
Published as a conference paper at ICLR 2019

K FOR THE PRICE OF 1: PARAMETER-EFFICIENT

MULTI-TASK AND TRANSFER LEARNING

Pramod Kaushik Mudrarkarta∗

The University of Chicago
pramodkm@uchicago.edu

Mark Sandler, Andrey Zhmoginov, Andrew Howard
Google Inc.
{sandler,azhmogin,howarda}@google.com

ABSTRACT

We introduce a novel method that enables parameter-efficient transfer and multi-
task learning with deep neural networks. The basic approach is to learn a model
patch - a small set of parameters - that will specialize to each task, instead of fine-
tuning the last layer or the entire network. For instance, we show that learning
a set of scales and biases is sufficient to convert a pretrained network to perform
well on qualitatively different problems (e.g. converting a Single Shot Multi-
Box Detection (SSD) model into a 1000-class image classification model while
reusing 98% of parameters of the SSD feature extractor). Similarly, we show that
re-learning existing low-parameter layers (such as depth-wise convolutions) while
keeping the rest of the network frozen also improves transfer-learning accuracy
significantly. Our approach allows both simultaneous (multi-task) as well as se-
quential transfer learning. In several multi-task learning problems, despite using
much fewer parameters than traditional logits-only fine-tuning, we match single-
task performance.

1 INTRODUCTION

Deep neural networks have revolutionized many areas of machine intelligence and are now used for
many vision tasks that even few years ago were considered nearly impenetrable (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014; Liu et al., 2016). Advances in neural networks and hardware is
resulting in much of the computation being shifted to consumer devices, delivering faster response,
and better security and privacy guarantees (Konečný et al., 2016; Howard et al., 2017).

As the space of deep learning applications expands and starts to personalize, there is a growing need
for the ability to quickly build and customize models. While model sizes have dropped dramatically
from >50M parameters of the pioneering work of AlexNet (Krizhevsky et al., 2012) and VGG (Si-
monyan & Zisserman, 2014) to <5M of the recent Mobilenet (Sandler et al., 2018; Howard et al.,
2017) and ShuffleNet (Zhang et al., 2017; Ma et al., 2018), the accuracy of models has been improv-
ing. However, delivering, maintaining and updating hundreds of models on the embedded device is
still a significant expense in terms of bandwidth, energy and storage costs.

While there still might be space for improvement in designing smaller models, in this paper we
explore a different angle: we would like to be able to build models that require only a few parameters
to be trained in order to be re-purposed to a different task, with minimal loss in accuracy compared
to a model trained from scratch. While there is ample existing work on compressing models and
learning as few weights as possible (Rosenfeld & Tsotsos, 2018; Sandler et al., 2018; Howard et al.,
2017) to solve a single task, to the best of our awareness, there is no prior work that tries to minimize
the number of model parameters when solving many tasks together.

Our contribution is a novel learning paradigm in which each task carries its own model patch –
a small set of parameters – that, along with a shared set of parameters constitutes the model for
that task (for a visual description of the idea, see Figure 1, left side). We put this idea to use in
two scenarios: a) in transfer learning, by fine-tuning only the model patch for new tasks, and b) in
multi-task learning, where each task performs gradient updates to both its own model patch, and the

∗Work done while at Google.

1

Published as a conference paper at ICLR 2019

shared parameters. In our experiments (Section 5), the largest patch that we used is smaller than
10% of the size of the entire model. We now describe our contribution in detail.

Transfer learning We demonstrate that, by fine-tuning less than 35K parameters in Mo-
bilenetV2 (Sandler et al., 2018) and InceptionV3 (Szegedy et al., 2016), our method leads to signifi-
cant accuracy improvements over fine-tuning only the last layer (102K-1.2M parameters, depending
on the number of classes) on multiple transfer learning tasks. When combined with fine-tuning
the last layer, we train less than 10% of the model’s parameters in total.We also show the effec-
tiveness of our method over last-layer-based fine-tuning on transfer learning between completely
different problems, namely COCO-trained SSD model (Liu et al., 2016) to classification over Ima-
geNet (Deng et al., 2009).

Multi-task learning We explore a multi-task learning paradigm wherein multiple models that
share most of the parameters are trained simultaneously (see Figure 1, right side). Each model has
a task-specific model patch. Training is done in a distributed manner; each task is assigned a
subset of available workers that send independent gradient updates to both shared and task-specific
parameters using standard optimization algorithms. Our results show that simultaneously training
two such MobilenetV2 (Sandler et al., 2018) models on ImageNet (Deng et al., 2009) and Places-
365 (Zhou et al., 2017) reach accuracies comparable to, and sometimes higher than individually
trained models.

Domain adaptation We apply our multi-task learning paradigm to domain adaptation. For Ima-
geNet (Deng et al., 2009), we show that we can simultaneously train MobilenetV2 (Sandler et al.,
2018) models operating at 5 different resolution scales, 224, 192, 160, 128 and 96, while sharing
more than 98% of the parameters and resulting in the same or higher accuracy as individually trained
models. This has direct practical benefit in power-constrained operation, where an application can
switch to a lower resolution to save on latency/power, without needing to ship separate models and
having to make that trade-off decision at the application design time. The cascade algorithm from
Streeter (2018) can further be used to reduce the average running time by about 15% without loss in
accuracy.

The rest of the paper is organized as follows: we describe our method in Section 2 and discuss
related work in Section 3. In Section 4, we present simple mathematical intuition that contrasts the
expressiveness of logit-only fine-tuning and that of our method. Finally, in Section 5, we present
detailed experimental results.

2 METHOD

Figure 1: Left: An example illustrating the idea of a model patch. Right: An example of multi-task learning 2.
FN: fully connected layer, BN: batch normalization layer, and Conv: convolution layer.

The central concept in our method is that of a model patch. It is essentially a small set of per-
channel transformations that are dispersed throughout the network resulting in only a tiny increase
in the number of model parameters.

Suppose a deep network M is a sequence of layers represented by their parameters (weights, biases),
W1, . . . ,Wn. We ignore non-trainable layers (e.g., some kinds of activations) in this formulation.
A model patch P is a set of parameters W′

i1
, . . . ,W′

ik
, 1 ≤ i1, . . . , ik ≤ n that, when applied to

M, adds layers at positions i1, . . . , in. Thus, a patched model

M′ = W1, . . . ,Wi1 ,W
′

i1
, . . . ,Win ,W

′

in
, . . . ,Wn

2

Published as a conference paper at ICLR 2019

In this paper, we introduce two kinds of patches. We will see below that they can be folded with
the other layers in the network, eliminating the need to perform any explicit addition of layers. In
Section 5, we shed some light on why the particular choice of these patches is important.

Scale-and-bias patch This patch applies per-channel scale and bias to every layer in the network.
In practice this transformations can often be absorbed into normalization layer such as Batch Nor-
malization (Ioffe & Szegedy, 2015). Let X be an activation tensor. Then, the batch-normalized
version of X

BN(X) = γ
X− µ(X)

σ(X)
+ β

where µ(X), σ(X) are mean and standard deviation computed per minibatch, and γ, β are learned
via backpropagation. These statistics are computed as mini-batch average, while during inference
they are computed using global averages.

The scale-and-bias patch corresponds to all the γ, β, µ, σ in the network. Using BN as the model
patch also satisfies the criterion that the patch size should be small. For instance, the BN parameters
in both MobilenetV2 (Sandler et al., 2018) and InceptionV3 network performing classification on
ImageNet amounts to less than 40K parameters, of about 1% for MobilenetV2 that has 3.5 million
Parameters, and less than 0.2% for Inception V3 that has 25 million parameters.

While we utilize batch normalization in this paper, we note that this is merely an implementation
detail and we can use explicit biases and scales with similar results.

Depthwise-convolution patch The purpose of this patch is to re-learn spatial convolution filters
in a network. Depth-wise separable convolutions were introduced in deep neural networks as way
to reduce number of parameters without losing much accuracy (Howard et al., 2017; Chollet, 2017).
They were further developed in Sandler et al. (2018) by adding linear bottlenecks and expansions.

In depthwise separable convolutions, a standard convolution is decomposed into two layers: a depth-
wise convolution layer, that applies one convolutional filter per input channel, and a pointwise layer
that computes the final convolutional features by linearly combining the depthwise convolutional
layers’ output across channels. We find that the set of depthwise convolution layers can be re-
purposed as a model patch. They are also lightweight - for instance, they account for less than 3%
of MobilenetV2’s parameters when training on ImageNet.

Next, we describe how model patches can be used in transfer and multi-task learning.

Transfer learning In transfer learning, the task is to adapt a pretrained model to a new task. Since
the output space of the new task is different, it necessitates re-learning the last layer. Following our
approach, we apply a model patch and train the patched parameters, optionally also the last layer.
The rest of the parameters are left unchanged. In Section 5, we discuss the inclusion/exclusion of
the last layer. When the last layer is not trained, it is fixed to its random initial value.

Multitask learning We aim to simultaneously, but independently, train multiple neural networks
that share most weights. Unlike in transfer learning, where a large fraction of the weights are kept
frozen, here we learn all the weights. However, each task carries its own model patch, and trains a
patched model. By training all the parameters, this setting offers more adaptability to tasks while
not compromising on the total number of parameters.

To implement multi-task learning, we use the distributed TensorFlow paradigm1: a central parameter
server receives gradient updates from each of the workers and updates the weights. Each worker
reads the input, computes the loss and sends gradients to the parameter server. We allow subsets
of workers to train different tasks; workers thus may have different computational graphs, and task-
specific input pipelines and loss functions. A visual depiction of this setting is shown in Figure 1.

1https://www.tensorflow.org/guide/extend/architecture

3

https://www.tensorflow.org/guide/extend/architecture

Published as a conference paper at ICLR 2019

3 RELATED WORK

One family of approaches (Yosinski et al., 2014; Donahue et al., 2014) widely used by practitioners
for domain adaptation and transfer learning is based on fine-tuning only the last layer (or sometimes
several last layers) of a neural network to solve a new task. Fine-tuning the last layer is equivalent to
training a linear classifier on top of existing features. This is typically done by running SGD while
keeping the rest of the network fixed, however other methods such as SVM has been explored as
well (Kim et al., 2013). It has been repeatedly shown that this approach often works best for similar
tasks (for example, see Donahue et al. (2014)).

Another frequently used approach is to use full fine-tuning (Cui et al., 2018) where a pretrained
model is simply used as a warm start for the training process. While this often leads to significantly
improved accuracy over last-layer fine-tuning, downsides are that 1) it requires one to create and
store a full model for each new task, and 2) it may lead to overfitting when there is limited data.
In this work, we are primarily interested in approaches that allow one to produce highly accurate
models while reusing a large fraction of the weights of the original model, which also addresses the
overfitting issue.

While the core idea of our method is based on learning small model patches, we see significant
boost in performance when we fine-tune the patch along with last layer (Section 5). This result is
somewhat in contrast with Hoffer et al. (2018), where the authors show that the linear classifier (last
layer) does not matter when training full networks. Mapping out the conditions of when a linear
classifier can be replaced with a random embedding is an important open question.

Li et al. (2016) show that re-computing batch normalization statistics for different domains helps to
improve accuracy. In Rosenfeld & Tsotsos (2018) it was suggested that learning batch normalization
layers in an otherwise randomly initialized network is sufficient to build non-trivial models. Re-
computing batch normalization statistics is also frequently used for model quantization where it
prevents the model activation space from drifting (Krishnamoorthi, 2018). In the present work,
we significantly broaden and unify the scope of the idea and scale up the approach by performing
transfer and multi-task learning across completely different tasks, providing a powerful tool for
many practical applications.

Our work has interesting connections to meta-learning (Nichol & Schulman, 2018; Finn et al., 2017;
Chen et al., 2018). For instance, when training data is not small, one can allow each task to carry
a small model patch in the Reptile algorithm of Nichol & Schulman (2018) in order to increase
expressivity at low cost.

4 ANALYSIS

Experiments (Section 5) show that model-patch based fine-tuning, especially with the scale-and-
bias patch, is comparable and sometimes better than last-layer-based fine-tuning, despite utilizing
a significantly smaller set of parameters. At a high level, our intuition is based on the observation
that individual channels of hidden layers of neural network form an embedding space, rather than
correspond to high-level features. Therefore, even simple transformations to the space could result
in significant changes in the target classification of the network.

In this section (and in Appendix A), we attempt to gain some insight into this phenomenon by taking
a closer look at the properties of the last layer and studying low-dimensional models.

A deep neural network performing classification can be understood as two parts:

1. a network base corresponding to a function F : Rd → R
n mapping d-dimensional input

space X into an n-dimensional embedding space G, and

2. a linear transformation s : R
n → R

k mapping embeddings to logits with each output
component corresponding to an individual class.

An input x ∈ X producing the output o := s(F (x)) ∈ R
k is assigned class c iff ∀i 6= c, oi < oc.

We compare fine-tuning model patches with fine-tuning only the final layer s. Fine-tuning only the
last layer has a severe limitation caused by the fact that linear transformations preserve convexity.

4

Published as a conference paper at ICLR 2019

It is easy to see that, regardless of the details of s, the mapping from embeddings to logits is such that
if both ξa, ξb ∈ G are assigned label c, the same label is assigned to every ξτ := τξb + (1 − τ)ξa

for 0 ≤ τ ≤ 1. Indeed, [s(ξτ)]c = τobc + (1 − τ)oac > τobi + (1 − τ)oai = [s(ξτ)]i for any

i 6= c and 0 ≤ τ ≤ 1, where oa := s(ξa) and ob := s(ξb). Thus, if the model assigns inputs
{xi|i = 1, . . . , nc} some class c, then the same class will also be assigned to any point in the
preimage of the convex hull of {F (xi)|i = 1, . . . , nc}.

This property of the linear transformation s limits one’s capability to tune the model given a new
input space manifold. For instance, if the input space is “folded” by F and the neighborhoods of very
different areas of the input space X are mapped to roughly the same neighborhood of the embedding
space, the final layer cannot disentangle them while operating on the embedding space alone (should
some new task require differentiating between such “folded” regions).

We illustrate the difference in expressivity between model-patch-based fine-tuning and last-layer-
based fine-tuning in the cases of 1D (below) and 2D (Appendix A) inputs and outputs. Despite the
simplicity, our analysis provides useful insights into how by simply adjusting biases and scales of
a neural network, one can change which regions of the input space are folded and ultimately the
learned classification function.

In what follows, we will work with a construct introduced by Montufar et al. (2014) that demon-
strates how neural networks can “fold” the input space X a number of times that grows exponentially
with the neural network depth2. We consider a simple neural network with one-dimensional inputs
and outputs and demonstrate that a single bias can be sufficient to alter the number of “folds”, the
topology of the X → G mapping. More specifically, we illustrate how the number of connected
components in the preimage of a one-dimensional segment [ξa, ξb] can vary depending on a value
of a single bias variable.

As in Montufar et al. (2014), consider the following function:

q(x; b) ≡ 2ReLU

(

[1,−1, . . . , (−1)p−1] · vT (x; b) + bp

)

,

where

v(x; b) ≡ [max(0, x + b0),max(0, 2x − 1 + b1), . . . ,max(0, 2x − (p − 1) + bp−1)],

p is an even number, and b = (b0, . . . , bp) is a (p + 1)–dimensional vector of tunable parameters
characterizing q. Function q(x; b) can be represented as a two-layer neural network with ReLU
activations.

Set p = 2. Then, this network has 2 hidden units and a single output value, and is capable of
“folding” the input space twice. Defining F to be a composition of k such functions

F (x; b(1), . . . , b(k)) ≡ q(q(. . . q(q(x; b(1)); b(2)); . . . ; b(k−1)); b(k)), (1)

we construct a neural network with 2k layers that can fold input domain R up to 2k times. By

plotting F (x) for k = 2 and different values of b
(1)
0 while fixing all other biases to be zero, it

is easy to observe that the preimage of a segment [0.2, 0.4] transitions through several stages (see

figure 2), in which it: (a) first contains 4 disconnected components for b
(1)
0 > −0.05, (b) then 3 for

b
(1)
0 ∈ (−0.1,−0.05], (c) 2 for b

(1)
0 ∈ (−0.4,−0.1], (d) becomes a simply connected segment for

b
(1)
0 ∈ [−0.45,−0.4] and (e) finally becomes empty when b

(1)
0 < −0.45. This result can also be

extended to k > 2, where, by tuning b
(1)
0 , the number of “folds“ can vary from 2k to 0.

5 EXPERIMENTS

We evaluate the performance of our method in both transfer and multi-task learning using the image
recognition networks MobilenetV2 (Sandler et al., 2018) and InceptionV3 (Szegedy et al., 2016) and
a variety of datasets: ImageNet (Deng et al., 2009), CIFAR-10/100 (Krizhevsky, 2009), Cars (Krause

2In other words, F−1(ξ) for some ξ contains an exponentially large number of disconnected components.

5

Published as a conference paper at ICLR 2019

Figure 2: Function plots F (x; b(1), b(2)) for a 4-layer network given by equation 1 with k = 2 and all biases

except b
(1)
0 set to zero. From left to right: b

(1)
0 = 0, b

(1)
0 = −0.075, b

(1)
0 = −0.125 and b

(1)
0 = −0.425.

The preimage of a segment [0.2, 0.4] (shown as shaded region) contains 4, 3, 2 and 1 connected components
respectively.

et al., 2013), Aircraft (Maji et al., 2013), Flowers-102 (Nilsback & Zisserman, 2008) and Places-
365 (Zhou et al., 2017). An overview of these datasets can be found in Table 1. We also show
preliminary results on transfer learning across completely different types of tasks using MobilenetV2
and Single-Shot Multibox Detector (SSD) (Liu et al., 2016) networks.

We use both scale-and-bias (S/B) and depthwise-convolution patches (DW) in our experiments.
Both MobilenetV2 and InceptionV3 have batch normalization - we use those parameters as the S/B
patch. MobilenetV2 has depthwise-convolutions from which we construct the DW patch. In our
experiments, we also explore the effect of fine-tuning the patches along with the last layer of the
network. We compare with two scenarios: 1) only fine-tuning the last layer, and 2) fine-tuning the
entire network.

Table 1: Datasets used in experiments (Section 5)

Name CIFAR-100 Flowers-102 Cars Aircraft Places-365 ImageNet

#images 60,000 8,189 16,185 10,200 1.8 million 1.3 million

#classes 100 102 196 102 365 1000

We use TensorFlow (Abadi et al., 2015), and NVIDIA P100 and V100 GPUs for our experiments.
Following the standard setup of Mobilenet and Inception we use 224×224 images for MobilenetV2
and 299×299 for InceptionV3. As a special-case, for Places-365 dataset, we use 256×256 images.
We use RMSProp optimizer with a learning rate of 0.045 and decay factor 0.98 per 2.5 epochs.

5.1 LEARNING WITH RANDOM WEIGHTS

To demonstrate the expressivity of the biases and scales, we perform an experiment on MobilenetV2,
where we learn only the scale-and-bias patch while keeping the rest of the parameters frozen at their
initial random state. The results are shown in Table 3 (right side). It is quite striking that simply
adjusting biases and scales of random embeddings provides features powerful enough that even
a linear classifier can achieve a non-trivial accuracy. Furthermore, the synergy exhibited by the
combination of the last layer and the scale-and-bias patch is remarkable.

5.2 TRANSFER LEARNING

We take MobileNetV2 and InceptionV3 models pretrained on ImageNet (Top1 accuracies 71.8%
and 76.6% respective), and fine-tune various model patches for other datasets.

Results on InceptionV3 are shown in Table 2. We see that fine-tuning only the scale-and-bias patch
(using a fixed, random last layer) results in comparable accuracies as fine-tuning only the last layer
while using fewer parameters. Compared to full fine-tuning (Cui et al., 2018), we use orders of mag-
nitude fewer parameters while achieving nontrivial performance. Our results using MobilenetV2 are
similar (more on this later).

In the next experiment, we do transfer learning between completely different tasks. We take an
18-category object detection (SSD) model (Liu et al., 2016) pretrained on COCO images (Lin et al.,

6

Published as a conference paper at ICLR 2019

Table 2: Transfer-learning on Inception V3, against full-network fine-tuning.

Fine-tuned params. Flowers Cars Aircraft

Acc. #params Acc. #params Acc. #params

Last layer 84.5 208K 55 402K 45.9 205K
S/B + last layer 90.4 244K 81 437K 70.7 241K
S/B only (random last) 79.5 36K 33 36K 52.3 36K

All (ours) 93.3 25M 92.3 25M 87.3 25M
All (Cui et al., 2018) 96.3 25M 91.3 25M 82.6 25M

2014) and repurpose it for image classification on ImageNet. The SSD model uses MobilenetV2
(minus the last layer) as a featurizer for the input image. We extract it, append a linear layer and
then fine-tune. The results are shown in Table 3. Again, we see the effectiveness of training the
model patch along with the last layer - a 2% increase in the parameters translates to 19.4% increase
in accuracy.

Table 3: Learning Imagenet from SSD feature extractor (left) and random filters (right)

Fine-tuned params. #params COCO→Imagenet, Top1 Random→ Imagenet, Top1

Last layer 1.31M 29.2% 0%
S/B + last layer 1.35M 47.8% 20%
S/B only 34K 6.4% 2.3%
All params 3.5M 71.8% 71.8%

Next, we discuss the effect of learning rate. It is common practice to use a small learning rate when
fine-tuning the entire network. The intuition is that, when all parameters are trained, a large learning
rate results in network essentially forgetting its initial starting point. Therefore, the choice of learn-
ing rate is a crucial factor in the performance of transfer learning. In our experiments (Appendix B.2,
Figure 9) we observed the opposite behavior when fine-tuning only small model patches: the accu-
racy grows as learning rate increases. In practice, fine-tuning a patch that includes the last layer is
more stable w.r.t. the learning rate than full fine-tuning or fine-tuning only the scale-and-bias patch.

Finally, an overview of results on MobilenetV2 with different learning rates and model patches is
shown in Figure 3. The effectiveness of small model patches over fine-tuning only the last layer is
again clear. Combining model patches and fine-tuning results in a synergistic effect. In Appendix B,
we show additional experiments comparing the importance of learning custom bias/scale with sim-
ply updating batch-norm statistics (as suggested by Li et al. (2016)).

5.3 MULTI-TASK LEARNING

In this section we show that, when using model-specific patches during multi-task training, it leads
to performance comparable to that of independently trained models, while essentially using a single
model.

We simultaneously train MobilenetV2 (Sandler et al., 2018) on two large datasets: ImageNet and
Places365. Although the network architecture is the same for both datasets, each model has its own
private patch that, along with the rest of the model weights constitutes the model for that dataset.
We choose a combination of the scale-and-bias patch, and the last layer as the private model patch
in this experiment. The rest of the weights are shared and receive gradient updates from all tasks.

In order to inhibit one task from dominating the learning of the weights, we ensure that the learning
rates for different tasks are comparable at any given point in time. This is achieved by setting
hyperparameters such that the ratio of dataset size and the number of epochs per learning rate decay
step is the same for all tasks. We assign the same number of workers for each task in the distributed
learning environment. The results are shown in Table 4.

7

Published as a conference paper at ICLR 2019

30 100 300 1000 3000

Parameters, thousands

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
,
%

MobilenetV2/Stanford Cars

Full

S/B + DW

S/B + DW + Logits

S/B + Logits

S/B

Logits

30 100 300 1000

Parameters, thousands

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
,
%

MobilenetV2/FGVC Aircraft

Full

S/B + DW

S/B + DW + Logits

S/B + Logits

S/B

Logits

30 100 300 1000 3000 10000 30000

Parameters, thousands

20

40

60

80

100

A
cc

u
ra

cy
,

%

InceptionV3/Stanford Cars

Full

S/B + Logits

S/B

Logits

30 100 300 1000 3000 10000 30000

Parameters, thousands

20

40

60

80

100

A
cc

u
ra

cy
,
%

InceptionV3/FGVC Aircraft

Full

S/B + Logits

S/B

Logits

Figure 3: Performance of different fine-tuning approaches for different datasets for Mobilenet V2 and Incep-
tion. The same color points correspond to runs with different initial learning rates, starting from 0.0045 to 0.45
with factor 3. Best viewed in color.

Table 4: Multi-task learning with MobilenetV2 on ImageNet and Places-365.

Task S/B patch + last layer Last layer Independently trained

Imagenet 70.2% 64.4% 71.8%
Places365 54.3% 51.4% 54.2%

total parameters 3.97M 3.93M 6.05M

8

Published as a conference paper at ICLR 2019

Multi-task validation accuracy using a separate S/B patch for each model, is comparable to single-
task accuracy, while considerably better than the setup that only uses separate logit-layer for each
task, while using only using 1% more parameters (and 50% less than the independently trained
setup).

5.4 DOMAIN ADAPTATION

In this experiment, each task corresponds to performing classification of ImageNet images at a
different resolution. This problem is of great practical importance because it allows one to build
very compact set of models that can operate at different speeds that can be chosen at inference
time depending on power and latency requirements. Unlike in Section 5.3, we only have the scale-
and-bias patch private to each task; the last layer weights are shared. We use bilinear interpolation
to scale images before feeding them to the model. The learning rate schedule is the same as in
Section 5.3.

The results are shown in Table 5. We compare our approach with S/B patch only against two baseline
setups. All shared is where all parameters are shared across all models and individually trained is a
much more expensive setup where each resolution has its own model. As can be seen from the table,
scale-and-bias patch allows to close the accuracy gap between these two setups and even leads to a
slight increase of accuracy for a couple of the models at the cost of 1% of extra parameters per each
resolution.

Table 5: Multi-task accuracies of 5 MobilenetV2 models acting at different resolutions on ImageNet.

Image resolution S/B patch All shared Independently trained

96 x 96 60.3% 52.6% 60.3%
128 x 128 66.3% 62.4% 65.3%
160 x 160 69.5% 67.2% 68.8%
192 x 192 71% 69.4% 70.7%
224 x 224 71.8% 70.6% 71.8%

total parameters 3.7M 3.5M 17.7M

6 CONCLUSIONS, OPEN QUESTIONS AND FUTURE WORK

We introduced a new way of performing transfer and multi-task learning where we patch only a very
small fraction of model parameters, that leads to high accuracy on very different tasks, compared to
traditional methods. This enables practitioners to build a large number of models with small incre-
mental cost per model. We have demonstrated that using biases and scales alone allows pretrained
neural networks to solve very different problems. While we see that model patches can adapt to a
fixed, random last layer (also noted in Hoffer et al. (2018)), we see a significant accuracy boost
when we allow the last layer also to be trained. It is important to close this gap in our understanding
of when the linear classifier is important for the final performance. From an analytical perspective,
while we demonstrated that biases alone maintain high expressiveness, more rigorous analysis that
would allow us to predict which parameters are important, is still a subject of future work. From
practical perspective, cross-domain multi-task learning (such as segmentation and classification) is
a promising direction to pursue. Finally our approach provides for an interesting extension to the
federated learning approach proposed in Konečný et al. (2016), where individual devices ship their
gradient updates to the central server. In this extension we envision user devices keeping their local
private patch to maintain personalized model while sending common updates to the server.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

9

Published as a conference paper at ICLR 2019

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning for recommen-
dation. arXiv preprint arXiv:1802.07876, 2018.

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie. Large Scale Fine-Grained Categorization and
Domain-Specific Transfer Learning. ArXiv e-prints, June 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Dar-
rell. Decaf: A deep convolutional activation feature for generic visual recognition. In Eric P. Xing
and Tony Jebara (eds.), Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, pp. 647–655, Bejing, China, 22–24
Jun 2014. PMLR. URL http://proceedings.mlr.press/v32/donahue14.html.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400, 2017.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: the marginal value of training
the last weight layer. CoRR, abs/1801.04540, 2018. URL http://arxiv.org/abs/1801.

04540.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017. URL http://arxiv.org/abs/

1704.04861.

Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, pp. 448–456. JMLR.org, July 2015.

Sangwook Kim, Swathi Kavuri, and Minho Lee. Deep network with support vector machines.
In Minho Lee, Akira Hirose, Zeng-Guang Hou, and Rhee Man Kil (eds.), Neural Information
Processing, pp. 458–465, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. In
NIPS Workshop on Private Multi-Party Machine Learning, 2016. URL https://arxiv.

org/abs/1610.05492.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 554–561, 2013.

R. Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
ArXiv e-prints, June 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States., pp. 1106–1114, 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

10

https://www.tensorflow.org/
http://proceedings.mlr.press/v32/donahue14.html
http://arxiv.org/abs/1801.04540
http://arxiv.org/abs/1801.04540
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Published as a conference paper at ICLR 2019

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normal-
ization for practical domain adaptation. CoRR, abs/1603.04779, 2016. URL http://arxiv.

org/abs/1603.04779.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer
vision, pp. 21–37. Springer, 2016.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. arXiv preprint arXiv:1807.11164, 2018.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
regions of deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27, pp.
2924–2932. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/

5422-on-the-number-of-linear-regions-of-deep-neural-networks.

pdf.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2018.

M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes.
In Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing,
Dec 2008.

Amir Rosenfeld and John K. Tsotsos. Intriguing properties of randomly weighted networks:
Generalizing while learning next to nothing. CoRR, abs/1802.00844, 2018. URL http:

//arxiv.org/abs/1802.00844.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. In-
verted residuals and linear bottlenecks: Mobile networks for classification, detection and segmen-
tation. arXiv preprint arXiv:1801.04381, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.

Matthew Streeter. Approximation algorithms for cascading prediction models. In ICML, 2018.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pp. 3320–3328, Cambridge, MA, USA, 2014. MIT
Press. URL http://dl.acm.org/citation.cfm?id=2969033.2969197.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. CoRR, abs/1707.01083, 2017. URL http:

//arxiv.org/abs/1707.01083.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 2017.

11

http://arxiv.org/abs/1603.04779
http://arxiv.org/abs/1603.04779
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
http://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf
http://arxiv.org/abs/1802.00844
http://arxiv.org/abs/1802.00844
http://arxiv.org/abs/1409.1556
http://dl.acm.org/citation.cfm?id=2969033.2969197
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

Published as a conference paper at ICLR 2019

A ANALYSIS: 2D CASE

Here we show an example of a simple network that “folds” input space in the process of training
and associates identical embeddings to different points of the input space. As a result, fine-tuning
the final linear layer is shown to be insufficient to perform transfer learning to a new dataset. We
also show that the same network can learn alternative embedding that avoids input space folding and
permits transfer learning.

Consider a deep neural network mapping a 2D input into 2D logits via a set of 5 ReLU hidden
layers: 2D input → 8D state → 16D state → 16D state → 8D state → m-D embedding (no ReLU)
→ 2D logits (no ReLU). Since the embedding dimension is typically smaller than the input space
dimension, but larger than the number of categories, we first choose the embedding dimension m to
be 2. This network is trained (applying sigmoid to the logits and using cross entropy loss function)
to map (x, y) pairs to two classes according to the groundtruth dependence depicted in figure 4(a).
Learned function is shown in figure 4(c). The model is then fine-tuned to approximate categories
shown in figure 4(b). Fine-tuning all variables, the model can perfectly fit this new data as shown in
figure 4(d).

Once the set of trainable parameters is restricted, model fine-tuning becomes less efficient. Fig-
ures 4(A) through 4(E) show output values obtained after fine-tuning different sets of parameters. In
particular, it appears that training the last layer alone (see figure 4(E; top)) is insufficient to adjust to
new training data, while training biases and scales allows to approximate new class assignment (see
figure 4(C; top)). Notice that a combination of all three types of trainable parameters (biases, scales
and logits) frequently results in the best function approximation even if the initial state is chosen to
be random (see figure 4(A)-(E); bottom row).

Figure 4: The neural network is first trained to approximate class assignment shown in (a) (with the corre-
sponding learned outputs in (c)), network parameters are then fine-tuned to match new classes shown in (b). If
all network parameters are trained, it is possible (d) to get a good approximation of the new class assignment.
Outputs obtained by fine-tuning only a subset of parameters are shown in columns (A) through (E): functions
fine-tuned from a pretrained state (c) are shown at the top row; functions trained from a random state (the same
for all figures) are shown at the bottom. Each figure shows training with respect to a different parameter set:
(A) biases; (B) scales; (C) biases and scales; (D) logits, biases and scales; (E) just logits.

Interestingly, poor performance of logit fine-tuning seen in figure 4(E) extends to higher embedding
dimensions as well. Plots similar to those in figure 4, but generated for the model with the embedding
dimension m of 4 are shown in figure 5. In this case, we can see that the final layer fine-tuning is
again insufficient to achieve successful transfer learning. As the embedding dimension goes higher,
last layer fine-tuning eventually reaches acceptable results (see figure 6 showing results for m = 8).

The explanation behind poor logit fine-tuning results can be seen by plotting the embedding space
of the original model with m = 2 (see figure 7(a)). Both circular regions are assigned the same
embedding and the final layer is incapable of disentangling them. But it turns out that the same
network could have learned a different embedding that would make last layer fine-tuning much
more efficient. We show this by training the network on the classes shown in figure 7(b). This class
assignment breaks the symmetry and the new learned embedding shown in figure 7(c) can now be
used to adjust to new class assignments shown in figure 7(d), (e) and (f) by fine-tuning the final layer
alone.

12

Published as a conference paper at ICLR 2019

Figure 5: Plots similar to those shown in figure 4, but obtained for the embedding dimension of 4.

Figure 6: Plots similar to those shown in figure 4, but obtained for the embedding dimension of 8.

Figure 7: Original model trained to match class assignment shown in figure 4(a) results in the
embedding shown in (a) that “folds” both circular regions together. After training the same model
on different classes (b), the new embedding (c) allows one to fine-tune the last layer alone to obtain
outputs shown in (d), (e) and (f).

13

Published as a conference paper at ICLR 2019

B ADDITIONAL EXPERIMENTS

B.1 ADJUSTING BATCH-NORMALIZATION STATISTICS

The results of Li et al. (2016) suggested that adjusting Batch Normalization statistics helps with
domain adaption. Interestingly we found that it significantly worsens results for transfer learning,
unless bias and scales are allows to learn. We find that fine-tuning on last layer with batch-norm
statistics readjusted to keep activation space at mean 0/variance 1, makes the network to signifi-
cantly under-perform compared to fine-tuning with frozen statistics. Even though adding learned
bias/scales signifcanty outperforms logit-only based fine-tuning. We summarize our experiments in
Table 6

Table 6: The effect of batch-norm statistics on logit-based fine-tuning for MobileNetV2

Method Flowers Aircraft Stanford Cars Cifar100

Last layer (logits) 80.2 43.3 51.4 45.0
Same as above + batchnorm statistics 79.8 38.3 43.6 57.2
Same as above + scales and biases 86.9 65.6 75.9 74.9

B.2 ACCURACY VS. LEARNING RATE

30 100 300 1000

Parameters, thousands

20

40

60

80

100

A
cc

u
ra

cy
,
%

MobilenetV2/Cifar-100

Full

S/B + DW

S/B + DW + Logits

S/B + Logits

S/B

Logits

30 100 300 1000

Parameters, thousands

20

40

60

80

100

A
cc

u
ra

cy
,
%

MobilenetV2/Flowers

Full

S/B + DW

S/B + DW + Logits

S/B + Logits

S/B

Logits

30 100 300 1000 3000 10000 30000

Parameters, thousands

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
,
%

InceptionV3/Cifar-100

Full

S/B + Logits

S/B

Logits

30 100 300 1000 3000 10000 30000

Parameters, thousands

0

20

40

60

80

100

A
cc

u
ra

cy
,
%

InceptionV3/Flowers

Full

S/B + Logits

S/B

Logits

Figure 8: Performance of different fine-tuning approaches for Mobilenet V2 and Inception V3 for Cifar100
and Flowers. Best viewed in color.

C MODEL CASCADES

An application of domain adaptation using model patches is cost-efficient model cascades. We
employ the algorithm from Streeter (2018) which takes several models (of varying costs) performing
the same task, and determines a cascaded model with the same accuracy as the best task but lower
average cost. Applying it to MobilenetV2 models on multiple resolutions that we trained via multi-
task learning, we are able to lower the average cost of MobilenetV2 inference by 15.2%. Note that,
in order to achieve this, we only need to store 5% more model parameters than for a single model.

14

Published as a conference paper at ICLR 2019

0.01 0.03 0.10 0.30 1.00

Learning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
o
p
 1

 A
cc

u
ra

cy

InceptionV3/Flowers

Full

S/B + Logits

S/B

Logits

0.01 0.03 0.10 0.30 1.00

Learning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
o
p
 1

 A
cc

u
ra

cy

MobilenetV2/Flowers

Full

S/B + DW

S/B + DW + Logits

S/B + Logits

S/B

Logits

Figure 9: Final accuracy as a function of learning rate. Note how full fine-tuning requires learning rate to be
small, while bias/scale tuning requires learning rate to be large enough.

D NOTE ABOUT TRAINING SPEED

Generally, we did not see a large variation in training speed. All fine-tuning approaches needed
50-200K steps depending on the learning rate and the training method. While different approaches
definitely differ in the number of steps necessary for convergence, we find these changes to be
comparable to changes in other hyperparameters such as learning rate.

15

	Introduction
	Method
	Related work
	Analysis
	Experiments
	Learning with random weights
	Transfer learning
	Multi-task learning
	Domain adaptation

	Conclusions, Open questions and Future Work
	Analysis: 2D Case
	Additional experiments
	Adjusting batch-normalization statistics
	Accuracy vs. learning rate

	Model cascades
	Note about training speed

