu, M. Vubangsi, and L. C. Fai, Heliyon 5(9), e02395 (2019).
39V. Chithiika Ruby and M. Senthilvelan, J. Math. Phys. 51, 052106 (2010).
40J.-M. Lévy-Leblond, Phys. Rev. A 52, 1845 (1995).
41D. J. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 (1966).
42T. Gora and F. Williams, Phys. Rev. 177, 1179 (1969).
43Q.-G. Zhu and H. Kroemer, Phys. Rev. B 27, 3519 (1983).
44T. L. Li and K. J. Kuhn, Phys. Rev. B 47, 12760 (1993).
45R. A. Morrow and K. R. Brownstein, Phys. Rev. B 30, 678 (1984).
46O. Mustafa and S. H. Mazharimousavi, Int. J. Theor. Phys. 46, 1786 (2007).
47A. de Souza Dutra and C. A. S. Almeida, Phys. Lett. A 275, 25 (2000).
48R. N. Costa Filho, M. P. Almeida, G. A. Faria, and J. S. Andrade, Jr., Phys. Rev. A 84, 050102(R) (2011).
49S. H. Mazharimousavi, Phys. Rev. A 85, 034102 (2012).
50R. N. Costa Filho, G. Alencar, B.-S. Skagerstam, and J. S. Andrade, Jr., Europhys. Lett. 101, 10009 (2013).
51M. A. Rego-Monteiro and F. D. Nobre, Phys. Rev. A 88, 032105 (2013).
52B. G. da Costa and E. P. Borges, J. Math. Phys. 55, 062105 (2014).
53A. Arda and R. Sever, Few-Body Syst. 56, 697 (2015).
54J. P. M. Braga and R. N. Costa Filho, Int. J. Mod. Phys. C 27, 1650047 (2016).
55B. G. da Costa and E. P. Borges, J. Math. Phys. 59, 042101 (2018).

J. Math. Phys. 61, 082105 (2020); doi: 10.1063/5.0014553 61, 082105-16

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.12942/lrr-2013-2
https://doi.org/10.1063/1.530798
https://doi.org/10.1016/j.physletb.2016.02.035
https://doi.org/10.1103/physrevb.27.7547
https://doi.org/10.1063/1.4732509
https://doi.org/10.1016/j.physleta.2020.126277
https://doi.org/10.1209/0295-5075/129/10003
https://doi.org/10.1016/j.physb.2011.07.022
https://doi.org/10.1103/physrevb.50.4248
https://doi.org/10.1103/physrevb.56.8997
https://doi.org/10.1016/s0009-2614(98)01017-3
https://doi.org/10.1103/physrevlett.56.1305
https://doi.org/10.1088/0305-4470/37/45/001
https://doi.org/10.1063/1.4894056
https://doi.org/10.1063/1.4984310
https://doi.org/10.1063/1.4705284
https://doi.org/10.1016/j.physleta.2016.05.007
https://doi.org/10.1016/j.nuclphysa.2017.01.003
https://doi.org/10.1063/1.5039622
https://doi.org/10.1063/1.5114812
https://doi.org/10.1086/159752
https://doi.org/10.1090/qam/430422
https://doi.org/10.1007/bf02769015
https://doi.org/10.1063/1.4803455
https://doi.org/10.1063/1.4906134
https://doi.org/10.1016/j.aop.2006.03.005
https://doi.org/10.1063/1.4922606
https://doi.org/10.1063/1.4905167
https://doi.org/10.1063/1.4965226
https://doi.org/10.1063/1.5008993
https://doi.org/10.1063/1.5019785
https://doi.org/10.1103/physrevd.93.105023
https://doi.org/10.1016/j.physleta.2020.126265
https://doi.org/10.1063/1.4954283
https://doi.org/10.1088/1751-8113/42/28/285301
https://doi.org/10.1016/j.physleta.2018.04.025
https://doi.org/10.1088/0253-6102/66/6/615
https://doi.org/10.1016/j.heliyon.2019.e02395
https://doi.org/10.1063/1.3374667
https://doi.org/10.1103/physreva.52.1845
https://doi.org/10.1103/physrev.152.683
https://doi.org/10.1103/physrev.177.1179
https://doi.org/10.1103/physrevb.27.3519
https://doi.org/10.1103/physrevb.47.12760
https://doi.org/10.1103/physrevb.30.678
https://doi.org/10.1007/s10773-006-9311-0
https://doi.org/10.1016/s0375-9601(00)00533-8
https://doi.org/10.1103/physreva.84.050102
https://doi.org/10.1103/physreva.85.034102
https://doi.org/10.1209/0295-5075/101/10009
https://doi.org/10.1103/physreva.88.032105
https://doi.org/10.1063/1.4884299
https://doi.org/10.1007/s00601-015-1008-6
https://doi.org/10.1142/s0129183116500479
https://doi.org/10.1063/1.5020225


Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

56B. G. da Costa and I. S. Gomez, Physica A 541, 123698 (2020).
57E. P. Borges, Physica A 340, 95 (2004).
58C. Tsallis, Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (Springer, New York, 2009).
59G. Kaniadakis, Physica A 296, 405 (2001).
60G. Kaniadakis, Phys. Rev. E 66, 056125 (2002).
61G. Kaniadakis, Phys. Rev. E 72, 036108 (2005).
62A. M. Scarfone, H. Matsuzoe, and T. Wada, Phys. Lett. A 380(38), 3022 (2016).
63G. Kaniadakis, Eur. Phys. J. A 40(3), 275 (2009).
64S. Abe, G. Kaniadakis, and A. M. Scarfone, J. Phys. A: Math. Gen. 37, 10513 (2004).
65G. Kaniadakis, A. M. Scarfone, A. Sparavigna, and T. Wada, Phys. Rev. E 95(5), 052112 (2017).
66A. M. Scarfone, Entropy 17, 2812 (2015).
67G. Kaniadakis, Entropy 15(10), 3983 (2013).
68A. M. Scarfone, Physica A 480, 63 (2017).
69T. Wada and H. Suyari, Phys. Lett. A 348, 89 (2006).
70T. Wada and H. Suyari, Entropy 15(12), 5144 (2013).
71N. T. C. M. Souza, D. H. A. L. Anselmo, V. D. Mello, and R. Silva, Phys. Lett. A 378, 1691 (2014).
72J. L. E. da Silva, G. B. da Silva, and R. V. Ramos, Phys. Lett. A 384(8), 126175 (2020).
73A. M. Scarfone, H. Matsuzoe, and T. Wada, Entropy 20(6), 436 (2018).
74G. Kaniadakis, M. Lissia, and A. M. Scarfone, Phys. Rev. E 71(4), 046128 (2005).
75G. Lapenta, S. Markidis, A. Marocchino, and G. Kaniadakis, Astrophys. J. 666, 949 (2007).
76J. C. Carvalho, R. Silva, J. D. do Nascimento, Jr., B. B. Soares, and J. R. de Medeiros, Europhys. Lett. 91, 69002 (2010).
77G. Livadiotis, Europhys. Lett. 113, 10003 (2016).
78T. Wada, Eur. Phys. J. B 73, 287 (2010).
79F. Clementi, T. Di Matteo, M. Gallegati, and G. Kaniadakis, Physica A 387, 3201 (2008).
80M. Stella and M. Brede, Physica A 407, 360 (2014).
81M. O. Costa, R. Silva, D. H. A. L. Anselmo, and J. R. P. Silva, Phys. Rev. E 99(2), 022112 (2019).
82K. Ourabah and M. Tribeche, Phys. Rev. E 89(6), 062130 (2014).
83K. Ourabah, A. H. Hamici-Bendimerad, and M. Tribeche, Phys. Scr. 90, 045101 (2015).
84I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, 2014).

J. Math. Phys. 61, 082105 (2020); doi: 10.1063/5.0014553 61, 082105-17

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1016/j.physa.2019.123698
https://doi.org/10.1016/j.physa.2004.03.082
https://doi.org/10.1016/s0378-4371(01)00184-4
https://doi.org/10.1103/physreve.66.056125
https://doi.org/10.1103/physreve.72.036108
https://doi.org/10.1016/j.physleta.2016.07.012
https://doi.org/10.1140/epja/i2009-10793-6
https://doi.org/10.1088/0305-4470/37/44/004
https://doi.org/10.1103/physreve.95.052112
https://doi.org/10.3390/e17052812
https://doi.org/10.3390/e15103983
https://doi.org/10.1016/j.physa.2017.03.036
https://doi.org/10.1016/j.physleta.2005.08.086
https://doi.org/10.3390/e15125144
https://doi.org/10.1016/j.physleta.2014.04.030
https://doi.org/10.1016/j.physleta.2019.126175
https://doi.org/10.3390/e20060436
https://doi.org/10.1103/physreve.71.046128
https://doi.org/10.1086/520326
https://doi.org/10.1209/0295-5075/91/69002
https://doi.org/10.1209/0295-5075/113/10003
https://doi.org/10.1140/epjb/e2009-00429-3
https://doi.org/10.1016/j.physa.2008.01.109
https://doi.org/10.1016/j.physa.2014.04.009
https://doi.org/10.1103/physreve.99.022112
https://doi.org/10.1103/physreve.89.062130
https://doi.org/10.1088/0031-8949/90/4/045101

