
K-Isomorphism: Privacy Preserving Network Publication
against Structural Attacks

James Cheng
School of Computer

Engineering
Nanyang Technological
University, Singapore
jcheng@acm.org

Ada Wai-Chee Fu
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
adafu@cse.cuhk.edu.hk

Jia Liu
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
jliu@cse.cuhk.edu.hk

ABSTRACT
Serious concerns on privacy protection in social networks have
been raised in recent years; however, research in this area is still
in its infancy. The problem is challenging due to the diversity and
complexity of graph data, on which an adversary can use many
types of background knowledge to conduct an attack. One popular
type of attacks as studied by pioneer work [2] is the use of embed-
ding subgraphs. We follow this line of work and identify two real-
istic targets of attacks, namely, NodeInfo and LinkInfo. Our inves-
tigations show that k-isomorphism, or anonymization by forming
k pairwise isomorphic subgraphs, is both sufficient and necessary
for the protection. The problem is shown to be NP-hard. We devise
a number of techniques to enhance the anonymization efficiency
while retaining the data utility. The satisfactory performance on
a number of real datasets, including HEP-Th, EUemail and Live-
Journal, illustrates that the high symmetry of social networks is
very helpful in mitigating the difficulty of the problem.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications - Data min-
ing

General Terms
Algorithms, Security

Keywords
social networks, privacy preservation, data publishing, isomorphism,
structural attack

1. INTRODUCTION
A graph is a powerful modeling tool for representing and under-

standing objects and their relationships. In recent years, we ob-
serve a fast growing popularity in the use of graph data in a wide
spectrum of application domains. In particular, we have seen a dra-
matic increase in the number, in the size, and in the variety of social

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

networks, which can be naturally modeled as graphs. Popular so-
cial networks include collaboration networks, online communities,
telecommunication networks, and many more. Social networking
websites such as Friendster, MySpace, Facebook, Cyworld, and
others have become very popular in recent years.

The information in social networks becomes an important data
source, and sometimes it is necessary or beneficial to release such
data to the public. There can be different kinds of utility for social
network data. Kumar, Novak, Tomkins studied the structure and
evolution of the network [16]. A considerable amount of research
has been conducted on social network analysis [3, 15, 18]. There
are also different kinds of querying or knowledge discovery pro-
cessing on social networks [17, 14, 25, 6, 5]. [10] is a survey on
link mining for datasets that resemble social networks, while [21]
considers topic and role discovery in social networks.

Many real-world social networks contain sensitive information
and serious privacy concerns on graph data have been raised [2, 12,
11]. However, research on preserving privacy in social networks
has just begun to receive attention recently. To understand the kinds
of attack we need to examine some of the potential application data
from social networks, how a social network is translated into a data
graph, what kind of sensitive information may be at risk and how
an adversary may launch attack on individual privacy.

The first important example of a published social network dataset
that has motivated the study of privacy issues is probably the En-
ron corpus. In 2001, Enron Corporation filed for bankruptcy. With
the related legal investigation in the accounting fraud and corrup-
tion, the Federal Energy Regulatory Commission has made pub-
lic a large set of email messages concerning the corporation. This
dataset is valuable for researchers interested in how emails are used
in an organization and better understanding of organization struc-
ture. If we represent each user as a node, and create an edge be-
tween two nodes when there exists sufficient email correspondence
between the two corresponding individuals, then we arrive at a data
graph, or a social network. In [30] another real dataset, consist-
ing of political blogosphere data [1], is considered, this data graph
contains over 1000 vertices and 15000 edges. The structure of the
data graph will be similar to that of the Enron corpus. From such
datasets one can try to understand the nature of privacy attacks.

1.1 Adversary knowledge
The first step to anonymization is to know what external infor-

mation of a graph may be acquired by an adversary. It has been
shown that simply hiding the identities of the vertices in a graph
cannot stop node re-identification [2]. Recently, several methods
[32, 19] have been proposed to achieve k-anonymity [23, 22, 24]
based on various adversary knowledge. For example, the knowl-
edge considered in [32] is a neighborhood of unit distance. The

d-neighborhood subgraph of v is defined in [32] as the induced
subgraph of G on the set of vertices that are the connected to v via
paths with at most d edges.

Example 1. In Figure 1(a) assume that the identity of the cen-
ter of the 7-star in G is X. Then X has 7 1-neighbors in G. The
1-neighborhood subgraph of X is shown in Figure 1(b). Since the
identities of all vertices in G are hidden, an adversary does not
know which vertex in G is X. However, if the adversary knows the
1-neighborhood of X, then the vertex of X in G will be identified.
In general, an adversary may have partial information about the
neighborhood of a vertex, such as a neighborhood of X as shown in
Figure 1(c), or Figure 1(d), because these subgraphs may represent
some small groups whose information can be gathered by the ad-
versaries. Such information also leads to the re-identification of X.

2

G

Figure 1: Neighborhood Subgraphs as NAGs

We call the subgraph information of an adversary an NAG (Neigh-
borhood Attack Graph). We do not place any limitation on the
NAG, so it can be any subgraph of G up to the entire given graph
G. Note that in an NAG, one vertex is always marked (shaded in
Figures 1(b),(c),(d)) as the vertex under attack.

Definition 1 (NAG). The information possessed by the adver-
sary concerning a target individual A is a pair (Ga, v), where Ga

is a connected graph and v is a vertex in Ga that belongs to A. We
call (Ga, v) the NAG (Neighborhood Attack Graph) targeting at A.
We also refer to Ga as the NAG.

Previous works have considered the problem of re-identification
attacks, whereby an adversary may use an arbitrary subgraph to lo-
cate the vertex in a graph that belongs to an individual. It is pointed
out in [2] that most vertices in real social network belong to a small
uniquely identifiable subgraph; thus, it is relatively easy for an ad-
versary to acquire subgraph background knowledge associated with
a vertex to conduct an attack. In fact, the authors also show that an
adversary may even carry out active attacks by maliciously planting
some distinct patterns (small subgraphs) in a social network before
it is anonymized and published. Thus, another advantage of model-
ing adversary background knowledge by subgraphs is that we can
also handle such active attacks.

1.2 Targets of Protection
Privacy preservation is about the protection of sensitive informa-

tion. From the examples of real datasets we identify two main types
of sensitive information that a user may want to keep private and
which may be under attack in a social network.

1. NodeInfo:
The first type, which we call NodeInfo, is some information
that is attached with a vertex. For example, the emails sent
by an individual in the Enron dataset can be highly sensitive
since some of the emails have been written only for private
recipients and should not be allowed to be linked to any indi-
vidual. We assume that any identifying information such as
names will first be removed from NodeInfo, so that the con-
tent of NodeInfo does not help the identification of its owner.

2. LinkInfo:
The second type, which we call LinkInfo, is the information
about the relationships among the individuals, which may
also be considered sensitive. In this case, the adversary may
target at two different individuals in the network and try to
find out if they are connected by some path.

We aim to provide sufficient protection for both NodeInfo and
LinkInfo. We should point out that the linkage of an individual to
a node in the published graph itself does not disclose any sensi-
tive information for the NodeInfo target, because if we separate the
publishing of the NodeInfo from that of the node, then attacks of
the first type will not be possible.

1.3 Related Work
As a pioneer work on privacy in social networks, Backstrom

et al [2] discuss both active and passive attacks using small sub-
graphs. In active attacks, an adversary maliciously plants a sub-
graph in the network before it is published and uses the knowledge
of the planted subgraph to re-identify vertices and edges in the pub-
lished network. In passive attacks, an adversary simply uses a small
uniquely identifiable subgraph to infer the identity of vertices in
the published network. However, they do not provide a solution
to counter the attacks. Liu and Terzi [19] propose the guarantee
of k-anonymity against adversary knowledge of vertex degrees, so
that for every vertex v, there are at least (k − 1) other vertices that
have the same vertex degrees as v. Zhou and Pei [32] provide a
solution against 1-neighborhood NAGs. Hay et al. [12, 11] pro-
pose to protect privacy against subgraph knowledge. A graph is
anonymized by random graph perturbing in [12], while [11] pro-
poses to group vertices into partitions and publish a graph where
vertices are partitions and edges show the density of edges between
the partitions in the original graph. Campan and Truta [4] protect
privacy by forming clusters of vertices and collapsing each clus-
ter into a single vertex. [33] anonymizes the data graph by edge
and vertex addition so that the resulting graph is k-automorphic.
They also propose the use of generalized vertex ID’s for handling
dynamic data releases. All the anonymization methods in [11], [4]
and [33] do not impose any restriction on the neighborhood attack
graphs (NAGs) as possessed by the adversary.

For LinkInfo attacks, Zheleva and Getoor [31] propose to prevent
re-identification of sensitive edges in graph data. Ying and Wu [30]
address the problem by edge addition/deletion and switching. They
also analyze the effect of their method by studying the spectrum of
a graph. However, these works do not have a quantifiable guarantee
on their protection.

Most of the above works in privacy preserving publishing of so-
cial network aim at the issue of node reidentification, which means
that in the published data the adversary is not able to link any indi-
vidual to a node with high confidence. Most of the solutions target
at k-anonymity. While this target seems to be reasonable, it does
not directly relate to our above targets of protection.

The first shortfall of k-anonymity in addressing our problem comes
from the same issue that has been identified by [28] which proposes
the technique bucketization. The issue is that if the privacy is some
sensitive value linked with some individual, then k-anonymity is
an overkill. The reason is that if the sensitive values of a set of k
records are simply separated from the individual records and pub-
lished as a set (bucket), then privacy can be guaranteed and there
is no need to change the raw data related to the other parts of the
records. In the same way, we can publish the original graph struc-
ture but publish the sensitive information as a separate dataset. This
is a simple solution with no distortion to the graph structure. More
details are given in Section 1.4.

The first shortfall may only be a matter of lower utility. The
second shortfall is more serious because it is a matter of privacy
breach. This problem is similar to that of k-anonymity in relational
databases, as has been recognized in [20, 27], namely that even
with k records with identical quasi-identifiers, so that no individual
can be linked to any record with a confidence of more than 1/k, if
all the k records contain the same sensitive value, such as AIDS,
then the adversary will be successful in linking an individual to
AIDS. The important point is that even if a graph is k-anonymous
or k-automorphic, it cannot protect the data from LinkInfo attack.
The fact that there are k different ways to map each of 2 individuals
in a graph does not protect the linkage of the 2 individuals if all the
mappings are identical in terms of the relevant graph structure. As
a simple example, a k-clique is a graph that is both k-anonymous
and k-automorphic, however, given a k-clique and that 2 individ-
uals A and B are in the graph, one can easily decide that the two
individuals are connected by a single edge even though we cannot
pinpoint which vertex each individual corresponds to.

5

6

7

8

1 2

3 4

Figure 2: k-anonymity and NAG attacks

Figure 2 shows a slightly more complex example of LinkInfo at-
tack on a 4-anonymous graph G. In fact G is also 4-automorphic.
The structural attacks of the adversary can be based on the NAG’s
Gb and Gc for two individuals Bob and Carol, respectively, Gb

and Gc happen to be identical (the shaded vertex in Gb(Gc) corre-
sponds to Bob(Carol)). In G, 4 vertices {1, 2, 3, 4} have matching
neighborhood subgraphs and any of these can be mapped to Bob
or Carol. Although the adversary cannot pin-point the vertex for
either target, it is obvious that Bob and Carol must be linked by a
single edge. Similarly, if the adversary has an NAG Ga for Alice,
and Gc for Carol, the adversary can confirm that there must be a
path of length 2 linking Alice and Carol. These examples show
that k-anonymity and k-automorphism do not guarantee security
for LinkInfo under NAG attacks.

1.4 Challenges and Contributions
We model a social network as a simple graph, in which vertices

describe entities (e.g., persons, organizations, etc.) and edges de-
scribe the relationships between entities (e.g., friends, colleagues,
business partners). A vertex in the graph has an identity (e.g., name,
SID) and is also associated with some information such as a set
of emails. Our task is to publish the graph in such a way that,
given a specific type of adversary knowledge in terms of NAGs, the
NodeInfo or LinkInfo of any individual can be inferred only with
a probability not higher than a pre-defined threshold, whereas the
information loss of the published graph with respect to the original
graph is kept small.

The first half of the problem on NodeInfo security, on its own,
has a simple solution. We can publish the graph structure intact
with no distortion on the edges and vertices. First the content
of NodeInfo for each v is screened to remove the occurrences of
names or other user identifying information. The processed Node-
Info of each v, I(v), is detached from vertex v. We randomly parti-
tion the vertex set V into groups of at least size k. For each group,
the corresponding set of NodeInfo is published as a group. For ex-
ample, if v1, ..., vk form a group, then NodeInfo {I(v1), ..., I(vk)}

will be published as a group, breaking the linkage of the NodeInfo
to each individual. This is illustrated in Figure 3. A similar tech-
nique has been proposed in [7] for the anonymization of bipartite
graphs.

The difficulty of our problem therefore lies in the second half of
the problem, where the linkage of two individuals may be under at-
tack. Another major source of difficulty comes from the complexity
of graph datasets. Not only is the anonymization problem NP-hard,
but in order to tackle many of the sub-problems, subgraph isomor-
phism testing, an NP-complete problem by itself, is often needed
many times. In general, mechanisms for graph problems tend to be
highly complex.

Vertex group NodeInfo group
{a1, a2, a3, ..., ak} {I(a1), I(a2), I(a3), ..., I(ak)}
{b1, b2, b3, ..., bk} {I(b2), I(b, 2), I(b3), ..., I(bk)}
... ...

Figure 3: NodeInfo Table published along with Gk = G

Our contributions can be summarized as follows. (1) We iden-
tify two realistic targets of privacy attacks on social network publi-
cation, NodeInfo and LinkInfo. We point out that the popular no-
tion of k-anonymity in graph data does not protect the data against
LinkInfo attacks. Although some previous works have considered
protection of links, there has not been any definition of a quantifi-
able guarantee in the protection. To our knowledge we are the first
to define this problem formally. (2) We prove that this problem is
NP-hard. (3) We propose a solution by k-isomorphism (see Sec-
tion 3) anonymization and show that this is the only solution to
the problem. (4) We design a number of techniques to make the
anonymization process efficient while maintaining the utility. (5)
We introduce a dynamic release mechanism that has a number of
advantages over previous work. (6) Our empirical studies show that
our method performs well in the anonymization of real datasets.

The rest of the paper is organized as follows. Section 2 gives
the problem definition. Section 3 describes the main solution. Sec-
tion 4 presents the anonymization algorithm. Section 5 reports the
experimental results. Section 6 concludes the paper.

2. PRELIMINARIES AND PROBLEM DEF-
INITION

We model a social network as a simple graph, G = (V,E),
where V is the set of vertices, E is the set of edges. We assume
that each vertex in the social network has a unique identity for an
individual, which has been hidden in G. In addition, we assume
that each vertex v in V is associated with some node information
I(v). We also use V (G) and E(G) to refer to the vertex set and
edge set of G.

A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E),
denoted by G′ ⊆ G, if V ′ ⊂ V and (u, v) ∈ E′ only if (u, v) ∈ E.
We also say that G is a supergraph of G′, denoted by G ⊇ G′.

Definition 2 (GRAPH ISOMORPHISM). Let G = (V,E) and
G′ = (V ′, E′) be two graphs where |V | = |V ′|. G and G′

are isomorphic if there exists a bijection h between V and V ′, h:
V (G) → V (G′), such that (u, v) ∈ E if and only if (h(u), h(v)) ∈
E(G′). We say that an isomorphism exists from G to G′, and G =
G′. We also say that edge (u, v) is isomorphic to (h(u), h(v)).

Definition 3 (SUBGRAPH ISOMORPHISM). Let G = (V,E)
and G′ = (V ′, E′) be two graphs. There exists a subgraph isomor-
phism from G to G′ if G contains a subgraph that is isomorphic to
G′.

We call G a proper subgraph of G′, denoted as G ⊂ G′, if
G ⊆ G′ and G + G′. G is isomorphic to G′, or G = G′, if
G ⊆ G′ and G′ ⊆ G.

The decision problem for graph isomorphism is one of a small
number of interesting problems in NP which have neither been
proven to be polynomial time or NP-hard. The decision problem
for subgraph isomorphism is NP-Complete [9].

Adversary background knowledge refers to the information that
an adversary may acquire and use to infer the identify of some ver-
tex in a published social network. As we motivate in Section 1.1,
in this paper we study the privacy preserving publishing problem
with the adversary background knowledge being some subgraph
that contains the vertex under attack, defined as NAG (Neighbor-
hood Attack Graph) in Definition 1. As in the recent works of [11],
[4] and [33], we do not place any limitation on the NAG, so it can
be up to the entire given graph.

With the above understanding of the adversary knowledge, our
problem definition is based on the notion of k-security.

Definition 4 (K-SECURITY). Let G = (V,E) be a given graph
with unique node information I(v) for each node(vertex) v ∈ V .
Each vertex v ∈ V is linked to a unique individual U(v). Let Gk

be the anonymized graph of G. Gk satisfies k-security, or Gk is
k-secure, with respect to G if for any two target individuals A and
B with corresponding NAGs GA and GB that are known by the
adversary, the following two conditions hold

1. (NodeInfo Security) the adversary cannot determine from Gk

and GA(GB) that A(B) is linked to I(v) for any vertex v with
a probability of more than 1/k

2. (LinkInfo Security) the adversary cannot determine from Gk,
GA and GB that A and B are linked by a path of a certain
length with a probability of more than 1/k.

While k-security is our main objective, there is also another im-
portant objective, which is the data utility. We would like the pub-
lished graph to keep the main characteristics of the original graph
in order that it may be useful for data analysis. Therefore we must
also consider the anonymization cost, which is a measurement of
the information loss due to the anonymization. In our proposed
method, anonymization may involve edge additions and deletions.
One possible measure for the anonymization cost is the edit dis-
tance between G and Gk, which is the total number of edge addi-
tions and deletions.

Definition 5 (EDIT DISTANCE). The edit distance between G
and Gk is given by ED(G,Gk) = |(E(G) ∪ E(Gk)| − |E(G) ∩
E(Gk)|

However, edit distance is not a sound measure when both edge
additions and deletions are allowed. The anonymization aims to
make nodes indistinguishable as far as the neighborhood is con-
cerned. A basic step in this process is to make sure that for k pairs
of vertices, either each is linked by an edge or none is linked. If
the graph is sparse, it is likely that most of the pairs will not be
linked in the original graph, meaning that if edit distance is used as
the utility measure, anonymization will tend to delete edges. Such
tendency will result in poor utility in the published graph. There-
fore we follow a principle of previous works such as [12, 30] which
add and delete similar amounts of edges to maintain about the same
number of edges before and after anonymization. In this way, edge
deletions will not become more favorable than edge additions. To
this end, our minimal anonymization cost is given by two condi-
tions: (1) the difference between the number of edges in G and the

number of edges in Gk is minimized. (2) Under condition (1), the
edit distance ED(G,Gk) is minimized.

Definition 6 (ANONYMIZATION COST). An anonymization from
G to Gk has minimal anonymization cost if

(1) ||E(Gk)| − |E(G)|| is minimized ;

(2) under condition (1), ED(G,Gk) is minimized

Definition 7 (PROBLEM DEFINITION). The problem of privacy
preservation in graph publication by k-security is defined as fol-
lows: given a network graph G = (V,E) with unique I(v) for
each v ∈ V , and a positive integer k, derive an anonymized graph
Gk = (Vk, Ek) to be published, such that (1) Vk = V ; (2) Gk is k-
secure with respect to G; and (3) the anonymization from G to Gk

has minimal anonymization cost. We call this problem k-Secure-
PPNP (or k-Secure Privacy Preserving Network Publication).

THEOREM 1 (NP-HARDNESS). The problem of k-Secure Pri-
vacy Preserving Network Publication is NP-hard.

PROOF. The proof is by reducing the NP-complete problem of
PARTITION INTO TRIANGLES. The details are given in the Ap-
pendix.

COROLLARY 1. The NP-Hardness for K-Secure-PPNP remains
to hold if the minimal anonymization cost requirement is replaced
by minimum edit distance ED(G,Gk) in the problem definition.

PROOF. Prove by simply removing the condition of ||E(Gk)|−
|E(G)|| in the proof for Theorem 1 in the Appendix.

Though the problem is NP-hard, typically it is not possible to re-
lax the privacy requirement. In the next section, we derive a neces-
sary and sufficient solution for k-security when we aim at keeping
the partitioning of the given graph to a minimum.

3. K-ISOMORPHISM
In this section, we propose a framework solution for the problem

of privacy preservation in a graph for k-security. For simplicity we
first assume that for the given graph G = {V,E}, |V | is a multiple
of k. This assumption can be easily waived by adding no more
than k − 1 dummy vertices in the graph. The solution relies on the
concept of graph isomorphism.

Definition 8 (K-ISOMORPHISM). A graph G is k-isomorphic
if G consists of k disjoint subgraphs g1, ..., gk, i.e. G = {g1, ..., gk},
where gi and gj are isomorphic for i ̸= j.

The solution is as follows. Given a graph G = {V,E}. Derive a
graph Gk = {Vk, Ek} such that Vk = V , and Gk is k-isomorphic,
that is Gk = {g1, ..., gk} with pairwise isomorphic gi and gj , i ̸=
j. Gk is the published graph. For each v ∈ V , NodeInfo I(v) is
attached to v in the published graph.

THEOREM 2 (SOUNDNESS). A k-isomorphic graph Gk =
{g1, ..., gk} is k-secure.

PROOF. Since the graphs g1, ..., gk are pairwise isomorphic, for
any NAG of an adversary for a target individual Alice, whenever
the NAG is contained in any gi, there are at least k different vertices
v1, ..., vk that can be mapped to Alice and they are not distinguish-
able. Hence NodeInfo security is guaranteed.

If the adversary aims to attack the linkage of 2 individuals Alice
and Bob, in the worst case, the adversary can find matching vertices

for both Alice and Bob in one of the subgraphs gi. However, by
k-isomorphism, the same is true for each subgraph. There are k
different vertices a1,, ak that can be mapped to Alice, and k
different vertices b1, ..., bk that can be mapped to Bob, where ai ∈
gi and bi ∈ gi, for 1 ≤ i ≤ k.

If a1 and b1 are linked by a path of length p in g1, ai and bi are
linked by a similar path in gi, for all i. For Alice to be the owner
of a1 and Bob to be the owner of b1, the probability is 1

k
× 1

k
.

The probability that Alice is linked to Bob by a path of length p
is hence the probability that their vertices are in the same gi, and it
is given by k × 1

k
× 1

k
= 1

k
. Therefore the condition for LinkInfo

security holds and Gk is k-secure.

1 2

43

5 6

7 8

Figure 4: k-isomorphism and k-security

Example 2. An example is shown in Figure 4. Here the adver-
sary attacks with two NAGs Ga and Gb for two target individuals,
Alice and Bob, respectively. Four vertices {1, 2, 3, 4} are found
to be linkable to Alice, while {5, 6, 7, 8} are linkable to Bob. The
adversary can only determine that Alice and Bob are linked by an
edge with a probability of 1/4. 2

Given Theorem 2, the following theorem says that if the parti-
tioning of the graph G in the anonymization is limited, then par-
titioning into k isomorphic subgraphs is the only solution for k-
security.

THEOREM 3 (NECESSITY). Let a published graph Gk be
k-secure, if Gk is made up of no more than k disjoint connected
subgraphs, then Gk is k-isomorphic.

PROOF. For the proof we shall need the notion of graph auto-
morphism: Given a graph G = (V,E), an automorphism is a func-
tion f from V to V , such that (u, v) ∈ E iff (f(u), f(v)) ∈ E.
That is f is a graph isomorphism from G to itself.

Suppose the graph Gk is a collection of no more than k dis-
joint subgraphs, let there be l disjoint subgraphs, l ≤ k. Let gL
be a biggest disjoint subgraph with a maximum number of ver-
tices. In the worst case the adversary may identify 2 targets Alice
and Bob by means of two NAGs (GA, vA) and (GB , vB), where
GA = GB = gL. Then it is possible that the vertices for Alice
and Bob are in gL and therefore they are linked by some path of
length p in gL. If there exist one or more automorphisms in gL,
then there will be more than one vertex that can be mapped to Al-
ice and Bob. However, with each automorphism, Alice is linked to
Bob via a path of the same length p. Hence with or without any au-
tomorphism in gL, if gL is the only disjoint connected subgraph in
Gk that is isomorphic to GA(=GB), then the adversary can confirm
the linkage between Alice and Bob.

From the above, there must be two or more disjoint subgraphs
that are isomorphic to GA(GB). Suppose there are m such sub-
graphs, each containing a maximum number of vertices. The adver-
sary can confirm that these are the only disjoint subgraphs where
Alice and Bob can be mapped to. The probability that they are
both in one of the m biggest subgraphs is given by 1

m
× 1

m
. The

probability that Alice and Bob are linked by a path with length p

is given by (m) × 1
m

× 1
m

= 1
m

. In order for the probability
to be bounded by 1/k, m ≥ k. Since we are allowed at most k
partitioned subgraphs, m = k. Hence there are exactly k disjoint
connected subgraphs that are isomorphic to each other.

COROLLARY 2. If Gk is k-secure and is made up of more than
k disjoint connected subgraphs, let gL be any disjoint connected
subgraph in Gk with the greatest number of vertices, then Gk must
contain at least k − 1 other disjoint connected subgraphs isomor-
phic to gL.

PROOF. The corollary follows readily from arguments similar
to that in the proof of Theorem 3.

Enforcing k-isomorphism could mean that we have reduced the
information of the given graph G to 1/k the original size. In fact,
since all the graphs gi are isomorphic we may as well publish just
one of the subgraphs gi in Gk, if graph structure is the only in-
terested information. However, if there is individual information
I(v) attached to each vertex v, then the subgraphs are not totally
the same. In considering the utility of Gk, it helps to compare with
conventional data analysis. Many real life applications give rise to
very large graphs in terms of thousands or even millions of vertices.
With such a large population, analysis will typically be based on a
statistical study by sampling. It is noted that each of the k isomor-
phic subgraphs in Gk can be seen as a sample of the population
and the sample size is very large, consisting of 1/k of the popula-
tion, where k is very small compared with the graph size. In fact,
the anonymization effort can introduce normalization to the data to
avoid inaccuracies due to overfitting. Hence there is good reason to
believe that the anonymized graph maintains good utilities.

4. ALGORITHM
Our solution as presented in the previous section involves the

generation and publishing of a graph Gk that consists of k iso-
morphic subgraphs, let us call these subgraphs i-graphs. Here we
consider how to arrive at the i-graphs from the given graph G. We
would preserve the set of vertices by partitioning the graph of G
into k subgraphs with the same number of vertices. Figure 5 shows
an example where k is 4, so that the given graph G is partitioned
into 4 subgraphs g1, g2, g3, g4.

1 2

43

5 6

7 8

9 10

1211

13

15

14

16

17

21

19

18

20

2423

22

27

26

28

30

31

29

32

34

35

33

36

25

Figure 5: Given graph G and partitioning

After the partitioning, the subgraphs are augmented by edge ad-
dition and deletion to ensure pairwise graph isomorphism. In Fig-
ure 5, edges are added or deleted so that we obtain the graph Gk

as shown in Figure 4. Let the isomorphic function from gi to gj be
hij . In this example, h12(1) = 2, and h21(2) = 1; h34(7) = 8,
h24(22) = 24 ...

Obviously the quality of the anonymization depends heavily on
the graph partitioning. We introduce a simple baseline algorithm
that helps us form the k partitions. This will be refined later for
better anonymization quality. First we need some definitions.

Definition 9 (EMBEDDINGS AND FREQUENCY). Given two
graphs g and G, the set of embeddings of g in G, denoted by

embed(g,G), is defined as embed(g,G) = {g′ : g′ ⊆ G, g′ =
g}. The frequency of g in G, denoted by freq(g,G), is defined as
freq(g,G) = |embed(g,G)|. For simplicity, we use embed(g) and
freq(g) when G is clear in the context.

Definition 10 (VERTEX-DISJOINT EMBEDDINGS). Let g be
a connected subgraph in a graph G. A set of embeddings b1, ..., bk
of g are vertex-disjoint embeddings if ∀bi, bj , V (bi) ∩ V (bj) =
∅. We use “VD-embedding” as a shorthand for “vertex-disjoint
embedding”.

Example 3. Figure 9 shows a graph G and a subgraph g, there
are 4 embeddings of g in G, embed(g,G) = {g1, g2, g3, g4}. The
frequency of g in G is given by freq(g,G) = 4. The embeddings
are overlapping, so the maximum set of VD-embeddings for g has
a size of 3 only, namely, {g1, g4, g3}. 2

Algorithm 1 Baseline Graph Synthesis
Input: A graph G and an integer k.
Output: An anonymized graph, Gk = {g1, ..., gk}, of G.
VM: Vertex Mapping for g1, ..., gk.
1. ∀i, 1 ≤ i ≤ k : gi ← ϕ; VM← ϕ;
2. while G is not empty
3. select a graph g with k VD-embeddings b1, ..., bk in G;
4. for each embedding bi due to Line 3
5. remove bi from G;
6. insert bi into gi;
7. append the new vertex mappings to VM;
8. add/delete edges in each gi for pairwise k-isomorphism;
9. return Gk;

Algorithm 1 also creates a Vertex Mapping VM, which will be
used in the final step of edge addition and deletion as discussed in
Section 4.1.3. VM is a table with k columns, c1, ..., ck, with ci
for subgraph gi, where VM[c, r] is the table entry at column c and
row r. Each tuple in the table corresponds to one possible vertex
mapping so that the value for hij(VM[i, r]) = VM[j, r] for all
1 ≤ i, j ≤ k, and i ̸= j. The vertex mapping VM for the example
in Figures 4 and 5 is shown in Figure 6. Here vertex 5 = VM[1, 2],
vertex 7 = VM[3, 2], h13(5) = 7.

g1 g2 g3 g4

1 2 3 4
5 6 7 8
...
33 34 35 36

Figure 6: Vertex Mapping VM for Gk = {g1, g2, g3, gk}

Note that there always exist choices for the selection of graph g
at Line 3 of Algorithm 1 so that the Baseline graph synthesis algo-
rithm terminates with an anonymized graph that is k-isomorphic.
This is because a trivial selection is a graph with a single node.
However, this will result in poor utility for Gk. Therefore in Sec-
tion 4.1 we shall refine the algorithm and introduce better mecha-
nisms for selecting such subgraphs.

4.1 Refined Algorithm
While the Baseline Algorithm 1 in the above is a sound solution,

there is no specific guideline on how to select the graph g in Line
3 for the graph synthesis. In order to find good candidates to be
inserted into the k i-graphs, here we propose to consider frequent
subgraphs that are large. Considering frequent subgraphs has been

shown to be a sound strategy in related works such as [32] and [33].
In our case, frequent subgraphs have a high potential to generate
VD-embeddings and large connected subgraphs minimize the edge
augmentation needed for graph isomorphism.

However, the discovery of frequent subgraphs is costly, espe-
cially when considering large subgraphs. Also considering large
subgraphs may not be useful since they are less likely to be fre-
quent. For better performance we set a threshold maxPAGsize
on the size of the maximum subgraphs to be considered, where the
size is in terms of the number of edges in the subgraph.

Definition 11 (PAG). Given a graph G, and a size threshold
maxPAGsize, any connected subgraph g of G, with |E(g)| ≤
maxPAGSize, is a Potential Anonymization SubGraph, or PAG.

Our empirical studies show that the average degree d of G is a
good value for maxPAGsize. The intuitive explanation for this
phenomenon is that many vertices in G have this degree d and each
forms a PAG with their d 1-neighbors. Using such a threshold
would be a good basis for locating frequent subgraphs. Algorithm
2 outlines the refined algorithm.

At Line 2 of Algorithm 2, we compute a set of PAGs, M, which
is by traversing the given G from each vertex in a depth-first man-
ner and enumerating all connected subgraphs of size maxPAGsize.
If the vertex set of these PAGs cannot cover all vertices in G,
then we also enumerate some PAGs of sizes less than maxPAGsize,
which are in fact those isolated connected components in G with
less than maxPAGsize edges. The graph traversal also determines
the embeddings for each PAG.

For PAGs with at least k VD-embeddings, we can extract the ver-
tices of k such embeddings to be transferred from G to the gi’s in
Gk (Lines 3-7). These embeddings ensure that very few or no edge
augmentation will be necessary for the anonymization with respect
to the embeddings. Since removing some embeddings from G may
affect the formation of VD-embeddings for the remaining PAGs in
G, we select PAGs in a greedy manner. PAGs of bigger sizes will
be considered earlier. Also we give priority to VD-embeddings
that contain vertices with the highest degrees. Such embeddings
may incur greater distortion and there is a better chance to reduce
overall distortion if treated earlier.

We need to anonymize a PAG g ∈ M if g has less than k VD-
embeddings. By anonymizing g, we refer to the process by which k
VD-embeddings of g are formed so that they can be removed from
G, their vertex mapping is entered into VM, and the corresponding
vertices inserted into the i-graphs. We discuss how to anonymize
g (Line 10) in Section 4.1.1. When graph G becomes empty, all
vertices have been transferred to Gk. The final step is to add edges
to Gk at Line 11, which will be discussed in Section 4.1.3.

4.1.1 To anonymize a PAG
In this subsection, we discuss the step at Line 10 of Algorithm

2, that is, how to anonymize a PAG g. There are insufficient VD-
embeddings for g, to create more VD-embeddings for g, we can
find certain subgraphs of g and add edges linking new vertices to
the subgraphs. To reduce the information loss, we want the selected
subgraphs to be as large as possible so that less graph augmentation
is needed. We describe a simple algorithm that anonymizes g as
follows.

We enumerate g’s size-i subgraphs one by one by decrementing
i from (|g|−1) to 0 (size-0 subgraphs are single-vertex subgraphs).
For each g′ ⊂ g enumerated, we search for all embeddings of g′

in Gk. For each embedding g′emb of g′, if it is vertex-disjoint with
all the current VD-embeddings of g, we add edges and vertices to

Algorithm 2 Frequency Based Graph Synthesis
Input: A graph G and an integer k.
Output: An anonymized graph, Gk = {g1, ..., gk}, of G.
VM: Vertex Mapping for g1, ..., gk.
1. ∀i, 1 ≤ i ≤ k : gi ← ϕ; VM← ϕ;
2.M← a set of PAGs that covers G;

determine embed(g,G) for each g ∈M;
3. while there exists g ∈M with at least k VD-embeddings in G
4. select k VD-embeddings b1, ..., bi of g;
5. for each bi
6. remove bi from G; add V (bi) to gi;
7. updateM; update VM;
8. while G is not empty
9. select g ∈M;

10. anonymize g; /∗ Details in Section 4.1.1 ∗/
/∗ At this point, E(gi) = ϕ for each gi ∗/

11. add edges in each gi for pairwise k-isomorphism;
12. return Gk;

g′emb to make it into a VD-embedding of g. The process continues
until the number of VD-embeddings of g in Gk reaches k.

The algorithm described above, however, suffers deficiency in
the following two aspects. First, it requires the searching of all em-
beddings of the subgraphs of g in Gk. This process is expensive
because it may involve a huge number of subgraph isomorphism
tests. Second, most PAGs actually share with each other a large
number of common subgraphs (as also pointed out in maximal fre-
quent subgraph mining [13]). Thus, many subgraphs may be re-
peatedly processed and much computing resource is wasted.

To address the first deficiency, we take advantage of the fact that
the embeddings of the PAGs have already been located in G. Thus,
we can locate the embeddings of the subgraphs within each embed-
ding of the PAGs, which is significantly faster than searching in the
big graph G.

To address the second deficiency, we use a hashtable, H, to keep
every subgraph g′ that has been processed, along with the em-
beddings embed(g′) that have been uncovered. Later when we
anonymize another PAG g and enumerate a subgraph g′, we can
first check if g′ is used. If g′ is found in H, then we can readily use
the embeddings of g′ to anonymize g. The hash function for H is
based on graph properties such as degree distribution.

The algorithm of anonymizing a PAG g is outlined in Algorithm
3. First, we extract a set of VD-embeddings for g (Line 1). Then,
we enumerate g’s subgraphs, from the largest to the smallest (Line
2), but terminate whenever we have k VD-embeddings of g (Line
14-17). For each g′ ⊂ g enumerated, we first find all the embed-
dings of g′, embed(g′), from the embeddings of the PAGs that are
supergraphs of g′ (Lines 4-6). Note that M is the set of PAGs
computed in Algorithm 2. We keep embed(g′) in a hashtable H.
Thus, if a subgraph g′ is in H already, we obtain embed(g′) di-
rectly from H. Then, Lines 10-13 find an embedding g′embed of g′

which is vertex-disjoint with all VD-embeddings of g in D. We
create a new VD-embedding of g from g′embed by adding vertex-
disjoint edge(s) and node(s).

4.1.2 An Example
The following example illustrates how we partition a graph G

for k-security.

Example 4. Figure 7 shows a graph G and its anonymized graph
Gk. For clarity in the explanation of our algorithms we choose a G
that consists of multiple components G = { (a), (b), (c), (d), (e), (f),
(r), (s) }. We use a maxPAGsize of 5 for illustration. The value
of k for k-security is 2.

Algorithm 3 Anonymize-PAG
Input: A PAG g to be anonymized, G,Gk, VM, M.
Output: Updated Gk = {g1, ..., gk}, G,M, VM.
H: global hashtable to store processed PAGs and embeddings.
1. D ← set of VD-embeddings of g in current G ;
2. for each g′ ⊂ g in size-descending order
3. if g′ is not inH
4. embed(g′)← ∅;
5. for each g′′ ∈M, where g′′ ⊃ g′ and g′′ ̸= g
6. search in the embeddings of g′′ for the embeddings

of g′, and add these embeddings of g′ to embed(g′);
7. insert g′ and embed(g′) intoH;
8. else
9. obtain embed(g′) fromH;

10. for each g′embed ∈ embed(g′)
11. if g′embed is vertex-disjoint from all graphs in D
12. create a new VD-embedding b of g from g′embed;
13. delete b from G; insert b into D;
14. if |D| = k
15. insert the vertices of the k graphs in D into g1, ..., gk;
16 update VM; updateM;
17. return

In the first step of Algorithm 2 we compute the set of PAGs in
G. The PAGs with 5 edges will be { (a), (c), (d), (f), (r) }. However
these PAGs do not cover the entire graph G, in particular, the com-
ponent (s) is not covered. Hence we add (s) to the set of PAGs. We
also determine the embeddings of the PAGs, the results are shown
in Figure 8. In this table, we use (e)x4 to denote the 4 embeddings
of graph (a) in (e). For each PAG P , we also measure the highest
degree in each embedding in embed(P), and count the number of
graphs in embed(P) with this degree. Each PAG P and embed(P)
are entered into the hashtable H. The VD-embeddings are also de-
termined. Among the PAGs, (a), (f) and (s) have sufficient number
of VD-embeddings (|VD-embed|).

G

(a)

(b)

(c)

(d)

(f)

(e)

(r)

(s)

(a)

(b)

(c’)

(d)

(e’)

(f)

(r)

(s’)

Gk

(x)

(y)

(z)

Figure 7: Graph G and Anonymized Graph Gk

PAG embed() #embed |VD-embed| MaxDeg (count)
(a) (a),(b), (e)x4 6 3 5 (1)
(c) (c) 1 1 2 (1)
(d) (d) 1 1 3 (1)
(f) (e), (f) 2 2 5 (2)
(r) (r) 1 1 3 (1)
(s) (r), (s) 2 2 3 (2)

Figure 8: Properties of PAGs in Figure 7

According to Lines 3 to 7 in Algorithm 2, we select the PAGs
(a), (f) and (s) for anonymization. (f) will be processed first since it
has more VD-embeddings with a maximum degree of 5 (MaxDeg
count of 2). There are exactly 2 VD-embeddings for (f), namely,

Algorithm 4 i-Graph Formation
Input: G = (V,E) (E = {e1, ..., e|E|}), VM.
Output: Gk = {g1, ..., gk}.
CE stores the number of edges in E crossing 2 i-graphs in Gk.
1. V (Gk)← V ; E(Gk)← ∅; CE ← 0;

∀i, 1 ≤ i ≤ |E|: Add[i].cnt← k; Add[i].VM← ∅;
Processed[i]← False,Marked[i]← False;

2. for each edge ej = {vA, vB} ∈ E
3. if not Processed[j]
4. if vA and vB appear in different columns in VM
5. CE ← CE + 1; /∗ increment number of cross edges ∗/
6. else if vA = VM[c, a] and vB = VM[c, b]
7. Marked[j]← True; Processed[j]← True;
8. Add[j].VM← {a, b};
9. for each e′ = {VM[i, a],VM[i, b]} /∗ isomorphic edges ∗/

10. if e′ = er ∈ E
11. Add[j].cnt← Add[j].cnt− 1;
12. Processed[r]← True;
13. retain only entries Add[i] where Marked[i] = True;

/∗ Let there be n retained entries in Add[] ∗/
14. sort the retained entries Add[] by Add[].cnt in increasing order;
15. determine cut point x in the sorted Add[] to minimize

|
∑

1≤i≤x Add[i].cnt− (
∑

x<i≤n(k −Add[i].cnt) + CE)|
16. for each 1 ≤ i ≤ x
17. add all isomorphic edges determined by Add[i].VM to Gk;
18. return Gk;

(e)−(x) and (f), they are removed from G and their vertex sets are
added to subgraphs g1 and g2 of Gk, respectively. G becomes {
(a), (b), (c), (d), (r), (s), (x) }. (x) is added to the PAG set M.
Next we process PAG (a), and remove (a) and (b) from G while
adding vertex set V (a) to g1 and V (b) to g2. For PAG (s), (r)-(y)
and (s) are removed from G and their vertices entered into g1 and
g2 respectively. G becomes { (c), (d), (x), (y) }.

Since (d) has a higher degree vertex, it is selected as the next g in
Line 9 of Algorithm 2. By Line 2 of Algorithm 3, we select some
subgraph of (d) and look for its embeddings. Suppose the subgraph
of (d)−(z) is selected as g′. It is not in hashtable H. From Line
4-7 in Algorithm 3, we find that g′ is a subgraph of (c) ((c) acts
as g′′ here). Hence we get the embedding (c) and executing Lines
11-12, augment it to (c’) to form a VD-embedding for (d). Vertex
sets V (c’) and V (d) are added to g1 and g2 respectively, while (c)
and (d) are removed from G.

Only (x) and (y) remain in G and (x) remains in M, with VD-
embeddings of (x) and (y). They are removed from G to g1 and g2,
at which point G becomes empty and the partitioning of the vertex
set is complete. With Line 11, we add edges to g1 and g2, resulting
in the graph Gk as shown in Figure 7. 2

4.1.3 From Vertex Partitions to i-Graphs
After the vertices of G are partitioned so that the vertices of the

i-graphs in Gk are decided, and VM is formed, we consider the
final step of addition of edges to Gk at Line 11 of Algorithm 2.
This step is shown in Algorithm 4, here the input graph G is the
original graph. Intuitively, for each set of k potential isomorphic
edges {VM[i, r1],VM[i, r2]} for 1 ≤ i ≤ k and any pair of r1, r2,
we have the choice of adding all of them to the gi’s or making
sure they do not appear in all gi’s. It reduces the edit distance
to choose addition when there are fewer missing edges in G than
existing edges, and deletion (not adding) otherwise. However, we
must also keep the number of additions and deletions similar, so it
is necessary to find a balancing point.

With Algorithm 4, for each pair of rows a and b in VM, if (
VM[i, a], VM[i, b]) corresponds to some edge e in E, then the en-
try of Add[j] for either e or exactly one of the edges in E isomor-

phic to e will be filled so that Add[j].vm = {a, b} and Add[j].cnt
is k minus the number of edges in E isomorphic to e, also Marked[j]
is set to True. Processed[] helps to avoid processing an edge
which has been considered during the processing of some other
edge. After the sorting at Line 14, the Add[e] entries are in in-
creasing order of Add[e].cnt, which is the number of edges to be
added if all edges isomorphic to e should exist in Gk. The cut
point x determines a point in the sorted list where all entries above
the point correspond to edge addition, and those below will involve
edge deletion.

LEMMA 1. In the anonymization of graph G = (V,E), given a
vertex mapping VM for the graphs Gk = g1, ..., gk in Algorithm 4.
Let C = max{0, CE −

∑
1<i<n Add(i).cnt} at Line 15. A graph

Gk = (V,Ek) conforming to VM with a minimum edit distance
ED(Gk, G) under the condition of ||Ek| − |E|| ≤ max{k, C}
can be determined in O(k|E|) time.

PROOF. Algorithm 4 generates a Gk that conforms to VM. At
Line 15 of the algorithm, if the number of cross edges, CE , is
greater than the sum of added edges in Gk, then only edge ad-
ditions in the gi are used for attaining graph isomorphism, then
||Ek| − |E|| = C. Otherwise, ||Ek| − |E|| must be at most k, a
greater value is not possible since the algorithm could have shifted
the cut point c up or down the array Add[] to obtain a smaller
||Ek| − |E||. Note that the sorting at Line 11 can be performed
by scanning Add[] once, collecting entries for the k different val-
ues of Add[].cnt. The processing time of the algorithm is given by
O(k|E|).

4.2 Locating Vertex Disjoint Embeddings
At Line 3 of Algorithm 2, the more detailed steps involve first

enumerating the embeddings of a graph g and then forming VD-
embeddings from these embeddings. When a graph g has multi-
ple embeddings that are vertex-disjoint, it is non-trivial to deter-
mine which embeddings we should pick to obtain the set of VD-
embeddings. We illustrate this problem by the following example.

Example 5. Figure 9 shows a graph G and four embeddings of
a subgraph g in G. Now let us consider only VD-embeddings.
If we first include g2, then we only get one VD-embedding of g.
However, if we select g1, g3 and g4 first, then we have three VD-
embeddings of g, as highlighted by the three dashed circles.

This example shows that the selection of the VD-embeddings
may affect the computational efficiency and the information preser-
vation. For example, let k = 3, if we select g1, g3 and g4, we do not
need to create any new embedding. If we select g2, then we need to
create two new VD-embeddings for g, which increases both com-
putational cost and information loss. 2

g1 g2 g3

g4

g

Figure 9: Four Embeddings of a subgraph g

Example 5 reveals that we have an optimization problem at hand,
namely, in the selection of VD-embeddings from the set of all em-
beddings, the number of VD-embeddings should be maximized.
We formally transform this problem into a maximum independent
set problem as follows.

Definition 12 (MAXIMUM INDEPENDENT SET MIS(g,G)).
Let G be a graph and g be a subgraph in G. We define a maxi-
mum independent set problem with respect to G and g, denoted as
MIS(g,G), as follows.

• Input: A graph, GI = (V,E), where V (GI) = embed(g,G)
and E(GI) = {(gi, gj) : gi, gj ∈ embed(g,G), gi ̸= gj ,
and ∃v such that v ∈ V (gi) and v ∈ V (gj)}.

• Output: A set, O, where O ⊆ V (GI), such that ∀gi, gj ∈ O,
(gi, gj) /∈ E(GI), and |O| is maximized.

Example 6. Consider the input graph GI to the independent set
problem of the graph embeddings in Figure 9. The set of em-
beddings, {g1, g2, g3, g4}, defines V (GI). Since g2 shares ver-
tices with g1, g3 and g4, there is an edge between g2 and each of
g1, g3 and g4. The output, i.e., the maximum independent set, is
O = {g1, g3, g4}. 2

The following lemma formally establishes the connection be-
tween the maximum independent set problem and our problem of
maximizing the number of VD-embeddings.

LEMMA 2. Let G be a graph and g be a subgraph in G. Let N
be the maximum number of VD-embeddings of g in G, and O be
the output of MIS(g,G). Then, N = |O|.

PROOF. Let GI be the input of MIS(g,G). By the construction
of GI , for any gi, gj ∈ V (GI), (gi, gj) /∈ E(GI) implies that gi
and gj are disjoint. Therefore, the embeddings of g in any indepen-
dent set for GI are disjoint, and hence the maximum independent
set defines the largest set of VD-embeddings of g.

For better efficiency, there are polynomial-time approximation
algorithms [8] which can be used to find a sub-optimal maximum
independent set, whose size is in general greater than ⌈n/(d+ 1)⌉
for an input graph with n vertices and average degree d, such mech-
anisms can greatly speed up maximum independent set computa-
tions.

4.3 Analysis and Discussion
Next we analyze the correctness, the performance in time com-

plexity and data quality, and some properties of our algorithms.
First we show that Algorithm 2 achieves k-security.

THEOREM 4. Let G be the input graph of Algorithm 2 and Gk

be the anonymized graph which is the output of Algorithm 2. Then,
Gk is k-secure.

PROOF. The resulting graph Gk is made up of k pairwise iso-
morphic disjoint subgraphs g1, ..., gk. From Theorem 2 Gk is k-
secure.

Next we consider the computation cost, which is closely related
to the number of PAGs being processed.

LEMMA 3 (COMPUTATION COST). Given an input graph
G, Algorithm 2 anonymizes at most O(|V (G)|) PAGs.

PROOF. In anonymizing each PAG we add at least one vertex to
each gi. We can at most add |V (G)|

k
= O(|V (G)|) vertices to gi,

hence at most O(|V (G)|) PAGs are anonymized.

According to Lemma 3, the worst-case complexity of Algorithm
2 is O(|V (G)|×A+B+C), where O(A) is the cost of anonymiz-
ing one PAG by Algorithm 3, O(B) is the cost of computing all

PAGs in Line 2 of Algorithm 2, and O(C) is the cost of adding
edges by Algorithm 4 to complete the formation of i-graphs.

Let z = maxPAGsize, and f = freq(g) for a PAG g, O(A) =
O(2f +cf2z), where O(2f) is the cost of computing MIS(g,G),
and O(2z) is cost for a subgraph isomorphism (Lines 5-6 of Al-
gorithm 2), and c is the number of supergraphs g′′ of g′ in M.
The factor O(B) includes the cost of enumerating all the embed-
dings of the PAGs by the depth-first exploration of G. We use
hashing to determine to which PAG an enumerated embedding be-
longs, which takes O(1) subgraph isomorphism tests. Therefore,
O(B) = O(N × 2z), where N is the total number of all em-
beddings of all the PAGs and O(2z) is the cost of one subgraph
isomorphism test for a graph g of size z. From Lemma 1, O(C) =
O(k|E(G)|).

In general, O(|V (G)| × A) dominates the total cost since each
O(A) involves a computation of maximum independent set for lo-
cating VD-embeddings at Line 3 of Algorithm 2 and a number of
subgraph isomorphism tests (Lines 5-6 of Algorithm 3). However,
since embed(g′) can be re-used, the average number of subgraph
isomorphism tests is small. We emphasize that in our problem the
subgraph isomorphism tests operate on inputs of very small sizes.

The annoymization scheme in [32] shows good performance on
different social networks because many vertices share similar neigh-
borhoods. In most social networks most people belong to small
groups of closely connected friends or acquaintances, which are
well modeled by the PAGs, we believe that it is easy to find PAGs
sharing similar structures and our anonymization algorithm also
will have good performance.

In the worst case, we add or delete no more than k|E(G)|/2
edges to G. The worst case scenario is also the addition of (k −
1)|E(G)| edges for the anonymization in [32]. However, as pointed
out in [32], recent studies such as [26] and [29] report that high
symmetry is found in real networks, and such symmetry enables
our algorithm to minimize changes to the graph.

Finally, we should mention that our method also protects again
node re-identification, supporting k-anonymity as studied in previ-
ous works, and Gk is k-automorphic.

LEMMA 4. A k-isomorphic graph Gk is k-automorphic.

PROOF. Let Gk = {g1, ..., gk} and hij be the isomorphism
function from gi to gj . Then {h12, h23, ..., hk1} forms an automor-
phic function F1. {h13, h24, ..., hk2} forms an automorphic func-
tion F2. ... {h1k, h21, ..., hk(k−1)} forms an automorphic function
Fk−1. For each vertex v in Gk, Fi(v) ̸= Fj(v) for i ̸= j. From
Definition 3.1 in [33], Gk is k-automorphic.

4.4 Dynamic Releases
So far we focus on a single data release for a social network. In

general the data may be evolving and published dynamically. As
pointed out in [33], if we keep the same vertex ID for the node
of each individual over multiple graph releases for better utility,
it is possible that the adversary can succeed in re-identification by
intersecting the anonymization vertex groups for a target individual
over the releases.

For example, given 2 releases, R1 and R2. Suppose that in R1,
the published graph is G1

k = {g11 , ..., g1k}. Vertex ID w appears
in a partition in G1

k. From the adversary’s NAG1
w, w is one of k

vertices (from different g1j ’s) that match a target individual ow. Let
us call this set of k vertex IDs W1. In Release R2, the published
graph is G2

k = {g21 , ..., g2k}. Vertex ID w appears in a partition
in G2

k, and from adversary’s NAG2
w, w is one of k vertices (from

different g2j ’s) that match ow. Let us call this set of k vertex IDs
W2. All other vertex IDs in W2, do not appear in W1. Hence w is

the only vertex that maps to both NAG1
w and NAG2

w. This results
in node-reidentification of ow, and both NodeInfo and LinkInfo are
jeopardized.

Note that vertex ID is different from individual ID in that it only
serves the purpose of tracing the node in multiple releases. [33]
is the only work known to us that deals with dynamic releases of
graph data. They propose a method to generalize certain vertex IDs
when necessary.

Our method also makes use of generalized vertex IDs. After
we form a k-isomorphic graph Gk, we have a vertex mapping table
VM consisting of tuples of the form VM [r] = {vr1, vr2, ..., vrk},
where vri is the vertex ID for a node that is in subgraph gi and is
mapped to the other vrj’s via the isomorphic functions, hij(vri) =
vrj . With multiple releases, instead of releasing the graph with
vertex IDs of vri, for each tuple VM [r] in the table VM , we form a
compound vertex ID of {vr1, vr2, ..., vrk}, this compound ID will
replace each of the vertex IDs of vr1, vr2, ..., vrk in Gk, and the
resulting graph G′

k is published. We refer to the original vertex IDs
of vri as simple vertex IDs.

There is no need of special handling for vertex addition or dele-
tion. For vertex deletion, the simple vertex ID of the deleted vertex
simply will not appear in the new data release. For vertex addition,
the simple vertex ID of the new vertex will be part of a compound
ID like any other vertex.

With compound vertex IDs, intersecting the anonymization ver-
tex groups for a target individual over the releases will not identify
any node for any individual since in each release there are k vertices
with the same compound vertex ID.

THEOREM 5. Given a series of network graph releases. As-
sume adversary knowledge of NAG’s for multiple data releases, and
also of individuals joining or leaving the network at each release.
If anonymized graphs are published based on our anonymization
by k-isomorphism and the above compound vertex ID mechanism,
then each published graph is k-secure.

Though the compound vertex method in [33] also solves the
above problem, our method has a number of advantages. Firstly,
no record of past releases need to be maintained and processed in
each release. The processing is very simple. There is no distortion
in the way of including vertex IDs of deleted vertices. Finally, the
compound vertex ID size is given by k, where compound vertex
ID size refers to the number of simple vertex IDs in the compound
vertex ID. This compares favorably to a bound of 2k − 1 + δ for
the generalized vertex ID size in [33], where δ is the number of
vertices in the first release divided by that in the current release.

5. EXPERIMENTAL EVALUATION
In our experiments, we have used 5 datasets from 3 different

applications: Hep-Th, EUemail and LiveJournal.
The HEP-Th database presents information on papers in theo-

retical high-energy physics. The data in this dataset were derived
from the abstract and citation files provided for the 2003 KDD
Cup competition. The original datasets are from arXiv. We ex-
tract a subset of the authors and considered the authors linked if
they wrote at least one paper together. There are 5618 vertices
and 11786 edges in this data graph. EUemail is a communication
network dataset generated using data from a large European re-
search institution (http://snap.stanford.edu/data/email-EuAll.html),
for a period from October 2003 to May 2005. The nodes in the
network are email addresses and edges represent email communi-
cation between two nodes. There are 265214 nodes, from which
we randomly extracted 5000 and 10,000 vertices to form 2 datasets,

Email-1 and Email-2, respectively. LiveJournal is an online jour-
naling community1. The nodes are users and edges represent rela-
tionship of friend-lists between users. The entire dataset contains
4847571 nodes, from which we randomly extracted 5000 and then
20,000 vertices to form 2 datasets LiveJ-1 and LiveJ-2.

In previous works such as [11, 19, 30, 33], it is recognized that
the utility of graph data depends on the preservation of some graph
properties and their empirical studies are based on such properties.
Here we use the measurements as adopted by such previous works
to capture the utilities of the anonymized graphs. (1) The first mea-
surement, Degree, is the distribution of the degrees of all vertices
in the graph. (2) The second measurement, Pathlength, is a dis-
tribution of the lengths of the shortest paths between 500 randomly
sampled pairs of vertices in the network. (3) Transitivity, also
known as the clustering coefficient, is also a distribution, for each
vertex, we measure the proportion of all possible neighbor pairs
that are connected.

All the programs are implemented in C++. The experiments are
performed on a Linux workstation with a 2.8Ghz CPU and 4 Giga-
byte memory.

5.1 Runtime and Data Utilities
Figure 10 shows some graph characteristics and experimental re-

sults for the five sets of data. Though Email-1 and Email-2 are ex-
tracted from the same dataset, their average degrees are quite dif-
ferent, this is because the original dataset is very large, with 265214
nodes, and extracting different parts of the graph gives rise to dif-
ferent characteristics. The same holds for LiveJ-1 and LiveJ-2.

HEP-Th Email-1 Email-2 LiveJ-1 LiveJ-2
Avg degree 4.20 3.96 2.67 7.14 2.65
Number of vertices 5618 5000 10000 5000 20000
Runtime (sec) 456 3798 8814 7503 2559
||Ek| − |E|| 76 1051 1511 1377 205

Figure 10: Results for different datasets (k=10)

5 10 15 20
0

3000

6000

9000

Ti
m

e
(s

ec
)

K

 HEP-TH EUemail(5K)
 EUemail(10K) LiveJournal(5K)
 LiveJournal(20K)

Figure 11: Runtime for different k values

Our results show that the dataset of LiveJ-2 with 20000 nodes
requires less runtime than LiveJ-1 with 5000 nodes, which seems
unexpected. However, on closer inspection, we find that the aver-
age degree of LiveJ-1 is much higher, hence even though it has less
nodes, it contains many more possible embeddings for subgraphs
than LiveJ-1. This shows that the more important factor affecting
the performance will be the vertex degrees rather than the num-
ber of vertices. Similarly, the effect of k is not very significant
as shown in Figure 11, since k does not affect the graph nature
related to the costly operations of subgraph isomorphism or MIS.
The reason why HEP-Th has lower runtime is because it has higher
symmetry in the data graph, which helps to generate a large number
of VD-embeddings for graph partitioning.

Figures 12 to 14 show the results of the experiments with re-
spect to the three measurements. We compare the properties of

1http://www.livejournal.com/.

0 5 10 15 20 25
0

200
400
600
800
1000
1200
1400
1600

HEP-TH

Fr
eq

ue
nc

y

Distribution of degree

 Original
 Publish
 Random

0 5 10 15 20 25
0

1000

2000

3000

EUemail(5K)

Fr
eq

ue
nc

y

Distribution of degree

 Original
 Publish
 Random

0 5 10 15 20 25
0

2000

4000

6000

EUemail(10K)

Fr
eq

ue
nc

y

Distribution of degree

 Original
 Publish
 Random

0 5 10 15 20 25
0

200

400

600

800

1000

1200

LiveJournal(5K)

Fr
eq

ue
nc

y

Distribution of degree

 Original
 Publish
 Random

0 5 10 15 20 25
0

2000

4000

6000

8000

LiveJournal(20K)

Fr
eq

ue
nc

y

Distribution of degree

 Original
 Publish
 Random

Figure 12: Distributions of Degrees (k=10)

0 2 4 6
0

100

200

300

400

Fr
eq

ue
nc

y

Path lengths

 Original
 Publish
 Random

HEP-TH

0 2 4 6
0

100

200

300

400

EUemail(5K)

Fr
eq

ue
nc

y

Path lengths

 Original
 Publish
 Random

0 2 4 6
0

100

200

300

400

EUemail(10K)
Fr
eq

ue
nc

y

Path lengths

 Original
 Publish
 Random

0 2 4 6
0

100

200

300

400

LiveJournal(5K)

Fr
eq

ue
nc

y

Path lengths

 Original
 Publish
 Random

0 2 4 6
0

100

200

300

400

LiveJournal(20K)

Fr
eq

ue
nc

y

Path lengths

 Original
 Publish
 Random

Figure 13: Distributions of Shortest Path Lengths (k=10)

the anonymized graph Gk = (Vk, Ek) from our algorithm to the
original data graph G = (V,E) for k = 10. As in [11], we also
consider a random graph as a baseline case. The random graph has
been generated by fixing the number of vertices to the same number
in the dataset at hand, and also setting the average degree to be the
same as the original graph for the dataset. Overall, the anonymized
graphs are able to preserve the essential graph information. In most
cases the curves for Gk and G are aligned, while the random graph
behaves very differently. We have repeated the experiments with
k = 5, 10, 15, 20 and the utility qualities are very similar.

There is some unusual pattern in Figure 13 in that in the results
on EUemail-1(10K) and LiveJ-2(20K), the distributions for the ran-
dom graphs are quite different from that in other cases. Here the
average degrees of the random graphs are very small and the num-
bers of vertices are large, hence when we sample 500 pairs of nodes
to test for the shortest path length, many pairs cannot find a short
path.

5.2 Dynamic Releases
Since our multiple release mechanism follows closely the single

release method, the performance is also similar. Here we compare
the performance of our dynamic release mechanism to that in [33],
which we refer to as RDVM (Retaining Deleted Vertices for Multi-
release). The reason for this comparison is that the mechanism for
multiple release in [33] can also be used in our case.

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

ort
ion

Release

 RDVM
 vertex deletion
 CVIM

Figure 15: Phantom vertex ID’s over multiple releases
The comparison is shown in Figure 15, where we plot the propor-

tion of fictitious vertex ID’s among all vertex ID’s in each release,
this result applies to any dataset under the following assumptions:
there are 10 data releases, in each data release 10% of the vertices in
the first release are deleted, while the same number of new vertices

are added. Since we do not modify the set of simple vertices from
the current dataset, the distortion is always zero. In the figure our
result is labeled CVIM (Compound Vertex ID’s for Multi-release).
RDVM suffers from high distortion to the data in the amount of
fictitious vertices. After 10 releases, the proportion of vertex ID’s
for deletion vertices2 climbs to almost 50% of all vertex ID’s.

6. CONCLUSIONS
We have identified a new problem of enforcing k-security for

protecting sensitive information concerning the nodes and links
in a published network dataset. Our investigation leads to a so-
lution based on k-isomorphism. In conclusion, the selection of
anonymization algorithm mainly depends on the adversary knowl-
edge and the targets of protection. If the target is only NodeInfo
protection against structural attack, a solution as shown in Section
1.4 will suffice. If the adversary may possess other information,
then new mechanisms could be needed. Nevertheless, we believe
that NodeInfo and LinkInfo are two basic and likely sources of sen-
sitive information in network datasets, and they call for special ef-
forts for their protection.

7. ACKNOWLEDGEMENTS
We thank the anonymous referees and Pierangela Samarati for

their valuable comments. This research is supported by the RGC
Research Direct Grant of the Chinese University of Hong Kong
Project 2050421 and 2150472 and Chinese University of Hong
Kong Postdoctoral Fellowship Grant 2008-2009.

8. REFERENCES
[1] L. Adamic and N. Glance. The political blogosphere and the 2004 us

election : divided they blog. In In Proceedings of the WWW-2005
Workshop on the Weblogging Ecosystem, 2005.

[2] L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore art thou
r3579x?: anonymized social networks, hidden patterns, and
structural steganography. In WWW, pages 181–190, 2007.

2We clarify that here we have not counted the dummy vertex in-
sertions for graph partitioning in [33]. In Algorithm 5 in [33],
VD-embeddings are created by introducing a dummy vertex for
each overlapping vertex in two embeddings. Here we only con-
sider dummy vertex ID’s they have used for deleted individuals.

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

HEP-TH

Fr
eq

ue
nc

y

Transitivity

 Original
 Publish
 Random

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

EUemail(5K)

Fr
eq

ue
nc

y

Transitivity

 Original
 Publish
 Random

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

EUemail(10K)

Fr
eq

ue
nc

y

Transitivity

 Original
 Publish
 Random

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

LiveJournal(5K)

Fr
eq

ue
nc

y

Transitivity

 Original
 Publish
 Random

0.0 0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

LiveJournal(20K)

Fr
eq

ue
nc

y

Transitivity

 Original
 Publish
 Random

Figure 14: Distributions of Cluster Coefficients (Transitivity) (k=10)

[3] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan.
Group formation in large social networks: membership, growth, and
evolution. In KDD, pages 44–54, 2006.

[4] A. Campan and T. M. Truta. A clustering approach for data and
structural anonymity in social networks. In PinKDD, 2008.

[5] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal
cliques in massive networks by h*-graph. In To appear in SIGMOD,
2010.

[6] J. Cheng, Y. Ke, W. Ng, and J. X. Yu. Context-aware object
connection discovery in large graphs. Proceedings of the
International Conference on Data Engineering (ICDE), 2009.

[7] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing
bipartite graph data using safe groupings. PVLDB, 1(1):833–844,
2008.

[8] A. Dharwadker. The independent set algorithm.
http://www.geocities.com/dharwadker/independent_set/, 2006.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990.

[10] L. Getor and C. Diehl. Link mining: a survey. ACM SIGKDD
Explorations Newsletter, 7(2):3–12, 2005.

[11] M. Hay, G. Miklau, D. Jensen, D. F. Towsley, and P. Weis. Resisting
structural re-identification in anonymized social networks. PVLDB,
1(1):102–114, 2008.

[12] M. Hay, G. Miklau, D. Jensen, P. Weis, and S. Srivastava.
Anonymizing social networks. Technical report No. 07-19, Computer
Science Department, University of Massachusetts Amherst, 2007.

[13] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: mining maximal
frequent subgraphs from graph databases. In KDD, pages 581–586,
2004.

[14] Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting
proximity in networks. In KDD, pages 245–255, 2006.

[15] G. Kossinets, J. M. Kleinberg, and D. J. Watts. The structure of
information pathways in a social communication network. In KDD,
pages 435–443, 2008.

[16] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of
online social networks. In KDD, pages 611–617, 2006.

[17] M. Kuramochi and G. Karypis. Finding frequent patterns in a large
sparse graph. In the SIAM International Conference on Data Mining,
2004.

[18] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic
evolution of social networks. In KDD, pages 462–470, 2008.

[19] K. Liu and E. Terzi. Towards identity anonymization on graphs. In
SIGMOD Conference, pages 93–106, 2008.

[20] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In
ICDE, page 24, 2006.

[21] A. McCallum, A. Corrada-Emmanuel, and X. Wang. Topic and role
discovery in social networks. In Proc. of International Joint
Conference on Artificial Intelligence (IJCAI), 2005.

[22] P. Samarati. Protecting respondents’ identities in microdata release.
IEEE Transactions on Knowledge and Data Engineering (TKDE),
13(6):1010–1027, 2001.

[23] P. Samarati and L. Sweeney. Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization
and suppression. Technical report, SRI International, 1998.

[24] L. Sweeney. k-anonymity: A model for protecting privacy.

International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(5):557–570, 2002.

[25] H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, pages 404–413, 2006.

[26] H. Wang, G. Yan, and Y. Xiao. Symmetry in world trade networks.
Journal of Systems Science and Complexity, 22(2):280–290, 2008.

[27] R. Wong, J. Li, A. Fu, and K. Wang. (alpha, k)-anonymity: An
enhanced k-anonymity model for privacy-preserving data publishing.
In KDD, Aug 2006.

[28] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy
preservation. In VLDB, 2006.

[29] Y. Xiao, M. Xiong, W. Wang, and H. Wang. Emergence of symmetry
in complex networks. Physical Review E, 77(6), 2008.

[30] X. Ying and X. Wu. Randomizing social networks: a spectrum
preserving approach. In SDM, pages 739–750, 2008.

[31] E. Zheleva and L. Getoor. Preserving the privacy of sensitive
relationships in graph data. In PinKDD, pages 153–171, 2007.

[32] B. Zhou and J. Pei. Preserving privacy in social networks against
neighborhood attacks. In ICDE, pages 506–515, 2008.

[33] L. Zou, L. Chen, and M. T. Ozsu. K-automorphism: A general
framework for privacy preserving network publication. In VLDB,
2009.

9. APPENDIX
PROOF. (Theorem 1 : NP-Hardness of k-Secure-PPNP) Given a prob-

lem of PARTITION INTO TRIANGLES [9] as follows
INSTANCE: A graph G = (V,E), with |V | = 3k for a positive integer

k.
QUESTION: Is there a partition of V into k disjoint sets V1, ..., Vq of

three vertices each such that, for each Vi = {vi[1], vi[2], vi[3]}, the three
edges {vi[1], vi[2]}, {vi[2], vi[3]}, {vi[1], vi[3]}, all belong to E ?

We transform the above problem to a decision problem of k-security:
The graph G = (V,E) from the above instance is given as the input graph,
the problem is whether there is an anonymization of the graph to a graph
Gk by edge augmentation with an anonymization cost where ||E(Gk)| −
|E(G)|| ≤ |E| − |V | and ED(G,Gk) of at most |E| − |V | so that the
published data is k-secure.

The transformation takes polynomial time. Next we show that this is
indeed a transformation. If there is a partition into triangles for G, then
from Theorem 2, the partitioned graph is a Gk that satisfies k-security and
||E(Gk)| − |E(G)|| =ED(G,Gk) = |E| − 3k = |E| − |V |.

Conversely suppose there is no partition into triangles for G. Then it
is not possible to partition the graph into k isomorphic components with
the given cost constraints. From Theorem 3, Gk must contain more than k
disjoint connected subgraphs, otherwise, there is no solution for k-security,
since we cannot form k disjoint isomorphic connected subgraphs. Hence
Gk contains m disjoint connected subgraphs, where m > k. From Corol-
lary 2, the biggest disjoint subgraph in Gk must contain at most 2 vertices.
Let there be t disjoint subgraphs with 2 vertices and one edge, the remain-
ing disjoint subgraphs are single vertex subgraphs. The number of edges in
Gk is given by |E(Gk)| = t where t ≤ |V |/2. Hence |E(Gk)| ≤ |V |/2.
Then ||E(Gk)| − |E|| = ED(G,Gk) = |E| − |E(Gk)| ≥ |E| −
|V |/2 > |E| − |V |. This violates the anonymization cost requirement of
the k-security problem. Hence the solution for the k-security problem is
also negative.

