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Abstract - While forming reliable communication networks, 

we must guarantee is that, after failure of a node or link, the 

surviving network still allows communication between all other 

nodes by choosing alternate path which gives strict requirement 

on the connectivity of the corresponding graph. For a general 

network design problem it is required that the underlying 

network to be resilient to link failures is known as the edge-

connectivity survivable network design problem. In this paper we 

present a method called Ordered Minimum Spanning Tree 

(OMST) used to parallelize efficiently Kruskal’s Minimum 

Spanning Forest algorithm. This algorithm is known for 

exhibiting inherently sequential characteristics. More 

specifically, the strict order by which the algorithm checks the 

edges of a given graph is the main reason behind the lack of 

explicit parallelism. Our proposed scheme attempts to overcome 

the imposed restrictions and improve the performance of the 

algorithm. 
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I. INTRODUCTION 

Connectivity problem is a fundamental property of graph 

theory [TS92, Wes01], which has important applications in 

network reliability analysis and network design problems 

and have many applications in computer science and 

operation Research. The problem of finding a minimum 

cost k-connected spanning sub graph of a given a given 

graph. This is a central algorithmic problem, which is 

known to be NP-complete when the connectivity 

requirement is greater than one. Several approximation 

algorithms have been reported in the literature for this 

problem. Recently, much effort has been devoted to 

problems of finding minimum cost sub graphs of a given 

weighted graph that satisfy given connectivity 

requirements. A particular important class is the problems 

with uniform connectivity requirements, where the aim is to 

find a cheapest spanning sub graph which remains 

connected in presence of up to k arbitrary edges or vertex 

failures (i.e., a minimum cost k-edge- or k-vertex connected 

spanning sub graph, respectively). The widespread adoption 

of multicore platforms has offered the opportunity to 

explore new implementation techniques for many 

algorithms that were initially designed for uniprocessors. 

By devising new parallel schemes, the programmers will be 

able to exploit in a more efficient way the multiple 

hardware contexts offered in today’s platforms. A category 

of problems among the most difficult to parallelize are the 

ones that exhibit inherently sequential characteristics. The 

discovery of the Single Source Shortest Path (SSSP) or the 

composition of the Minimum Spanning Forest (MSF) of a 

given graph falls into this category. Kruskal’s algorithm is 

one of the most known algorithms that address the MSF 

problem. The strictly ordered examination of the graph’s 

edges in order to decide whether they are part of the MSF 

or not, prohibits the usage of well known parallel strategies, 

like data partitioning. Our approach attempts to overcome 

the restrictions imposed by the inherently sequential Nature 

of the algorithm, by using a Ordered Minimum Spanning 

Tree (OMST). Let G = (V, E) be a graph with |V| = n 

vertices and |E| = m edges. The graph G can either be 

directed or undirected. Let c: E -> R
+
 be the weight 

distribution on the edges of G. Let c = c(e) be the weight of 

the edge e = (vi, vj). Given this setting, the task of finding 

the optimal (least weight) spanning subgraphs which 

satisfies a given connectivity requirement is a fundamental 

problem in the area of network design. The input is an 

integer k, a k-connected graph G = (V, E) and the weight 

function c(·). The goal is to find a minimum weight If-

connected spanning sub graph of G. In general, the graph 

connectivity problems come in two flavors: the k-edge 

connectivity problems (k-Ecss) and the k-vertex 

connectivity problems (k-VCSS). In undirected graphs the 

k-edge connectivity problem is to find a minimum cost 

spanning subgraph in which at least k edge disjoint paths 

are there between every pair of vertices. In k-vertex 

connectivity problem we are required to find a minimum 

cost spanning sub graph in which at least k vertex disjoint 

paths are there between every pair of non-adjacent vertices. 

For k = 1, the problem reduces to the problem of finding a 

minimum spanning tree for the graph, which can be solved 

exactly in polynomial time, using, for example Kruskal’s or 

Prim’s algorithms. For k ≥2, this problem is known to be 

NP-complete [GJ79], even when the weights are all 

identical (i.e., the unweighted case). A graph G = (V,E) is 

called k-edge connected (k-EC) if it contains at least k edge 

disjoint paths - i. e. paths that do not share an edge between 

every two vertices. This is equivalent to say that every set 

of vertices, except Ø and V, is entered by at least k edges. A 

natural problem is how to find a minimum cost k-edge 

connected spanning sub graph (k-ECSS) of G, that is, a k-

EC spanning sub graph containing the smallest possible 

number of edges, or having the smallest possible total 

weight, if the graph is weighted. One can think about this 

problem as the task of designing a fault-tolerant 

communication network between several hosts, which 

means the network should survive a certain number of link 

failures, i. e. every host should still be able to communicate 
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with any other. The problem comes in several flavors: the 

graph can be directed or undirected, the edges can be 

weighted or not. Further, we can allow parallel edges (multi 

graphs) or require all edges to be simple (simple graphs). 

 

II. COMPUTATION OF MINIMUM    SPANNING 

TREE 

The fig (1) shows matrix on the left below corresponds to 

the weighted graph on the right. Using Kruskal's algorithm, 

we iteratively select the cheapest edge not creating a cycle. 

Starting with the two edges of weight 3, the edge of weight 

5 is forbidden, but the edge of weight 7 is available. The 

edge of weight 8 completes the minimum spanning tree, 

total weight 21. Note that if the edge of weight 8 had 

weight 10, then either of the edges of weight 9 could be 

chosen to complete the tree; in this case there would be two 

spanning trees with the minimum value. 

 
(a)                               (b) 

Fig 1(A) Matrix Representation of Weighted Graph of Fig 

1(B) 
 

Theorem-1: A weighted graph with distinct edge weights 

has a unique minimum weight spanning tree (MST). 

Proof 1 (properties of spanning trees). If G has two 

minimum weight spanning trees, then let e be the lightest 

edge of the symmetric difference. Since the edge weights 

are distinct, this weight appears in only one of the two trees. 

Let T be this tree, and let T` be the other. Since   e € E (T) - 

E (T`), there exists e`€ E (T`) - E (T) such that T`+ e- e` is a 

spanning tree. By the choice of e, w (e`) > w (e), Now w 

(T` +e – e`) < w (T`), contradicting the assumption that T` 

is an MST. Hence there cannot be two MSTs. Proofs 2 

(Kruskal's Algorithm): In Kruskal's Algorithm, there is no 

choice if there are no ties between edge weights. Thus the 

algorithm can produce only one tree. We also need to show 

that Kruskal's Algorithm can produce every MST. The 

proof in the text can be modified to show this; if e is the 

first edge of the algorithm's tree that is not in an MST T`, 

then we obtain an edge e` with the same weight as e such 

that e`€ E (T`) - E (T) and e` is available when e is chosen. 

The algorithm can choose e` instead. Continuing to modify 

the choices in this way turns T into T`. 

Theorem-2: No matter how ties are broken in choosing the 

next edge for Kruskal's Algorithm, the list of weights of a 

minimum spanning tree (in non decreasing order) is unique. 

We consider edges in non decreasing order of cost. We 

prove that after considering all edges of a particular cost, 

the vertex sets of the components of the forest built so far is 

the same independent of the order of consideration of the 

edges of that cost. We prove this by induction on the 

number of different cost values that have been considered. 

At the start, none have been considered and the forest 

consists of isolated vertices. Before considering the edges 

of cost x, the induction hypothesis tells us that the vertex 

sets of the components of the forest are fixed. Let H be a 

graph with a vertex for each such component, and put two 

vertices adjacent in H if G has an edge of cost x joining the 

corresponding two components. Suppose that H has k 

vertices and l components. Independent of the order in 

which the algorithm consider the edges of cost x, it must 

select some k - l edges of cost x in G, and it cannot select 

more, since this would create a cycle among the chosen 

edges. 

Theorem-3: Among the cheapest spanning trees containing 

a spanning forest F is one containing the cheapest edge 

joining components of F. Let T be a cheapest spanning tree 

containing F. If e ≠ E (T), then T + e contains exactly one 

cycle, since T has exactly one u,v-path. Since u, v belongs 

to distinct components of F, the u,v-path in T contains 

another edge e` between distinct components of F. If e` 

costs more than e, then T` = T – e` + e is a cheaper 

spanning tree containing F, which contradicts the choice of 

T. Hence e` costs the same as e, and T` contains e and is a 

cheapest spanning tree containing F. Applying this 

statement at every step of Kruskal's algorithm proves that 

Kruskal's algorithm finds a minimum weight spanning tree. 

Theorem-4: If T is a minimum spanning tree of a 

connected weighted graph G, then T omits some heaviest 

edge from every cycle of G. 

Proof 1 (edge exchange). Suppose e is a heaviest edge on 

cycle C. If e € E (T), then T - e is disconnected, but C - e 

must contain an edge e` joining the two components of T - 

e. Since T has minimum weight, T – e + e` has weight as 

large as T, so w (e`) ≥ w (e). Since e has maximum weight 

on C, equality holds, and T does not contain all the heaviest 

edges from C. 

Proof 2 (Kruskal's algorithm). List the edges in order of 

increasing weight, breaking ties by putting the edges of a 

given weight that belong to T before those that don't belong 

to T . The greedy algorithm (Kruskal's algorithm) applied to 

this ordering L yields a minimum spanning tree, and it is 

precisely T. Now let C is an arbitrary cycle in G, and let e1, 

e2, …., ek be the edges of C in order of appearance in L; ek 

= uv is a heaviest edge of C. It suffices to show that ek does 

not appear in T. For each earlier edge ei of C, either ei 

appears in T or ei is rejected by the greedy algorithm 

because it completes a cycle. In either case, T contains a 

path between the endpoints of ei. Hence when the algorithm 

considers ek , it has already selected edges that form paths 

joining the endpoints of each other edge of C. Together, 

these paths form a u,vwalk, which contains a u,vpath. 

Hence adding ek would complete a cycle, and the algorithm 

rejects ek. 

 

III. THE BASICS OF KRUSKAL’S ALGORITHM 

Kruskal’s algorithm is one of the most known algorithms 

for discovering the MSF of an undirected graph with real-

valued weighted edges. Specifically, let G=(V; E) be an 
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undirected graph with n=|V| vertices and m=|E| edges, and 

w:ER a weight function assigning real-valued weights to 

the edges of G. The MSF of a given graph is an acyclic 

subset T of the edges that connects all the vertices that have 

at least one path between them and at the same time is of 

minimum weight. The algorithm examines each edge at an 

ascending order (beginning with the one with the minimum 

weight) and checks whether it would create a cycle if it was 

added to the MSF. If this is the case then the edge is 

discarded, otherwise it is included into the MSF. For our 

study we select the asymptotically fastest implementation 

of Ordered Minimum Spanning Tree (OMST), which uses 

disjoint-set data structures and employs union-by-rank and 

path compression heuristics. Each disjoint-set is used to 

store the vertices that belong to a single tree of the OMSF at 

any given time of the execution. A formal representation of 

the algorithm is given in Algorithm 1. In this Algorithm we 

initialize T=0(Line no 1), then we will start construction of 

Tree, for construction of tree we will start 3 for loops (Line 

no 2,3 and 4). In Line 5 checks the base condition. In first 

interaction k=1, i=1,j=1 then it will check a[i][j] is there 

any weight have 1, if yes add to the spanning tree and also 

its check’s is it p reach’s to n-1 edges(Line 5) if yes come 

out of all loops then returns to Minimum Spanning Tree 

else increase k then check any weight equal to k if yes add 

to Spanning Tree, this one continue up to n-1 edges. 

 

IV. ALGORITHM 1: ORDERED MINIMUM 

SPANNING TREE (OMST) ALGORITHM 

Input: Undirected graph G=(V; E), weight function 

w:ER 

Output: Minimum Spanning Tree 

/* Initialization phase */ 

1. T= ; 

2. p=1; //Initial value of P to check Upper Bond 

of OMSP 

3. foreach k= 1 to n 

4. foreach i = 1 to n 

5. foreach j = 1 to n 

6. if ((k==a[i][j]) && (p!=n-1)) 

7. { 

8. T=T  {(i,j)} 

9. UNION(i,j); 

10. p=p+1; 

11. } 

12. Return T; 

ANALYSIS 

Initialize the set A: O(1) 

First for loop:  |V| to check weights 

Second for loop: |V| MAKE-SETs 

Third for loop: O(E) FIND-SETs and UNIONs 

Assuming the implementation of disjoint-set data 

structure, that uses union by rank and path compression: 

O((V + E) α(V)) + O(E lg E) 

Since G is connected, |E| ≥ |V| − 1⇒ O(E α(V)) + O(E lg 

E). 

 α(|V|) = O(log V) = O(log E). 

 Therefore, total time is O( |V|
3
). 

 

Ex: Outline by Example 
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Adjacency Matrix: 

  

 

Step 1: In the graph, the Edge (i, j) is 1. Either vertex i 

or vertex j could be representative. Lets choose vertex i. 

 

                                    T=1, w=1 

 

 

Step 2:  Then check any vertex have a weight 1 if yes add 

edge to Spanning Tree else, increase k by 1 mean now k=2, 

if ((a[i][j]==2)&& p!=n-1) then add to ST, else increment k 

by 1 and this process continue up to p reaches to n-1. 
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                                   T=2, w=5 

 

 

 

 

 

When k=4 our base case is true if (a[i][j]==4 and p!=n-

1(n=4)) so T=2 and w=5. 

 

Step 3: When k=5 our base case is true if(a[i][j]==5 and 

p!=n-1(n=4)) so T=3 and w=10 
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Step 4: When k=14 our base case is false if (a[i][j]==14 and 

p!=n-1(n=4)) in a[i][j]==14 is true but p!=n-1(n=4) is false 

so exit for loop return Ordered Minimum Spanning Tree 

(OMST). 

 

V. CONCLUSION 

We are representing new approach to find minimum Tree 

in ordered way. This is very simple to understand and to 

implementation. This approach executes sequentially in a 

faster way, using data structure so we can access data very 

efficiently. The drawback of this algorithm takes one extra 

loop it’s so its execution is time consuming. We will 

improve this in future by reducing that extra loop. 
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