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Abstract. Let G be a connected semisimple linear real Lie group, and Q (resp. K)
a real parabolic subgroup (resp. maximal compact subgroup) of G. The space of K-finite
solutions to a conformally invariant system of differential equations on a line bundle over the
real flag manifold G/Q is studied. The general theory is then applied to certain second order
systems on the flag manifold that corresponds to the Heisenberg parabolic subgroup in a split
simple Lie group.

1. Introduction. Suppose that E → M is a vector bundle over a manifold M and
g is a Lie algebra of first-order differential operators that act on sections of E . A linearly
independent list D1, . . . ,Dm of linear differential operators on sections of E is said to be
conformally invariant with respect to g if there are maps Cji : g → C∞(M) such that

[X,Di] =
m∑
j=1

C(X)jiDj

for all 1 ≤ i ≤ m and X ∈ g. Such systems were investigated in [2], where the reader may
find further discussion of their significance and some references to earlier work on them.

Given a conformally invariant system of differential operators, one may investigate the
subspace of its solutions inside various spaces of sections of the bundle E . Normally, the
subspace of solutions will depend very strongly on what space of sections has been chosen for
study. When the Lie algebra g derives from a semisimple real Lie group that acts on E → M

then one natural space of sections to choose is the space of K-finite sections, where K ⊂ G

is a maximal compact subgroup. This space is contained in many other natural spaces of
sections, so that determination of the K-finite solutions is a useful starting point for studying
solutions in more general spaces, and finiteness underK imposes strong restrictions that help
to render the problem tractable.

In the present work, we specialize to the situation where M = G/Q̄ is a real flag man-
ifold and the vector bundle E is a homogeneous line bundle over M . In this setting, the
problem of determining all K-finite solutions of a conformally invariant system can be re-
duced to a purely algebraic one. We describe this reduction of the problem in Section 2. The
framework that is laid out here will be used in subsequent work to investigate various specific
conformally invariant systems. As a first illustration of its use, it is applied to some of the

2000 Mathematics Subject Classification. Primary 22E47; Secondary 22E30.
Key words and phrases. Conformal invariance, real flag manifold, K-finite solution.



540 A. KABLE

systems that were constructed in [1]. In that work, a number of conformally invariant systems
were constructed in the case where Q̄ is a parabolic subgroup of Heisenberg type. The reader
should note one slightly subtle point about the relationship between that construction and the
problem considered here. The method for constructing conformally invariant systems that was
used in [1] makes no reference to the real group G, but rather takes place in the Weyl algebra
of the radical of a complex parabolic subalgebra of g. Once the system is in hand, it gives
rise to a conformally invariant system on the flag manifold G/Q̄ for every real form of the
complex group associated to g in which there is a real parabolic subgroup of the appropriate
type. Although the construction is insensitive to which real form is taken, the space ofK-finite
solutions depends strongly on the real form, and so each system has many K-finite solution
spaces associated with it. The project of studying spaces of K-finite solutions to interesting
conformally invariant systems is continued in [4] and [5].

In Section 3 we take G to be the split real form in each type and investigate the systems
that were labeledΩ2 in [1]. In Section 4 we look in more detail at theK-finite solutions to the
Ω2 system for the split linear group of type C. Although this system is anomalous in several
distinct ways and the determination of its K-finite solutions is dramatically easier than in all
other cases, it is hoped that the exercise will still be instructive.

2. General considerations. The purpose of this section is to show how to reduce
the problem of finding all K-finite solutions to a conformally invariant system of differential
equations on a line bundle over a real flag manifold to a purely algebraic problem.

LetG be a connected linear Lie group with Lie algebra g0. We assume that the complex-
ification g of g0 is semisimple. (The convention according to which the name of a real object
includes a zero subscript that is removed to name the complexification of the object will be
systematically employed.) Let g0 = k0 ⊕ p0 be a Cartan decomposition of g0, K the maximal
compact subgroup of G whose Lie algebra is k0, and a0 ⊂ p0 a maximal abelian subspace.

We write R(g0, a0) for the set of roots of g0 with respect to a0, choose a positive system
R+(g0, a0), and let Rs(g0, a0) be the resulting set of simple roots. (Similar notation will be
used for other roots systems.) To each subset of Rs(g0, a0) is associated a real parabolic
subalgebra of g0, together with a Levi decomposition of this subalgebra. We shall call these
subalgebras and Levi decompositions standard.

Let q0 be a standard real parabolic subalgebra of g0, q0 = l0 ⊕ n0 be its standard Levi
decomposition, and use an overline to denote opposition, so that, for example, q̄0 denotes the
real parabolic subalgebra opposite to q0. Let Q̄ = NG(q̄0) be the real parabolic subgroup of
G associated to q̄0 and Q̄ = LN̄ be the Levi decomposition of Q̄ that is consistent with the
standard Levi decomposition of q̄0.

Let χ : L → R× be an analytic homomorphism. We may extend χ to be trivial on N̄
and so obtain an analytic homomorphism χ : Q̄ → R×. Associated to this homomorphism is
a homogeneous line bundle L → G/Q̄. The total space of this bundle may be constructed as
the quotient of G× C by the equivalence relation (g q̄, z) ∼ (g, χ(q̄)−1z) for g ∈ G, q̄ ∈ Q̄,
and z ∈ C. The space Γ (U,L) of smooth sections of L over an open set U ⊂ G/Q̄ may be
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identified with the space of smooth functions ϕ : W → C that satisfy ϕ(g q̄) = χ(q̄)ϕ(g) for
g ∈ W and q̄ ∈ Q̄, whereW is the preimage of U under the canonical projectionG → G/Q̄.
The space Γ (L) of smooth global sections of L under the left-translation action of G gives
a model of the smooth induced representation Ind(G, Q̄, χ−1). We shall denote the resulting
representation of G by π and the derived representation of g by Π . The latter action realizes
g as an algebra of first order differential operators onG/Q̄ and hence extends to Γ (U,L) for
any open set U ⊂ G/Q̄. (This and similar extensions will henceforth be made silently.)

It follows from the theory of the Iwasawa decomposition that the map h(K ∩ L) 	→ hQ̄

is a diffeomorphism from K/(K ∩ L) to G/Q̄. The objects that were constructed above on
G/Q̄ may be transported to K/(K ∩ L) via this diffeomorphism. To avoid overburdening
the notation, we shall typically use the same symbol for an object on G/Q̄ and its pullback
to K/(K ∩ L), allowing context to remove the ambiguity. In particular, we obtain a model
of the smooth induced representation Ind(G, Q̄, χ−1) in the space of smooth functions ϕ on
K that satisfy the transformation law ϕ(kl) = χ(l)ϕ(k) for k ∈ K and l ∈ K ∩ L. Note
that χ is trivial on (K ∩ L)◦, the connected component of the identity in K ∩ L, and that
χ(K ∩ L) ⊂ {±1}.

We have g = k + q̄ and g = (k ∩ l)⊥ ⊕ q̄, where the orthogonal complement in the
first summand is with respect to the restriction of the Killing form of g to k. Thus we may
express any element of g as the sum of an element of k and an element of q̄, and we may
insist that the element of k lie in (k ∩ l)⊥ if uniqueness of the expression is desired. In using
this decomposition, we shall often start with the more restrictive unique version, and then
observe that the result would be unaffected if the less restrictive version were used instead.
For calculation, the less restrictive version may be more convenient.

We write dχ : q̄ → C for the differential of χ and denote by Cdχ the one-dimensional
q̄-module on which q̄ acts via dχ . Since χ is trivial on (K ∩ L)◦, dχ vanishes on k ∩ l and
the restriction of Cdχ to k ∩ l is the trivial (k ∩ l)-module.

LEMMA 2.1. The C-linear map

ι : U(k)⊗U(k∩l) C → U(g)⊗U(q̄) Cdχ

given on simple tensors by ι(u⊗ 1) = u⊗ 1 is an isomorphism of U(k)-modules.

PROOF. We have observed that the restriction of Cdχ to k ∩ l is trivial and it follows
that ι is well-defined. Let us fix an ordered basis for (k ∩ l)⊥. This basis may be extended to
a basis for k by adjoining a basis for k ∩ l or to a basis for g by adjoining a basis for q̄. By
the PBW Theorem applied to U(k) and to U(g), it follows that ι is an isomorphism of vector
spaces. Finally, ι is a k-module homomorphism by direct calculation. �

The functional dχ is invariant under the adjoint action of L on q̄ and it follows that L
acts adjointly on the module U(g)⊗U(q̄) Cdχ . Similarly,K ∩ L acts adjointly on the module
U(k)⊗U(k∩l) C. The map ι defined in Lemma 2.1 is equivariant forK ∩ L.

Let σ be an irreducible representation of K . Write Eσ for the space on which σ is
realized and fix a non-zero K-invariant Hermitian form 〈 · , · 〉σ on Eσ . We take this form to
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be linear in its first argument and conjugate linear in its second argument. For ξ1, ξ2 ∈ Eσ ,
we define a function ψσ (ξ1, ξ2) on K by

ψσ (ξ1, ξ2)(k) = 〈ξ1, σ (k)ξ2〉σ .
This function may be regarded as an element of Γ (L) if and only if ξ2 ∈ E

(K∩L,χ)
σ , the

subspace of Eσ consisting of those vectors that transform by χ under K ∩ L. Every K-
finite vector in Γ (L) is a finite linear combination of various of the vectors ψσ (ξ1, ξ2) with
ξ2 ∈ E(K∩L,χ)

σ .
We now wish to apply the framework and results of [2] to the present situation. We

obtain the strongest results by restricting attention to the dense open set U ⊂ K/(K ∩L) that
corresponds to NQ̄/Q̄ ⊂ G/Q̄, since this places us in the situation studied in Sections 5, 6
and 7 of [2]. The restriction is harmless for the purpose at hand. Note that we may identify U
with N as g-manifolds, and we shall do so when convenient.

As in [2], we let D(L|U) denote the algebra of linear differential operators on L|U . The
conformally invariant systems that we shall consider will be composed of operators that lie
in the subalgebra D(L|U)n that consists of all elements of D(L|U) that commute with Π(X)
for all X ∈ n. As explained in Section 5 of [2], there is an isomorphism Λ 	→ DΛ from
U(g) ⊗U(q̄) Cdχ ⊗C C−dχ to D(L|U)n. Let u 	→ u† be the antiautomorphism of U(g) that
satisfies Y † = −Y for all Y ∈ g. By following the construction ofDΛ that is explained in [2],
we find that if Λ = u⊗ 1 ⊗ 1 then

(DΛ•ϕ)(n) = (
Π(u†)•(�n−1ϕ)

)
(e) .

Here �n−1 denotes left translation by n−1 and • designates application of a differential operator
to an element of its domain. Let u 	→ ū be the conjugate linear map from U(g) to U(g) that
is induced by the complex conjugation of g with respect to the real structure g0.

LEMMA 2.2. Let u ∈ U(k) and writeΛ = ι(u⊗1)⊗1, where ι is the map introduced in
Lemma 2.1. Let (σ,Eσ ) be an irreducible representation of K , ξ1 ∈ Eσ , and ξ2 ∈ E(K∩L,χ)

σ .
Then we have (

DΛ•ψσ (ξ1, ξ2)
)
(e) = 〈ξ1, dσ (ū)ξ2〉σ .

PROOF. Let Z ∈ k. Then, directly from the definitions, we find that

Π(Z)•ψσ (ξ1, ξ2) = ψσ (dσ(Z)ξ1, ξ2)

and it follows that

Π(u)•ψσ (ξ1, ξ2) = ψσ (dσ(u)ξ1, ξ2)

for all u ∈ U(k). The above expression forDΛ now gives(
DΛ•ψσ (ξ1, ξ2)

)
(e) = 〈dσ(u†)ξ1, ξ2〉σ .

It remains to observe that

〈dσ(u†)ξ1, ξ2〉σ = 〈ξ1, dσ (ū)ξ2〉σ ,
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because the Hermitian form is K-invariant. �

We continue in the framework established in [2]. Let D1, . . . ,Dm ∈ D(L|U) be a
straight, L-stable, homogeneous, conformally invariant system. By definition, there is a ho-
momorphism c : L → GL(m,C) such that

π(l) ◦Di ◦ π(l−1) =
m∑
j=1

c(l)jiDj(1)

for 1 ≤ i ≤ m and l ∈ L. We choose Λi ∈ U(g) ⊗U(q̄) Cdχ ⊗C C−dχ such that DΛi = Di

for 1 ≤ i ≤ m and let Λi = vi ⊗ 1 with vi ∈ U(g)⊗U(q̄) Cdχ . Note that the vi are uniquely
determined by this description. We have dχ(Ad(l)X) = dχ(X) for X ∈ q̄, and consequently
L acts on the module U(g)⊗U(q̄) Cdχ via Ad ⊗ χ . In terms of this action, (1) becomes

lvi = χ(l)

m∑
j=1

cji(l)vj .(2)

If g ∈ NLN̄ then there is a unique factorization

g = ζ(g)a(g)ζ̄ (g)

with ζ(g) ∈ N , a(g) ∈ L, and ζ̄ (g) ∈ N̄ . For any g ∈ G, the set Ug = NQ̄/Q̄ ∩ gNQ̄/Q̄
is open and dense in G/Q̄. If n ∈ N and nQ̄ ∈ Ug then g−1n ∈ NLN̄ and so g−1n has a
factorization of the above type.

PROPOSITION 2.3. Let g ∈ G. Then we have

π(g) ◦Di ◦ π(g−1) =
m∑
j=1

cji (a(g−1n)−1)Dj

on the set Ug . In particular, the space of all ϕ ∈ Γ (L) such thatDi•ϕ = 0 for all 1 ≤ i ≤ m

is invariant underG.

PROOF. We make use of the notation introduced above. Let F ⊂ U(g) ⊗U(q̄) Cdχ

be the span of the elements v1, . . . , vm. Then, by (2), F is stable under the action of L on
U(g) ⊗U(q̄) Cdχ and we denote by η the representation of L that is afforded by this space.
The infinitesimal representation dη may be extended by zero on n̄ to yield a representation of
q̄. It follows from Theorem 19 in [2] that n̄F = {0} and consequently there is a map

T ∈ HomU(g),L(U(g)⊗U(q̄) Fdη,U(g)⊗U(q̄) Cdχ )

such that T (y ⊗ v) = yv for y ∈ U(g) and v ∈ F . By Lemma 2.4 in [3], the map T
corresponds to a differential intertwining operator Ť from the smooth induced representation
Ind(G, Q̄, χ−1) to the smooth induced representation Ind(G, Q̄, η∗), where η∗ denotes the
contragradient of η. If we make the usual identification of vectors in these smooth induced
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representations with functions on N then we have

Ť (ϕ) =
m∑
j=1

(Dj •ϕ)v∗
j ,

where v∗
1 , . . . , v

∗
m is the basis of F ∗ dual to v1, . . . , vm.

Let πη denote the induced representation from η∗. Since Ť is an intertwining operator,
we have πη(g−1) ◦ Ť = Ť ◦ π(g−1). Let ϕ ∈ Γ (L) and n ∈ N with nQ̄ ∈ Ug−1 . Then

(
πη(g−1)Ť (ϕ)

)
(n)= πη(g−1)

( m∑
j=1

(Dj •ϕ)v∗
j

)
(n)

=
m∑
j=1

(Dj •ϕ)(ζ(gn))η∗(a(gn)−1)v∗
j

= χ(a(gn))
m∑

j,p=1

(Dj •ϕ)(ζ(gn))cjp(a(gn))v∗
p

and the equality of this and (Ť (π(g−1)ϕ))(n) implies that

(
Di•(π(g−1)ϕ)

)
(n) = χ(a(gn))

m∑
j=1

cji(a(gn))(Dj •ϕ)(ζ(gn)) .(3)

It follows directly from the definitions that if nQ̄ ∈ Ug then we have ζ(gn) ∈ Ug−1 ,
ζ(gζ(g−1n)) = n, and a(gζ(g−1n)) = a(g−1n)−1. Thus if nQ̄ ∈ Ug then(

π(g)(Di•(π(g−1)ϕ))
)
(n)

= χ(a(g−1n))
(
Di•(π(g−1)ϕ)

)
(ζ(g−1n))

= χ(a(g−1n))χ(a(gζ(g−1n)))

m∑
j=1

cji (a(gζ(g−1n)))(Dj •ϕ)(ζ(gζ(g−1n)))

= χ(a(g−1n))χ(a(g−1n)−1)

m∑
j=1

cji(a(g−1n)−1)(Dj •ϕ)(n)

=
m∑
j=1

cji(a(g−1n)−1)(Dj •ϕ)(n) ,

where we have used (3) from the second line to the third. This evaluation establishes the
required equality for ϕ ∈ Γ (L), but it automatically extends to an identity of differential
operators on Ug because the set of restrictions of elements of Γ (L) to Ug is dense in the
space of smooth functions on Ug with the smooth topology. Moreover, since Ug is dense in
NQ̄/Q̄, it follows from the identity that was just derived that ifDi•ϕ = 0 for 1 ≤ i ≤ m then
Di•(π(g−1)ϕ) = 0 for all g ∈ G and 1 ≤ i ≤ m. This observation establishes the second
claim and completes the proof. �
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It follows from Proposition 2.3 and general properties of induced representations that

Γ (L)D = {ϕ ∈ Γ (L) ; Di•ϕ = 0 for 1 ≤ i ≤ m}
is a closed,G-invariant subspace of Γ (L), and affords a smooth, admissible representation of
G.

COROLLARY 2.4. With D1, . . . ,Dm as above, suppose in addition that Di•1 = 0
for 1 ≤ i ≤ m. Then, for all g ∈ G, the function n 	→ χ(a(g−1n)) is a solution to the system
D1, . . . ,Dm on Ug .

PROOF. This follows from Proposition 2.3 on observing that the specified function is
π(g)1. �

The special solutions identified in Corollary 2.4 are not usually restrictions of elements
of Γ (L). They are also not usually locally integrable, but they can be regarded as defining
distributions on NQ̄/Q̄ by a suitable analytic continuation procedure, and it is an interesting
problem to compute the result of applying the operators Di to these distributions. We shall
consider this problem elsewhere.

With D1, . . . ,Dm as above, let us choose u1, . . . , um ∈ U(k) such that

Di = Dι(ui⊗1)⊗1

for 1 ≤ i ≤ m.

LEMMA 2.5. Let (σ,Eσ ) be an irreducible representation of K , ξ1 ∈ Eσ , and ξ2 ∈
E
(K∩L,χ)
σ . If k ∈ K ∩NQ̄ then

(
Di•ψσ (ξ1, ξ2)

)
(k) =

m∑
j=1

cji(a(k)
−1)ψσ (ξ1, dσ (ūj )ξ2)(k) .

PROOF. We have
(
Di•ψσ (ξ1, ξ2)

)
(k)= (

π(k−1)(Di•ψσ (ξ1, ξ2))
)
(e)

= (
(π(k−1) ◦Di ◦ π(k))(ψσ (σ (k−1)ξ1, ξ2))

)
(e)

=
m∑
j=1

cji(a(k)
−1)

(
Dj •ψσ (σ(k−1)ξ1, ξ2)

)
(e)

=
m∑
j=1

cji(a(k)
−1)〈σ(k−1)ξ1, dσ (ūj )ξ2〉σ

=
m∑
j=1

cji(a(k)
−1)〈ξ1, σ (k)dσ(ūj )ξ2〉σ

=
m∑
j=1

cji(a(k)
−1)ψσ

(
ξ1, dσ (ūj )ξ2

)
(k) ,
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where we have used Proposition 2.3 from the third line to the fourth, and Lemma 2.2 from the
fourth line to the fifth. �

Let K̂ denote the set of isomorphism classes of irreducible representations of K and for
σ ∈ K̂ set

Mχ(σ ) = {ξ ∈ E(K∩L,χ)
σ ; dσ(ūi)ξ = 0 for 1 ≤ i ≤ m} .

For any admissible Frechet representation r of G, let HC(r) denote the underlying Harish-
Chandra module.

THEOREM 2.6. As representations of K , we have

HC(Γ (L)D) ∼=
⊕
σ∈K̂

σ ⊗ Mχ(σ ) .

On the summand corresponding to σ , the isomorphism from right to left satisfies ξ1 ⊗ ξ2 	→
ψσ (ξ1, ξ2).

PROOF. As usual,

HC(Γ (L)) ∼=
⊕
σ∈K̂

σ ⊗ Ē(K∩L,χ)
σ

and this decomposition corresponds to an isomorphism

Ē(K∩L,χ)
σ

∼= HomK(σ,HC(Γ (L)))
of complex vector spaces. In order to establish the claimed isomorphism, we merely have to
verify that the subspace Mχ (σ ) of Ē(K∩L,χ)

σ corresponds to the subspace

HomK(σ,HC(Γ (L)D)) ⊂ HomK(σ,HC(Γ (L))) .
This correspondence is immediate from Lemma 2.5, since K ∩NQ̄ is dense in K . �

For σ ∈ K̂ , it is convenient to consider

M(σ ) = {ξ ∈ Ek∩l
σ ; dσ(ūi)ξ = 0 for 1 ≤ i ≤ m}.

This space is stable under the action of K ∩ L, and (K ∩ L)◦ acts trivially on it. It is known
that the component group of K ∩ L is an elementary abelian 2-group. Consequently, M(σ )

decomposes into a direct sum of eigenspaces forK∩L, with each eigenspace corresponding to
a sign character ofK ∩L. The inclusionK ∩L → L induces an isomorphism of components
groups, and so these sign characters may also be regarded as sign characters of L. Thus if χ
is a real-valued analytic character of L then we have

M(σ ) =
⊕
ε

Mεχ (σ ) ,

where the sum is over all sign characters of L. Note that the action of g on Γ (L) depends
only the restriction of χ to L◦, as does the conformal invariance of a system of operators
D1, . . . ,Dm on L|U with U = NQ̄/Q̄. Thus an element of Mεχ (σ ) corresponds to an
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embedding of σ into Γ (L)D , where L corresponds to εχ rather than χ . For this reason, we
shall call a (K ∩ L)-eigenvector in M(σ ) an embedding vector.

We now consider the action of p on HC(Γ (L)D). To formulate the result, it is convenient
to extend the symbols ψσ , Mχ (σ ), and M(σ ) to allow σ to be a direct sum of finitely-many
irreducible representations, which may be done in the obvious way. We also confuse the space
p and the representation (Ad, p) of K when convenient. The form B is positive definite and
K-invariant on p0, and there is a K-invariant Hermitian form 〈 · , · 〉p on p = C ⊗R p0 that
satisfies

〈z1 ⊗ Y1, z2 ⊗ Y2〉p = z1z̄2B(Y1, Y2)

for z1, z2 ∈ C and Y1, Y2 ∈ p0. Let {Wi}ni=1 be an orthonormal basis of p0 with respect to B.

For each 1 ≤ i ≤ n, write Wi = Zi + Ui with Zi ∈ k0 and Ui ∈ q̄0. Given σ ∈ K̂, define a
map R(σ) : Ek∩l

σ → p ⊗ Eσ by

R(σ)ξ =
n∑
i=1

Wi ⊗ (dσ(Zi)+ dχ(Ui))ξ(4)

for ξ ∈ Ek∩l
σ . Note that, from the bilinearity of the tensor product, R(σ) is independent of the

choice of {Wi}ni=1. We take the standard choice of K-invariant Hermitian form on p ⊗ Eσ to
be the one that satisfies

〈Y1 ⊗ ξ1, Y2 ⊗ ξ2〉p⊗σ = 〈Y1, Y2〉p〈ξ1, ξ2〉σ
for Y1, Y2 ∈ p and ξ1, ξ2 ∈ Eσ .

LEMMA 2.7. The map R(σ) : Ek∩l
σ → p ⊗ Eσ is (K ∩ L)-intertwining.

PROOF. For k ∈ K ∩ L, a brief calculation yields

R(σ)σ(k)ξ = (Ad ⊗ σ)(k)

n∑
i=1

Ad(k−1)Wi ⊗ (dσ(Ad(k−1)Zi)+ dχ(Ui))ξ .

Now {Ad(k−1)Wi}ni=1 is an orthonormal basis for p0, Ad(k−1)Wi = Ad(k−1)Zi+Ad(k−1)Ui

is a decomposition of Ad(k−1)Wi into the sum of an element of k0 and an element of q̄0,
and dχ(Ui) = dχ(Ad(k−1)Ui) for 1 ≤ i ≤ n. These observations and the independence
of R(σ) of the choice of the orthonormal basis used to compute it imply that R(σ)σ(k) =
(Ad ⊗ σ)(k)R(σ), as claimed. �

Note that Lemma 2.7 implies that

R(σ)(E(K∩L,χ)
σ ) ⊂ (p ⊗Eσ )

(K∩L,χ) .(5)

Although R(σ) has been defined on Ek∩l
σ , only its restriction to E(K∩L,χ)

σ is of interest for
the present purposes. We shall shortly see that a containment similar to (5) also holds for the
subspaces of embedding vectors.

Suppose that ξ1 ∈ Eσ and ξ2 ∈ E
(K∩L,χ)
σ , so that ψσ (ξ1, ξ2) ∈ Γ (L). Let Y ∈ p0 and

k ∈ K . Then we may find ε > 0 and smooth maps κ : (−ε, ε) → K and q̄ : (−ε, ε) → Q̄
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such that κ(0) = q̄(0) = e and

exp(−tY )k = kκ(t)q̄(t)(6)

for |t| < ε. Directly from the definition of the action, we have

(
Π(Y)•ψσ (ξ1, ξ2)

)
(k) = dχ(q̄ ′(0))ψσ (ξ1, ξ2)(k)+ d

dt

∣∣∣∣
t=0

ψσ (ξ1, ξ2)(kκ(t))

= dχ(q̄ ′(0))ψσ (ξ1, ξ2)(k)+ 〈ξ1, σ (k)dσ(κ
′(0))ξ2〉σ .

By rearranging and differentiating (6), we obtain

−Ad(k−1)Y = κ ′(0)+ q̄ ′(0) ∈ k0 + q̄0 .

As we have remarked above, such a decomposition of −Ad(k−1)Y is not unique, but the non-
uniqueness is irrelevant for the determination of Π(Y)•ψσ (ξ1, ξ2). By taking advantage of
the orthonormal basis {Wi}ni=1 that we have chosen above, we may write

Ad(k−1)Y =
n∑
i=1

B(Ad(k−1)Y,Wi)Wi

=
n∑
i=1

B(Ad(k−1)Y,Wi)Zi +
n∑
i=1

B(Ad(k−1)Y,Wi)Ui

=
n∑
i=1

B(Y,Ad(k)Wi)Zi +
n∑
i=1

B(Y,Ad(k)Wi)Ui ,

and taking the resulting possibilities for κ ′(0) and q̄ ′(0), we obtain

− (
Π(Y)•ψσ (ξ1, ξ2)

)
(k)

=
n∑
i=1

B(Y,Ad(k)Wi)(dχ(Ui)〈ξ1, σ (k)ξ2〉σ + 〈ξ1, σ (k)dσ(Zi)ξ2〉σ )

=
n∑
i=1

〈Y,Ad(k)Wi〉p〈ξ1, σ (k)(dσ(Zi)+ dχ(Ui))ξ2〉σ

= 〈Y ⊗ ξ1, (Ad ⊗ σ)(k)R(σ)ξ2〉p⊗σ
= ψp⊗σ (Y ⊗ ξ1, R(σ)ξ2)(k) .

From this calculation, we conclude that

Π(Y)•ψσ (ξ1, ξ2) = −ψp⊗σ (Y ⊗ ξ1, R(σ)ξ2)

for Y ∈ p0. Since both sides are complex-linear in Y , this evaluation extends to all Y ∈ p. If
we take ξ2 ∈ Mχ(σ ), so that ψσ (ξ1, ξ2) ∈ Γ (L)D then, by the conformal invariance of the
system, Π(Y)•ψσ (ξ1, ξ2) ∈ Γ (L)D also, and we conclude that R(σ)ξ2 ∈ Mχ (p ⊗ σ). That
is, we have

R(σ)Mχ (σ ) ⊂ Mχ(p ⊗ σ) .
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The action of R(σ) on embedding vectors is a skeletal version of the action of p on Γ (L)D
and, in favorable cases, may be used to study reducibility questions for this module.

3. Conformally invariant systems attached to the Heisenberg parabolic subalge-
bra in the split real form. In order to apply the results of Section 2 we require specific
examples of conformally invariant systems on real flag manifolds. In [1] numerous exam-
ples of such systems were constructed for the case where the parabolic subalgebra belongs
to the unique conjugacy class of Heisenberg parabolic subalgebras in g. If g0 is a particular
real form of g for which some such parabolic subalgebra is real then these systems give rise
to conformally invariant systems on G/Q̄. Although these systems are constructed without
reference to a real form, we cannot discuss their K-finite solutions until a real form has been
fixed. The purpose of this section is to study these conformally invariant systems on the split
real form of g.

Let g be a complex simple Lie algebra of rank greater than one. Choose a Cartan sub-
algebra h, let R = R(g, h) be the resulting root system, fix a positive system R+ ⊂ R, and
let Rs ⊂ R+ be the set of simple roots. Let B be a positive multiple of the Killing form
of g and let ( · , · ) denote the inner product on h∗ induced by B. The normalization of B is
fixed by requiring that the length of the long roots in R is

√
2, with all roots being consid-

ered long in the simply-laced case. We choose a Chevalley system in g that is normalized to
satisfy conditions (C1) through (C9) in Section 2 of [1]. These normalization conditions will
be recalled as they are required. For each α ∈ R, we have a root vector Xα and an element
Hα ∈ h such that Xα,Hα,X−α is an sl(2)-triple. The chosen normalization of B implies that
B(Xα,X−α) = 2/‖α‖2 for all α ∈ R.

Let g0 be the R-span of the Xα and the Hα. Then g0 is a split real form of g with Cartan
involution θ determined by θ(Xα) = −X−α and θ(H) = −H for H ∈ h0. For α ∈ R, let
Zα = Xα − X−α . Then Zα ∈ k0 for all α ∈ R, the set {Zα ; α ∈ R+} is an R-basis for k0,
and we have

[Zα,Zβ ] = Nα,βZα+β −Nα,−βZα−β ,

where Nα,β is the structure constant defined by [Xα,Xβ ] = Nα,βXα+β if α + β ∈ R and
Nα,β = 0 otherwise.

Let γ ∈ R+ be the highest root and q the standard parabolic subalgebra corresponding to
the set {α ∈ Rs ; (α, γ ) = 0}. Then q0 is a real Heisenberg parabolic subalgebra (that is, n0 is
a nilpotent algebra of length two with one-dimensional center). Let c0 ⊂ h0 be the center of l0.
Then l0 = c0 ⊕m0 with m0 a semisimple ideal of l0. Suppose thatG is a connected linear Lie
group with Lie algebra g0 and letC andM◦ be the connected subgroups ofG corresponding to
c0 and m0, respectively. The Langlands decomposition of the Heisenberg parabolic subgroup
Q = NG(q0) is thenQ = MCN , whereM = ZK(c0)M

◦. The standard Levi component ofQ
isL = MC and there is a real-valued analytic character ν ofL defined by Ad(l)Xγ = ν(l)Xγ .
The restriction of the root γ to c extends to a Lie algebra homomorphism γ : l → C by
making it zero on m and dν = γ . If χ : L → R× is an analytic character such that dχ is a
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multiple of γ then

χ = ε|ν|s

for some s ∈ R and some sign character ε : L → {±1}. We shall always take χ = χ(s, ε)

in this form when applying the results of Section 2 to the present situation. Note that we have
dχ(s, ε) = sγ .

The conformally invariant systems that we wish to study here always consist of operators
Dy⊗1 for various y ∈ U(g) ⊗U(q̄) Cdχ . The space D(L)n is closed under composition,
and it is convenient to have a description of the element y ∈ U(g) ⊗U(q̄) Cdχ such that
Dy⊗1 = Dy1⊗1 ◦ Dy2⊗1. The decomposition g = n ⊕ q̄ and the PBW Theorem imply that
we may choose y1 = x1 ⊗ 1 and y2 = x2 ⊗ 1 with x1, x2 ∈ U(n). If we do so then it is
a consequence of Proposition 16 in [2] that y = x1x2 ⊗ 1. Of course, this relation does not
generally persist if we choose x1 and x2 without the restriction that they lie in U(n).

In order to prepare for the definition of the conformally invariant systems that we shall
study we must first recall some further notation, mostly drawn from [1]. There is a grading
g = g(−2)⊕g(−1)⊕g(0)⊕g(1)⊕g(2), where g(j) is the j -eigenspace of ad(Hγ ). We have
l = g(0), and we follow [1] in writing V + = g(1) and V − = g(−1). Note that gγ = g(2) and
g−γ = g(−2). For any h-stable subspace E of g, we write R(E) for the set of roots α such
that gα ⊂ E. If α ∈ R(V +) then γ − α ∈ R(V +) and we write α′ = γ − α. The space V + is
an l-module under the adjoint action and we define matrix coefficients for this module by

[Y,Xα] =
∑

µ∈R(V+)
Mαµ(Y )Xµ(7)

for Y ∈ l and α ∈ R(V +).

LEMMA 3.1. Let Y ∈ l and α, β ∈ R(V +). Then we have

Mαβ(Y ) =




0 if α �= β and α − β /∈ R ,

1

2
‖β‖2Nα,−βB(Y,Xα−β) if α �= β and α − β ∈ R ,

1

2
‖α‖2B(Y,Hα) if α = β .

PROOF. By applying B(−,X−β) to both sides of (7) we obtain

Mαβ(Y ) = 1

2
‖β‖2B([Y,Xα],X−β) .

The invariance of B allows this equation to be written as

Mαβ(Y ) = 1

2
‖β‖2B(Y, [Xα,X−β ])

and the claims follow on considering the various possibilities for [Xα,X−β ]. �
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The systems that we wish to consider are those labeledΩ2 in [1]. The operators in these
systems are associated to elements of the ideal

lγ = {Y ∈ l ; γ (Y ) = 0}
of l. If Y ∈ lγ then we define

ω2(Y ) = 1

2

∑
α,β∈R(V+)

N−1
β,β ′Mβ ′α(Y )XβXα ⊗ 1 ∈ U(g)⊗U(q̄) Csγ

and

Ω2(Y ) = Dω2(Y )⊗1 .

If r ⊂ lγ is an irreducible ideal then it follows from Theorems 5.2 and 5.3 in [1] that there is a
unique s ∈ R such that the systemΩ2(Y ) as Y runs over a basis of r is conformally invariant.
The value of s corresponding to each irreducible ideal in lγ may be found in the table in
Subsection 8.10 in [1]. Note, however, that the columns for the systems Ωbig

2 and Ωsmall
2 in

types B and D were inadvertently transposed in that table. Inspection of the table shows that
the only Ω2 system for which the corresponding value of s is zero is Ωbig

2 for algebras of
type A. When we discuss a particular conformally invariant system below, it will always be
understood that s takes the value associated with this system.

PROPOSITION 3.2. Let Y ∈ lγ and define

Υ2(Y ) = 1

2

∑
α,β∈R(V+)

N−1
β,β ′Mβ ′α(Y )ZβZα − s

∑
β∈R(V+)

N−1
β,β ′ ‖β‖−2Mβ ′β(Y ) ∈ U(k) .

Then ι(Υ2(Y )⊗ 1) = ω2(Y ), where

ι : U(k)⊗U(k∩l) C → U(g)⊗U(q̄) Csγ

is the map from Lemma 2.1.

PROOF. In U(g)⊗U(q̄) Csγ we have

XβXα ⊗ 1 = (Zβ +X−β)(Zα +X−α)⊗ 1

= ZβZα ⊗ 1 +X−βZα ⊗ 1

= ZβZα ⊗ 1 − [Zα,X−β ] ⊗ 1

= ZβZα ⊗ 1 − [Xα,X−β ] ⊗ 1 .

Now γ ([Xα,X−β ]) = 0 unless α = β and so

XβXα ⊗ 1 = ZβZα ⊗ 1 − δαβHβ ⊗ 1

= ZβZα − sδαβγ (Hβ)1 ⊗ 1

= ZβZα − 2s

‖β‖2 δαβ1 ⊗ 1 ,

where δαβ is the Kronecker delta. In this calculation, we have used the facts that (β, γ ) = 1
for all β ∈ R(V +), and µ(Hν) = 2(µ, ν)‖ν‖−2 for any µ, ν ∈ R. (The latter is Condition
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(C5) from Section 2 in [1].) By substituting this evaluation of XβXα ⊗ 1 into the definition
of ω2(Y ), we obtain the asserted equality. �

Note that Υ2(Y ) = Υ2(Ȳ ) for all Y ∈ lγ . Each of the Ω2 systems that we consider has a
basis coming from elements of l

γ

0 and is hence closed under conjugation. We make repeated
use of this observation in what follows.

LEMMA 3.3. Let β ∈ R(V +). Then β ′ − β is a root if and only if β is short. If β is
short then β ′ − β is long unless R has type G2, in which case β ′ − β is short.

PROOF. We first consider the root system G2. Let Rs = {λ, σ }, with λ long and σ short.
Then R(V +) = {λ, λ+ σ, λ+ 2σ, λ+ 3σ } and γ = 2λ+ 3σ . By using these facts, it is easy
to verify the claims in this case.

We now assume that R does not have type G2, so that the long roots have length
√

2 and
the short roots, if they are present, have length 1. Note that γ is always long. If β ∈ R(V +)
is a long root then

‖β ′ − β‖2 = (γ − 2β, γ − 2β) = ‖γ ‖2 + 4‖β‖2 − 4(γ, β) = 6 ,

since (γ, β) = 1. This implies that β ′ − β is not a root. Now suppose that β is short. Then

sβ(γ ) = γ − 2(γ, β)

‖β‖2 β = γ − 2β = β ′ − β

is a root. Moreover, it has the same length as γ and hence is long. �

In what follows, let CT : U(k) → C be the algebra homomorphism that is induced by
the zero Lie algebra homomorphism k → C. It follows from Proposition 3.2 that

CT(Υ2(Y )) = −s
∑

β∈R(V+)
N−1
β,β ′‖β‖−2Mβ ′β(Y )

for all Y ∈ lγ .

COROLLARY 3.4. We have CT(Υ2(Y )) = 0 for all Y ∈ lγ if and only if R is simply
laced.

PROOF. IfR is simply laced then it follows from Lemmas 3.1 and 3.3 thatMβ ′β(Y ) = 0
for all β ∈ R(V +). (Note that R is reduced, so that β ′ �= β for all β ∈ R(V +).) This gives
one implication. For the other, we require the fact (which may be verified case-by-case) that
if R is not simply laced then R(V +) contains short roots. Suppose that α ∈ R(V +) is such a
root and take Y = X−(α′−α). By noting that β ′ − β = α′ − α implies that β = α, and once
again using Lemmas 3.1 and 3.3, we find that

∑
β∈R(V+)

N−1
β,β ′ ‖β‖−2Mβ ′β(X−(α′−α)) = N−1

α,α′Nα′,−α
‖α′ − α‖2

,

which is non-zero. It has been observed above that s �= 0 for all Ω2 systems on all non-
simply-laced algebras, and the required conclusion follows. �
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We can be slightly more precise about the conclusion of Corollary 3.4. The list of irre-
ducible non-simply-laced root systems is Br (r ≥ 3), Cr (r ≥ 2), F4, and G2. The algebra
lγ has two simple ideals when R has type Br , and is simple otherwise. With respect to the
standard model of the Br root system inside Rr and the standard choice of positive system,
we have

R(V +) = {e1, e2} ∪ {e1 ± ej ; 3 ≤ j ≤ r} ∪ {e2 ± ej ; 3 ≤ j ≤ r} .
The only short roots in R(V +) are e1 and e2 and it follows that, of the two simple ideals in
lγ , the functional Y 	→ CT(Υ2(Y )) is non-zero only on the one generated by the root vectors
X±(e1−e2). This ideal corresponds to the system that is called Ω small

2 in Section 8 of [1].
Let σ0 denote the trivial representation ofK . Suppose thatD1, . . . ,Dm is a conformally

invariant system and that ui ∈ U(k) corresponds to the operator Di , as above. Then 1 ∈
M(σ0) if and only if CT(ūi) = 0 for all 1 ≤ i ≤ m. Thus one consequence of the above
discussion is that we have determined which of the Ω2 systems admit the constant function
1 on K as a solution. In case this function does lie in the solution space, it will generate a
subrepresentation with a spherical representation as a quotient. Thus we have established the
following result.

THEOREM 3.5. Let D denote one of the Ω2 systems considered above and s the cor-
responding special value. Then the solution space Γ (L)D contains an irreducible spherical
subquotient for χ = χ(s, ε0), with ε0 the trivial character, if and only if either the root system
R is simply laced or R has type Br with r ≥ 3 and D = Ω

big
2 .

The only finite-dimensional irreducible spherical representation is the trivial representa-
tion. The constant function 1 on K/(K ∩ L) is fixed under the action of G on Γ (L) if and
only if s = 0. The only Ω2 system for which s = 0 is Ωbig

2 in type A. Thus the spherical
subquotient considered in Theorem 3.5 is a one-dimensional subrepresentation in this case.
Otherwise, it is not finite-dimensional, although this requires an additional argument.

LEMMA 3.6. Let Z ∈ k ∩ l and Y ∈ lγ . Then

ZΥ2(Y ) ∈ Υ2([Z, Y ])+ U(k)(k ∩ l) ,

where U(k)(k ∩ l) denotes the left ideal in U(k) generated by the elements of k ∩ l.

PROOF. In the discussion preceding the statement of Theorem 5.2 in [1], it is observed
that Ω2(Ad(l)Y ) = ν(l)−1l · Ω2(Y ) for l ∈ L and Y ∈ lγ , where ν is the character defined
by Ad(l)Xγ = ν(l)Xγ . For l ∈ (K ∩ L)◦, this reduces to Ω2(Ad(l)Y ) = l · Ω2(Y ), and it
follows that ω2(Ad(l)Y ) = (Ad(l) ⊗ I)(ω2(Y )) under the same assumption on l. By taking
l = exp(tZ) in this relation, differentiating with respect to t , and setting t = 0, we obtain
ω2([Z, Y ]) = Zω2(Y ). The (K∩L)-equivariance of the map ι now implies that Υ2([Z, Y ])⊗
1 = Z(Υ2(Y )⊗ 1) in the module U(k)⊗U(k∩l) C. This module is isomorphic to the quotient
module U(k)/U(k)(k ∩ l) via the map y ⊗ 1 	→ y + U(k)(k ∩ l) and the claim follows from
this. �
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It is consequence of Lemma 3.6 that in order to show that a vector annihilated by k ∩ l

is an embedding vector it is sufficient to verify that it is annihilated by Υ2(Y ) for each Y in
a (k ∩ l)-generating set for the ideal that defines the system. In some cases, this dramatically
reduces the number of equations that must be checked.

Because k ∩ l is reductive, lγ decomposes canonically into a direct sum of isotypic sub-
spaces and, in particular, there is a canonical projection lγ → (lγ )k∩l onto the trivial isotypic
subspace.

LEMMA 3.7. The functional Y 	→ CT(Υ2(Y )) on lγ factors through the canonical
projection map lγ → (lγ )k∩l.

PROOF. Let Z ∈ k ∩ l and Y ∈ lγ . By Lemma 3.6, ZΥ2(Y ) ∈ Υ2([Z, Y ])+U(k)(k ∩ l),
and if we apply the algebra homomorphism CT to this membership relation, we conclude that
CT(Υ2([Z, Y ])) = 0. This identity is equivalent to the required factorization claim. �

In addition to the trivial representation, a natural place to look for embedding vectors is
the restriction of the adjoint representation of g to k. The following result identifies the space
of candidates for such embedding vectors. It will also have further applications later in the
development of the theory. In the excluded special case, k ∩ l = {0} and so gk∩l = g.

PROPOSITION 3.8. Suppose that g is not of type A2. Then we have

k ∩ gk∩l = z(k ∩ l)⊕ CZγ

and

p ∩ gk∩l = z(l)⊕ CWγ

with Wγ = Xγ +X−γ .

PROOF. The decomposition g = g−γ ⊕ V− ⊕ l ⊕ V+ ⊕ gγ is (k ∩ l)-invariant, and
it follows that gk∩l has a corresponding direct sum decomposition. The first step is to show
that (V ±)k∩l = {0}. Since V + and V− are dual (k ∩ l)-modules via B, it suffices to show that
(V +)k∩l = {0}. In type Ar with r ≥ 3, l is isomorphic to gl(1)⊕2 ⊕ sl(r − 1), the restriction
of V+ to the sl(r − 1) summand is isomorphic to the sum of the standard representation and
its dual, and k ∩ l is isomorphic to so(r − 1) embedded in the standard way in sl(r − 1). The
claim follows in this case. Now suppose that g does not have type A. Then the Heisenberg
parabolic subalgebra is maximal and so V+ is an irreducible representation of l. The identity
X−λ = Xλ−Zλ for λ a positive root of l, together with a standard induction argument, implies
that an l-highest weight vector in V + is a (k ∩ l)-cyclic vector for V+. Hence the multiplicity
of the trivial representation of k∩ l in V + is at most one. Now the map (X, Y ) 	→ X∗

γ ([X,Y ])
is a non-degenerate (k ∩ l)-invariant alternating form on V +. For general reasons, (V+)k∩l

pairs trivially with all other (k ∩ l)-isotypes in V+ under this form. But a one-dimensional
space supports no non-zero alternating form and we conclude that (V +)k∩l = {0}, as claimed.

Observe that k ∩ l acts trivially on

g−γ ⊕ gγ = CZγ ⊕ CWγ ,
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with Zγ ∈ k and Wγ ∈ p. To complete the determination of gk∩l, it remains to determine
lk∩l. We may write l = z(l) ⊕ s, where s is a semisimple ideal in l. Both z(l) and s are stable
under θ and z(l) ⊂ h ⊂ p. We conclude that k ∩ l ⊂ s and that s = (k ∩ l) ⊕ (s ∩ p) is the
Cartan decomposition of s. Because s is semisimple, the trivial representation of k ∩ l does
not appear in s ∩ p, and so p ∩ lk∩l = z(l). By definition, (k ∩ l)k∩l = z(k ∩ l), and it follows
that k ∩ lk∩l = z(k ∩ l). �

In keeping with the notation introduced in the statement of Proposition 3.8, we setWα =
Xα + X−α for any α ∈ R. Note that p0 is the direct sum of h0 and the R-span of the set
{Wα ; α ∈ R+}.

LEMMA 3.9. If Y ∈ k ∩ l and α ∈ R(V +) then

[Y,Zα] =
∑

µ∈R(V+)
Mαµ(Y )Zµ .

If Y ∈ p ∩ l and α ∈ R(V +) then

[Y,Wα] =
∑

µ∈R(V+)
Mαµ(Y )Zµ .

PROOF. Suppose that Y ∈ l is either in k or in p. By applying the Cartan involution to
the identity (7), we obtain

[Y,X−α] = ±
∑

µ∈R(V+)
Mαµ(Y )X−µ ,

with the upper sign if Y ∈ k and the lower if Y ∈ p. Subtracting this from or adding it to (7),
according to the sign, yields the required identities. �

Lemma 3.9 allows us to write Υ2(Y ) for Y ∈ k ∩ lγ in the more tractable form

Υ2(Y ) = 1

2

∑
β∈R(V+)

N−1
β,β ′Zβ [Y,Zβ ′ ] − s

∑
β∈R(V+)

N−1
β,β ′‖β‖−2Mβ ′β(Y ) .(8)

It leads to a more substantial reduction for that part of an Ω2 system that comes from p ∩ lγ .

PROPOSITION 3.10. Let r ⊂ lγ be an irreducible ideal. Suppose that σ ∈ K̂ and that
ξ ∈ Ek∩l

σ . Then dσ(Υ2(Y ))ξ = 0 for all Y ∈ p ∩ r if and only if ξ is annihilated by the
operator

Υ2(Y ) = 1

2

∑
β∈R(V+)

N−1
β,β ′β ′(Y )ZβZβ ′

for all Y ∈ h ∩ r.

PROOF. We begin by deriving the expression for Υ2(Y ) when Y ∈ hγ . In cases other
than type A, the Heisenberg parabolic is maximal and so z(l) = CHγ . It follows from this
and Proposition 3.8 that p ∩ (lγ )k∩l = {0}. Now p ∩ lγ is a (k ∩ l)-submodule of lγ and so the
projection of p∩ lγ to (lγ )k∩l is zero. By Lemma 3.7, we conclude that CT(Υ2(Y )) = 0 for all
Y ∈ p∩ lγ . The same conclusion holds in type A, since it is simply laced and so Corollary 3.4
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applies. If Y ∈ h then [Y,Wβ ′ ] = β ′(Y )Zβ ′ . By combining these observations with Lemma
3.9 and Proposition 3.2 we obtain the required expression for Υ2(Y ) when Y ∈ hγ .

By Lemma 3.6, the proof will be complete once we know that h ∩ r generates p ∩ r as
an U(k ∩ l)-module. We may find a basis for r consisting of certain elements of h and certain
root vectors Xλ with λ ∈ R(l). If Xλ ∈ r then Hλ = [Xλ,X−λ] ∈ h ∩ r. The identity
[Zλ,Hλ] = −2Wλ then shows that Wλ belongs to the U(k ∩ l)-submodule of p ∩ r generated
by h ∩ r, and the claim follows. �

For later use, we derive a more explicit expression for the operator R(σ) for the split real
form.

LEMMA 3.11. Let σ ∈ K̂ and ξ ∈ Ek∩l
σ . Then

R(σ)ξ = sHγ ⊗ ξ + 1

4

∑
α∈R(n)

‖α‖2Wα ⊗ dσ(Zα)ξ .

PROOF. We must produce an orthonormal basis for p0. We begin with the vector Hγ .
This has square-length 2 and its perp in h0 is precisely h

γ

0 . We may choose H1, . . . , Hr−1 ∈
h
γ

0 an orthonormal basis for h
γ

0 . Note that these vectors contribute zero to the sum (4), since
they lie in q̄0 and dχ(Hi) = sγ (Hi) = 0 for 1 ≤ i ≤ r − 1. Let α ∈ R+. The length of the
vectorWα is 2/‖α‖ and so{

1√
2
Hγ

}
∪ {Hi ; 1 ≤ i ≤ r − 1} ∪

{‖α‖
2
Wα ; α ∈ R+

}

is the required orthonormal basis. We may take

‖α‖
2
Wα = ‖α‖

2
Zα + ‖α‖X−α

as the k0 + q̄0 decomposition of (‖α‖/2)Wα . The required evaluation now follows from (4),
and the facts that dχ(Hγ ) = 2s, dχ(X−α) = 0 for all α ∈ R+, and dσ(Zα)ξ = 0 for all
α ∈ R+(l). �

4. Embedding vectors for the Ω2 system in type C. In this section we determine
the complete set of embedding vectors for the uniqueΩ2 system on the simple algebra of type
Cr (r ≥ 2). As we have already mentioned, this system is quite anomalous among the Ω2

systems.
Let G = Sp(2r,R) be the real symplectic group of rank r . In order to have a consistent

set of structure constants for g = sp(2r,C) available, it is convenient to choose a specific
Chevalley system in g. Let us choose an index set I = {1, . . . , r} ∪ {1̄, . . . , r̄} and identify g

with the isotropy algebra of the form

〈x, y〉 =
r∑
a=1

(xayā − xāya)

on CI . With the standard notation for elementary linear maps on CI , we take h to be spanned
by the set {Eaa − Eāā ; 1 ≤ a ≤ r} and {ea ; 1 ≤ a ≤ r} to be the dual set. The roots are
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R = {±2ea ; 1 ≤ a ≤ r} ∪ {ea ± eb ; 1 ≤ a �= b ≤ r} and we take root vectors as follows:

X2ea = Eaā ,

X−2ea = Eāa ,

Xea−eb = Eab − Eb̄ā ,

Xea+eb = Eab̄ + Ebā ,

X−(ea+eb) = Eāb + Eb̄a .

The standard inner product on h∗ satisfies (ea, eb) = δab/2 and the corresponding form B is
B(X, Y ) = Tr(XY ). The highest root is γ = 2e1 and the set R(V +) is {e1 ± ea ; 2 ≤ a ≤ r}.
If we let S = {e1 − ea ; 2 ≤ a ≤ r} then R(V +) = S ∪ S′ and Nβ,β ′ = 2 for all β ∈ S. The
set R(l) is {2ea ; 2 ≤ a ≤ r} ∪ {ea ± eb ; 2 ≤ a �= b ≤ r}.

The algebra k0 is isomorphic to u(r) with center spanned by the element

U0 =
r∑
a=1

Z2ea .

The algebra k0 ∩ l0 is isomorphic to u(r − 1) with center spanned by the element

V0 =
r∑
a=2

Z2ea .

The U(k ∩ l)-module p ∩ lγ is cyclic and generated by the elementH2e2 . The U(k∩ l)-module
k ∩ l is generated by the element V0 if r = 2 and by the elements V0 and Ze2−e3 if r ≥ 3. It
follows that if σ ∈ K̂ and ξ ∈ Ek∩l

σ then ξ is an embedding vector for the Ω2 system if and
only if it is annihilated by Υ2(H2e2), Υ2(V0), and Υ2(Ze2−e3), with the third element present
only when r ≥ 3. From the table in Section 8 of [1], we have s = −1/2 for this system. By
using Lemma 3.1, Equation (8), and the expression for Υ2(Y ) for Y ∈ hγ given in Proposition
3.10, we find that

Υ2(H2e2) = 1

4
(Ze1−e2Ze1+e2 + Ze1+e2Ze1−e2) ,

Υ2(V0) = 1

4

r∑
a=2

Z2
e1−ea + 1

4

r∑
a=2

Z2
e1+ea + r − 1

2
,

Υ2(Ze2−e3) = 1

4
(Ze1+e2Ze1−e3 + Ze1−e3Ze1+e2 − Ze1−e2Ze1+e3 − Ze1+e3Ze1−e2) .

The elements Z2ea ∈ k0 span a Cartan subalgebra in k0. We let ε1, . . . , εr denote the
elements dual to Z2e1, . . . , Z2er , and order them in the usual way. It is well known that σ ∈ K̂
satisfies Ek∩l

σ �= {0} if and only if the highest weight of σ is either imε1 or −imεr for some
m ∈ N , and that if σ has such a highest weight then Ek∩l

σ is one-dimensional. We denote by
σ(m) ∈ K̂ the irreducible K-module with highest weight imε1 if m ≥ 0 and imεr if m < 0.
The space CI introduced above is naturally aG-module and its restriction toK is isomorphic
to σ(1)⊕σ(−1). Let {ξa, ξā ; 1 ≤ a ≤ r} be the canonical basis of CI . Then σ(1) is realized
on the span of the set {ξa + iξā ; 1 ≤ a ≤ r} and σ(−1) is realized on the span of the set
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{ξa − iξā ; 1 ≤ a ≤ r}. The vectors ξ1 ± iξ1̄ span the spaces Ek∩l
σ(±1). We already know that

σ(0) contains no embedding vectors. If m > 0 then the submodule of the symmetric product
∨mσ(±1) generated by the vector (ξ1 ± iξ1̄)

m is isomorphic to σ(±m), and this generating
vector also spans Ek∩l

σ(±m). Direct calculation gives

Z2
e1−ea · (ξ1 ± iξ1̄)

m = −m(ξ1 ± iξ1̄)
m +m(m− 1)(ξ1 ± iξ1̄)

m−2(ξa ± iξā)
2

and

Z2
e1+ea · (ξ1 ± iξ1̄)

m = −m(ξ1 ± iξ1̄)
m −m(m− 1)(ξ1 ± iξ1̄)

m−2(ξa ± iξā)
2

and so

Υ2(V0) · (ξ1 ± iξ1̄)
m = (1 −m)

r − 1

2
(ξ1 ± iξ1̄)

m .

It follows from this that σ(±m) does not contain an embedding vector unless m = 1. The
vectors ξ1 ± iξ1̄ are both annihilated by Υ2(V0), and it is easy to check that they are also
annihilated by Υ2(H2e2), and by Υ2(Ze2−e3) when this element is present in the system. We
have established the following result. Note that, in other examples, embedding vectors are not
usually weight vectors; this is one anomalous feature of this example.

THEOREM 4.1. The space of K-finite solutions to the Ω2 system in type C is isomor-
phic as a K-module to σ(1) ⊕ σ(−1). The space of embedding vectors in σ(1) coincides
with the highest weight space and the space of embedding vectors in σ(−1) coincides with
the lowest weight space.

A calculation using Lemma 3.11 reveals that

R(σ(±1))(ξ1 ± iξ1̄)

= −1

2
(Hγ ∓ iWγ )⊗ (ξ1 ± iξ1̄)−

1

4

r∑
a=2

(We1−ea ∓ iWe1+ea )⊗ (ξa ± iξā) .

From this evaluation, one may verify that R(σ(1))(ξ1 + iξ1̄) is a lowest weight vector with
weight −iε1 and that R(σ(−1))(ξ1 − iξ1̄) is a highest weight vector with weight iε1. With a
slight extension of our earlier notation, we have the decompositions p ∼= σ(2iε1)⊕σ(−2iεr),

p ⊗ σ(1) ∼= σ(3iε1)⊕ σ(2iε1 + iε2)⊕ σ(iε1 − 2iεr)⊕ σ(−1) ,

and

p ⊗ σ(−1) ∼= σ(−3iεr)⊕ σ(−iεr−1 − 2iεr)⊕ σ(2iε1 − iεr)⊕ σ(1) .

In the latter two decompositions, only the last summand contains non-zero embedding vectors.
Thus, from general properties of the map R(σ) that were noted in Section 2, R(σ(±1))(ξ1 ±
iξ1̄) must lie in the subspace of p ⊗Eσ(±1) that corresponds to these summands. This is con-
firmed by the above evaluation ofR(σ(±1))(ξ1±iξ1̄), which also reveals thatR(σ(±1))(ξ1±
iξ1̄) is non-zero. These observations confirm directly the simple fact that the representation
of G on the space Γ (L)D is irreducible.
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