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Abstract. We show that the k-generalized Fibonacci numbers that
are concatenations of two repdigits have at most four digits.

1. Introduction

Let g ≥ 2 be an integer. A natural number N is called a base g–repdigit
if all of its base g–digits are equal; that is, if

(1.1) N = a

(
gm − 1

g − 1

)

, for some m ≥ 1 and a ∈ {1, 2, . . . , g − 1}.

When g = 10, we omit the base and we simply say that N is a repdigit.
Diophantine equations involving repdigits were considered in several recent
papers in which their authors found all repdigits that are perfect powers, or
Fibonacci numbers, or generalized Fibonacci numbers, and so on (see [2, 5, 8,
15, 16, 17, 18, 20] for a sample of such results).

Given positive integers A1, . . . , At, we write

A1 · · ·At(g)

for the concatenation of their base g strings of digits. We omit writing g when
g = 10. Thus, the repdigit N shown at (1.1) is just

N = a · · ·a
︸ ︷︷ ︸

m times

(g),
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whereas the concatenation of two repdigits in base 10 is

a · · ·a b · · · b, where a, b ∈ {0, 1, . . . , 9}.

We impose that a 6= 0. That is, we do not allow the leading digit to be zero,
but the final digit might be zero. Let {Fm}m≥0 be the Fibonacci sequence
given by

(1.2) Fm+2 = Fm+1 + Fm, for all m ≥ 0,

where F0 = 0 and F1 = 1. The first few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987.

In 2011, S. Dı́az–Alvarado and F. Luca ([2]) determined all Fibonacci numbers
that are sums of two repdigits. In [3], Banks and Luca considered Diophantine
equations with concatenations of members of binary recurrences. For example,
they showed that the only Fibonacci numbers which are concatenations of two
other Fibonacci numbers are 13, 21, 55. In [1], we studied Fibonacci numbers
which are concatenations of two nonzero repdigits. The largest example is
F14 = 377. In this paper, we extend our result from [1] and study k-generalized
Fibonacci numbers which are concatenations of two repdigits. Recall that the

k-generalized Fibonacci sequence {F (k)
n }n≥−(k−2) is given by the recurrence

F
(k)
n+k = F

(k)
n+k−1+· · ·+F

(k)
n for all n ≥ −(k−2) with initial values 0, 0, . . . , 0, 1

(with k − 1 consecutive zeros), where the value of 1 corresponds to n = 1;

namely, F
(k)
1 = 1, and the remaining zeros are in the past F

(k)
j = 0 for

j ∈ {−(k−2),−(k−3), . . . , 0}. When k = 2 this coincides with the Fibonacci
sequence. Obviously, every number with at most two digits is a concatenation
of two repdigits. Thus, we only look at the case of at least three digits. Our
result is the following theorem.

Theorem 1.1. The only k-generalized Fibonacci numbers with at least
three digits which are concatenations of two repdigits are

F
(2)
12 = 144; F

(2)
13 = 233; F

(2)
14 = 377; F

(4)
12 = 773;

F
(7)
13 = 2000; F

(8)
10 = 255; F

(9)
11 = 511.

We organise this paper as follows. In Section 2, we recall some elementary
properties of k-generalized Fibonacci numbers, a result due to Matveev on
lower bounds for nonzero linear forms of logarithms of algebraic numbers,
and a result on the Baker-Davenport reduction. We also need an elementary
result about powers of two which are concatenations of two repdigits. The
proof of Theorem 1.1 is done in Section 3.
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2. Preliminaries

In this section, we collect some facts about algebraic number theory and
the theory of linear forms in logarithms of algebraic numbers and k-generalized
Fibonacci numbers.

2.1. Linear forms in logarithms. We start with some notations and ter-
minology from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polyno-
mial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏

i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)s are the conjugates of
η. Then the logarithmic height of η is given by

h(η) :=
1

d

(

log a0 +

d∑

i=1

log
(

max{|η(i)|, 1}
)
)

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q ≥ 1,
then h(η) = logmax{|p|, q}. The following are some of the properties of the
logarithmic height function h(·), which will be used in the next section of this
paper without reference:

(2.1)

h(ηγ±1) ≤ h(η) + h(γ),

h(η + γ) ≤ h(η) + h(γ) + log 2,

h(ηs) = |s|h(η) (s ∈ Z).

In order to prove our main result Theorem 1.1, we need to use a couple
of times a Baker–type lower bound for a nonzero linear form in logarithms of
algebraic numbers. There are many such bounds the literature like that of
Baker and Wüstholz from [4]. We use the one of Matveev from [19]. Matveev
proved the following theorem, which is one of our main tools in this paper.

Theorem 2.1 (Matveev’s theorem). Let γ1, . . . , γt be positive real alge-
braic numbers in a real algebraic number field K of degree D, b1, . . . , bt be
nonzero integers, and assume that

(2.2) Λ := γb1
1 · · · γbt

t − 1,

is nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where
B ≥ max{|b1|, . . . , |bt|},

and
Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.
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2.2. The Baker-Davenport reduction method. During the course of our
calculations, we get some upper bounds on our variables which are too large,
thus we need to reduce them. To do so, we use some results from the theory
of continued fractions. Specifically, for a nonhomogeneous linear form in two
integer variables, we use a slight variation of a result due to Dujella and Pethő
(see [11, Lemma 5a]). For a real number X , we write ||X || := min{|X − n| :
n ∈ Z} for the distance from X to the nearest integer.

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the con-
tinued fraction of the irrational number τ such that q > 6M , and A,B, µ be
real numbers with A > 0 and B > 1. If ε := ||µq|| −M ||τq|| > 0, then there
is no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v and a real number w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

The above lemma cannot be applied when µ = 0 (since then ε < 0). In
this case, we use the following criterion of Legendre (see [12, Theorem 8.2.4
and top of page 287]).

Lemma 2.3 (Legendre). Let τ be a real number and x, y be integers such
that

(2.3)

∣
∣
∣
∣
τ − x

y

∣
∣
∣
∣
<

1

2y2
.

Then x/y = pk/qk is a convergent of τ . Furthermore,

(2.4)

∣
∣
∣
∣
τ − x

y

∣
∣
∣
∣
≥ 1

(ak+1 + 2)y2
.

2.3. k-generalized Fibonacci numbers. One checks easily that the first

k + 1 nonzero terms in F
(k)
n are powers of 2, namely

F
(k)
1 = 1, F

(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F

(k)
k+1 = 2k−1.

The next term is F
(k)
k+2 = 2k−1. It is known that the characteristic polynomial

of the k–generalized Fibonacci numbers F (k) := {F (k)
n }n≥−(k−2), namely

Ψk(x) := xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle. Let
α := α(k) denote the single real root larger than 1, which is located between
2
(
1− 2−k

)
and 2 (see [10]). This is called the dominant root of F (k). To

simplify notation, in our application we shall omit the dependence of α on
k. We shall use α(1), . . . , α(k) for all roots of Ψk(x) with the convention that
α := α(1).
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We now consider, for an integer k ≥ 2, the function

(2.5) fk(z) =
z − 1

2 + (k + 1)(z − 2)
for z ∈ C.

With this notation, Dresden and Du presented in [10] the following “Binet–
like” formula for the terms of F (k):

(2.6) F (k)
n =

k∑

i=1

fk(α
(i))(α(i))n−1.

It was proved in [10] that the contribution of the roots which are inside the
unit circle to the formula (2.6) is very small, namely that the approximation

(2.7)
∣
∣
∣F (k)

n − fk(α)α
n−1
∣
∣
∣ <

1

2
holds for all n ≥ −(k − 2).

It was proved by Bravo and Luca in [5] that

(2.8) αn−2 ≤ F (k)
n ≤ αn−1 holds for n ≥ 1 and k ≥ 2.

We next present some useful lemmas that will be used in the next section
of this paper. The following lemma was proved by Bravo and Luca in [5].

Lemma 2.4. Let k ≥ 2, α be the dominant root of {F (k)
n }n≥(k−2), and

consider the function fk(z) defined in (2.5).

(i) The inequalities

1

2
< fk(α) <

3

4
, and |fk(α(i))| < 1, 2 ≤ i ≤ k

hold.
(ii) The logarithmic height of fk(α) satisfies h(fk(α)) < 3 log k.

The following lemma was proved in [9].

Lemma 2.5. For 1 ≤ n < 2k/2 and k ≥ 10, we have

(2.9) F (k)
n = 2n−2 (1 + ζ) , where |ζ| < 5

2k/2
.

Finally, the following lemma is [14, Lemma 7].

Lemma 2.6. If m ≥ 1, T ≥ (4m2)m and

x

(log x)m
< T, then x < 2mT (logT )m.
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2.4. Powers of two which are concatenations of two repdigits. In this sub-
section we prove the following lemma.

Lemma 2.7. There are no powers of two with more than two digits which
are concatenations of two repdigits.

Proof. Write

2n = a · · ·a
︸ ︷︷ ︸

m times

b · · · b
︸ ︷︷ ︸

ℓ times

, where a, b ∈ {0, 1, . . . , 9}, a 6= 0.

This can be rewritten as

9× 2n = a(10m − 1)10ℓ + b(10ℓ − 1).

Note that b cannot be zero since otherwise 9 × 2n would be a multiple of 5.
Thus, b ∈ {1, . . . , 9}. In particular, ν2(b(10

ℓ− 1)) ≤ 3, where for an integer m
we write ν2(m) for the exponent of 2 in the factorization of m. In particular,
if n ≥ 4, then ℓ ≤ 3. In this case,

9× 2n = a10m+ℓ + ((b − a)10ℓ − b).

The integer (b − a)10ℓ − b is not zero (otherwise 9 × 2n would be divisible
by 5), and it is in absolute value at most 9 × 103 + 9 < 214. In particular, if
n ≥ 14, then m+ ℓ ≤ 13. Thus, in this last case, we get

2n < 1013 + 103 + 1 < 244,

so n ≤ 43. A numerical check finishes the proof.

3. The Proof of Theorem 1.1

We work with the equation

(3.1) F (k)
n = a · · · a

︸ ︷︷ ︸

m times

b · · · b
︸ ︷︷ ︸

ℓ times

, where a, b ∈ {0, 1, . . . , 9}, a 6= 0.

3.1. The low range. We ignore the repdigit case (namely, the case a = b
or a = 0 in equation (3.1)) since that has been treated in [5]. We next check
the case n ≤ 1000. It suffices to also assume that k ≤ 1000, since if k > 1000,

then n < k, so F
(k)
n is a power of 2, and we know that in this case equation

(3.1) has no solutions with m+ℓ ≥ 3 by Lemma 2.7. Then F
(k)
n ≤ 2n−1 ≤ 2999

has at most 300 digits. We generated the list of all F
(k)
n for 2 ≤ k, n ≤ 1000 as

well as the list of all numbers which are concatenations of two repdigits and
with a total of at most 300 digits and intersected these two lists obtaining the
examples mentioned in the theorem. From now on, we assume that n > 1000.
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3.2. Bounding n in terms of k. We exploit (3.1). That is

(3.2)

F (k)
n = a · · · a

︸ ︷︷ ︸

m times

b · · · b
︸ ︷︷ ︸

ℓ times

= a · · · a
︸ ︷︷ ︸

m times

× 10ℓ + b · · · b
︸ ︷︷ ︸

ℓ times

=
1

9
(a10m+ℓ − (a− b)10ℓ − b).

We next comment on the size of n versus m+ ℓ.

Lemma 3.1. All solutions of equation (3.1) satisfy

(m+ ℓ) log 10− 2 ≤ n logα < (m+ ℓ) log 10 + 2.

Proof. The proof follows easily from the fact that αn−2 < F
(k)
n < αn−1.

By estimate (2.8), one can see that

αn−2 < F (k)
n < 10m+ℓ.

Taking the logarithm of both sides, we get (n−2) logα < (m+ℓ) log 10, which
leads to

n logα < (m+ ℓ) log 10 + 2 logα < (m+ ℓ) log 10 + 2.

The lower bound follows similarly from the bound 10m+ℓ−1 ≤ F
(k)
n < αn−1.

We next examine (3.2) in two different steps as follows.

Step 1. Equation (3.2), the Binet formula (2.6) for F
(k)
n and approxima-

tion (2.7), give

9fk(α)α
n−1 − a10m+ℓ = 9ζn − ((a− b)10ℓ + b), |ζn| < 1/2.

Here, ζn := fk(α)α
n−1 − F

(k)
n . From the above, we deduce that

∣
∣9fk(α)α

n−1 − a10m+ℓ
∣
∣ =

∣
∣9ζn − ((a− b)10ℓ + b)

∣
∣

≤ (9 · 10ℓ + 9) + 9/2

< 15× 10ℓ.

Thus, dividing both sides by a10m+ℓ we get

(3.3)

∣
∣
∣
∣

(
9fk(α)

a

)

αn−110−m−ℓ − 1

∣
∣
∣
∣
<

15× 10ℓ

a10m+ℓ
<

15

10m
.

Let

(3.4) Γ1 :=

(
9fk(α)

a

)

αn−110−m−ℓ − 1.
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We compare this upper bound with the lower bound on the quantity Γ1

given by Theorem 2.1. Observe first that Γ1 is not zero, for if it were, then

9fk(α)

a
=

10m+ℓ

αn−1
.

Conjugating the above relation with some non-trivial Galois automorphism σ
of Q[α] which maps α to α(i) for some i = 2, . . . , k, we get

9fk(α
(i))

a
=

10m+ℓ

(α(i))n−1
.

Taking absolute values and using the estimate from Lemma 2.4 (i) as well as
the fact that |α(i)| < 1 for i = 2, . . . , k, we get

9 >
|9fk(α(i))|

a
=

10m+ℓ

|α(i)|n−1
> 10m+ℓ,

a contradiction.
With the notation of Theorem 2.1, we take t := 3 and

γ1 :=
9fk(α)

a
, γ2 := α, γ3 := 10, b1 := 1, b2 := n− 1, b3 := −m− ℓ.

Since 10m+ℓ−1 < F
(k)
n < αn−1, we have that m+ ℓ ≤ n. So, we take B := n.

Observe that L := Q(η1, η2, η3) = Q(α), so D = k. We note that h(γ2) ≤ 1/k,
h(γ3) = log 10 and, by Lemma 2.4 (ii) and the properties of the heights,

h(γ1) ≤ h(9/a) + h(fk(α)) ≤ log 9 + 3 log k ≤ 7 log k for all k ≥ 2.

Thus, we can take

A1 := 7k log k, A2 := 1, A3 := k log 10.

Theorem 2.1 tells us that

log |Γ1| > −1.4 · 30634.5k2(1 + log k)(1 + logn)(7k log k)(k log 10)

> −5.8× 1012k4(log k)2(1 + logn).

In the above, we used the inequality 1 + log k ≤ 2.5 log k which holds for all
k ≥ 2. Comparing this last inequality with (3.3) leads to

m log 10− log 15 < 5.8 · 1012k4(log k)2(1 + logn)

giving

(3.5) m log 10 < 5.9 · 1012k4(log k)2(1 + logn).
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Step 2. Equation (3.2) can also be rewritten as

fk(α)α
n−1 −

(
a10m − (a− b)

9

)

10ℓ = ζn − b

9
,

which gives

∣
∣
∣
∣
fk(α)α

n−1 −
(
a10m − (a− b)

9

)

10ℓ
∣
∣
∣
∣
=

∣
∣
∣
∣
ζn − b

9

∣
∣
∣
∣
< 1.5.

Thus, dividing both sides by fk(α)α
n−1, we get

∣
∣
∣
∣

(
a10m − (a− b)

9fk(α)

)

α−n+110ℓ − 1

∣
∣
∣
∣
<

1.5

fk(α)αn−1
<

3

αn−1
,(3.6)

where for the last inequality above we used that fk(α) > 1/2 (see Lemma
2.4). Put

(3.7) Γ2 :=

(
a10m − (a− b)

9fk(α)

)

α−n+110ℓ − 1.

Assume first that Γ2 = 0. We then get

(3.8)
a10m − (a− b)

9fk(α)
=

αn−1

10ℓ
.

Conjugating the above relation by any authomorphism of K which sends α to
α(i) for some i ≥ 2, and taking absolute values, we get

(3.9)
a10m − (a− b)

9|fk(α(i))| =
|α(i)|n−1

10ℓ
.

Dividing relations (3.8) and (3.9) and using Lemma 2.4 (i), we get

1 > |fk(α(i))||α(i)|n−1 = fk(α)α
n−1 >

1

2

(

1 +
√
5

2

)n−1

,

a contradiction since n > 1000.
Thus, Γ2 6= 0. With the notation of Theorem 2.1, we take t := 3,

γ1 :=

(
a10m − (a− b)

9fk(α)

)

, γ2 := α, γ3 := 10, b1 := 1, b2 := −n+ 1, b3 := ℓ.

Observe that γ1 6= 0, otherwise inequality (3.6) implies that αn−1 < 3, which
is false for n > 1000. As mentioned before ℓ < n, therefore we can take
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B := n. Furthermore, we have

h(γ1) = h

(
a10m − (a− b)

9fk(α)

)

≤ h(9fk(α)) + h(a10m − (a− b))

≤ log 9 + h(fk(α)) + h(a10m) + h(a− b) + log 2

≤ 3 log 9 + log 2 +m log 10 + 3 log k

≤ 5.9 · 1012k4(log k)2(1 + logn) + 3 log 9 + log 2 + 3 log k

< 6 · 1012k4(log k)2(1 + logn),

where in the above string of inequalities we used the properties of heights
(2.1) and the bound (3.5). Thus, we can take

A1 := 6 · 1012k5(log k)2(1 + logn), A2 := 1, A3 := k log 10.

Theorem 2.1 tells us that:

log |Γ2| > −1.4 · 30634.5k2(1 + log k)(1 + logn)(k log 10)A1

> −1012k3(log k)(1 + logn)A1

> −6 · 1024k8(log k)3(1 + logn)2.

Comparing this last inequality with (3.6) we get

(3.10) (n− 1) logα− log 3 < 6 · 1024k8(log k)3(1 + logn)2.

The above inequality together with the fact that α ≥ (1 +
√
5)/2 gives us

n < 1.3× 1025k8(log k)3(1 + logn)2.

We need a bound on n which does not involve logn in the right–hand side.
We may assume that n > 1010. In this case, 1.3(1+ logn)2 < 2(logn)2, so we
get

n < 2× 1025k8(log k)3(log n)2.

Thus,
n

(logn)2
< 2× 1025k8(log k)3 := T.

We apply Lemma 2.6 with m := 2 and the above T noting that it certainly
satisfies the lower bound T ≥ (4m2)m = 28. We thus get

n < 4T (logT )2 ≤ 8× 1025k8(log k)3(log(2× 1025) + 11 log k)2

≤ 8× 1025k8(log k)3(11 log k)2
(
log(2 × 1025)

11 log 2
+ 1

)2

< 8× 1029k8(log k)5.

Lemma 3.1 together with the fact that α < 2 implies

m+ ℓ <
1

log 10

(
8× 1029k8(log k)5 log 2 + 2

)
< 4× 1029k8(log k)5.
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We summarise what we have proved so far in the following lemma.

Lemma 3.2. All solutions of equation (3.1) satisfy

m+ ℓ < 4× 1029k8(log k)5 and n < 8× 1029k8(log k)5.

3.3. An absolute bound on n when k is large. We want to apply Lemma
2.5. For this, we need that n < 2k/2. This is satisfied, by Lemma 3.2, provided

8× 1029k8(log k)5 < 2k/2,

and this last inequality holds for k ≥ 400. So, assuming k ≥ 400, we can write

(3.11) F (k)
n = 2n−2(1 + ζ), |ζ| < 5

2k/2
.

Since k is large, it follows that |ζ| < 1/2. Thus, 1+ζ ∈ (1/2, 3/2), so in partic-

ular 2n−2 ∈ [(2/3)F
(k)
n /2, 2F

(k)
n ]. Thus, 2n−2 > (2/3)F

(k)
n ≥ (2/3)10m+ℓ−1.

Substituting (3.11) into (3.2), we get

2n−2(1 + ζ) =
1

9
(a10m+ℓ − (a− b)10ℓ − b),

which can be rewritten as

|2n−2 − (a/9)10m+ℓ| ≤ 2n−2|ζ|+ |a− b|10ℓ + b

9
≤ 5× 2n−2

2k/2
+ 1.1× 10ℓ.

Thus,

(3.12)

|(a/9)10m+ℓ2−(n−2) − 1| ≤ 5

2k/2
+

1.1× 10ℓ

2n−2

≤ 5

2k/2
+

1.1× 1.5

10m−1

≤ 22max

{
1

2k/2
,

1

10m

}

.

We take

Γ3 := (a/9)10m+ℓ2−(n−2) − 1.

We now apply Matveev’s Theorem 2.1 to Γ3 defined above. It is easy to see
that Γ3 6= 0, for if Γ3 were zero, then 10m+ℓa = 9 · 2n−2, which is impossible
because the left–hand side above is a multiple of 5 and the right–hand side is
not. So, we take t := 3,

(γ1, γ2, γ3, b1, b2, b3) := (a/9, 10, 2, 1,m+ ℓ,−(n− 2)).

We have L = Q, so D := 1, A1 := log 9 ≥ h(γ1), A2 := log 10, A3 := log 2.
Further, we may take B := n as in the estimates for Γ2. Thus,

log |Γ3| > −6× 1011(1 + logn).

Thus, we get

min{(k/2) log 2,m log 10} < 6× 1011(1 + logn) + log 22 < 1012 logn,
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where the last inequality holds since n > 1000. Assume first that

(k/2) log 2 = min{(k/2) log 2,m log 10}.
We then get

k <
2

log 2

(
1012 logn

)
< 3× 1012 logn.

Inserting this into the bound on n in terms of k of Lemma 3.2 and using the

fact that n ≥ k (otherwise F
(k)
n is a power of 2 which is not a concatenation

of two repdigits by Lemma 2.7), we get

n < 8× 1029k8(log k)5 < 8× 1029k8(logn)5

< 8× 1029(3× 1012)8(logn)13 < 6× 10129(logn)13.

Thus,
n

(logn)13
< 6× 10129 := T.

Since T = 6× 10129 > (4× 132)13, we can apply Lemma 2.6, to conclude that

(3.13) n < 213T (logT )13 = 8× 10165.

Assume next that

m log 10 = min{(k/2) log 2,m log 10}.
Then

(3.14) m log 10 < 1012 logn.

Next, we rewrite our equation as in Step 2 of Subsection 3.2, namely

2n−2(1 + ζ)−
(
a10m − (a− b)

9

)

10ℓ =
−b

9
,

which can be rearranged as

(3.15)

∣
∣
∣
∣
2n−2 −

(
a10m − (a− b)

9

)

10ℓ
∣
∣
∣
∣
= | − 2n−2ζ − b/9|.

Dividing by 2n−2 and using Lemma 2.5, we get

(3.16)

∣
∣
∣
∣

(
a10m − (a− b)

9

)

10ℓ2−(n−2) − 1

∣
∣
∣
∣
≤ |ζ| + b/9

2n−2

≤ 6max

{
1

2k/2
,

1

2n−2

}

.

The minimum of the exponents of 2 in the right–hand side is k/2. Indeed, for
if not, then n − 2 ≤ k/2, so n ≤ k/2 + 2 < k since k is large. However, for

n < k, we have F
(k)
n = 2n−2, and this is not a concatenation of two repdigits

by Lemma 2.7 since n > 1000 is large. Thus, min{k/2, n− 2} = k/2. Let

Γ4 :=

(
a10m − (a− b)

9

)

10ℓ2−(n−2) − 1.
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Let us show that Γ4 6= 0. Indeed, if Γ4 = 0, we then get, by (3.15), that

2n−2ζ = −b/9. Thus, F
(k)
n = 2n−2 + 2n−2ζ = 2n−2 − b/9 and since this is an

integer, we get that b ∈ {0, 9}. The case b = 0 leads to F
(k)
n = 2n−2 which we

have seen that it is impossible. Thus, b = 9 and F
(k)
n = 2n−2 − 1. But then,

F (k)
n = 2n−2 − 1 = a

(
10m − 1

9

)

10ℓ + 9×
(
10ℓ − 1

9

)

= a

(
10m − 1

9

)

10ℓ + 10ℓ − 1,

so 10ℓ | 2n−2, a contradiction. Thus, Γ4 6= 0, and we can apply Matveev’s
Theorem 2.1 in order to get a lower bound on the left–hand side of (3.16).
We take t := 3,

(γ1, γ2, γ3, b1, b2, b3) :=

(
a10m − (a− b)

9
, 10, 2, 1, ℓ,−(n− 2)

)

.

A calculation similar to the one performed at Γ2 in Subsection 3.2, shows that

h(γ1) ≤ log 9 + log(a10m) + log(a− b) + log 2 ≤ 3 log 9 + log 2 +m log 10

≤ 3 log 9 + log 2 + 1012 log n < 1.1× 1012 logn.

Further, D = 1, so we take A1 := 1.1 × 1012 log n, A2 := h(γ2) = log 10 and
A3 := h(γ3) = log 2. Matveev’s Theorem 2.1 tells us that

log |Γ4| > −2.6× 1023(1 + logn) logn > −5× 1023(log n)2.

Comparing the above bound with (3.16) and using the fact that the minimum
in the right–hand side of (3.16) occurs at k/2, we get

(k/2) log 2− log 6 < 5× 1023(log n)2,

so

k <
2

log 2

(
5× 1023(log n)2 + log 6

)
< 1.5× 1024(logn)2.

By Lemma 3.2 and using again the fact that k < n, we get

n < 8× 1029k8(log k)5 ≤ 8× 1029k8(logn)5

< 8× 1029(1.5× 1024)8(logn)21

< 2.1× 10223(log n)21.

Thus,
n

(log n)21
< 2.1× 10223 := T.

By Lemma 2.6 with m := 21 and T shown above we get

(3.17) n < 221T (logT )21 < 4× 10286.

Comparing (3.17) with (3.13), we conclude that estimate (3.17) always holds.
This was for k ≥ 400. But if k < 400, we may bound n right away using the
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estimate from Lemma 3.2, and we also get that n < 1060 < 4 × 10286. So, in
all cases, estimate (3.17) holds. We record this as a lemma.

Lemma 3.3. If n > 1000 and F
(k)
n is a concatenation of two repdigits,

then

n < 4× 10286.

3.4. Reducing The Bound. We start with estimate (3.12).
Put

Λ3 := (m+ ℓ) log 10− (n− 2) log 2 + log(a/9).

Note that Γ3 = eΛ3 − 1. Thus, since we proved that Γ3 6= 0, it follows that
Λ3 6= 0. Assuming m ≥ 2, the right–hand side of (3.12) is smaller that 1/2,
and putting w := min{(k/2) log 2,m log 10}, we get

|Λ3| <
44

ew
.

Dividing both sides of the above inequality by log 2, we get

|(m+ ℓ)τ − (n− 2) + µ| < (44/ log 2)

ew
<

A

Bw
,

where

τ :=
log 10

log 2
, µ :=

log(a/9)

log 2
, A := 64, B := e.

Furthermore, m + ℓ < M := 10300. We apply Lemma 2.2 and we take the
convergent P/Q := p699/q699 of τ which has Q > 10345 > 6M . It also has
M‖Qτ‖ < 10−45, while ‖Qµ‖ > 0.076 for a ∈ {1, . . . , 8}, so we can take
ε := 0.076. We get that

w < log(AQε−1) < 803.

Assume that k > 2500. Then (k/2) log 2 > 803, so it must be the case that
w = m log 10. Thus, m < 803/ log 10 < 350. This was for a 6= 9, since when
a = 9 we have µ = 0. In this case, we have

∣
∣
∣
∣
τ − n− 2

m+ ℓ

∣
∣
∣
∣
<

A

(m+ ℓ)Bw
.

Assuming Bw > 2AM , we have that the right–hand side above is smaller than
1/(2(m+ ℓ)2) so (n− 2)/(m+ ℓ) is a convergent of τ . We thus conclude that
(n−2)/(m+ℓ) = pj/qj for some j ≤ 699, so pj = (n−2)/d and qj = (m+ℓ)/d,
where we put d := gcd(n− 2,m+ ℓ). By Lemma 2.3, the left–hand side above
exceeds 1/((c+ 2)q2j ), where c := max{aj : 0 ≤ j ≤ 699} = 5393. Thus,

Bw <
5395Aqj

d
≤ 5395A(m+ ℓ)) < 5395AM,

which gives

w < log(5395AM) < 704 < 803.
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So, in both cases, namely if a ∈ {1, . . . , 8} or if a = 9, we have that m < 350
provided k > 2500. We next take

Λ4 := ℓ log 10− (n− 2) log 2 + log

(
a10m − (a− b)

9

)

.

Note that Γ4 = eΛ4 − 1. Since we proved that Γ4 6= 0, it follows that Λ4 6= 0.
Moving to inequality (3.16), we get that the right–hand side of it is smaller
than 1/2. Thus,

(3.18) |Γ4| <
12

2k/2
.

This gives

|ℓτ − (n− 2)− µ1| <
(12/ log 2)

2k/2
<

A1

Bw
1

, where (A1, B1) := (18, 2).

Here,

µ1 :=
log((a10m − (a− b))/9)

log 2
.

We take again M := 10300 and work with the same P/Q = p699/q699. A
computer calculation for a ∈ {1, . . . , 9}, b ∈ {0, . . . , 9}, b 6= a and m ∈ [1, 349]
showed that ‖Qµ1‖ > 0.000021 for all µ1, except for the 9 triples (a, b,m):

(3.19)
(1, 0, 1), (1, 9, 1), (2, 0, 1), (3, 9, 1), (4, 0, 1),

(4, 9, 1), (5, 0, 1), (7, 9, 1), (8, 0, 1).

So, except for these 9 cases, we can take ε := 0.00002 and we get

k/2 <
log(A1Qε−1)

logB1
< 1200,

so k < 2500, a contradiction. It remains to deal with the 9 triples from (3.19).
The ones having b = 0 give

F (k)
n ∈ {10ℓ, 2× 10ℓ, 4× 10ℓ, 5× 10ℓ, 8× 10ℓ}.

They are particular instances of numbers of the form F
(k)
n whose primes factors

are in the set {2, 5} and these have been found in [6]. The largest number of

this form is F
(7)
13 = 2000. The other 4 cases give

F (k)
n ∈ {2× 10ℓ − 1, 4× 10ℓ − 1, 5× 10ℓ − 1, 8× 10ℓ − 1}.

For these ones, the expression (a10m− (a− b))/9 ∈ {2, 4, 5, 8}, so that Γ4 can
be rewritten as

Λ4 = (ℓ+δ) log 5−(n−2−ℓ−δ1) log 2, δ1 ∈ {0, 1, 2, 3}, δ ∈ {0, 1}, δδ1 = 0.

Thus, inequality (3.18) becomes

|(ℓ+ δ) log 5− (n− 2− ℓ− δ1) log 2| <
12

2k/2
.
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Using the continued fraction of log 5/ log 2, we get 2k/2/(12× 5395) < 10300,
which implies that k < 2500, a contradiction since we are assuming that
k > 2500.

Thus, we showed that if k ≥ 400, then k ≤ 2500.
Assume that k > 500. By Lemma 3.2, we get n < 4 × 1061. We repeat

the same process with M := 1062, and P/Q = p139/q139. In this case, for Γ3

we have M‖Qτ‖ < 10−6, while ‖Qµ‖ > 0.12 for all a ∈ {1, . . . , 8}. Thus, we
can take ε := 0.1 and then

w < log(A1Qε−1) < 164.

If k > 500, then (k/2) log 2 > 173, so we must have w = m log 10 < 164, so
m < 72. If a = 9, then by the previous argument, we get

Bw
1 < 5395A1M, which gives w < 156.

Since k > 500, we get m < 68. Thus, m < 72 regardless of the value of
a. Now we move to Γ4. Working with the same M and P/Q and ignoring
the 9 triples shown at (3.19), we get that ‖Qµ1‖ > 0.000041, so we can take
ε := 0.0004. Thus,

(k/2) log 2 < 173,

which contradicts the fact that k > 500. In the case when (a, b,m) is one of
the 9 triples shown at (3.19), we get Bw

1 < 5395A1M , so (k/2) log 2 < 155,
which contradicts again the fact that k > 500.

Thus, k ≤ 500. By Lemma 3.2, we get n < 3 × 1055. So, we take
M := 1056 and we work with

Λ1 := (m+ ℓ) log 10− (n− 1) logα− log(9fk(α)/a).

Assuming m ≥ 2, the right–hand side of (3.3) is < 1/2. Since Γ1 = e−Λ1 − 1,
we get that

|Λ1| <
30

10m
.

This can be rewritten as

|(m+ ℓ)τk − (n− 1)− νk| <
30/ logαk

10m
<

A2

B2
,

where we can take

τk :=
log 10

logα
, νk :=

log(9fk(α)/a)

logα
, A2 := 63, B2 := 10.

We take P/Q = p279/q279 for all k ∈ [2, 500]. The maximum M‖Qτk‖ is
smaller than 10−68. The minimum ‖Qµk‖ is larger than 5 × 10−11. The
maximum Q satisfies Q < 10160. So, we can take ε := 10−11 for all choices of
k ∈ [2, 500] and a ∈ [1, 9], getting

m <
log(A2Qε−1)

log 10
< 173.
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We next move to

Γ2 := ℓ log 10− (n− 1) logα− log

(
a10m − (a− b))

9fk(α)

)

.

Since n > 1000, the right–hand side of (3.6) is < 1/2. Since Γ2 = eΛ2 − 1, we
get that

|Λ2| <
6

αn−1
.

Since Γ2 6= 0, it follows that Λ2 6= 0. It then follows that

|ℓτk − (n− 1)− (n− 1)− µ′
k| <

(6/ logα)

αn−1
<

A3

B3
,

where

µ′
k :=

log(a10m − (a− b))/9fk(α))

logα
, and (A3, B3) := (13, α).

We kept the same M and the same P/Q. We got that Qε−1 < 10170 for all
k ∈ [2, 500], a ∈ {1, . . . , 9}, b ∈ {0, . . . , 9}, b 6= a, and m ∈ [1, 174]. Hence,

n− 1 <
log(A3Qε−1)

logα
< 820,

which is the final contradiction. Thus, Theorem 1.1 is proved.
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