

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 2, August 2013

 115

K-Edge-Connectivity: a new Approach of finding

Minimum Spanning Tree Ordered Minimum

Spanning Tree (OMST)
 H.B Walikar, Ramesh K, Hanumantu

Abstract - While forming reliable communication networks,

we must guarantee is that, after failure of a node or link, the

surviving network still allows communication between all other

nodes by choosing alternate path which gives strict requirement

on the connectivity of the corresponding graph. For a general

network design problem it is required that the underlying

network to be resilient to link failures is known as the edge-

connectivity survivable network design problem. In this paper we

present a method called Ordered Minimum Spanning Tree

(OMST) used to parallelize efficiently Kruskal’s Minimum

Spanning Forest algorithm. This algorithm is known for

exhibiting inherently sequential characteristics. More

specifically, the strict order by which the algorithm checks the

edges of a given graph is the main reason behind the lack of

explicit parallelism. Our proposed scheme attempts to overcome

the imposed restrictions and improve the performance of the

algorithm.

Keywords:-Minimum Spanning Forest; Parallel algorithms;

Ordered Minimum Spanning Tree (OMST), Survivable

network;

I. INTRODUCTION

Connectivity problem is a fundamental property of graph

theory [TS92, Wes01], which has important applications in

network reliability analysis and network design problems

and have many applications in computer science and

operation Research. The problem of finding a minimum

cost k-connected spanning sub graph of a given a given

graph. This is a central algorithmic problem, which is

known to be NP-complete when the connectivity

requirement is greater than one. Several approximation

algorithms have been reported in the literature for this

problem. Recently, much effort has been devoted to

problems of finding minimum cost sub graphs of a given

weighted graph that satisfy given connectivity

requirements. A particular important class is the problems

with uniform connectivity requirements, where the aim is to

find a cheapest spanning sub graph which remains

connected in presence of up to k arbitrary edges or vertex

failures (i.e., a minimum cost k-edge- or k-vertex connected

spanning sub graph, respectively). The widespread adoption

of multicore platforms has offered the opportunity to

explore new implementation techniques for many

algorithms that were initially designed for uniprocessors.

By devising new parallel schemes, the programmers will be

able to exploit in a more efficient way the multiple

hardware contexts offered in today’s platforms. A category

of problems among the most difficult to parallelize are the

ones that exhibit inherently sequential characteristics. The

discovery of the Single Source Shortest Path (SSSP) or the

composition of the Minimum Spanning Forest (MSF) of a

given graph falls into this category. Kruskal’s algorithm is

one of the most known algorithms that address the MSF

problem. The strictly ordered examination of the graph’s

edges in order to decide whether they are part of the MSF

or not, prohibits the usage of well known parallel strategies,

like data partitioning. Our approach attempts to overcome

the restrictions imposed by the inherently sequential Nature

of the algorithm, by using a Ordered Minimum Spanning

Tree (OMST). Let G = (V, E) be a graph with |V| = n

vertices and |E| = m edges. The graph G can either be

directed or undirected. Let c: E -> R
+
 be the weight

distribution on the edges of G. Let c = c(e) be the weight of

the edge e = (vi, vj). Given this setting, the task of finding

the optimal (least weight) spanning subgraphs which

satisfies a given connectivity requirement is a fundamental

problem in the area of network design. The input is an

integer k, a k-connected graph G = (V, E) and the weight

function c(·). The goal is to find a minimum weight If-

connected spanning sub graph of G. In general, the graph

connectivity problems come in two flavors: the k-edge

connectivity problems (k-Ecss) and the k-vertex

connectivity problems (k-VCSS). In undirected graphs the

k-edge connectivity problem is to find a minimum cost

spanning subgraph in which at least k edge disjoint paths

are there between every pair of vertices. In k-vertex

connectivity problem we are required to find a minimum

cost spanning sub graph in which at least k vertex disjoint

paths are there between every pair of non-adjacent vertices.

For k = 1, the problem reduces to the problem of finding a

minimum spanning tree for the graph, which can be solved

exactly in polynomial time, using, for example Kruskal’s or

Prim’s algorithms. For k ≥2, this problem is known to be

NP-complete [GJ79], even when the weights are all

identical (i.e., the unweighted case). A graph G = (V,E) is

called k-edge connected (k-EC) if it contains at least k edge

disjoint paths - i. e. paths that do not share an edge between

every two vertices. This is equivalent to say that every set

of vertices, except Ø and V, is entered by at least k edges. A

natural problem is how to find a minimum cost k-edge

connected spanning sub graph (k-ECSS) of G, that is, a k-

EC spanning sub graph containing the smallest possible

number of edges, or having the smallest possible total

weight, if the graph is weighted. One can think about this

problem as the task of designing a fault-tolerant

communication network between several hosts, which

means the network should survive a certain number of link

failures, i. e. every host should still be able to communicate

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 2, August 2013

 116

with any other. The problem comes in several flavors: the

graph can be directed or undirected, the edges can be

weighted or not. Further, we can allow parallel edges (multi

graphs) or require all edges to be simple (simple graphs).

II. COMPUTATION OF MINIMUM SPANNING

TREE

The fig (1) shows matrix on the left below corresponds to

the weighted graph on the right. Using Kruskal's algorithm,

we iteratively select the cheapest edge not creating a cycle.

Starting with the two edges of weight 3, the edge of weight

5 is forbidden, but the edge of weight 7 is available. The

edge of weight 8 completes the minimum spanning tree,

total weight 21. Note that if the edge of weight 8 had

weight 10, then either of the edges of weight 9 could be

chosen to complete the tree; in this case there would be two

spanning trees with the minimum value.

(a) (b)

Fig 1(A) Matrix Representation of Weighted Graph of Fig

1(B)

Theorem-1: A weighted graph with distinct edge weights

has a unique minimum weight spanning tree (MST).

Proof 1 (properties of spanning trees). If G has two

minimum weight spanning trees, then let e be the lightest

edge of the symmetric difference. Since the edge weights

are distinct, this weight appears in only one of the two trees.

Let T be this tree, and let T` be the other. Since e € E (T) -

E (T`), there exists e`€ E (T`) - E (T) such that T`+ e- e` is a

spanning tree. By the choice of e, w (e`) > w (e), Now w

(T` +e – e`) < w (T`), contradicting the assumption that T`

is an MST. Hence there cannot be two MSTs. Proofs 2

(Kruskal's Algorithm): In Kruskal's Algorithm, there is no

choice if there are no ties between edge weights. Thus the

algorithm can produce only one tree. We also need to show

that Kruskal's Algorithm can produce every MST. The

proof in the text can be modified to show this; if e is the

first edge of the algorithm's tree that is not in an MST T`,

then we obtain an edge e` with the same weight as e such

that e`€ E (T`) - E (T) and e` is available when e is chosen.

The algorithm can choose e` instead. Continuing to modify

the choices in this way turns T into T`.

Theorem-2: No matter how ties are broken in choosing the

next edge for Kruskal's Algorithm, the list of weights of a

minimum spanning tree (in non decreasing order) is unique.

We consider edges in non decreasing order of cost. We

prove that after considering all edges of a particular cost,

the vertex sets of the components of the forest built so far is

the same independent of the order of consideration of the

edges of that cost. We prove this by induction on the

number of different cost values that have been considered.

At the start, none have been considered and the forest

consists of isolated vertices. Before considering the edges

of cost x, the induction hypothesis tells us that the vertex

sets of the components of the forest are fixed. Let H be a

graph with a vertex for each such component, and put two

vertices adjacent in H if G has an edge of cost x joining the

corresponding two components. Suppose that H has k

vertices and l components. Independent of the order in

which the algorithm consider the edges of cost x, it must

select some k - l edges of cost x in G, and it cannot select

more, since this would create a cycle among the chosen

edges.

Theorem-3: Among the cheapest spanning trees containing

a spanning forest F is one containing the cheapest edge

joining components of F. Let T be a cheapest spanning tree

containing F. If e ≠ E (T), then T + e contains exactly one

cycle, since T has exactly one u,v-path. Since u, v belongs

to distinct components of F, the u,v-path in T contains

another edge e` between distinct components of F. If e`

costs more than e, then T` = T – e` + e is a cheaper

spanning tree containing F, which contradicts the choice of

T. Hence e` costs the same as e, and T` contains e and is a

cheapest spanning tree containing F. Applying this

statement at every step of Kruskal's algorithm proves that

Kruskal's algorithm finds a minimum weight spanning tree.

Theorem-4: If T is a minimum spanning tree of a

connected weighted graph G, then T omits some heaviest

edge from every cycle of G.

Proof 1 (edge exchange). Suppose e is a heaviest edge on

cycle C. If e € E (T), then T - e is disconnected, but C - e

must contain an edge e` joining the two components of T -

e. Since T has minimum weight, T – e + e` has weight as

large as T, so w (e`) ≥ w (e). Since e has maximum weight

on C, equality holds, and T does not contain all the heaviest

edges from C.

Proof 2 (Kruskal's algorithm). List the edges in order of

increasing weight, breaking ties by putting the edges of a

given weight that belong to T before those that don't belong

to T . The greedy algorithm (Kruskal's algorithm) applied to

this ordering L yields a minimum spanning tree, and it is

precisely T. Now let C is an arbitrary cycle in G, and let e1,

e2, …., ek be the edges of C in order of appearance in L; ek

= uv is a heaviest edge of C. It suffices to show that ek does

not appear in T. For each earlier edge ei of C, either ei

appears in T or ei is rejected by the greedy algorithm

because it completes a cycle. In either case, T contains a

path between the endpoints of ei. Hence when the algorithm

considers ek , it has already selected edges that form paths

joining the endpoints of each other edge of C. Together,

these paths form a u,vwalk, which contains a u,vpath.

Hence adding ek would complete a cycle, and the algorithm

rejects ek.

III. THE BASICS OF KRUSKAL’S ALGORITHM

Kruskal’s algorithm is one of the most known algorithms

for discovering the MSF of an undirected graph with real-

valued weighted edges. Specifically, let G=(V; E) be an

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 2, August 2013

 117

undirected graph with n=|V| vertices and m=|E| edges, and

w:ER a weight function assigning real-valued weights to

the edges of G. The MSF of a given graph is an acyclic

subset T of the edges that connects all the vertices that have

at least one path between them and at the same time is of

minimum weight. The algorithm examines each edge at an

ascending order (beginning with the one with the minimum

weight) and checks whether it would create a cycle if it was

added to the MSF. If this is the case then the edge is

discarded, otherwise it is included into the MSF. For our

study we select the asymptotically fastest implementation

of Ordered Minimum Spanning Tree (OMST), which uses

disjoint-set data structures and employs union-by-rank and

path compression heuristics. Each disjoint-set is used to

store the vertices that belong to a single tree of the OMSF at

any given time of the execution. A formal representation of

the algorithm is given in Algorithm 1. In this Algorithm we

initialize T=0(Line no 1), then we will start construction of

Tree, for construction of tree we will start 3 for loops (Line

no 2,3 and 4). In Line 5 checks the base condition. In first

interaction k=1, i=1,j=1 then it will check a[i][j] is there

any weight have 1, if yes add to the spanning tree and also

its check’s is it p reach’s to n-1 edges(Line 5) if yes come

out of all loops then returns to Minimum Spanning Tree

else increase k then check any weight equal to k if yes add

to Spanning Tree, this one continue up to n-1 edges.

IV. ALGORITHM 1: ORDERED MINIMUM

SPANNING TREE (OMST) ALGORITHM

Input: Undirected graph G=(V; E), weight function

w:ER

Output: Minimum Spanning Tree

/* Initialization phase */

1. T= ;

2. p=1; //Initial value of P to check Upper Bond

of OMSP

3. foreach k= 1 to n

4. foreach i = 1 to n

5. foreach j = 1 to n

6. if ((k==a[i][j]) && (p!=n-1))

7. {

8. T=T {(i,j)}

9. UNION(i,j);

10. p=p+1;

11. }

12. Return T;

ANALYSIS

Initialize the set A: O(1)

First for loop: |V| to check weights

Second for loop: |V| MAKE-SETs

Third for loop: O(E) FIND-SETs and UNIONs

Assuming the implementation of disjoint-set data

structure, that uses union by rank and path compression:

O((V + E) α(V)) + O(E lg E)

Since G is connected, |E| ≥ |V| − 1⇒ O(E α(V)) + O(E lg

E).

 α(|V|) = O(log V) = O(log E).

 Therefore, total time is O(|V|
3
).

Ex: Outline by Example

 1

 14

 5 4

 20

 99

Adjacency Matrix:

Step 1: In the graph, the Edge (i, j) is 1. Either vertex i

or vertex j could be representative. Lets choose vertex i.

 T=1, w=1

Step 2: Then check any vertex have a weight 1 if yes add

edge to Spanning Tree else, increase k by 1 mean now k=2,

if ((a[i][j]==2)&& p!=n-1) then add to ST, else increment k

by 1 and this process continue up to p reaches to n-1.

 1

4

 T=2, w=5

When k=4 our base case is true if (a[i][j]==4 and p!=n-

1(n=4)) so T=2 and w=5.

Step 3: When k=5 our base case is true if(a[i][j]==5 and

p!=n-1(n=4)) so T=3 and w=10

 1

 5 4

 T=3, w=10

V1 V2

V

1

V

2

V

4

V

3

V1 V2

V3

V1
V2

V4

V3

ISSN: 2277-3754

ISO 9001:2008 Certified
International Journal of Engineering and Innovative Technology (IJEIT)

Volume 3, Issue 2, August 2013

 118

Step 4: When k=14 our base case is false if (a[i][j]==14 and

p!=n-1(n=4)) in a[i][j]==14 is true but p!=n-1(n=4) is false

so exit for loop return Ordered Minimum Spanning Tree

(OMST).

V. CONCLUSION

We are representing new approach to find minimum Tree

in ordered way. This is very simple to understand and to

implementation. This approach executes sequentially in a

faster way, using data structure so we can access data very

efficiently. The drawback of this algorithm takes one extra

loop it’s so its execution is time consuming. We will

improve this in future by reducing that extra loop.

REFERENCES

[1] S. Khuller, Approximation algorithms for finding highly

connected sub graphs, In Approximation algorithms for NP-

hard problems, Ed. D. S. Hochbaum, PWS publishing co.,

Boston, 1996.

[2] S. Khuller and B. Raghavachari, Improved approximation

algorithms for uniform connectivity problems, J. of

Algorithms 21, 1996, 434–450.

[3] E. Lawler. Matroid intersection algorithms. In Math.

Programming 9, pages 31{56, 1975.

[4] V. Ramachandran, Fast parallel algorithms for reducible ow

graphs, Concurrent Computations: Algorithms, Architecture

and Technology, S.K. Tewksbury, B.W. Dickinson and S.C.

Schwartz, ed., Plenum press, New York, NY, 1988, pp.117-

138; see also Fast and processor efficient parallel algorithms

for reducible flow graphs, Tech. Report ACT-103, November

1988, Coordinated Science Laboratory, University of Illinois,

Urbana, Illinois, IL 61801.

[5] Arora, S. [1998]: Polynomial time approximation schemes

for Euclidean traveling salesman and other geometric

problems. Journal of the ACM 45 (1998), 753–782

[6] P. Krysta, V.S.A. Kumar, Approximation algorithms for

minimum size 2-connectivity problems, in: Proceedings of

the 18th International Symposium on Theoretical Aspects of

Computer Science, Dresden, Germany, 15–17 February 2001.

[7] R. Jothi, B. Raghavachari, and S. Varadarajan. A 5/4-

approximation algorithm for minimum 2-edge-connectivity.

In SODA, pages 725–734, 2003.

[8] S. Khuller and R. Thurimella. Approximation algorithms for

graph augmentation. J. of Algorithms, 14:214–225, 1993.

[9] H. Nagamochi. An approximation for finding a smallest 2-

edge connected subgraph containing a specified spanning

tree. Discrete Applied Mathematics, 126:83–113, 2003.

[10] Harold N. Gabow. Approximating the smallest k-Edge

Connected Spanning Sub graph by LP-Rounding, 2009.

[11] Jaewon Oh, Iksoo Pyo and Massord Pedram. Constructing

Minimal Spaaning/ Steiner Trees with Bounded Path Length,

pp 244-249, 1996.

[12] David Pritchard. K-Edge-Connectivity: Approximation and

LP Relaxation, 2010.

[13] Xiaofeng Han, Pierre Kelsen, Vijaya Ramachandran and

Robert Tarjan. Computing Minimal Spanning Subgraphs in

Linear Time, 1995.

[14] Artur Czumaj and Andrzej Lingas. On Approximating of the

Minimum-Cost k-Connected Spanning Sub graph Problem.

[15] Dominik Alban Scheder. Approaches to Approximating the

minimum weight k-Edge connected spanning sub graph of a

mixed graph, 2006.

[16] J.B.Kruskal. On the shortest spanning sub tree of a graph and

the travelling salesman problem. Proceedings of the

American Mathematical Society, Volume 7, pp. 48-50, 1956.

