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Abstract

KL −KS mass difference from Lattice QCD

Jianglei Yu

The KL − KS mass difference is a promising quantity to reveal new phenomena which

lie outside the standard model. A state-of-art perturbation theory calculation has been

performed at next-to-next-to-leading order (NNLO) and a 40% error is quoted in the final

result. We develop and demonstrate non-perturbative techniques needed to calculate the

KL−KS mass difference, ∆MK , in lattice QCD and carry out exploratory calculations. The

calculations are performed on a 2+1 flavor, domain wall fermion, 163×32 ensemble with a 421

Mev pion and a 243×64 lattice ensemble with a 330 MeV pion. In the 163 lattice calculation,

we drop the double penguin diagrams and the disconnected diagrams. The short distance

part of the mass difference in a 2+1 flavor calculation contains a quadratic divergence cut off

by the lattice spacing. Here, this quadratic divergence is eliminated through the Glashow-

Iliopoulos-Maiani (GIM) mechanism by introducing a quenched charm quark. We obtain a

mass difference ∆MK which ranges from 6.58(30) × 10−12 MeV to 11.89(81) × 10−12 MeV

for kaon masses varying from 563 MeV to 839 MeV. On the 243 lattice, we include all the

diagrams and perform a full calculation. Our result is for a case of unphysical kinematics

with pion, kaon and charmed quark masses of 330, 575 and 949 MeV respectively. We

obtain ∆MK = 3.19(41)(96)× 10−12 MeV, quite similar to the experimental value. Here the

first error is statistical and the second is an estimate of the systematic discretization error.

An interesting aspect of this calculation is the importance of the disconnected diagrams, a

dramatic failure of the OZI rule.
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Chapter 1

Introduction

The standard model of particle physics is a theory using quantum filed theory to describe the

dynamics of subatomic particles. The current formulation of the standard model was finalized

in the 1970s. Then the discoveries of the W± and Z boson, the top quark, the tau neutrino

and finally the Higgs boson all confirm the correctness of the standard model. Because the

standard model can explain a wide variety of experimental results, it is considered to be a

theory of almost everything.

There are three fundamental interactions in the standard model: electromagnetic (EM),

weak and strong interactions. We believe that we have fully understood the EM interaction

with the theory of quantum electrodynamics (QED), which has withstood some of the most

stringent experimental tests in the history of physics. The excellent agreement between

the experimental and theoretical values of the anomalous magnetic dipole moment of the

electron is considered to be one of the most significant triumphs of physics during the last

century.

The strong interaction is described by quantum chromodynamics (QCD) in the standard

model. Although QCD is widely believed to be well understood, its analytic treatment at low

energy is extremely difficult if not entirely impossible. Perturbation theory calculation fail

at an energy scale of ΛQCD, because the coupling constant becomes equal to or larger than

1
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O(1). Other analytical methods such as chiral perturbation theory are also unsatisfactory.

These methods are usually not from first principles and require input parameters other than

the parameters of the standard model. More importantly, these methods are usually not

able to give precise enough predictions for low energy QCD effects.

The weak interaction is the least understood part of the standard model and is considered

to be the place where new physics may be discovered. However, various tests of the weak

interaction have been done and no significant discrepancy from the standard model has been

found. Among the ongoing lattice calculations, the unitarity of the Cabibbo-Kobayashi-

Maskawa (CKM) matrix and both the direct and indirect CP violation parameters may be

the most interesting tests. These calculations are usually quite difficult. The weak interaction

itself can be treated precisely with perturbation theory. However, many interesting weak

interaction processes involve mesons and baryons. A full calculation of such process requires

inputs from non-pertrubative QCD calculation.

Lattice QCD is the only known method to provide first-principal calculation of non-

perturbative QCD effects in electroweak processes. Due to both theoretical and practical

reasons, we usually don’t simulate weak interaction processes directly on lattice. The stanard

approach is to split the energy scale into high (> µ) and low (< µ). We start from the full

standard model and integrate out the W± and Z bosons. The weak interaction process will

be described by an effective Hamiltonian. We use perturbation theory to run the Wilson

coefficients from the W meson mass scale to a lower scale µ. The physics above the scale

µ is encoded in the Wilson coefficients of the effective Hamiltonian. The low-energy part of

the weak matrix element is a pure non-perturbative QCD problem and can be solved using

lattice QCD techniques.

At the early stage of lattice QCD, due to the limitation of computing resources, most

of the lattice calculations were done at unphysical kinematics without dynamical fermions

(quenched approximation). During the last few decades, the computing power of supercom-
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puters has been improved by a few order of magnitudes. The development of the lattice

algorithms has boosted the efficiency tremendously. Simulations at physical kinematics with

full dynamical fermions became possible in recent years. Actually, the measurement of the

standard quantities such as fK , fπ have reached sub-percent level precision. At such pre-

cision, isospin breaking effects and QED corrections become important. Many efforts and

computing resources are invested to further improve the precision of these measurements.

However, we should be aware that there are some other more interesting quantities that can

be calculated with lattice QCD. Among many such quantities, the KL −KS mass difference

is one of the most interesting ones.

The kaon mass difference ∆MK with a value of 3.483(6) × 10−12 MeV [4] plays a very

important role in the history of particle physics. It led to the prediction of charm quark fifty

years ago [5, 6, 7]. This extremely small mass difference is believed to arise from K0-K
0

mixing via second-order weak interaction. However, because it arises from an amplitude in

which strangeness changes by two units, this is a promising quantity to reveal new phenomena

which lie outside the standard model. A closely related quantity is the indirect CP violation

parameter ǫK , which arises from the same process. The experimental value of ∆MK and ǫK

are both known very accurately, making the precise calculation of ∆MK and ǫK an important

challenge.

In perturbation theory calculations, the standard model contribution to ∆MK is sepa-

rately into short distance and long distance parts. The short distance part receives most

contributions from momenta on the order of the charm quark mass. As pointed out in the

recent next-to-next-to-leading-order (NNLO) calculation [8], the NNLO terms are as large

as 36% of the leading order (LO) and next-to-leading order (NLO) terms, raising doubts

about the convergence of the QCD perturbation series at this energy scale. The long dis-

tance part of ∆MK can receive contributions from distance as large as 1/mπ. So far there

is no result with controlled uncertainty available since this is highly non-perturbative. How-
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ever, an estimation given by Donoghue et. al. [9] suggest that there can be sizable long

distance contributions. The calculation of ǫK is under much better control and the largest

contribution involves momenta on the scale of top quark mass. However, the same NNLO

difficulties in the predicting the charm quark contribution to ǫK enters at the 8% level. In

addition, the long distance part of ǫK , which is estimated to be 3.6% by Buras et al. [10],

also becomes increasing interesting and non-perturbative methods are required for a more

reliable calculation.

It is customary when discussing the KL-KS mass difference to follow the convention of

referring to distance scales at or below 1/mc as short distance and those larger than 1/mc as

long distance. We will follow this convention here. However, since the perturbation theory

calculation of ∆MK at the charm quark mass scale converges badly, the inverse charm quark

mass represents a somewhat large distance to act as a boundary between the short and long

distance regions. Non-perturbative methods are needed for the proper treatment of short

distance contributions at the charm quark mass scale and that it may be better to adopt a

shorter distance demarcation between short and long distances in the future.

Here we propose a method to computeKL−KS mass difference including the long distance

effects on a Euclidean lattice [11]. We devise an Euclidean-space amplitude which can be

evaluated in lattice QCD and which contains the second-order mass difference of interest.

As explained in the following chapters, we perform a second-order integration of the product

of two first-order weak Hamiltonians in a given space-time volume. The integration sums

the contribution to the mass difference from all possible intermediate states.

A generalization of the Lellouch-Luscher method [12] is used to correct potentially large

finite-volume effects coming from the two-pion state which can be degenerate with the kaon

and the associated principal part appearing in the infinite volume integral over intermediate

states [11]. This is an important part of this proposal. However, in the kinematic region

studied in this paper, we are unable to resolve the two-pion intermediate state signal from
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statistical fluctuations, so this last piece cannot be studied numerically. We therefore only

give a theoretical discussion in this thesis.

Our first preliminary work is performed on a 2+1 flavor, domain wall fermion (DWF),

163 × 32× 16 lattice ensemble with a 421 MeV pion. We drop the double penguin diagrams

and the disconnected diagrams in this first exploratory calculation. Although this is a non-

unitary calculation at unphysical kinematics, the main purpose of this work is to show that

the second order weak process can be evaluated using lattice methods. Then a full calculation

is performed on a 243×64×16 ensemble with a 330 Mev pion. Although the inclusion of the

disconnected diagrams increased the noise substantially, we are able to get a good statistical

error with more sophisticated measuring techniques.

This work is organized as follows. In Chapter 2, we review the K0 −K
0
mixing in the

standard model and give a brief summary of the perturbation theory calculation. Chapter

3 summarizes all the building blocks of a lattice QCD calculation of the KL − KS mass

difference; In Chapter 4, we discuss the lattice measurement methods used in our calculation;

Chapter 5 and 6 give the results from a 163 × 32× 16 lattice ensemble and a 243 × 64× 16

lattice ensemble respectively. In Chapter 7, we discuss our results and future prospects.



Chapter 2

Kaon Mixing in the Standard Model

In this chapter, we will discuss the neutral kaon mixing in the Standard Model. We start from

basic quantum mechanics and give the standard formalism for the KL −KS mass difference

∆MK and the indirect CP violation parameter ǫK . After that we explain the perturbation

theory calculation of K0 − K
0
mixing in the Standard Model. Then we summarized the

NNLO results and discuss the limitations of these calculations.

2.1 K0 −K
0
Mixing

One of the most interesting features of the neutral K mesons is the mixing of the K0 and K
0
.

The K0 meson with strangeness +1 and the K
0
meson with strangeness −1 are eigenstates

of the strong interaction Hamiltonian. They are antiparticle of each other and have identical

mass. However, the weak interactions do not conserve strangeness and cause the mixing of

the K0 and K
0
. The strangeness of these two mesons are differ by two. Hence the K0 −K

0

mixing is a second order weak process and the amplitude of this process are extremely small.

The K0 and K
0
state are charge conjugates of each other

C|K0〉 = |K0〉, C|K0〉 = |K0〉. (2.1)

6
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Here we use the most natural phase convention. Because the kaons are pseudoscalar mesons,

we have

CP |K0〉 = −|K0〉, CP |K0〉 = −|K0〉. (2.2)

It is straightforward to construct eigenstates of CP

K1/2 =
K0 ∓K

0

√
2

. (2.3)

Here K1 is CP even state and K2 is CP odd state. If we neglect the effects of CP violation,

which are at the 0.1% level, these two states are also mass eigenstates. From the experimental

observation, we know the life times of these two states differ by a more than a factor 103.

The explanation for this difference is also straightforward. The CP even state K1 can decay

to ππ states which have a much larger phase space than the three-pion states. So K1 decays

much faster than K2 and has a much shorter life time,

KS ≈ K1, KL ≈ K2. (2.4)

This equation is exact only when CP is conserved. If CP violation is included, the KS/L

mesons will be combinations of the K1/2 states. The exact solution can be easily determined

by using second order perturbation theory. The time evolution of the K0 − K
0
system is

given by

i
d

dt


K0(t)

K
0
(t)


 = (M − i

2
Γ)


K0(t)

K
0
(t)


 , (2.5)

where the matrices M and Γ are given by

Mij = mKδij + P
∑

n

〈i|HW |n〉〈n|HW |j〉
mK − En

(2.6)

Γij = 2π
∑

n

〈i|HW |n〉〈n|HW |j〉δ(mK − En), (2.7)

where the indices i and j take the values 0 and 0, HW is the ∆S = 1 weak effective Hamilto-

nian and P indicates that the principal part should be take when an integral with a vanishing

energy denominator is encountered.
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We will assume CPT symmetry which requires that M00 = M00 and Γ00 = Γ00. Because

the M and Γ matrices are hermitian, we have M00 = M∗
00

and Γ00 = Γ∗
00

and the diagonal

terms are real. If we also assume CP symmetry, M00 and Γ00 are both real. With all these

constraints, we can rewrite M and Γ matrices

M − i

2
Γ =


A p2

q2 A


 , (2.8)

where p and q are complex numbers which differ slightly due to CP violation. This matrix

can be diagonalized and the difference in eigenvalues is given by

2pq = (mL −mS)−
i

2
(ΓL − ΓS)

= 2

√
(M00 −

i

2
Γ00)(M

∗
00
− i

2
Γ∗
00
). (2.9)

If we neglect the effects of CP violation, the mass difference is given by

mL −mS = 2M00 = 2P
∑

n

〈0|HW |n〉〈n|HW |0〉
mK − En

, (2.10)

and the mass eigenstates are just K1/2 states.

After the inclusion of CP violation effect, the new exact eigenstates are given by

|KL〉 =
|K2〉+ ǫ|K1〉√

1 + |ǫ|2

|KS〉 =
|K1〉+ ǫ|K2〉√

1 + |ǫ|2
, (2.11)

where the quantity ǫ is defined by

ǫ =
p− q

p+ q
≈ i

2

ImM00 − i
2
ImΓ00

ReM00 − i
2
ReΓ00

, (2.12)

where the final approximation is valid if the CP violation effects are small.

The quantity ǫ gives the size of the CP even component in the KL meson. So ǫ is

closely related to the indirect CP violation parameter ǫK , defined in terms of the K → ππ

amplitudes,

ǫK =
2η+− + η00

3
, ηij =

A(KL → πiπj)

A(KS → πiπj)
. (2.13)
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Following the usual convention, we introduce the definite isospin amplitudes A0 and A2,

AIe
δI = A(K → ππ(I)), (2.14)

where δI is the strong phase from the π-π interaction. The π+π− and π0π0 states are related

to the states with definite isospin by

|π+π−〉 = 1√
3

(
|ππ(I = 2)〉+

√
2|ππ(I = 0)〉

)

|π0π0〉 = 1√
3

(
−
√
2|ππ(I = 2)〉+ |ππ(I = 0)〉

)
. (2.15)

Substituting Eq. 2.15 and 2.11 into Eq. 2.13 and dropping all the (ReA2/ReA0)
2 term gives

ǫK = ǫ+ iξ, (2.16)

where ξ is the weak phase of the K0 → (ππ)I=0 amplitude,

ξ =
ImA0

ReA0

(2.17)

In order to evaluate ǫK more conveniently, we can simplify the expression by defining the

superweak phase

φǫ = arctan

(−2ReM00

Γ00

)
. (2.18)

We can use the observation that the |(ππ)I=0〉 states dominate the sum in Eq. 2.7, which

implies

ImΓ00

ReΓ00

≈ −2
ImA0

ReA0

= −2ξ. (2.19)

Combining all these together we arrive

ǫK = eiφǫsinφǫ

(
ImM00

∆mK

+ ξ

)
(2.20)

The experimental value for φǫ is close to 45
◦. The ξ term contributes to ǫK at the few percent

level.
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2.2 Perturbation Theory Calculation for ∆MK

In the standard model, the largest contribution to K0 − K
0
mixing comes from the box

diagrams as shown in Fig. 1. We should notice that there are also contributions from double

penguin diagrams and disconnected diagrams. These diagrams will start to contribute if

we include higher order QCD effects. It is customary when discussing K0 − K
0
mixing

to separate the results into the top contribution, the charm contribution and the charm-

top contribution. These different contributions come from different choices of two quark

propagators in the loop inside the box diagram.

To evaluate the mixing process, we can construct a low energy effective filed theory and

encode the short distance physics into the Wilson coefficients in the effective theory. First the

W bosons and the top quarks are integrated out. The top component is then described by a

local ∆S = 2 effective Hamiltonian. The charm component is described by bilocal operators,

i .e., the products of two ∆S = 1 effective Hamiltonians. The charm-top component is

more complicated due to the presence of penguin operators. The effective Hamiltonian of

the charm-top component contains both bilocal operators and local counterterms. Fig. 2

gives some examples of the contributions from the bilocal operators. Next, these effective

Hamiltonians are renormalized at the charm quark scale. Finally, we integrate out the charm

quark and renormalize the effective Hamiltonian at a low scale µ. The effective low energy

Hamiltonian can be written as:

H∆S=2
eff (µ) =

G2
F

16π2
M2

W

(
λ2
cηccS0(xc) + λ2

tλ
2
tηttS0(xt) + 2λcλtηctS0(xc, xt)

)
b(µ)Q(µ) + h.c.

(2.21)

where λi = V ∗
isVid and xi = m2

i /m
2
W . The basic electroweak loop contributions without QCD
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correction are given by the function S0:

S0(xc) ≈ xc, (2.22)

S0(xt) =
4xt − 11x2

t + x3
t

4(1− xt)2
− 3x3

t lnxt

2(1− xt)3
, (2.23)

S0(xt, xc) = xc

(
ln
xt

xc

− 3xt

4(1− xt)
− 3x2

t lmxt

4(1− xt)2

)
. (2.24)

The first approximation holds when xc ≪ 1. Short distance QCD corrections are given by

factors ηcc, ηtt, ηct and b(µ) in Eq. 2.21. The H∆S=2
eff consist of a single local ∆S = 2 four

quark operator:

Q = (s̄d)V−A(s̄d)V−A. (2.25)

The parameter b(µ) cancels the scale and scheme dependence of Q(µ). The product b(µ)Q(µ)

is related to the scale and scheme invariant bag parameter B̂K by

B̂K =
3

8

〈K0|b(µ)Q(µ)|K0〉
F 2
Km

2
K

, (2.26)

where FK is the kaon decay constant.

Substituting Eq. 2.21 into Eq. 2.10 and 2.20, the mass difference is then given by:

∆MK =
G2

F

6π2
F 2
KB̂KmKM

2
W

(
λ2
cηccS0(xc) + λ2

tηttS0(xt) + 2λcλtηctS0(xc, xt)
)
. (2.27)

The indirect CP violation parameter writes

|ǫK | = κǫCǫB̂
KImλt{[ηccS0(xc)− ηctS0(xc, xt)]− ReλtηttS0(xt)}, (2.28)

where the correction factor κǫ take into account the effects due to φǫ 6= 45◦ and ξ 6= 0. The

factor Cǫ is given by

Cǫ =
G2

FF
2
KmKM

2
W

6
√
2π2∆MK

. (2.29)

The evaluation of the short distance QCD correction factors ηi is the most important

part of the perturbation theory calculation. The calculation of ηtt is straightforward. We are

left with a single operator Q after we integrate out the top quark and the W boson. Then
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we renormalize this operator at a low scale µ and we will obtain ηtt. The calculation of ηcc

is more complicated. We need to deal with the product of two ∆S = 1 operators. At the

charm quark threshold, we need to match this bi-local operator with the local operator Q.

Top-charm contribution ηct is the most difficult one due to the presence of penguin operators.

The top contribution is known at NLO:

ηtt = 0.5765(65) (2.30)

The result is very precise since the perturbation theory should work well at the scale of top

quark mass. Higher order calculation for ηtt is unnecessary. The charm-top contribution has

been evaluated to NNLO:

ηct = 0.496(47). (2.31)

∆MK receives most of the contribution from the momenta at the scale of charm quark mass.

Unfortunately, the factor ηcc has the largest uncertainty among all the three factors. The

reason is the slow convergence of the perturbation series at the scale of charm quark mass.

We can compare the NLO result with the NNLO result. At NLO,

ηNLO
cc = 1.38± 0.52µc

± 0.07µW
± 0.02αs

. (2.32)

We can see that the largest uncertainty comes from the dependence on the charm threshold

µc. If perturbation theory works well, we would expect a smaller dependence on µc at NNLO.

However, the size of uncertainty is similar in the NNLO result:

ηNNLO
cc = 1.86± 0.53µc

± 0.07µW
± 0.06αs

. (2.33)

Also, there is a large positive shift of 36% in the central value. The NNLO result suggest

that the perturbation series converges very badly. Brod et.al. suggest we can use the size of

NNLO correction as the theoretical uncertainty, which leads to a 36% total uncertainty:

ηcc = 1.87± 0.76. (2.34)
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Combining all these ingredients together gives:

∆MK = 3.1(1.2)× 10−12MeV (2.35)

|ǫK | = 1.81(28)× 10−3. (2.36)

These results can be compared with the precisely measured experimental values:

∆M exp
K = 3.483(6)× 10−12MeV (2.37)

|ǫK |exp = 2.228(11)× 10−3. (2.38)

The uncetanity of the standard model predictions are too large so that these comparisons

are not very conclusive.

It is obvious that the perturbation theory calculation of ∆MK is not satisfactory. First,

the perturbation series at the scale of charm quark mass converges poorly. A higher order

perturbation theory calculation will be extremely complicated if not impossible. Also, a

next-to-next-to-next-leading-order (NNNLO) calculation seems meaningless at this point

because the series may not converge. To give a more reliable prediction for ∆MK , we

need to treat the charm quark non-perturbatively. Another limitation of the perturbation

theory calculation is that the long distance contributions are completely neglected. Such

contributions are schematically described in Fig. 3. The separation between the two ∆S = 1

weak Hamiltonian can be as large as 1/mπ. A local ∆S = 2 effective Hamiltonian can’t

capture these effects. At present, there are no available results with controlled error because

the long distance contributions are highly non-perturbative. However, an estimation by

Donoghue et .al . [9] suggest that the long distance contributions may be sizable.

The calculation of ǫK is under much better control, because the largest contribution in-

volves momenta at the scale of the top quark mass, where perturbation theory should be

reliable. However, the discrepancy between the NNLO result and the experimental value is

about 1.5σ, making a more precise calculation of ǫK extremely interesting. The largest source



14

of uncertainty is the CKM matrix element Vcb. The second largest one is ηcc, which con-

tribute about 8% uncertainty to ǫK . A more precise calculation will require non-perturbative

method. In addition the long distance contribution to ǫK is estimated to be -3.6% by Buras

et al. [10], again suggesting the need for a reliable, non-perturbative method.



Chapter 3

K0-K mixing from Lattice QCD

In this chapter we will discuss the details about evaluatingK0-K
0
mixing process with lattice

QCD. In Section 3.1, we discuss the second order weak amplitude and the method to extract

∆MK from such amplitude. In Section 3.2, we give all the Wick contractions in the lattice

calculation. Section 3.3 will discuss the calculation of the Wilson coefficients. In Section 3.4,

we will discuss the renormalization of the ∆S = 1 four-quark operators. In Section 3.5,

we give a theoretical discussion on the subtraction of short distance effects on lattice. In

Section 3.6, we discuss the finite volume effects in the ∆MK calculation.

3.1 Second Order Weak Amplitude

Lattice QCD has been used to calculate K0-K
0
mixing for a long time. However, all the

previous calculation use a local ∆S = 2 effective Hamiltonian defined in Eq. 3.1. The purpose

of these calculations is to evaluate the B̂K parameter. As we have discussed at the end of

Section. 2.2, these calculations suffer from non-perturbative effects at the scale of charm

quark mass and uncontrolled long distance effects. In order to resolve these difficulties,

we need to evaluate the second order weak process directly using lattice QCD. The typical

inverse lattice spacing is a few GeVs. So we can’t directly put the W boson and the top

15
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quark on the lattice. These heavy degree of freedoms are integrated out, leaving us with

a product of two ∆S = 1 effective weak Hamiltonians. The effective Hamiltonian in this

process is given by:

H∆S=1
W =

GF√
2

∑

q,q′=u,c

VqdV
∗
q′s(C1Q

qq′

1 + C2Q
qq′

2 ) (3.1)

where q and q′ are each on of the u and c quarks, Vqd and Vq′s are the CKM matrxi elements,

C1 and C2 are the Wilson coefficients and Qi are the current-current operators, which are

defined as:

Qqq′
1 = (s̄iq

′
j)V−A(q̄jdi)V−A (3.2)

Qqq′
2 = (s̄iq

′
i)V−A(q̄jdj)V−A , (3.3)

where i, j are color indices and the spinor indices are contracted within each pair of brackets.

In order to evaluate the K0-K
0
process, the most natural thoughts will be calculating

the four point correlators:

G(tf , t2, t1, ti) = 〈0|T
{
K

0
(tf )HW (t2)HW (t1)K

0
(ti)

}
〉, (3.4)

where T is the usual time ordering operator. Here the initial K0 states is generated by kaon

source K
0
(ti) at time ti and the final K

0
state is destroyed by the anti-kaon sink K

0
(tf ).

The two ∆S = 1 effective Hamiltonian acts at the time t1 and t2. Assuming that the time

separations tf − tk and tk − ti for k = 1 and 2 are sufficiently large that kaon interpolating

operator will project onto theK0 andK
0
initial and final states and after inserting a complete

set of energy eigenstates, we find:

G(tf , t2, t1, ti) = N2
Ke

−MK(tf−ti)
∑

n

〈K0|HW |n〉〈n|HW |K0〉e−(En−MK)|t2−t1|, (3.5)

where Nk is the normalization factor for the kaon interpolation operator and |n〉 are the

eigenstates of the QCD Hamiltonian. If we fix the time ti and tf , then this correlator de-

pends only on the time separation between the two Hamiltonians |t2 − t1|. We will refer to
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G(tf , t2, t1, ti) as the unintegrated correlator. The unintegrated correlator receives contribu-

tions from all possible intermediate states. The terms in this sum over intermediate states

show exponentially decreasing or increasing behavior with increasing separation |t2 − t1|

depending on whether En lies above or below MK .

In order to get a lattice approximation to the mass difference defined in Eq. 2.10, we can

start from the unintegrated correlator and integrate it over a time interval. There are a few

possible choices of the integration time interval. We will discuss our choice of method first

and discuss the alternatives later. We choose an integration time interval [ta, tb] and obtain:

A =
1

2

tb∑

t2=ta

tb∑

t1=ta

〈0|T
{
K0(tf )HW (t2)HW (t1)K0(ti)

}
|0〉, (3.6)

where ta − ti and tf − tb should be sufficiently large that the kaon interpolating operators

to project onto kaon states. We will refer to this correlator as the integrated correlator.

The integrated correlator is represented schematically in Fig. 4. After inserting a sum over

intermediate states and summing explicitly over t1 and t2 in the interval [ta, tb] one obtains:

A =N2
Ke

−MK(tf−ti)

{
∑

n 6=n0

〈K0|HW |n〉〈n|HW |K0〉
MK − En

(
−T +

e(MK−En)T − 1

MK − En

)

+
1

2
〈K0|HW |n0〉〈n0|HW |K0〉T 2

}
.

(3.7)

Here T = tb − ta + 1 and the sum includes all possible intermediate states except a possible

state |n0〉 which is degenerate with the kaon, En0
= MK . Such a state will exist only if the

spatial volume of the lattice is adjusted to some specific value. The contribution from such a

degenerate state appears separately as the final term on the right hand side of this equation.

In order to obtain Eq. 3.7, we neglect all the O((Ena)
2) terms.

The coefficient of the term which is proportional to T in Eq. 3.7 gives the finite-volume

approximation to ∆MK up to some normalization factors:

∆MFV
K = 2

∑

n 6=n0

〈K0|HW |n〉〈n|HW |K0〉
MK − En

. (3.8)
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The other terms in Eq. 3.7 can be classified into four categories according to their dependence

on T :

i) The term independent of T within the large parentheses. This constant does not affect

our determination of the mass difference from A.

ii) Terms exponentially decreasing as T increases coming from states |n〉 with En > MK .

These terms are negligible for sufficiently large T .

iii) Terms exponentially increasing as T increases coming from states |n〉 with En < MK .

These will be the largest contributions when T is large and must be removed as dis-

cussed in the paragraph below.

iv) The final term proportional to T 2 coming from states degenerate with the kaon. As

discussed below, this term must be identified and removed in order to relate the finite-

and infinite-volume expressions for ∆MK following the method of Ref. [11].

The exponentially growing terms, introduced in item iii) above, pose a significant chal-

lenge. Fortunately, the two leading terms corresponding to the vacuum and single pion states

can be computed separately and removed. The matrix elements 〈π0|HW |K0〉 and 〈0|HW |K0〉

can be obtained from the three-point and two-point correlation functions:

〈0|π0(tπ)HW (tO)K
0†(tK)|0〉 = NπNKe

−mπ(tπ−tO)e−mK(tO−tK)〈π0|HW |K0〉 (3.9)

〈0|HW (tO)K
0†(tK)|0〉 = NKe

−mK(tO−tK)〈0|HW |K0〉. (3.10)

Here we assume that the time separations tπ − tO and tO − tK are sufficiently large that only

the pion and kaon states contribute. The matrix element can be obtained from the ratio of

the correlation functions in Eqs. 3.9 and 3.10 with the corresponding two-point correlators

of the operators K0 and π0 to remove the tO dependence. This will be discussed in more

details in Section. 4.3. Then we can use these matrix elements to remove the single-pion and

vaccum exponential growing terms in Eq. 3.7.
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A second approach to remove these two unwanted exponentially growing terms exploits

the lattice Ward identities to add to HW terms proportional to the scalar and pseudo-scalar

densities, sd and sγ5d. The new Hamiltonian is given by:

H ′
W = HW + c1s̄d+ c2s̄γ

5d. (3.11)

The coefficients c1 and c2 are chosen to eliminate the single-pion and vacuum intermediate

states:

〈π0|HW + c1s̄d|K0〉 = 0, (3.12)

〈0|HW + c2s̄γ
5d|K0〉 = 0. (3.13)

The coefficient is then given by:

cπ = −〈π0|HW |K0〉
〈π0|s̄d|K0〉 , (3.14)

cvac = − 〈0|HW |K0〉
〈0|s̄γ5d|K0〉 . (3.15)

Since these two densities can be written as the divergence of the vector and axial currents

respectively, they cannot contribute to the mass difference given in 3.8. This approach is

similar to the subtraction in the previous paragraph, but instead of removing only the expo-

nentially growing term in Eq. 3.7, such an addition will remove all single pion and vacuum

contributions from that equation, including their appearance in the sum over intermediate

states |n〉.

A third approach is multi-parameter fitting. We can add these exponential terms into

the fitting ansatz. In principal, we can get the mass difference from a multi-parameter fit.

However, this approach can be very noisy, especially when the exponentially increasing term

is significantly larger than the linear term.

Two-pion states with energies below MK may also exist and, if present, must be explicitly

identified and removed. For the kinematics studies in this thesis, the only π-π state with
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an energy possibly below MK is the state with two pions at rest. In our calculation on 163

lattice with a 412 MeV pion mass, we study the contribution of this state as the kaon mass

varied. However, we are not able to identify a clear two-pion signal. In our calculation on

243 with a 330 MeV pion mass and a 575 MeV kaon mass, there is no π-π state lighter than

the kaon. Thus we don’t need to worry about it. However, in a future calculation in physical

kinematics, the two pion states will pose a significant challenge. More studies are needed to

solve this problem.

So far all our discussions are based on Eq. 3.6. However, there are alternative choices

for the integrated correlators. For example, a simpler alternative integrates the two weak

operators over the full time interval [ti, tf ] between the kaon source and sink instead of the

the restricted interval [ta, tb] used here:

A′ =
1

2

tf∑

t2=ti

tf∑

t1=ti

〈0|T
{
K0(tf )HW (t2)HW (t1)K0(ti)

}
|0〉. (3.16)

After inserting a sum over intermediate states, the integrated correlator will contain the

term of interest, N2
K∆MK(tf − ti)e

−MK(tf−ti)/2. The mass difference can be obtained by

varying tf − ti, which is the separation of the two kaons. However, this method has two

disadvantages when compared to the method which we use. The first is the need to vary the

location of the source and sink positions of the kaons if the dependence on tt − ti is to be

identified. For the method which we use we are able to work with fixed tf and ti and simply

vary the interval [ta, tb] over which the weak operator insertions are integrated. Having fixed

kaon source and sink locations largely reduced the number of quark propagators which must

be evaluated in the calculation presented here. Thus the computing cost of this method will

be much larger than the method we choose.

A second, far more serious difficulty with the expression in Eq. 3.16 arises from the

analogue of the exponentially increasing terms given in Eq. 3.7. In that previous case the

coefficient of an exponentially increasing term coming from a QCD energy eigenstate |n〉

with energy En lower than MK is a simple matrix element of HW between that state and a
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physical kaon state, a quantity easily determined in a separate lattice calculation. However,

for the correlator defined in Eq. 3.16 these unwanted terms come with coefficients that are

very difficult to determine and hence cannot be easily removed. More specifically, in the

correlators we will have terms like:

∑

n′′,n′ 6=n

〈0|Kα|n′′〉〈n
′′|HW |n〉

En − En′′

e−En(tf−ti)
〈n|HW |n′〉
En − En′

〈n′|Kα|0〉. (3.17)

Here |n′〉 and |n′′〉 are possible excited kaon states. A term with energy En < MK which must

be removed has a complicated coefficient given by a sum over matrix elements of HW between

that state |n〉 and a series of excited states |n′〉, a combination apparently inaccessible to

a lattice QCD calculation. Thus, a separate determination of the terms to be subtracted

appears very difficult. Note this second difficulty only arises when there exist states of lower

energy than that of the state being studied, in our case the kaon. All of these unwanted

terms with En > mK will not contribute for sufficiently large tf − ti.

Finally, a third alternative that we can examine integrates the product of the two weak

operators HW (t2)HW (t1) over the entire time interval [0, Ttot]:

A′′ =
1

2

Ttot∑

t2=0

Ttot∑

t1=0

〈0|T
{
K0(tf )HW (t2)HW (t1)K0(ti)

}
|0〉. (3.18)

Again the mass difference is obtained by varying tf − ti. A′′ will also suffer from excited

kaon states just like A′. Further more, there will be severe around-the-world effects in A′′

.

This problem may be solved by evaluating the propagator for both periodic and anti-periodic

boundary conditions in time direction. However, this will require more computational cost.

3.2 Diagrams Needed for the Lattice Calculation

The four-point correlators Eq. 3.4 are given by combinations of Wick contractions on lattice.

After inserting Eq. 3.1 into Eq. 3.4, we will get all the possible contractions. To simplify the
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problem, we can apply the Fierz transformation to the Q1 operators in Eq. 3.1:

Qqq′
1 = (s̄iq

′
j)V−A(q̄jdi)V−A = (s̄idi)V−A(q̄jq

′
j)V−A. (3.19)

The Fierz transformation is exact on lattice. After the transformation, the operator Q1

becomes explicitly color unmixed. This will guarantee the color and spin will flow in the

same way in all the diagrams. We list all the possible contractions contributing to the four-

point correlators in Figs. 5-8. There are in total 16 diagrams which are labeled by circled

numbers and we categorize them into four types according to their topology. There are six

quark propagators in each diagram. Four of these propagators are connected to the kaon

wall sources while two propagators connect one of the weak operators to the other or each

weak operator to itself. We call these two quark propagators internal propagators. In a

four flavor theory, the flavor of the internal quark propagators can be either up or charm.

We therefore have four different combinations for each diagram: uu, cc, uc and cu. We use

these labels in a subscript to denote the flavor of the two internal quark propagators. For

example, the first diagram with two internal up quark propagators is represented by 1©uu,

and the GIM cancellation occurs in the combination:

1©GIM = 1©uu + 1©cc − 1©uc − 1©cu. (3.20)

Because of the arrangement of quark flavors and spin contractions in the operators Qqq′

1

and Qqq′

2 the spin indices on quark fields which carry the same charge are always contracted

with an interposed γµ(1 − γ5) spin matrix. Therefore, the pattern of spin contractions

need not be represented in Figs. 5-8. Instead, the separation of each four-quark vertex

into two pairs of two quark vertices shown in those figures indicates the pattern of color

contractions. Thus, when two quark lines carrying the same charge are joined in those

figures that arrangement of spin and color contractions is the same and the operator Qqq′

1

appears at that vertex. If lines with different charge are joined, it is the operator Qqq′

2 that

appears.
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All the correlation functions are given by combinations of these contractions. For exam-

ple,

〈K0(tf )Q
uu
1 (t2)Q

uu
1 (t1)K0(ti)〉 = 1©uu − 5©uu + 9©uu − 13©uu, (3.21)

where the contractions identified by circled numbers do not carry the minus sign coming

from the number of fermion loops. Instead these minus signs appear explicitly in Eq. 3.21.

Since our definition of the kaon interpolation operators is K0 = i(d̄γ5s), there will be a minus

sign, i2 = −1, coming from two kaon sources. This minus sign is also not included in the

contractions.

There are two other possible operator combinations in this calculation:

〈K0(tf )Q
uu
2 (t2)Q

uu
2 (t1)K0(ti)〉 = 4©uu − 8©uu + 12©uu − 16©uu, (3.22)

〈K0(tf )(Q
uu
1 (t2)Q

uu
2 (t1) +Quu

2 (t2)Q
uu
1 (t1))K0(ti)〉 = − 2©uu − 3©uu + 6©uu + 7©uu,

− 10©uu − 11©uu + 14©uu + 15©uu. (3.23)

After GIM cancellation, these become:

〈K0(tf )Q
GIM
11 (t2, t1)K0(ti)〉 = 1©GIM − 5©GIM + 9©GIM − 13©GIM, (3.24)

〈K0(tf )Q
GIM
22 (t2, t1)K0(ti)〉 = 4©GIM − 8©GIM + 12©GIM − 16©GIM, (3.25)

〈K0(tf )
(
QGIM

12 (t2, t1) +QGIM
21 (t2, t1)

)
K0(ti)〉 = − 2©GIM − 3©GIM + 6©GIM + 7©GIM

− 10©GIM − 11©GIM + 14©GIM + 15©GIM. (3.26)

Here the subscript “GIM” under the circles indicates the same combination of internal quark

line flavors as is given in Eq. 3.20. The four operator products QGIM
ij (t2, t1) appearing on

the left-hand side of Eq. 3.26 are each the appropriate sum of all four combinations of

intermediate charm and up quarks:

QGIM
ij (t2, t1) = Quu

i (t2)Q
uu
j (t1) +Qcc

i (t2)Q
cc
j (t1)

−Quc
i (t2)Q

cu
j (t1)−Qcu

i (t2)Q
uc
j (t1) i, j = 1, 2.

(3.27)
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As discussed in Sec. 3.1, we can add the scalar density s̄d and the pseudoscalar density

s̄γ5d to the effective weak Hamiltonian. There will be 10 more diagrams after adding these

operators. We categorize these new diagrams into two types according their topology. These

two types are similar with type 3 and type 4 diagrams respectively. We will name these two

new types as type 3-scalar and type 4-scalar. We list all the diagrams in Fig. 9-10.

We also need to evaluate the three-point correlators in order to remove the exponentially

increasing terms in the four-point correlators. The diagrams contributing toK0 → π0 process

are listed in Fig. 11. These diagrams are labeled by boxed numbers. The correlators are

given by combinations of contractions:

〈0|π0(tπ)Q1(t)K
0†(tK)|0〉 =

( − 1 + 3 )√
2

, (3.28)

〈0|π0(tπ)Q2(t)K
0†(tK)|0〉 =

( 2 − 4 )√
2

, (3.29)

〈0|π0(tπ)s̄d(t)K
0†(tK)|0〉 = − 5√

2
. (3.30)

The diagrams contributing to the K0 → 0 process are listed in Fig. 12. The correlators are

given by combinations of contractions:

〈0|Q1(t)K
0†(tK)|0〉 = i 6 , (3.31)

〈0|Q2(t)K
0†(tK)|0〉 = −i 7 , (3.32)

〈0|s̄d(t)K0†(tK)|0〉 = −i 8 . (3.33)

3.3 Wilson Coefficients

The Wilson coefficients in Eq. 3.1 summarize the effect of short-distance contributions. We

calculate them using renormalization group improved perturbation theory to the next-to-

leading order by following exactly the method and techniques of Ref. [13]. The initial values,

renormalization-group evolution and anomalous-dimension matrices, and quark threshold

matching matrix are all described in Section IV/B in Ref. [13]. The calculated Wilson
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coefficients at the renormalization energy scale µ = 2.15 GeV with 4 flavors are given in the

first two columns in Tab. 2. All the standard model parameters used in this calculation are

taken from PDG 2010 [4] and are also listed in Tab. 1.

Notice that to obtain the results in Tab. 2, we used the same strategy as in [13]: keep

only the leading order terms and discarding the other terms. For example, if we have an

expression (1 + aαs)(1 + bαs), we should not do the calculation by numerically multiplying

the two factors in the two parentheses. Instead, the expression is expanded, and only the

term 1 + (a + b)αs is kept and calculated. The initial condition, evolution operator matrix

and matching matrix are all functions of αs. We need to keep the analytical form, expand

the expressions, and keep only the O(1) and O(αs) term at the end. By following this

method, we were able to exactly reproduce the results in Ref. [13]. This is the advantage of

explicitly dropping all higher order terms: others can recognize exactly what kinds of terms

are dropped so the results can be easily reproduced exactly.

3.4 Non-perturbative Renormalization

In order to get ∆MK in physical units, we need to combine our lattice results with the Wilson

coefficients which describe the short-distance physics. However, the Wilson coefficients are

calculated in the MS scheme. So we need to convert the operators renormalized in MS scheme

into the lattice operators. We will discuss the details of this procedure in this section.

We will consider only the current-current operators defined in Eq. (3.3) which enter the
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present calculation. In particular, we are only interested in the operators:

Q̃1 = (s̄iuj)V−A(ūjdi)V−A − (s̄icj)V−A(c̄jdi)V−A,

Q̃2 = (s̄iui)V−A(ūjdj)V−A − (s̄ici)V−A(c̄jdj)V−A,

Qcu
1 = (s̄iuj)V−A(c̄jdi)V−A,

Qcu
2 = (s̄iui)V−A(c̄jdj)V−A,

Quc
1 = (s̄icj)V−A(ūjdi)V−A,

Quc
2 = (s̄ici)V−A(ūjdj)V−A.

(3.34)

These six operators can be categorized into three groups according to their different flavor

structure. Operator mixing will take place within each group. The discussion of operator

mixing is simplified if we define a second, equivalent basis:

QX
+ = QX

1 +QX
2 ,

QX
− = QX

1 −QX
2 ,

(3.35)

where the labelX takes on the three values ‘˜’, cu, uc appearing in Eq. (3.34). Thus, we have

three groups of operators Q̃±, Q
cu
± and Quc

± . The advantage of this basis is that Q+ belongs

to the (84,1) irreducible representation of SU(4)L ×SU(4)R, while Q− belongs to the (20,1)

representation [14]. Since the renormalization will be carried out in the SU(4)L × SU(4)R

symmetric limit of vanishing u, d, s and c quark masses, the operators Q+ and Q− will not

mix with each other or any other dimension 6 operator. Finally SU(4)L×SU(4)R symmetry

requires that the renormalization factors for all operators in the same representation will be

identical.

Although the basis in Eq. (3.35) is favored theoretically, we choose to use the basis

in Eq. (3.34) for our actual calculation since it is those operators whose matrix elements

are obtained from the explicit contractions which we evaluate. The effects of the Wilson
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coefficients and all operator renormalization and mixing can then be summarized by:

HW =
GF√
2

∑

q,q′=u,c

VqdV
∗
q′s

∑

i,j,k=1,2

CMS
i (µ)(1 + ∆rRI→MS)ij(Z

lat→RI)jkQ
qq′,lat
k (µ)

=
GF√
2

∑

q,q′=u,c

VqdV
∗
q′s

∑

i=1,2

C lat
i (µ)Qqq′,lat

i (µ).

(3.36)

From this formula we can see that the MS operators are converted to the lattice operators

in two steps. First the MS operators are converted to the regularization independent (RI)

Rome-Southampton scheme perturbatively. We use formula provided by Lehner and Sturm

which extend their earlier, 2+1 flavor results [15] for the matching matrix ∆rRI→MS to the

four-flavor case being studied here. Their 2× 2 matching matrix is given by:

∆r =
αs(µ)

4π


 −4 ln(2) −8 + 12 ln(2)

−8 + 12 ln(2) −4 ln(2)


 . (3.37)

Here αs(µ) is calculated using the two-loop formula given by equation (3.19) in Ref. [13].

For µ = 2.15 GeV, we obtain αs = 0.2974.

In the next step, the operators in the RI scheme are related to the lattice operators non-

perturbatively following the non-perturbative renormalization (NPR) method developed in

Ref. [16] but using non-exceptional momenta [17] at a scale µ = 2.15 GeV. Specifically,

we use the RI/SMOM(γµ,/q) scheme [15]. Here the first γµ means that the projectors are

constructed from γ matrices. The second /q identifies the wave function renormalization

scheme. The renormalization condition is imposed on the amputated four-quark off-shell

Green’s funtcion. For our convenience, we will use operator basis Qcu
i defined in Eq. 3.34.

The renormalization matrices for Q̃i and Quc
i are identical to that for Qcu

i . The following

Green’s function:

Γi(p1, p2) =
1

V

∑

x

〈Qcu
i (x)s(p1)ū(p2)c(p1)d̄(p2)〉, (3.38)

where the quark fields are Fourier transformed and gauge is fixed to Landau gauge. The

momemta satisfy the conditon:

p21 = p22 = (p1 − p2)
2, (3.39)
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which is the non-exceptional momentum scheme. The Green’s function defined in Eq. 3.38

is given by products of momentum source propagators:

G1(p1, p2)
abcd
αβγδ =

1

V

∑

x,µ

e−2i(p2−p1)x
{(

γ5S†(x, p1)γ
5
)aa′

γµ(1− γ5)S(x, p2)
c′b
}αβ

{(
γ5S†(x, p1)γ

5
)cc′

γµ(1− γ5)S(x, p2)
a′d

}γδ

, (3.40)

G2(p1, p2)
abcd
αβγδ =

1

V

∑

x,µ

e−2i(p2−p1)x
{(

γ5S†(x, p1)γ
5
)aa′

γµ(1− γ5)S(x, p2)
a′b
}αβ

{(
γ5S†(x, p1)γ

5
)cc′

γµ(1− γ5)S(x, p2)
c′d
}γδ

. (3.41)

Here S(x, p) is a propagator with a momentum source and a sink position x, the contraction

of color indices are given explicitly and the contraction of spin indices should follow the rule

of matrix multiplication inside each large curly bracket. We don’t specify the flavor of the

quark propagators in this formula since the renormalization condition is defined in the chiral

limit. The dependence of the results on the quark masses is usually extremely small. So we

use the same light quark mass for all flavors of quarks in our calculation and do not perform

a extrapolation to chiral limit.

Then we use the full quark propagator to amputate these Green’s functions:

Γi(p1, p2)
abcd
αβγδ = Gi(p1, p2)

a′b′c′d′

α′β′γ′δ′

(
〈γ5S†(p1)γ

5〉−1
)a′a′
α′α

(〈S(p2)〉−1)b
′b
β′β

(
〈γ5S†(p1)γ

5〉−1
)c′c
γ′γ

(〈S†(p1)〉−1)d
′d

δ′δ .

(3.42)

Here the quark propagator by S(p) =
∑

x S(x, p)e
−ipx. In order to define the renormalization

condition, we introduce the following spin-color projectors:

(P1)
abcd
αβγδ = [(1− γ5)γµ]αβ[(1− γ5)γµ]γδδ

adδcb, (3.43)

(P2)
abcd
αβγδ = [(1− γ5)γµ]αβ[(1− γ5)γµ]γδδ

abδcd. (3.44)

The operator mixing matrix is given by:

Mij = ΓiPj . (3.45)
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Due to the Firez symmetry:

Qcu
1 = (s̄iuj)V−A(c̄jdi)V−A = (s̄idi)V−A(c̄juj)V−A, (3.46)

we can easily show that M11 = M22 and M12 = M21. So we only need to calculate one

amputated Green’s function G1 or G2. We choose to calculate G2 since it is explicitly color

unmixed. The renormalization condition is defined as:

Z lat→RI

Z2
q

M = F, (3.47)

where Zq is the quark wave renormalization factor and F is the operator mixing matrix in

tree level. In our case, F is simply given by:

F =


 1 1/3

1/3 1


 . (3.48)

Finally the operator renormalization matrix is given by:

Z lat→RI = Z2
qFM−1. (3.49)

For all the mass differences presented in this work, we use the operator mixing matrix

M calculated from the 163 lattice configurations. We use 20 configurations and the valence

quark mass mval = 0.01. We take the value Z
/q
q = 0.8016(3) from [18]. Combining all the

ingredients we obtain the final coefficients C lat
i=1,2 that must be applied to the bare lattice

operators to construct the complete ∆S = 1 effective weak Hamiltonian given in Eq. (3.36).

The results for these coefficients and the ingredient from which they are constructed are

given in Tab. 2. Note the diagonal character of the renormalization for the operator basis

QX
± can be seen from the structure of the 2 × 2 matrices given in this table, with equal

diagonal and equal off-diagonal elements in our QX
i , i = 1, 2 basis.
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3.5 Short distance correction

The product of operators appearing in Eq. 3.4 accurately describes the second order weak

effects when the corresponding Hamiltonian densities H(xi)i=1,2 are separated by a few lat-

tice spacings (|x2 − x1| ≫ a). However, as |x2 − x1| → 0 the behavior is unphysical, being

dominated by lattice artifacts. For the diagrams like Fig.4, we expect a quadratic divergence

by naive power counting. This divergence will be cutoff by the inverse lattice spacing rather

than a physical W boson mass. Fortunately, the GIM mechanism will remove this diver-

gence completely. One might expect that the GIM cancellation would reduce the quadratic

divergence to a milder logarithmic divergence leaving an unphysical, short distance artifact

of the form ln(mca) reflecting a physical ln(mc/MW) short distance contribution, inaccessible

to a lattice calculation. However, because of the V −A structure of the weak vertices in the

standard model, there will be no logarithmic divergence after the GIM cancellation. The

quark propagator connecting the two weak vertices is given by:

/p−mu

/p2 +m2
u

− /p−mc

/p2 +m2
c

. (3.50)

This propagator will scale like 1/p2 for large momenta. However, if we consider the V − A

structure of the weak vertices, we will get:

γµ(1− γ5)

(
/p−mu

/p2 +m2
u

− /p−mc

/p2 +m2
c

)
γν(1− γ5). (3.51)

Then the mass term in the numerator will become zero. The propagator will become:

γµ(1− γ5)
/p(m2

c −m2
u)

(/p2 +m2
u)(/p

2 +m2
c)
γν(1− γ5). (3.52)

We can see that a factor of m2
c −m2

u is introduced for each of the two internal quark lines,

reducing the overall degree of divergence by four units. Thus, the GIM cancellation is

complete, leaving only convergent integrals in a theory built from the effective four-quark

operator HW , with all “short distance” contributions coming from distances on the order
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of 1/mc. Thus, if potential lattice artifacts associated with the large value of mca can be

neglected, then the lattice calculation will capture all important aspects of ∆MK .

Although there is no divergence in the lattice calculation of ∆MK , this is not always

true for generic calculation of a second order weak quantity. For example, there will be a

logarithmic divergence in the lattice calculation of ǫK . This divergence must be subtracted

before the lattice calculation becomes well defined. After this subtraction, we can add back

the correct short distance behavior, which can be calculated using perturbation theory in

the continuum. This correction can be summarized by:

A−Alat
SD +Acont

SD , (3.53)

where the second term is the short distance part of A in the lattice calculation and the third

term gives the correct short distance behavior in the continuum. Similar to the perturbation

theory calculation, we can use a local ∆S = 2 operator to describe the short distance

behavior:

OLL = (s̄d)V−A(s̄d)V−A. (3.54)

Then the short distance part of A is given by:

Alat
SD = 〈K0

(tf )

tb∑

t=ta

clat(µ2)OLL(t)K
0
(ti)〉, (3.55)

where the scale µ is the scale at which we define the short distance part of the second

order weak process, clat(µ2) is a Wilson coefficient which can be determined by using non-

perturbative Rome-Southhampton method. The correct short distance behavior is given

by:

Alat
SD = 〈K0

(tf )

tb∑

t=ta

ccont(µ2)OLL(t)K
0
(ti)〉, (3.56)

where the clat(µ2) can be evaluated using perturbation theory in continuum.

The complexity of this correction comes from the evaluation of clat(µ2). This can be done
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by evaluating the four quark, off-shell Greens function:

Γαβγδ(pi) = 〈sα(p1)d̄β(p2)
∫

d4x1

∫
d4x2HW (x1)HW (x2)sγ(p3)d̄δ(p4)〉. (3.57)

Here the quark fields are Fourier transformed and gauge is fixed to Landau gauge. The

momentum of the quarks should satisfy p2i = µ2. Also, the pi should be chosen appropriately

so that all the internal momenta contributing to Γ(pi) will be at the scale µ. The value for

µ should satisfy:

ΛQCD ≪ µ ≪ π

a
. (3.58)

Then we evaluate second Greens function for the local OLL operator:

ΓSD
αβγδ(pi) = 〈sα(p1)d̄β(p2)

∫
d4xOLL(x)sγ(p3)d̄δ(p4)〉. (3.59)

This Green’s function describes the short distance component of Γ(pi). For a large enough

µ, Γ(pi) will be dominated by short distance effect. Thus, the Wilson coefficients clats (µ2)

can be determined by:

(
Γamp
αβγδ(pi)− clats (µ2)Γamp,SD

αβγδ (pi)
)
Pαβγδ = 0, (3.60)

where “amp” means that the Green functions should be amputated, Pαβγδ is a spin and color

projector

Pαβδγ =
(
(1− γ5)γµ

)
αβ

(
(1− γ5)γµ

)
γδ

(3.61)

3.6 Finite volume corrections

In this section, we will discuss the finite volume effects in the mass difference calculation.

Finite volume effects exist in all lattice calculations. If there are no multi-particle states

evolved, the finite volume effects will usually decrease exponentially as the lattice size L

increases. We usually neglect such effects in the practical calculation. However, in the mass

difference calculation, there will be lots of multi-particle intermediate states contributing to
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the mass difference defined in Eq. 3.8. These states may be distorted in a finite volume and

will introduce errors which are suppressed only by power of L. The finite volume effects

have been studied in detail in Ref. [11]. The starting point is Luscher’s relation [19] between

finite-volume two-particle energy, E = 2
√
m2

π + k2 and the two-particle scattering phase

shift δ(E):

φ(
kL

2π
) + δ(E) = nπ, (3.62)

where n is an integer and the known function φ(q) is defined in Ref. [19]. This relation

connects the π-π energy in finite volume with the phase shift in the infinite volume. We

want to use this condition to relate ∆MK computed in finite volume and infinite volume.

We can choose a specially tuned lattice volume so that there is an π-π state |n0〉 with energy

En0
nearly degenerate with mK . The KS ↔ ππ system can be described by the degenerate

perturbation theory. For simplicity we will assume CP symmetry so that π-π will only couple

to the KS state. Following second order degenerate perturbation theory, we can obtain the

energies of KS and the two pion state |n0〉 as the eigenvalues of the 2× 2 matrix:


mK +

∑
n 6=n0

|〈n|HW |KS〉L|
2

mK−En
〈KS|HW |n0〉L

〈n0|HW |KS〉L En0
+
∑

n 6=KS

|〈n|HW |n0〉L|
2

En0
−En


 . (3.63)

The subscript L here means the matrix elements are evaluated in finite volume. Finite and

infinite volume quantities can then be related by requiring that the eigenvalue of the 2 × 2

matrix in Eq. 3.63 solve Eq. 3.62. The infinite volume phase shift δ(E) is the sum of that

arising from the strong interaction, δ0(E), a resonant contribution from the KS pole and the

second-order Born terms:

δ(E) = δ0(E) + arctan

(
Γ(E)/2

mK +∆mKs
− E

)
− π

∑

β 6=KS

|〈β|HW |ππ(E)〉|2
E − Eβ

. (3.64)

Here Γ(E) is proportional to the square of the KS-ππ vertex which becomes the KS width

when evaluated at E = mK :

Γ(E) = 2π|〈ππ(E)|HW |KS〉|2, (3.65)



34

where for the two-pion state we choose the normalization 〈ππ(E)|ππ(E ′)〉 = δ(E − E ′).

The easiest case to examine is that in which the energy difference En0
−mK is very small

compared with mK but large compared to ∆MK or Γ, so that En0
and mK are not exactly

degenerate. With this choice, the π-π energy eigenvalue determined from Eq. 3.63 differs

from En0
by the usual second order perturbation theory expression:

Eππ = En0
+

|〈KS|HW |n0〉L|2
En0

−MK

+
∑

n 6=KS

|〈n|HW |n0〉L|2
En0

− En

. (3.66)

Combining this expression with Eq. 3.62 and Eq. 3.64 and equating all terms of second order

in HW yeilds the relation:

∂(φ+ δ0)

∂E

{
|〈KS|HW |n0〉L|2

En0
−MK

+
∑

n 6=KS

|〈n|HW |n0〉L|2
En0

− En

}
=

Γ(En0
)/2

En0
−mK

+π
∑

β 6=KS

|〈β|HW |ππ(E)〉|2
E − Eβ

.

(3.67)

This expression has two useful consequences. First we can equate the residues of the

kaon poles, En0
= mK on the left- and right-hand sides. This gives us the original Lellouch-

Luscher relation. Second we can subtract the pole terms and equate the remaining parts

of Eq. 3.67 evaluated at En0
= mK . This second result will be used below to remove the

second-order Born terms.

Now we are ready to the examine a more complicated case in which En0
= mK . The

finite volume energies are still given by the eigenvalues of Eq. 3.63:

E± = mK ± 〈n0|HW |KS〉+
1

2

{
∑

n 6=n0

|〈n|HW |KS〉L|2
mK − En

+
∑

n 6=KS

|〈n|HW |n0〉L|2
mK − En

}
, (3.68)

but now the eigenstates are equal mixtures of the degenerate K and finite volume π-π state

|n0〉. We again require that these finite-volume energies satisfy Eq. 3.62. Expanding to

second order of HW , we get the relation between the finite and infinite volume expressions

for the KS mass shift:

∆mKS
=

∑

n 6=n0

|〈n|HW |KS〉L|2
mK − En

−∂2(φ+ δ0)/∂E
2

2∂(φ+ δ0)/∂E
|〈n0|HW |KS〉L|2−

∂|〈n0|HW |KS〉L|2
∂E

, (3.69)
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where Eq. 3.67, evaluated at En0
= mK with the pole term subtracted has been used to

eliminate the second-order Born terms.

Finally, the infinite-volume KL − KS mass difference can be obtained as follows. First

observe that the KL second order mass shift is given by a formula similar to Eq. 3.69 in

which KL replaces KS and all but the first term on the right-hand side are omitted since KL

does not couple to two pions in our approximation of CP symmetry. Subtracting this new

formula from Eq. 3.69 gives:

∆mK = ∆mFV
K − ∂2(φ+ δ0)/∂E

2

2∂(φ+ δ0)/∂E
|〈n0|HW |KS〉L|2 −

∂|〈n0|HW |KS〉L|2
∂E

(3.70)

Here ∆mFV
K is defined in Eq. 3.8. The correction terms in this formula are all accessible in a

lattice calculation. However, in our numerical work, we are not able to identify a clear signal

from two pion intermediate states. So we are not able to study their finite volume effects in

this work. In a future calculation at physical kinematics, the finite volume effects may be

important and should be furthur studied.



Chapter 4

Measurement methods

In this chapter, we will discuss the techniques used in the lattice calculation of ∆MK . In Sec-

tion. 4.1, we will discuss the different sources of the quark propagators. In Section. 4.2, we will

discuss the low-mode-deflation method based on the EigCG and Lanczos algorithms. Sec-

tion 4.3 discuss the two-point and three-point correlators in our calculation. In Section. 4.4,

we explain the strategies used to calculate the different type of diagram contributing to the

four-point correlators. In Section. 4.5, we briefly summarize the data analysis techniques.

4.1 Propagator sources

The contractions shown in Chapter. 3 can be written as products of quark propagators. We

need to compute all the needed quark propagators in order to evaluate these contractions.

A quark propagator from the source point y to the sink point x is given by:

S(x, y) = D−1(x, y), (4.1)

where S(x, y) is a 12×12 spin-color matrix, D is the Dirac matrix on lattice. For a resonantly

large lattice, it is impossible to invert the Dirac matrix since the dimension of the matrix

is extremely high. So we are not able to compute S(x, y) for all source and sink locations.

36
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However, in most cases, it is sufficient to calculate the quark propagator for some specific

choices of source. A general source b(x) can be any function of space-time. The propagator

for this source is given by:

S(x) =
∑

y

S(x, y)b(y). (4.2)

This propagator can be obtained by solving the following linear system:

∑

y

D(x, y)S(y) = b(x). (4.3)

A important property of S(x, y) is γ5-hermiticity. In our domain wall fermion formalism,

the dirac matrix satisfies D† = γ5Dγ5. Hence the propagator should satisfy:

S(y, x) = γ5S(x, y)†γ5. (4.4)

This relation can tell us S(y, x) immediately after S(x, y) has been computed.

The choice of sources depends on the specific problem. The point source b(x) is 1 at the

source point and a specific spin and color and 0 anywhere else. The propagator given by

Eq. 4.1 is a point source propagator from source location y. We will use point sources for

the two internal propagators in the type 1 and type 2 contractions given in Section. 3.2.

To better overlap with the ground state, we use wall source for the kaon and pion inter-

polating field. The wall source at time t with spin α and color a is defined as:

b(~y, ty) =





χaα, ty = t

0, ty 6= ty,

(4.5)

where χaα is a 12-component vector with 1 at spin α and color a and 0 at anywhere else.

The corresponding wall source propagator is given by:

SW (~x, tx; ty) =
∑

~y

S(~x, tx; ~y, ty). (4.6)
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Sometimes we will need a wall-source-wall-sink propagator. It is obtained by summing over

the sink position:

SWW (tx; ty) =
∑

~x,~y

S(~x, tx; ~y, ty). (4.7)

In the type 3 and type 4 diagrams given in Section. 3.2, we have some fermion loops in

the contractions. So we need to calculate S(x, x) for all possible x. Naively, we can calculate

a point source propagators at each possible source location. However, this is impossible in

practice since there are too many source locations. The solution is to use random wall source

propagators to give a unbiased estimation for the fermion loops. The random wall source at

time t and spin α and color a is given by:

b(~y, ty) =





χaαη(~y, ty), ty = t

0, ty 6= t,

(4.8)

where χaα is a 12-component vector with 1 at spin α and color a and 0 at anywhere else,

η~y,ty are random numbers satisfying:

〈η†(~x, tx)η(~y, ty)〉 = δ(~x− ~y)δ(tx − ty), (4.9)

where 〈· · · 〉 means average for many hits of random numbers. The random wall source

propagators is given by:

SRW (~x, tx; ty) =
∑

~y

S(~x, tx; ~y, ty)η(~y, ty). (4.10)

Finally the fermion loops are given by:

S(~x, tx; ~x, tx) =
∑

η

SRW (~x, tx; tx)η
†(~x, tx) (4.11)

In our operator renormalization calculation, we use a volume momentum source. This

source is defined as b(y) = eipy. The momentum source propagator is then given by:

S(x; p) =
∑

y

S(x, y)eipy. (4.12)
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The momentum-source-momentum-sink propagator is defind as:

S(p) =
∑

x,y

S(x, y)e−ip(x−y). (4.13)

4.2 Low Mode Deflation

Solving for the quark propagators is the most expensive part of our calculation. We use the

conjugate gradient (CG) methods to solve the linear system:

Dx = b (4.14)

The conjugate gradient method can’t be applied directly here since it requires D to be

Hermitian. So the equation we actually solve is the normal equation:

D†Dx = D†b = b′ (4.15)

The convergence of the CG algorithm is controlled by the condition number κ(D†D), which

is given by the ratio between the largest and the smallest eigenvalues of D†D. The CG

algorithm converges faster for a smaller κ. κ(D†D) for the light quark is larger than the

value for the heavy quark. So a light quark CG solver needs more iteration steps to converge.

A straightforward method to reduce κ is the low-mode-deflation method. If we know lowest

n eigenvalue and eigenvectors of D†D, we can define a projection operator:

P =
n∑

i=1

|λi〉〈λi| (4.16)

where λi is the i-th smallest eigenvalue and |λi〉 is the corresponding eigenvector. Since P

commutes with D†D, the normal equation 4.15 can be split into decoupled equations:

(D†D)‖x‖ =b‖, x‖ = Px, b‖ = Pb (4.17)

(D†D)⊥x⊥ =b⊥, x⊥ = Px, b⊥ = Pb (4.18)
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where (D†D)‖ = PD†DP and (D†D)⊥ = (1 − P )D†D(1 − P ) are referred to as the little

operator and the deflated operator respectively.

The solution to the little system 4.17 is simply given by:

x‖ =
n∑

i=1

|λi〉〈λi|b〉
λi

. (4.19)

The deflated system 4.18 can be solved using the CG algorithm. The new condition number

κ(D†D)⊥ =
λ1

λn+1

κ(D†D) (4.20)

is reduced and one expects the solver to be accelerated.

The deflation method usually works well for the light quark CG solver and works poorly

when the quark mass is heavy. This can be explained by the ratio λn/λ1. For light quark,

this ratio is usually large. When the quark mass becomes heavy, the spectrum of the low

eigenvalues is bounded from below by the large quark mass. Thus this ratio will become

smaller for a heavier quark mass. In our lattice calculation, we only use low mode deflation

only for the up and down quark CG solver. For the strange and charm quark propagator,

we will use the plain CG algorithm.

The calculation of the low-lying eigenvectors can be expensive. However, in our calcula-

tion, we need to solve Eq. 4.15 for many different sources. We can use the same eigenvectors

for CG solver with the same quark mass. Hence the time spent on calculating eigenvectors

is amortized and is only a small part of the total time.

There are two different method to calculate the low modes: the EigCG algorithm and

the implicit restarted Lanczos (IRL) algorithm. The details of the EigCG algorithm can be

found in Ref. [1]. The EigCG algorithm builds an explicitly restarted Lanczos algorithm on

top of the conjugate gradient method. The idea is to reuse the search directions generated

by the conjugate gradient algorithm to compute the necessary Lanczos vectors. It does not

require additional matrix-vector multiplications. So the increase in the time cost is small.

Since the Lanczos algorithm is numerically unstable, it also restarts itself when a certain
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number of eigenvectors obtained. A certain number of new eigenvectors will be calculated in

each EigCG solver. At the beginning of a EigCG solver, we can use the already calculated

eigenvectors to do deflation, thus accelerating the solver. A new solver will not only collect

more eigenvectors but also will improve the precision of the already calculated eigenvectors.

Gradually, the solver will become faster and faster. Finally we stop collecting eigenvectors

and simply do deflation to speed up the solver.

In Ref. [2], Qi observed a clear slowing-down point (around res ≈ 10−6) on the conver-

gence curve for the sped-up solver. This was due to the inaccuracy of the eigenvectors we

obtained from EigCG solvers. Qi’s strategy was to do multiple projections by restarting the

CG algorithm using the residual of previous inversion as the new right hand side. Qi found

that a single restart point at res ≈ 10−5 can solve the slowing-down problem if our target

precision is 10−8. With this restart technique, in our 163 lattice calculation with a 412 MeV

pion mass, we obtain a factor of 6 speed up using 100 low-lying eigenvectors calculated by

the EigCG algorithm.

The IRL algorithm is a standard textbook algorithm which can calculate the eigenvec-

tors of hermitian matrix to machine precision. The details of this algorithm are discussed in

Ref. [3]. This algorithm can give more precise eigenvectors which can provide better deflation

effects. However, unlike EigCG, the IRL algorithm needs many extra Dirac matrix multipli-

cation and is more expensive. A Chebyshev polynomial is used to change the spectrum of

the Dirac matrix and thereby to accelerate the IRL algorithm. In our 243 lattice calculation

with a 330 MeV pion mass, the number of propagators we need to calculate is much greater

than were required for the 163 calculation. To get a better deflation effect, we use the IRL

algorithm to calculate 300 exact eigenvectors and get a factor of 8 speed up.
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4.3 Two-point and three-point correlators

Two-point correlator are usually calculated to extract meson masses. The correlator is given

by:

C(t1, t2) = 〈O(t2)O
†(t1)〉, (4.21)

where O is the interpolating field for the meson. After inserting a set of QCD energy

eigenstates, one obtains:

C(t1, t2) =
∑

n

〈0|O|n〉e−En(t2−t1)〈n|O†|0〉

t2≫t1= N2
me

−Em(t2−t1), (4.22)

where |m〉 is the lowest energy eigenstate which can couple to O and Nm = |〈0|O|m〉| is

the normalization factor of the interpolating field. We can obtain the meson mass and the

normalization factor of the interpolating field from a simple exponential fit. There are many

choices of the meson interpolating field. We use a wall source in our calculation. For example,

the wall source kaon interpolating filed can be written as:

OK0(t) = i
∑

~x,~y

s(~x, t)γ5d̄(~y, t). (4.23)

The wall source is not explicitly gauge invariant. This can be solved by fixing the gauge field

at time t to Coulomb gauge. A Coulomb gauge fixed wall source has better overlap with

the ground state of kaon than a plain point source. We find that a Coulomb gauge fixed

wall source works well in both our 163 and 243 calculations. However, in a larger volume, a

Coulomb gauge fixed wall source kaon can be much larger than the size of a physical kaon.

So it may be better to use a more localized source in future calculation on larger lattices.

We also use a two-point correlator to extract the matrix element 〈0|O|K0〉. The correlator

can be written as:

C(t1, t2) = 〈O(t2)K
†(t1)〉. (4.24)
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We have listed the needed diagrams in Fig. 12. It is convenient to define the ratio:

R(t1, t2) =
〈O(t2)K

†(t1)〉
〈K(t2)K†(t2)〉

=
1

NK

〈0|O|K0〉, (4.25)

where NK is the kaon normalization factor and the second equality is valid for sufficiently

large t2 − t1. The plateau value for R(t1, t2) will give us 〈0|O|K0〉.

The three-point correlator is used to compute the matrix element 〈π0|O|K0〉. The corre-

lator can be written as:

C(t1, to, t2) = 〈π0(t2)O(to)K(t1)
†〉. (4.26)

We have listed the possible diagrams in Fig. 11. We can define the ratio:

R(t1, tO, t2) =
〈π0(t2)O(to)K(t1)

†〉
〈π0(t2)π(to)†〉〈K(to)K(t1)†〉

=
〈π0|O|K0〉
NKNπ

, (4.27)

where NK is the kaon normalization factor, Nπ is the pion normalization factor and the

second equality is valid for sufficiently large t2− t1. Again 〈π0|O|K0〉 is given by the plateau

in R(t1, tO, t2) as a function of tO for sufficiently large |t2 − t1|.

4.4 Evaluation of four-point correlators

The four-point correlators can be written as combinations of the contractions listed in Fig. 5-

8. Each contraction is composed of six quark propagators. In order to make our discussion

more concrete, we will discuss some example here. The contraction 1© in Fig. 5 is written

as:

1©uu =Tr(γµ(1− γ5)LW (x, ti)γ
5γ5SW †(x, ti)γ

5)Tr(γν(1− γ5)L(y, x)γµ(1− γ5)L(x, y))

Tr(γν(1− γ5)LW (y, tf )γ
5γ5SW †(y, tf )γ

5). (4.28)
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The two kaon wall sources are located at ti and tf . The two weak Hamiltonian densities are

located at x and y. L(x, y) is a point source propagator from y to x. LW (x, t) is a light

quark propagator with Coulomb gauge fixed wall source at time t and sink at space time

position x. SW (x, t) is similar but for strange quark. We also use the γ5-hermiticity for the

strange quark wall source propagators. For simplicity we only give the contraction for the

case that both internal quarks are up, the other cases are very similar.

Another useful example is contraction 9©:

9©uu =Tr(γµ(1− γ5)LW (x, ti)γ
5γ5SW †(x, ti)γ

5γν(1− γ5)LW (y, tf )γ
5γ5SW †(y, tf )γ

5)

Tr(γµ(1− γ5)LRW (x, tx)η
†(x))Tr(γν(1− γ5)LRW (y, ty)η

†(y)). (4.29)

Here LRW (x, t) is a light quark propagator with random wall source at time t and sink

at space-time position x. The fermion loop L(x, x) is replaced with LRW (x, tx)η
†(x) this

expression. All the contractions can be written down similarly. We give all the expression

in Appendix. A.

We use a different strategy to calculate type 1,2 and type 3,4 diagrams. This is due to the

different topologies of these contractions. We will discuss the evaluation of type 1,2 diagram

first. For given values of tx and ty, each of the two effective operators should be integrated

over the whole spatial volume. However, there is no easy way to do this because of two

difficulties. First, we are not able to compute all of the light-quark propagators connecting

the two operators. It is impractical to use point source propagators since there will be V

point sources on each time slice. In simpler cases, this difficulty can be avoided by the

use of a stochastic source distributed over the time slice. However, an attempt to use this

technique in the present case failed to give a signal that could be recognized above the noise.

Even if this first difficulty of generating the multitude of needed point source propagators

could be overcome, we would still face a second difficulty: the number of operations needed

to calculate all the contractions would be O(V 2), where V is the space-time volume of the

lattice. This also would be too time consuming. Thus, we sum the location of only one of
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the two operators over the spatial volume and, relying on the translational symmetry of the

other ingredients in the calculation, fix the spatial location of other operator at the origin

(0, 0, 0). For each of the contractions in our calculation, these two weak operators enter in

distinct ways and we average the two cases where one operator is fixed at the origin and the

other integrated over the spatial volume to improve the statistics.

For type 3,4 contractions, the situation is very different. There are no propagators con-

necting the two weak Hamiltonian densities. We can use random wall source propagators to

evaluate the fermion loops. Also, the number of operations needed to calculate the contrac-

tions is O(V ) instead of O(V 2). The reason is that we can always write the contractions as

the product of two independent parts. Each part will only need O(V ) time to compute. For

type 3 diagrams in Fig. 7, the contractions can be split into an upper half and a lower half.

For type 4 diagrams in Fig. 8, we can split the contractions into a left half and a right half.

The subtraction diagrams shown in Fig. 9-10 can be calculated similarly.

4.5 Data Analysis

After we have calculated all the correlation functions like C(t) for the meson from N config-

urations, we usually need to fit the data to some specific function form f(t, θ) as in Eq. 4.22.

This is accomplished by minimizing the correlated χ2,

χ2 =
∑

t,t′

[f(t, θ)− C(t)]V −1(t, t′)[f(t′, θ)− C(t′)], (4.30)

where V (t, t′) is the covariance matrix for C(t),

V (t, t′) =
1

N(N − 1)

N∑

i=1

(C i(t)− C(t))(C i(t′)− C(t′)). (4.31)

If the functional form fits the data well, we will get a χ2 per degree of freedom (χ2/d.o.f)

around 1. A large χ2/d.o.f usually suggests a poor fit. The most common reason is that

the fitting model does not describe the data well. For example, we will usually find a large
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χ2/d.o.f if we include data from the case in which the meson source and the meson sink are

too close. There will be contamination from excited states and we will be unable to fit all

the data with a single exponential term. To improve the quality of fit, we can either drop

these data points or add another exponential term into the fitting formula. Another reason

for large χ2/d.o.f is that the covariance matrix is so singular that the fitting does not work

properly. In that case, we can turn to an uncorrelated fit. The χ2 minimized in uncorrelated

fit is given by:

χ2 =
∑

t

[
f(t, θ)− C(t)

σ(t)
]2, (4.32)

where σ2(t) =
∑N

i=1(C
i(t) − C(t))2/N . We can see that the uncorrelated fit uses only the

diagonal terms in the correlation matrix. Hence the correlation between difference data

points are not taken into account. The χ2 values in the uncorrelated fit are usually very

small and not very meaningful.

If the data are strongly correlated, it is usually better to use the correlated fit which

may give a more accurate result and a clear meaning for the χ2. In some cases, we will get

significantly smaller error bar with the correlated fit than the uncorrelated fit. However,

for simplicity, we can just use an uncorrelated fit for simple exponential or cosh fits for the

mesons since it usually gives equally good results.

The correlated or uncorrelated fit gives us the central value only. We usually use the

jackknife method to compute the error on the fitting parameters. Let Ci(t) to stand for the

correlation function we calculated from the configuration number i, and we have a sample

of N configurations S = {Ci(t), i = 1 . . . N}. Based on the correlated fit or uncorrelated fit

from the previous discussion, we can compute the parameter θ. Let us label it as θ = g(S).

The jackknife method is :

1. Obtain N samples from S by leaving one out a time: S−i, for i=1, . . ., N.

2. For each such sample, fit the parameter θ and determine the value θi = g(S−i).
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3. Compute the average of θi: θ. The square of the error on θ is estimated as

σ2
J =

N − 1

N

N∑

i=1

(θi − θ)2. (4.33)



Chapter 5

Results from the 163 × 32× 16 Lattice

In this chapter, we will discuss the results from the 163×64×16 lattice ensemble. Section. 5.1

gives the details of the simulation. In Section. 5.2, we discuss the short distance effects

and the GIM cancellation. In Section. 5.3, we discuss the long distance effects for each

definite parity channels separately. Section. 5.4 gives the mass difference results in physical

units. In Section. 5.5, we compare our lattice calculation with the NLO perturbation theory

calculation.

5.1 Simulation Details

The calculation is performed on a lattice ensemble generated with the Iwasaki gauge action

and 2+1 flavors of domain wall fermions at a coupling β = 2.13. The space-time volume is

163 × 32 and the inverse lattice spacing a−1 = 1.729(28)GeV. The fifth-dimensional extent

is Ls = 16 and the residual mass is mres = 0.00308(4) in lattice units. The sea light and

strange quark masses are ml = 0.01 and ms = 0.032 respectively, corresponding to a pion

mass Mπ = 421MeV and a kaon mass MK = 563MeV. We use 800 configurations, each

separated by 10 time units. This ensemble is described in greater detail in Ref. [18] and

is also similar to the earlier ensembles described and analyzed in Ref. [20], except that the

48
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current ensemble has a more physical value for the sea quark mass and was generated with

a better RHMC algorithm.

We will use Fig. 4 to explain the set up of this calculation. Two Coulomb gauge-fixed

kaon sources are located at time slices ti = 0 and tf = 27 respectively. The two effective

weak operators HW (ti)i=1,2 are introduced in the interval 4 ≤ t1, t2 ≤ 23. We calculate

the four-point function defined in Eq. 3.4 for all possible choices of t1 and t2. Note that

the diagram given in Fig. 4 is only one type of possible contraction. The details of the

contractions have already been discussed in Section. 3.2. In a unitary calculation, we need

to include all types of diagrams. However, we only include type 1 and type 2 contractions

in this pilot calculation. The evaluation of these two types of contractions is discussed in

Section. 4.4. Neglecting type 3 and type 4 diagrams, reduces Eq. 3.26 to:

〈K0(tf )Q
GIM
11 (t2, t1)K0(ti)〉 = 1©GIM − 5©GIM, (5.1)

〈K0(tf )Q
GIM
22 (t2, t1)K0(ti)〉 = 4©GIM − 8©GIM, (5.2)

〈K0(tf )
(
QGIM

12 (t2, t1) +QGIM
21 (t2, t1)

)
K0(ti)〉 = − 2©GIM − 3©GIM + 6©GIM + 7©GIM. (5.3)

We neglect type 3 and type 4 diagrams in this calculation for two reasons. The first reason

is practical. We would need to compute an additional stochastic wall source for each time

slice to evaluate the new loop graphs which appear in the type 3 and 4 contractions. This

would approximately double the computation time. More importantly, type 4 diagrams are

disconnected diagrams which are extremely noisy and would require a far larger statistical

sample than is being used here [18]. The second reason is phenomenological. There is some

empirical evidence suggesting that the contribution from type 3 and type 4 diagrams may

be small. For example, disconnected graphs similar to those of type 4 are often small when

contributing to other processes where they are said to be “Zweig suppressed” [21, 22, 23]. The

omission of such diagrams is also consistent with the results of the recent study of ∆I = 1/2

K → ππ decays [18] in which the contribution of disconnected diagrams was found to be

zero within rather large errors. Of course in a complete calculation these diagrams must be
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calculated explicitly after which the precision of the Zweig suppression will be known.

As discussed in Sec. 3.1, we need to calculate the matrix elements 〈π0|HW |K0〉 and

〈0|HW |K0〉 in order to remove the exponentially growing terms in the second order correlator.

In this non-unitary calculation, there will be no contribution from vacuum intermediate state.

Also the definition of the π0 intermediate state must be reconsidered. In a unitary theory, ūu,

d̄d and s̄s will mix with each other through disconnected diagrams. Then the resulting energy

eigenstates are π0, η and η′, where π0 is defined as i(ūγ5u− d̄γ5d)/
√
2. However, in our non-

unitary calculation, all disconnected diagrams are neglected and correlators of the operators

i(ūγ5u± d̄γ5d) will reveal independent but symmetrical “states” with the same mass. Since

only up quarks can appear in our intermediate state, we must use the interpolating operator

iūγ5u to create our π0 state and can neglect the effects of the symmetrical state created by

d̄γ5d. Thus, in our calculation of 〈π0|HW |K0〉, we use π0 = iūγ5u (with no 1/
√
2 factor) and

only include contraction 1 and 2 shown Fig. 11.

We use periodic boundary conditions in the spatial directions for the Dirac operator when

computing the propagators. In the temporal direction, we calculate propagators for both

periodic and anti-periodic boundary conditions and take their average for the propagator that

we use. This effectively doubles the temporal extent of the lattice and suppresses around-

the-world effects to a negligible level. (This approach is equivalent to working on a lattice of

size 163×64 with gauge fields invariant under a translation of 32 sites in the time direction.)

The most expensive part of this simulation is solving for the light quark propagators. There

are 2 wall source light quark propagators and 20 point source light quark propagators, one on

each time slice between ta = 4 and tb = 23. So in total we need to calculate (20+2)×2 = 44

propagators, where the factor of two comes from our two choices of temporal boundary

conditions. Further each propagator requires 12 Dirac operator inversions, one for each spin

and color. This large number of light-quark Dirac operator inversions makes this calculation

a good candidate for the use of the EigCG technique [1, 2]. We collect the lowest 100
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eigenvectors and use them to accelerate the light-quark Dirac operator inversions. The

overhead associated with collecting these low modes is amortized over many inversions and

the number of conjugate gradient iterations is reduced by a factor of 6. The parameters for

the EigCG algorithm is given in Tab. 5. For the strange and charm quark propagators, we

use the plain CG solver. We use a 10−8 stopping condition for all the CG and EigCG solvers.

The time separation between the kaon wall source and the ∆S = 1 weak operators

should be large enough to project onto kaon states. In the set up of this calculation, the two

operators can be located at any time slice between [4, 23]. So the time separation between the

kaon source or sink and either effective weak operator is guaranteed to be equal or larger than

4. In Fig. 13 we give a sample kaon effective mass plot for ml = 0.01 and ms = 0.032. This

plot suggests that the effects of excited kaon states will be negligible when the separation

between source and sink is 5 or larger. We therefore use the restricted range [5, 22] for tk in

the following analysis, discarding the results when either operator is at the location tk = 4

or 23 for k = 1 and 2.

In order to reduce short distance effects to a level which can be accurately controlled

using lattice methods, we introduce a valence charm quark into our calculation. We will

use six different charm quark masses in order to investigate the resulting GIM cancellation.

These masses are given in Tab. 3, where we use the mass renormalization factor ZMS
m (2

Gev)=1.498 [24]. When we discuss the long distance effects in Sec. 5.3, we choose a 863MeV

valence charm quark mass and several different valence strange quark masses. The strange

quark masses and corresponding kaon masses are given in Tab. 4. The up and down quark

masses are kept at their unitary value, equal to the 0.01 mass of the sea quark.

5.2 Short Distance Contribution

In this section, we discuss the short distance contribution to our calculation of ∆MK in

detail. We begin by discussing results without a charm quark and their dependence on a
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short distance, position-space cutoff. We then introduce a charm quark and examine the

resulting GIM cancellation.

All the results presented in this section are for integrated correlators composed of the

operator combination Q1 · Q1, i.e. both four quark operators are Q1 operators. (This

case is presented for illustration since it is for this combination of operators that we have

data which includes a short distance, position-space cutoff.) The results are the average of

600 configurations separated by 10 time units, with valence quark masses ml = 0.01 and

ms = 0.032. The resulting pion and kaon masses are mπ = 0.2431(8) and mK = 0.3252(7)

respectively. The π0 state is the only intermediate state lying below the kaon mass for these

kinematics.

Quadratic divergence at short distance

In Eq. 3.7, we can see that the integrated correlator depends only on the separation between

ta and tb which we defined earlier as T = tb − ta + 1, the number of discrete times lying in

the interval [ta, tb]. For a given value of T , all (ta, tb = ta+T −1) pairs which lie in the range

[5, 22] are possible choices of this integration interval. We calculate all of them and use the

averaged result after normalization as the final definition of integrated correlator:

A(T ; ti, tf ) =
1

19− T

eMK(tf−ti)

N2
K

23−T∑

ta=5

A(ta, tb = ta + T − 1; ti, tf ). (5.4)

In the top panel of Fig. 14, we plot the integrated correlator as a function of the integration

time interval T . Here the valence charm quark is not included, so there is no GIM can-

cellation. There are two curves in this plot: the red squares correspond to the integrated

correlator defined in Eq. 5.4, the blue diamonds represent the results after the exponentially

growing π0 term is removed. The π0 contribution to the integrated correlator can be de-

termined using Eq. 3.7, where the 〈π0|HW |K0〉 matrix element is determined from a three

point correlator calculation. Note that only the exponentially growing π0 term and a con-

stant term coming from the π0 are removed; the π0 contribution to the term proportional to
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T is retained as required by Eq. 3.7. The top plot suggests that the exponentially growing

π0 term is only a small part of the result. This can be explained as follows. The integrated

correlator receives contributions from all possible intermediate states. The short distance

part, which comes from heavy intermediate states, is expected to be power divergent. The

π0 contribution, which is long distance physics, contains no such divergence and is small

compared to the divergent short distance part even though it is exponentially growing with

T .

To investigate the divergent character of short distance part in detail, we introduce an

artificial position-space cutoff radius R. When we perform the double integration, we require

the space-time separation between the positions of the two operators to be larger than or

equal to this cutoff radius:
√

(t2 − t1)2 + (~x2 − ~x1)2 ≥ R (5.5)

The bottom plot in Fig. 14 presents the result with a cutoff radius of 5. Comparing this plot

with the left plot, we can see that the amplitude of the integrated correlator is reduced by a

factor of approximately 10 and the exponentially growing π0 term is now a very important

part of the result which significantly changes the behavior of the correlator at long distance.

All these observations suggest that the short distance contribution is substantially reduced

after we impose the cutoff. We can also plot the mass difference ∆MK as a function of this

cutoff radius R. The mass difference on a finite lattice is defined in Eq. 3.8. However, we

consider only the operator Q1 here, so we define:

∆M11
K = 2

∑

n 6=n0

〈K0|Quu
1 |n〉〈n|Quu

1 |K0〉
MK − En

, (5.6)

where the superscript 11 means both operators are Q1. This quantity is given by the slope

of the coefficient of linear term in Eq. 3.7 when T is sufficiently large that the exponentially

falling terms can be neglected. We choose to fit the slope of the integrated correlator in the

range 9 ≤ T ≤ 18. In Fig. 15 we show the dependence of ∆M11
K on the cutoff radius R. The
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blue curve is a naive uncorrelated two parameter fit:

∆M11
K (R) =

b

R2
+ c , (5.7)

where b and c are constants. The fitting result shows a convincing, power divergent short

distance contribution.

Valence charm quark and GIM cancellation

The short distance contribution in a lattice calculation is necessarily unphysical, principally

determined by the lattice cutoff. To control these short distance effects, we introduce a

valence charm quark. The resulting GIM mechanism will then substantially reduce the

short distance contribution. The implementation of the GIM cancellation in this calculation

is quite straightforward. We simply replace the two internal up quark propagators in the

contractions with the appropriate difference between up quark and charm quark propagators.

We use six different valence charm quark masses which are given in Tab. 3. In Fig. 16 we

plot the integrated Q1 ·Q1 correlator after GIM cancellation with a 863 MeV valence charm

quark mass. We can compare this plot with those in Fig. 14. The behavior of the integrated

correlator after GIM cancellation is quite similar to the result after introducing the artificial

position-space cutoff. The GIM cancellation reduces the amplitude by approximately a factor

of 10. Thus, as expected, the short distance contribution is substantially reduced by the GIM

mechanism.

In Fig. 17, we plot the mass difference for different valence charm masses. The definition

of the mass difference ∆M11
K is similar to that given in Eq. 5.6, but the GIM cancellation

is now included. The mass difference is obtained from the slope in T of the integrated

correlator using the fitting range T ∈ [9, 18]. The values of ∆M11
K are listed in the Tab. 6.

The plot shows that the mass difference increases as the charm quark mass increases. This

is expected since the cancellation between the up and charm quark propagators will be more

complete for a lighter charm quark.
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5.3 Long Distance Contribution

In this section we will examine the long distance contribution to our calculation of ∆MK

in detail. As we have discussed in Sec. 3.1, the intermediate states lying below the kaon

mass will contribute terms which grow exponentially as the time interval T , over which the

bi-local, second order weak interaction operators are integrated, is increased. These terms

do not contribute to the physical mass difference ∆MK and must be identified and removed.

For physical quark masses such states include the vacuum, π0, π-π and three π states. There

is no vacuum state contribution in this work and for our kinematics the kaon mass is below

the three-pion threshold. Thus, in the present calculation we are most interested in the π0

and π-π intermediate states. The different parity of these two states allows us to study their

contributions separately. Each left-left, ∆S = 1 four quark operator can be separated into

parity conserving and violating parts:

LL = (V V + AA)− (V A+ AV ). (5.8)

The product of the two left-left operators can then be written as the sum of four terms:

LL⊗ LL = (V V + AA)⊗ (V V + AA) + (V A+ AV )⊗ (V A+ AV )

− (V V + AA)⊗ (V A+ AV )− (V A+ AV )⊗ (V V + AA).
(5.9)

The third and fourth terms of Eq. 5.9 change the parity and hence cannot contribute to

the matrix element between K0 and K0 states. In the first term on the right-hand side of

Eq. 5.9 both operators are parity conserving, which implies that the intermediate state must

have odd parity. In the second term, both operators are parity violating, so the intermediate

states have even parity. We can distinguish these two contributions and investigate the π0

(parity odd) and π-π (parity even) intermediate states separately.

The integrated correlator receives contributions from both short and long distances.

Therefore, in this section we examine the unintegrated correlators in Eq. 3.4, where we

can explicitly study the case of large time separation between the two ∆S = 1 operators.
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The results presented in this section are for an average of 800 configurations separated by

10 time units, with a valence light quark mass ml = 0.01 which corresponds to a pion mass

mπ = 0.2431(8) and eight valence strange quark masses whose values together with the

corresponding kaon masses are given in Tab. 4.

Parity-odd channel

For this case, corresponding to the contribution of the first term in Eq. 5.9, both operators

are parity conserving which implies that all intermediate states have odd parity. As can

be seen from Eq. 3.5, in the limit of large time separation |t2 − t1| the contribution from

heavier states will decrease exponentially and only the lightest states will survive. For the

parity-odd case this lightest state is the π0 so that the unintegrated correlator becomes:

G(tf , t2, t1, ti) = N2
Ke

−MK(tf−ti)〈K0|HW |π0〉〈π0|HW |K0〉e−(Mπ−MK)|t2−t1|. (5.10)

The unintegrated correlator only depends on the time separation TH = t2 − t1 at given ti

and tf . For a given value of TH , all (t1, t1+TH) pairs in the range [5, 22] are possible choices.

We compute all of them, take their average and remove the normalization factor N2
K . The

result is the unintegrated correlator G(TH ; tf , ti):

G(TH ; tf , ti) =
1

tf − ti − 9− TH

eMK(tf−ti)

N2
K

tf−5−TH∑

t1=ti+5

G(tf , t2 = t1 + T, t1, ti) , (5.11)

where we have adopted the order t2 > t1 and imposed the restriction t1 ≥ ti + 5 and

tf − 5 ≥ t2.

We also compute the three point correlator needed to extract the matrix element 〈π0|Qi|K0〉.

We can then compare our lattice result for the unintegrated correlator given in Eq. 5.11 for

large TH with the contribution of a single π0 shown in Eq. 5.10. The single-pion matrix

elements are given in Tab. 7 for the set of 8 kaon masses. As we have explained in Sec. 5.1,

we use π0 = iūγ5u and only compute the first two diagrams shown in Fig. 11.
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In Figs. 18-20, we plot the unintegrated correlators and resulting effective masses for

the kaon mass MK = 0.4848(8). The three figures correspond to the different operator

combinations: Q1 · Q1, Q1 · Q2 and Q2 · Q2, respectively. In the plots of the unintegrated

correlators we show both original results and the results after the subtraction of the π0

contribution. This subtraction is done using the numerical results in Tab. 7. Since only

the π0 term should be present for large time separations, we expect that the results after

subtraction should be consistent with zero for large TH . In the effective mass plots, we

calculate the effective mass MX − MK from the unintegrated correlators, here MX is the

mass of the intermediate state. For this parity conserving case, the lightest state is the pion.

The “exact” Mπ −MK mass obtained from two point correlator calculation is shown in the

plots as a blue horizontal line which agrees well with the computed effective mass. Although

all three figures show the expected behavior, we find that the statistical errors seen for the

different operator combinations are quite different. The operator combination Q1 · Q1 has

the smallest errors while Q2 ·Q2 has the largest.

In Fig. 21, we plot the intermediate state masses obtained from unintegrated correlators

at eight different kaon masses for the Q1 · Q1 case. The mass MX − MK is obtained from

a two parameter exponential fit and compared with the difference of MK and Mπ obtained

directly from the two point correlators. The intermediate state mass agrees very well with

the single pion mass for all choices of kaon mass.

Parity even channel

In this section, we examine the case where parity violating operators appear at both vertices.

This requires that the intermediate states have even parity. The long distance behavior is

expected to be dominated by the two-pion intermediate state, which is the lightest parity-

even state.

In Figs. 22-24, we present the unintegrated correlators and the effective mass calculated
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from type 2 diagrams for the three different products of parity violating operators evaluated

at a kaon mass MK = 0.4848(4). This kaon mass is very close to the energy of two pions

at rest, so we expect to get a plateau at large time separation TH . However, our results

are extremely noisy at long distance and we are not able to identify such a plateau. This

large noise can be explained as follows. Although the signal should come from two-pion

intermediate states, we will also have noise, whose size can be estimated from the square of

the Green’s functions being studied. In this squared Green’s function the source and sink are

composed of the product of two parity-violating operators and two kaon sources and sinks.

Such a Green’s function will receive a contribution from a two-pion intermediate state. The

noise will fall with increasing separation |t2 − t1| between the weak operators as the square

root of this Green’s function, implying that this noise will behave as e−|t2−t1|mπ , dominating

the two-pion signal which falls more rapidly as e−|t2−t1|2mπ . Thus, the signal to noise ratio

will fall exponentially for large time separation. The situation here is very similar to what

is found for disconnected diagrams. This argument is consistent with our observation that

most of the noise comes from type 1 diagrams, because the topology of type 2 diagrams does

not allow a single-pion contribution to their noise. This argument is confirmed by plotting

the results from type 2 contractions only.

If we analyze the type 2 diagrams alone, and fit the resulting intermediate state masses

the results agree with the two-pion mass very well, as seen in the lower right panel of Fig. 25.

However, the effective mass obtained from type 2 diagrams alone are not physical. We do

not expect the effective mass shown in this last plot to be either the I = 0 or I = 2 finite

volume π − π energy. We view the agreement with 2mπ as coincidental.

5.4 The KL −KS Mass Difference from the 163 Lattice

We now combine the lattice correlators with the Wilson coefficients given in Tab. 2 and

determine the mass difference ∆MK in physical units. The mass difference ∆MK can be
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obtained by fitting the integrated correlator in the limit that the integration region [ta, tb]

becomes large. We fit the dependence of the integrated correlator on T = tb − ta + 1 to a

linear function over the range 9 ≤ tb− ta ≤ 18. In Figs. 26-32, we show the computed values

for the integrated correlator as a function of T and the corresponding effective slope plots

for each of the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2. The three straight lines

correspond to linear fits to the data points in the range [9, 18]. The χ2/d.o.f given in the

figure suggests that these fits describe the data well. Another method to check the quality

of these fits is to plot the effective slope in analogy to the effective mass plots used when

determining a mass from a correlation function. The effective slope at a given time T is

calculated using the difference between the data points at T − 1 and T + 1. The horizontal

lines with error bands give our final fitting results. The plateau at large T for these effective

slope plots again suggests that these linear fits describe the data well. In Tab. 8, we give

the lattice integrated correlators for ∆MK = 563 MeV. The fitting results for various kaon

masses are given in Tab. 9. The lattice mass differences given in these table have a common

factor 10−2 which is not shown. The errors given in the table are statistical only.

Although we have data for eight different kaon masses, we present results for only the

seven kaon masses ranging from 563 MeV to 1162 MeV. We do not give results for the lightest

kaon because it is degenerate with the pion while the standard formula for ∆MK , which we

are using, assumes that the K0 and K0 are the only coupled, single-particle, degenerate

states. While listed for completeness, the three heavier kaon masses of 918, 993 and 1162

MeV are more massive than the threshold two-pion intermediate state and will therefore

contain an unknown, exponentially growing contamination which we have been unable to

identify and remove.

Given our pion mass of 421 MeV, the two-pion intermediate state will be close to degener-

ate with the kaon for the MK = 839 MeV case. Were we to follow the prescription proposed

in Ref. [11] to control finite volume effects, we should choose this degenerate case and then
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remove completely the contribution of the degenerate, two-pion intermediate state, which

should appear in the integrated correlator with the time dependence (tb − ta)
2. However, as

explained earlier, we are not able to identify the two-pion intermediate state within errors.

This implies that the approximately on-shell, two-pion intermediate state contributes only a

small part to the mass difference in our calculation and should have a small effect, at least

on the results for 563 MeV ≤ MK ≤ 834 MeV.

5.5 Comparison with NLO Perturbative Calculation

A direct comparison between our results and the experimental value of ∆MK has limited

value because our kaon and pion masses are far from physical and we have not included

all diagrams. However, we can learn something about the degree to which the present

perturbative calculations describe ∆MK for our unphysical kinematics by comparing our

result with that obtained perturbatively by evaluating the perturbative formula at the kaon

and pion masses used in our present calculation. While there are now results for ∆MK

computed at NNLO given in Ref. [8], complete expressions for the results are not given in

that brief letter. Therefore, we choose to compare with the NLO result of Herrlich and

Nierste [25] for which complete information is available in published form. Since the full

results at NLO and NNLO orders differ by 36% at the physical point, the agreement with

our result should be only approximate and this use of the NLO result adequate for our

purpose. This comparison with NLO perturbation theory may also lessen the significance of

our omission of disconnected diagrams, which do not appear at NLO. We will compare this

NLO result, evaluated at our kinematics, with our lattice calculation carried out using 600

configurations at the unitary quark masses ml = 0.01 and ms = 0.032 (Mπ = 421 MeV and

MK = 563 MeV) for a series of valence charm quark masses.
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The mass difference in the perturbative calculation is given by:

∆MK =
G2

F

6π2
f 2
KB̂KMK(λ− λ3

2
)2η1(µc,mc(µc))m

2
c(µc), (5.12)

which can be obtained, for example, from Eq. (12.1) in Ref. [13]. Here λ is the sine of the

Cabibbo angle, one of the four Wolfenstein parameters entering the CKM matrix, µc is the

scale at which the four-flavor theory is matched to that with three flavors and the kaon

decay constant fK is defined using conventions which make its physical value equal to 155

MeV. The two non-perturbative parameters, the kaon decay constant fK and the kaon bag

parameter B̂K , evaluated in the renormalization group invariant (RGI) scheme, can also be

computed for the unphysical values of ml and ms listed above. For the present calculation

we find it convenient to directly compute the matrix element of the left-left operator:

〈OLL〉 = 〈K̄0|(s̄d)V−A(s̄d)V−A|K0〉, (5.13)

obtaining the value 0.00462(5) for ml = 0.01 and ms = 0.032. Here we use non-relativistic

normalization for the kaon states: 〈K(~p)|K(~p ′)〉 = δ3(~p − ~p ′). This lattice result can be

converted to the RGI scheme by multiplying by the factor:

ZRGI
V V+AA = ZRGI

BK
Z2

A, (5.14)

where ZRGI
BK = 1.27 and ZA = 0.7161 are taken from Ref. [26].

The expression for the mass difference then becomes:

∆MK =
G2

F

8π2
ZRGI

BK
Z2

A〈OLL〉(λ− λ3

2
)2η1 (µc,mc(µc))m

2
c(µc). (5.15)

Here the factors ZRGI
BK

Z2
A〈OLL〉 are lattice quantities determined for the kinematics studied

here while η1 is determined from the NLO perturbation theory calculation of Ref. [25],

summarized in Ref. [13]. Specifically, Eq. (5.15) corresponds to the term in Eq. (12.1) of

Ref. [13] containing η1. Note, the two right-most factors in Eq. (12.1) do not appear in our

Eq. (5.15) since they have been incorporated in B̂K , changing it to the RGI scheme. We



62

evaluate η1 using Eq. (12.31) of Ref. [13]. We now compare this perturbative result with

our non-perturbative, lattice calculation of the same box topology and for the same quark

masses.

In our lattice calculation, we determine ∆MK for a series of charm quark masses. We can

exploit this mass dependence to attempt to separate the complete lattice result into short

and long distance parts as follows. The dominant contribution to ∆MK is proportional to

the CKM matrix element product |VcdV
∗
cs|2 and for large mc grows as m2

c as is suggested

by the perturbative result in Eq. 5.15. As is also implied by that equation, additional

factors of ln(m2
c) will appear in higher order perturbation theory. If ∆MK is examined for

mc ≫ ΛQCD, in addition to such m2
c ln

n(m2
c) terms, we should also expect a constant piece,

coming from long distance effects in which the charm quark mass plays a negligible role,

with the remaining mass dependence behaving as 1/m2
c for large mc. As explained in the

discussion of the GIM subtraction in Sec 3.5, the charm quark mass enters only as m2
c which

implies there are no terms behaving as mc or 1/mc. Note, the non-zero density of Dirac

eigenvalues, ρ(λ) at zero eigenvalue λ = 0 would induce a non-perturbative, chiral symmetry

breaking mc term in the limit of small mc, but has no effect on the large mc limit being

considered here. This limit is determined only by the large λ behavior of ρ.

We use this large mc expansion to parameterize the dependence of ∆MK on mc by

adopting the ansatz:

∆MK(mc) = a+ bm2
c + cm2

c ln(mc), (5.16)

where we drop the possible 1/m2
c term. The quadratic plus quadratic times logarithmic

form of the terms with coefficients b and c can be found in the NLO perturbative expansion

Eq. (5.15) if we use a fixed value of µc as mc varies. Thus, the constants b and c are

determined by short distance physics, arising from length scales of order 1/mc and should

be accessible to a perturbation theory calculation. In contrast the a term involves non-

perturbative phenomena and long distances. The perturbative calculation also contains a
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long distance part which contributes to the constant a. However, this is suppressed by a

factor of (mud/mc)
2 which is at most 0.5% for our lightest charm quark mass.

In Fig. 33 we plot our results for ∆MK as a function of the charm quark mass as well as

the result from the fit to the ansatz given in Eq. (5.16). The upper solid curve shows the

entire fitting function given in Eq. (5.16) while the lower solid curve has the non-perturbative

terms proportional to a removed. A comparison of these two solid curves in Fig. 33 suggests

that for unphysically massive Mπ = 421 MeV and MK = 563 MeV and a charm quark mass

of 1.2 GeV, approximately 50% of ∆MK comes from long-distance effects.



Chapter 6

Results from the 243 × 64× 16 Lattice

In this chapter, we will give the results from the 243 × 64× 16 lattice ensemble. Section. 6.1

describes the details of the simulation. Section. 6.2 gives the mass difference calculated on

this lattice. In Section. 6.3, we discuss the contribution to the mass difference from the

different diagrams. In Section. 6.4, we discuss the effects of the scalar and pseudo-scalar

operators in our calculation.

6.1 Simulation Details

The 243 lattice ensemble is similar to the 163 lattice ensemble described in the last chapter

except for a larger volume and a lighter pion mass. The sea light and strange quark masses

are ml = 0.005 and ms = 0.04 respectively, corresponding to a 330 MeV pion mass and a

575 MeV kaon mass. A valence charm quark mass mc = 0.363 is used to implement GIM

cancellation, corresponding tomMS
c (2GeV) = 949. We use 800 configurations, each separated

by 10 time units.

We will refer to Fig. 4 to explain the setup of this calculation. All the diagrams are

included in this unitary calculation. For the kaon sources, we continue to use Coulomb-

gauge-fixed wall sources. However, unlike the 163 calculation, the locations of the two kaons

64
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are not fixed. All the diagrams are averaged over all time translations to increase statistics.

We also vary the separation between the two kaons in this calculation. This separation

should be sufficient large so that the interaction range is large enough to extract the mass

difference. Since we are not using periodic plus anti-periodic boundary condition here, this

separation should not be too large so that we don’t need to worry about the around-the-

world effects. In our calculation, we vary this separation from 24 lattice units to 31 lattice

units. The separation between the kaon sources and the effective Hamiltonian densities

should be sufficiently large to suppress the contribution from the excited kaons. We choose

this separation to be equal or larger than 6 lattice units in our calculation.

The evaluation of the four point correlators are explained in Section. 4.4. For type 1

and type 2 diagrams, 64 propagators are computed using a point source on each of the 64

time slices. For type 3 and type 4 diagrams, we use 64 random wall source propagators to

construct the quark loops. In order to reduce the noise coming from the random numbers,

we use 6 sets of random sources for each time slice, color and spin. For the light quark

propagators, which make up the most expensive part of this calculation, we calculate the

lowest 300 eigenvectors of the Dirac operator using the Lanczos method and get a factor of

8 speed up by using mix precision CG solver with low mode deflation. The parameters for

the Lanczos algorithm are given in Tab. 11. For the strange and charm quarks, we use the

mix precision CG solver. We use a 10−5 stopping condition for the inner single precision CG

solvers and use a 10−8 stopping condition for the outer CG solvers.

6.2 The KL −KS Mass Difference from the 243 Lattice

In this unitary calculation, the integrated correlators will receive exponentially increasing

contributions from both the π0 and vacuum intermediate states. We evaluate the matrix

element 〈π0|HW |K0〉 and subtract the single pion exponentially increasing term explicitly

from Eq.3.7. For the vacuum state, we add a pseudo-scalar density s̄γ5d to the weak Hamil-
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tonian to eliminate the matrix element 〈0|HW + c2s̄γ
5d|K0〉. The details of this subtraction

has been discussed in Section. 3.1. We also perform a subtraction for the exponentially

decreasing term from η state. We have a 624 MeV η meson mass in our calculation, which

is slightly heavier than the 575 MeV kaon mass. The exponential term from η state will

decreasing slowly and may contaminate the linear behavior at large T . So we subtract this

term by using the 〈η|HW |K0〉 matrix element calculated from three point correlators. This

has a less than 10% effect on the final result. The (ππ)I=0 state energy is 629 MeV for our

kinematics [27]. The exponential term from (ππ)I=0 state will also be decreasing slowly. We

are not able to subtract this term since we don’t have the date for the K → (ππ)I=0 matrix

element. This is a source of the systematic errors in our calculation. However, the χ2/d.o.f

values for our linear fits suggest this term gives small contribution.

In Fig. 34, we show the the integrated correlators and the corresponding effective mass

plots for the case in which the kaon sources are separated by 31 lattice units. The three curves

correspond to the three different operator combinations: Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2. The

numbers are bare lattice results without any Wilson coefficients or renormalization factors.

All the exponentially increasing terms have been removed from the correlators, so we expect

a linear behavior for sufficiently large T . When T becomes too large, the errors explode as

should be expected since the disconnected diagrams have an exponentially decreasing signal-

to-noise ratio. The straight lines correspond to linear fits to the data points in the range

[7, 20]. The χ2/d.o.f given in the figure suggest that these fits describe the data well. The

effective slope is calculated using a method different from the method in Section. 5.4. At a

given time T , the effective slope is calculated using a correlated linear fit to three data points

at T − 1, T and T + 1. For each operator combination we get good plateaus starting from

T = 7. In Tab. 12, we give the lattice integrated correlators without any Wilson coefficients

for the three operator products. The fitting results for the mass differences are given in

Tab. 13. We give both the bare lattice numbers without Wilson coefficients and the physical
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values with Wilson coefficients.

We have the results for the integrated correlators for two kaon separation ∆KK from

24 lattice units to 31 lattice units. In Tab. 14, we give the fitting results from difference

choices of ∆KK. We choose a minimum fitting time Tmin = 7 for all the fits. The fitting

results from different choices of ∆KK have similar central values and error-bars. The error-

weighted-average given in the last row suggest that combining these results dose not improve

the errors. Hence we conclude that these results are highly correlated and we will not benefit

from a combined analysis. So we will focus on the ∆KK = 31 case in the following analysis.

We have also tried different fitting ranges to make sure that our results do not depend

sensitively on these choices. We varied two parameters: the lower limit on the linear fitting

range Tmin and the minimum separation between the kaon sources and weak Hamiltonians

∆min. We first fixed ∆K = 6 and varied Tmin from 7 to 9. The results are given in Table. 15.

While the central value of the fitting results are quite stable, the errors are sensitive to

the choice of Tmin, which is caused by the exponentially decreasing signal-to-noise ratio of

disconnected diagrams. We vary ∆min to check whether or not there are contaminations

from excited kaon states. We give the results in Table. 16 for fixed Tmin = 7 but with ∆min

varying from 6 to 8. Both the central values and the errors are very stable, suggesting that

a separation of 6 is large enough to suppress excited kaon states.

6.3 Contributions from Different Diagrams

In our 163 calculation, only the first two types of diagrams were included in the calculation.

We can now determine the accuracy of this approximation by calculating the contribution

from each type of diagrams separately. The subtraction of π0 exponentially increasing term

will become more complicated if we analyze different types of diagrams separately. We

perform a subtraction for each type of diagrams separately following a procedure similar

to our previous work [?]. For the vacuum state, we don’t have such complication since the



68

vacuum state contribution only comes from type 4 diagrams. Adding a s̄γ5d term will remove

the exponentially increasing term for type 4 diagrams and will not cause any other problem.

We perform a subtraction for the slow decaying term from η state in the full analysis. In

a separate analysis, we are not able to separate the η contribution into different types of

diagram in a reasonable way. So we don’t perform any subtraction for η state here.

In Fig. 35-38, we give the integrated correlators and the corresponding diagrams for the

four different types of diagrams. For type 1 and type 4 diagrams, we obtain good linear

behavior at the large T range and the χ2/d.o.f are also close to 1. Although the integrated

correlators for type 2 diagrams appears to be very linear, the χ2/d.o.f values are very large.

For type 3 diagrams, the effective slope plots suggest that there are some non-linear behavior

at large T . This unexpected behavior can be caused by excited kaon states. We can increase

∆min to suppress the contribution from excited kaon states. In Fig. 39-42, we give the results

for the choice of ∆min = 8. The effective slopes from the type 3 diagrams do become better.

The large χ2/d.o.f for type 2 diagrams improve but are still not perfect. We should keep in

mind that the results from each individual type of diagram are not physical and we are not

guaranteed to obtain a linear behavior for each type of diagram separately.

In Tab. 17, we give ∆MK from different types of diagrams. We choose ∆min = 8 for

all the fittings. If we focus on the final results for ∆MK , the contribution from type 1 and

type 3 diagrams are relatively small. There is a large cancellation between the disconnected

(type 4) diagrams and other type of diagrams. The mass difference is reduced by almost

a factor of two after the inclusion of the disconnected diagrams. This is a surprisingly

large failure of the“OZI suppression” [21, 22, 23], naively expected for these disconnected

diagrams. Although this result may be surprising, we should always keep in mind that the

mass difference from individual types of diagrams is not a physical quantity and we should

not put too much emphasis on these results.



69

6.4 Effects of Scalar and Pseudoscalar Operators

In this calculation, we remove the π0 exponentially increasing term explicitly and add a

pseudoscalar density to the Hamiltonian to eliminate the vacuum states. We can also add

a scalar density to the Hamiltonian to eliminate the π0 state so that we do not need to

perform the subtraction. In Section. 3.1, we claim that adding these operators will not

change the final results. We will examine the effects of the scalar and the pseudo-scalar

operators numerically in this section.

We can rewrite the Hamiltonian in Eq. 3.11 as:

H ′
W = HW + cscπs̄d+ cpcvacs̄γ

5d, (6.1)

where cπ and cvac are defined in Eq. 3.15 and cs and cp are dimensionless numbers. In Sec. 6.2,

we choose cs = 0 and cp = 1. If we choose other value for cs and cp, the resulting exponentially

increasing terms can be determined and subtracted by using the matrix elements 〈π0|H ′
W |K0〉

and 〈0|H ′
W |K0〉. In the next few paragraphs, we will vary cs and cp and determine whether

or not the mass difference will depend on the choice of these values.

We will first vary the value of cs while the value of cp is fixed to 1. Generally, the mass

differences can have both linear and quadratic dependence on cs. The linear dependence

comes from the operator products Qi · s̄d and the quadratic dependence comes from the

operator product s̄d · s̄d. In Fig. 43, we give the integrated correlator for these operator

products. We expect these plots have a zero slope at large T range since s̄d operator should

not contribute to the mass difference. The results are within our expectation.

In Figure. 47, the mass differences are plotted for cs value from -1 to 1. The plots for the

integrated correlators and the corresponding effective slope plots for cs = 1 and cs = −1 are

given in Figs. 44-45. We can also tune the value of cs to eliminate the η intermediate state.

The corresponding results are given in Fig.46. In Tab. 18, we give the mass differences for

various choices of cs. We conclude that the mass differences are independent of the choices
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of the value of cs.

Next we will vary the value of cp while the value of cs is fixed to 0. The first difficulty

here is the subtraction of the exponentially increasing term coming from the vacuum state

when cp 6= 1. This term is two orders of magnitude larger than the linear term if we choose

cp = 0. For the subtraction of the π0 exponentially increasing term, we use the formula given

in Eq. 3.7. However, this formula uses a second order integration instead of a second order

sum. The more precise formula for the vacuum exponential term is given by:

N2
Ke

−MK(tf−ti)〈K0|HW |0〉〈0|HW |K0〉 eMKT − 1

4Sinh2(MK/2)
. (6.2)

Comparing with Eq. 3.7, the M2
K in the denominator is changed to 4sinh2(MK/2), which is

a O(a2) correction. For MK = 0.3325, there is a 1% differnce between these two formula.

Since we are trying to subtract a term which is two orders of magnitude larger than the

signal, this is a necessary correction here.

In the first plot in Fig. 48, we give the integrated correlator for cp = 0, cs = 1 and ∆min =

6. We can see that the integrated correlators at large T are not linear. A possible cause of

this behavior is a contribution from excited kaon states. Our signal is supposed to behave as

e−MK(tf−ti). The exponentially increasing vacuum term receives its largest contribution when

the vacuum travels the entire interaction range T and behaves like e−MK(tf−ti−T ). This is

emKT larger than the signal and needs to be removed. For the cp = 1 case, the vacuum state

will not couple to kaon ground state and the contribution from the excited kaon state K∗

behaves as e−MK∗ (tf−ti−T ). We have repeated the calculation for different values of tf − ti−T

and the results are consistent. So the excited kaon state is likely not important if cp = 1.

However, if we consider cp = 0, we can have a kaon on onside and an excited kaon on the

other side. The excited kaon contribution will behave like e−MK(tf−ti−T )/2e−MK∗ (tf−ti−T )/2,

which for large T grows exponentially larger than the signal which behaves as e−mK(tf−ti)

and may obscure the expected linear large T behavior.

In the second plot in Fig. 48, we increase ∆min from 6 to 10. Although the integrated
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correlator appears to be better, the results are actually not changed much if we just compare

the integrated correlator in the time interval [7, 12]. This is confirmed by the fitting results

given in Tab. 19. The results we get for two ∆min values are consistent and are quite different

from the mass difference from cp = 1 data. This difference is likely due to some uncontrolled

systematic effects introduced when we try to remove the exponentially increasing term from

the cp = 0 data. In Tab. 20, we can see that the mass difference comes from the vacuum

state when is 10 times larger than the final mass difference. This large contribution is

mostly non-physical and coming from the mixing between the Hamiltonian and the s̄γ5d

operator. If we can control every aspect of this calculation, this large contribution will be

canceled by other unphysical contributions and the final results should be consistent with

cp = 1 results. However, it seems that we can only remove the vacuum contribution to 10%

precision and hence the mass difference for cp = 0 case is completely different from the cp = 1

results. In Fig. 49, we give the mass difference for different values of cp while cs is fixed to

1. The mass difference will change rapidly when cp deviates from 1. ∆M11’s dependence

on cp is mild while ∆M22’s dependence is the strongest among the three operator products.

This is consistent with the fact that the contribution to ∆M22 from the vacuum state is 30

times larger than the vacuum contribution to ∆M11. So we conclude that there are some

uncontrolled systematic effect from the subtraction of vacuum states and we are not able to

obtain a reliable value for ∆MK if cp is too far away from 1. If we choose cp = 1, there will

be no contribution from vacuum states and we will not have this trouble.



Chapter 7

Conclusions

In the previous two chapters, we showed detailed results for ∆MK from a 163 × 32 × 16

lattice ensemble and a 243 × 64× 16 lattice ensemble. These calculations are all done with

a heavy pion mass and with a quenched charm quark on a relatively coarse lattice. We also

neglect the type 3 and 4 diagrams in the 163 lattice calculation. However, as a pioneering

calculation on this difficult problem with four-point correlators and disconnected diagrams,

our results have shown the success for application of the lattice QCD as a first-principal

method to compute a second-order weak processes.

In the 243 full calculation, we compute ∆MK for a case of unphysical kinematics with

pion, kaon and charmed quark masses of 330, 575 and 949 MeV respectively, each quite

different from their physical values of 135, 495 and 1100 MeV. Our results is:

∆MK = 3.19(41)(96)× 10−12MeV. (7.1)

Here the first error is statistical and the second an estimate of largest systematic error, the

discretization error which results from including a 949 MeV charm quark in a calculation

using an inverse lattice spacing 1/a = 1.73 GeV. This 30% estimate for the discretization

error can be obtained either by simple power counting, (mca)
2 = 30%, or from the failure of

the calculated energy of the ηc meson to satisfy the relativistic dispersion relation. We find

72
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(E2(p) −m2)/p2 = 0.740(3) instead of 1.0 when evaluated at p = 2π/L. Our result agrees

well with the experimental value of 3.483(6)× 10−12 MeV. However, since we are not using

physical kinematics, this agreement could be easily fortuitous.

One further potential difficulty which should be discussed associated with our inclusion

of a heavy charm quark is a phenomena particular to the domain wall fermion formalism.

When the input lattice quark mass,mf , becomes large, about 0.4 or larger in lattice units, the

eigenvalues of the physical, 4-dimensional modes become as large as the smallest eigenvalues

of unphysical, 5-dimensional modes [28, 29]. These 5-dimensional modes could add a further,

unphysical contribution to the GIM cancellation. We have examined the propagator for the

ηc state and determined that our value of mf = 0.363 lies slightly below the threshold at

which there is significant coupling to these bulk, 5-dimensional states.

This is illustrated in Fig. 50, where we show fqq as a function of mf . The quanity

fqq is the product of the pseudoscalar decay constant and the normalization factor for the

gauge fixed wall source. Here one sees a monotonic increase in fqq as mf increases up to a

value of mf ≈ 0.4, above which fqq turns over and decreases with increasing mf , suggesting

the appearance of propagating 5-dimensional modes, which necessarily have a substantially

reduced coupling to operators with support on the 4-dimensional s = 0 and s = Ls−1 walls.

A significant contribution from such unphysical, 5-dimension modes would add further lattice

artifacts to the GIM cancellation that controls the largest component of ∆MK . One of the

benefits of carrying out future calculations at smaller lattice spacing will be the further

reduction of the possibility of such contributions.

The disconnected diagrams contribute a large amount to our result for ∆MK . This

is a surprising result and suggests the failure of “OZI suppression” in the KL − KS mass

difference. The OZI rule argues that the disconnect diagrams are connected by hard gluons

and hence suppressed by a small gauge field coupling constant. However, there is no strict

theoretical basis for this rule. We view our result as strong evidence that the OZI rule is not
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solid and may be unreliable in some cases.

To perform a calculation with physical kinematics and controlled systematic errors, two

difficulties must be overcome. First, we need to perform the calculation on a four-flavor lat-

tice ensemble with two or more, smaller lattice spacings. This would remove the difficult-to-

estimate error associated with quenching the charm quark and allow the O(m2
ca

2) discretiza-

tion errors to be removed. Second, we must perform a finite volume correction associated

with π − π re-scattering which will be needed for physical kinematics, when the two-pion

threshold lies below the kaon mass. In this case, ∆MK in infinite volume contains the prin-

cipal part of the integral over the two-pion relative momentum, which can be substantially

different from a finite-volume momentum sum. A generalization of the Lellouch-Luscher

method has been devised to correct this potentially large finite volume effect [11] and a more

general method has been proposed in Ref. [30].

Similar techniques can be used to determine the long distance contribution to ǫK . How-

ever, the calculation of ǫK involves two additional complexities described in Appendix A

of Ref. [31]. First, we must introduce new QCD penguin operators representing top quark

effects. Second, an overall, logarithmic divergence must be removed from the lattice cal-

culation using non-perturbative methods. In summary, a full calculation of ∆MK and ǫK ,

including their long distance contributions, should be accessible to lattice QCD with con-

trolled systematic errors within a few years, substantially increasing the importance of these

quantities in the search for new phenomena beyond the standard model.



Appendix A

K0-K
0
Mixing Contractions

As we discussed in Section 3.2, there are 16 contractions in total that are shown in Figure 5-8

and we label them with numbers from 1 to 16. We have explicitly explained a few examples

already. In this appendix, we write down the specific expressions for all the diagrams. For

simplicity, we only give the contractions for the case that both internal quarks are up quarks,

the other cases are very similar. It is convenient to define the following quantities:

LW1X =γµ(1− γ5)LW (x, ti)

SW1X =γ5γ5SW †(x, ti)γ
5

SW1Y =γ5γ5SW †(y, ti)γ
5

LW2Y =γν(1− γ5)LW (y, tf )

SW2X =γ5γ5SW †(x, tf )

SW2Y =γ5γ5SW †(y, tf )

LXY =γµ(1− γ5)L(x, y)

LYX =γν(1− γ5)L(y, x)

LOOP1 =LRW(x, tx)η
†(x)

LOOP2 = LRW(y, ty)η
†(y)
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In these expressions, L(x, y) is a point source propagator from y to x. LW (x, t) is a light

quark propagator with Coulomb gauge fixed wall source at time t and sink at space-time

position x. SW (x, t) is similar but for strange quark. LRW(x, t) is a light quark propagator

with Coulomb gauge fixed wall source at time t and sink at space-time position x. With

these definitions, the contractions 1©- 16© can be written down easily.

1© =Tr(LW1X · SW1X)Tr(LXY · LYX)Tr(LW2Y · SW2Y)

2© =Tr(LW1X · SW1X · LXY · LW2Y · SW2Y · LYX)

3© =Tr(LW1X · SW1X · LXY · LYX)Tr(LW2Y · SW2Y)

4© =Tr(LW1X · SW1X)Tr(LYX · LXY · LW2Y · SW2Y)

5© =Tr(LW1X · SW2Y · LW2Y · SW2X)Tr(LXY · LYX)

6© =Tr(LW1X · SW2Y · LYX)Tr(LXY · LW2Y · SW2X)

7© =Tr(LW1X · SW2Y · LW2Y · SW2X · LXY · LYX)

8© =Tr(LW1X · SW2Y · LYX · LXY · LW2Y · SW2X)

9© =Tr(LW1X · SW2Y · LW2Y · SW2X)Tr(LOOP1)Tr(LOOP2)

10© =Tr(LW1X · SW2Y · LOOP2 · LW2Y · SW2X · LOOP1)

11© =Tr(LW1X · SW2Y · LW2Y · SW2X · LOOP1)Tr(LOOP2)

12© =Tr(LW1X · SW2Y · LOOP2 · LW2Y · SW2X)Tr(LOOP1)

13© =Tr(LW1X · SW1X)Tr(LOOP1)Tr(LW2Y · SW2Y)Tr(LOOP2)

14© =Tr(LW1X · SW1X · LOOP1)Tr(LW2Y · SW2Y · LOOP2)

15© =Tr(LW1X · SW1X · LOOP1)Tr(LW2Y · SW2Y)Tr(LOOP2)

16© =Tr(LW1X · SW1X)Tr(LOOP1)Tr(LW2Y · SW2Y · LOOP2)
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Table 1: The values of the parameters used in the calculation of Wilson coefficients.

αs(mZ) 0.1184

mZ 91.1876 GeV

mW 80.399 GeV

mb(mb) 4.19 GeV

mc(mc) 1.27 GeV

Table 2: The Wilson coefficients, the RI → MS matching matrix, the non-perturbative

lat → RI operator renormalization matrix and their final product, all at a scale µ = 2.15

GeV shown in columns one through four respectively.

CMS
1 CMS

2 ∆r11 = ∆r22 ∆r12 = ∆r21 Z11 = Z22 Z12 = Z21 C lat
1 C lat

2

-0.2967 1.1385 -6.562× 10−2 7.521× 10−3 0.5916 -0.05901 -0.2216 0.6439

Table 3: Valence charm quark masses used to implement the GIM cancellation on the 163

lattice. The upper row gives the bare masses in lattice units. The lower row contains the

MS masses at a scale of 2 GeV.

mc 0.132 0.165 0.198 0.231 0.264 0.330

mc (MeV) 350 435 521 606 692 863
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Table 4: Valence strange quark mass (upper row) and kaon mass (lower row) on the 163

lattice, both in lattice units.

ms 0.01 0.032 0.06 0.075 0.09 0.11 0.13 0.18

MK 0.2431(8) 0.3252(7) 0.4087(7) 0.4480(7) 0.4848(8) 0.5307(8) 0.5738(8) 0.6721(10)

Table 5: The values of the parameters used in the EigCG algorithm on the 163 lattice. The

meaning of these parameters are given in Ref. [1, 2].

nev 8

m 24

max def len 100

max eig cut 1

restart 10−5

Table 6: The mass difference ∆M11
K , defined in Eq. (5.6) after GIM cancellation, evaluated

for different charm quark masses. These results were obtained on the 163 lattice, use 600

configurations and a kaon mass of 563 MeV and are the matrix elements of bare lattice

operators without Wilson coefficients or renormalization factors.

mc (MeV) 350 435 521 606 692 863

∆M11,GIM
K 0.0452(13) 0.0481(14) 0.0511(15) 0.0542(15) 0.0575(16) 0.0647(18)
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Table 7: Results for single-pion matrix elements, 〈π0|Qi|K0〉, at various kaon masses on the

163 lattice. We use π0 = iūγ5u and only include the first two diagrams in Fig. 11.

MK 〈π0|Quu
1 |K0〉 〈π0|Quu

2 |K0〉

0.2431(8) 0.02107(29) -0.00779(26)

0.3252(7) 0.02729(30) -0.00954(23)

0.4087(7) 0.03300(33) -0.01067(22)

0.4480(7) 0.03550(35) -0.01103(22)

0.4848(8) 0.03773(36) -0.01128(22)

0.5307(8) 0.04037(39) -0.01149(22)

0.5738(8) 0.04271(42) -0.01160(23)

0.6721(10) 0.04753(49) -0.01156(25)
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Table 8: Results for the integrated correlators for Mk = 563 MeV and mc = 863 MeV on

the 163 lattice. The quantities in columns two through four are the simple lattice integrated

correlators of the operator products Qqq′

i Qq′q
j for each i, j = 1, 2, summed over the four values

of q, q′ = u, c, without Wilson coefficients or renormalization factors and have been scaled

to remove a factor 10−2.

T Q1 ·Q1 Q1 ·Q2 Q2 ·Q2

1 -1.422(26) 0.662(23) -0.1641(68)

2 -3.604(66) 1.450(51) -0.474(20)

3 -6.23(12) 2.401(87) -0.937(39)

4 -9.13(17) 3.48(13) -1.514(66)

5 -12.18(24) 4.67(18) -2.172(97)

6 -15.31(30) 5.93(23) -2.89(12)

7 -18.49(36) 7.22(29) -3.63(16)

8 -21.69(43) 8.54(35) -4.40(20)

9 -24.88(49) 9.84(41) -5.18(24)

10 -28.07(56) 11.14(49) -5.97(28)

11 -31.24(62) 12.39(58) -6.74(32)

12 -34.42(69) 13.62(68) -7.49(36)

13 -37.61(75) 14.88(79) -8.24(41)

14 -40.79(82) 16.11(91) -8.96(46)

15 -43.95(90) 17.3(10) -9.65(51)

16 -47.07(99) 18.5(12) -10.32(57)

17 -50.2(11) 19.6(14) -10.97(64)

18 -53.3(12) 20.7(16) -11.63(70)
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Table 9: The contribution of the three operator products evaluated here to the mass differ-

ence ∆MK for the seven different choices of the kaon mass listed in the first column in MeV.

The quantities in columns two through four are the simple lattice matrix elements of the

operator products Qqq′

i Qq′q
j for each i, j = 1, 2, summed over the four values of q, q′ = u, c,

without Wilson coefficients or renormalization factors and have been scaled to remove a

factor 10−2. These results are obtained from a fitting range [9,18]. The final column gives

the complete contribution to ∆MK , expressed in physical units. The results for the three

largest values of the kaon mass are contaminated by an unknown, exponentially growing

two-pion contribution which we have been unable to identify and subtract but are given here

for completeness. These results come from the 163 lattice and use 800 configurations and a

charm quark mass of 863 MeV.

MK (MeV) ∆M11
K ∆M12

K ∆M22
K ∆MK (×10−12 MeV)

563 6.42(15) -2.77(16) 1.56(9) 6.58(30)

707 8.94(23) -3.16(27) 2.26(14) 8.85(48)

775 10.65(29) -3.49(35) 2.67(18) 10.32(62)

834 12.55(37) -3.84(46) 3.11(24) 11.89(81)

918 15.36(50) -4.34(66) 3.75(34) 14.20(115)

993 18.51(69) -4.91(93) 4.49(48) 16.83(164)

1162 28.23(154) -6.97(220) 6.99(112) 25.58(382)
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Table 10: The quantity ∆MK for various charm quark masses and MK = 563 MeV on

the 163 lattice. Here the charm quark mass is given in the MS scheme at a scale µ = 2

GeV. The third and fourth columns give the lattice results and NLO perturbation result

respectively. For the perturbative result, the matching between four and three flavors is

done at µc = mc(mc). The second column contains the values of (mca)
2 as an indication of

the size of finite lattice spacing errors which may corrupt the comparison between the lattice

and NLO perturbative results.

mc (MeV) (mca)
2 ∆MK (10−15 GeV) ∆MNLO

K (10−15 GeV)

350 0.04 4.76(27) 3.24

435 0.06 5.06(29) 2.82

521 0.09 5.36(31) 2.63

606 0.12 5.66(32) 2.56

692 0.16 5.96(33) 2.56

863 0.25 6.58(35) 2.68

1086 0.39 7.37(38) 2.99

1449 0.70 8.61(41) 3.67
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Table 11: The values of the parameters used in the Lanczos algorithm on the 243 lattice.

The meaning of these parameters are given in Ref. [3].

Mass 0.005

Stop rsd 10−9

QR rsd 10−14

Operator D†D

Precondition 1

K 305

M 340

Neig 300

npoly 100

α 5.5

β 0.12

µ 0
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Table 12: Results for the integrated correlators on the 243 lattice. The kaon sources are

separated by 31 lattice units. The quantities in columns two through four are the simple

lattice integrated correlators of the operator products Qqq′

i Qq′q
j for each i, j = 1, 2, summed

over the four values of q, q′ = u, c, without Wilson coefficients or renormalization factors and

have been scaled to remove a factor 10−4.

T Q1 ·Q1 Q1 ·Q2 Q2 ·Q2

1 0.14(20) -0.220(93) -0.188(5)

2 -0.44(40) -0.50(19) -0.496(14)

3 -1.37(60) -0.77(28) -0.921(27)

4 -2.51(80) -0.99(38) -1.438(46)

5 -3.73(99) -1.18(49) -2.017(71)

6 -5.0(12) -1.34(60) -2.64(10)

7 -6.3(14) -1.48(72) -3.28(15)

8 -7.6(16) -1.66(86) -3.92(21)

9 -8.8(18) -1.9(10) -4.57(29)

10 -10.1(20) -2.1(12) -5.21(40)

11 -11.3(23) -2.4(15) -5.85(54)

12 -12.5(25) -2.8(18) -6.46(73)

13 -13.5(28) -3.5(22) -6.99(99)

14 -14.4(31) -4.4(28) -7.43(135)

15 -14.9(35) -5.7(35) -7.7(18)

16 -15.4(40) -6.7(46) -8.2(25)

17 -15.1(47) -8.0(61) -8.7(35)

18 -14.5(56) -8.4(81) -9.5(47)

19 -14.1(69) -7.4(107) -10.7(65)

20 -13.8(87) -5.1(143) -13.3(90)
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Table 13: Results for the mass difference for each of the three operator products on the 243

lattice. The kaon sources are separated by 31 lattice units. These results are obtained from

a fitting range [7,20]. The quantities in the second row are bare lattice numbers without any

Wilson coefficients and have been scaled to remove a factor of 10−4. The third row gives the

corresponding physical values with Wilson coefficients in units of 10−15 GeV.

Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

Lattice value 2.71(42) 0.24(25) 1.278(88)

Physical value 0.68(10) -0.18(18) 2.69(19) 3.19(41)

Table 14: Results for the mass difference from each of the three operator products for different

choices of ∆KK , which is the separation between the two kaon sources. In the last row, we

give the error-weighted-average (EWR) of these fitting results. These results are obtained

on the 243 lattice. All the masses are in units of 10−15 GeV.

∆KK Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

24 0.68(10) -0.21(17) 2.59(17) 3.06(38)

25 0.67(10) -0.24(17) 2.63(17) 3.06(39)

26 0.68(10) -0.19(17) 2.63(17) 3.11(39)

27 0.69(10) -0.12(17) 2.75(18) 3.32(39)

28 0.68(10) -0.17(17) 2.62(18) 3.13(40)

29 0.68(10) -0.18(18) 2.62(18) 3.12(40)

30 0.68(10) -0.24(18) 2.62(18) 3.06(40)

31 0.68(10) -0.18(18) 2.69(19) 3.19(41)

EWR 0.68(10) -0.19(17) 2.64(17) 3.13(38)
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Table 15: Results for the mass difference from each of the three operator products for different

choices of Tmin, which is the minimum fitting time. We fix ∆min = 6, which is the minimum

separation between the kaon sources and the weak Hamiltonians. These results are obtained

on the 243 lattice. All the masses are in units of 10−15 GeV.

∆min Tmin Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

6

7 0.68(10) -0.18(18) 2.69(19) 3.19(41)

8 0.68(10) -0.11(20) 2.85(24) 3.42(48)

9 0.68(11) -0.18(25) 2.69(34) 3.18(63)

Table 16: Fitting results for the mass difference from each of the three operator products

for different choices of ∆min, which is the minimum separation between the kaon sources and

the weak Hamiltonians. The minimal fitting time Tmin is 7. These results are obtained on

the 243 lattice. All the masses are in units of 10−15 GeV.

Tmin ∆min Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

7

6 0.68(10) -0.18(18) 2.69(19) 3.19(41)

7 0.68(10) -0.20(18) 2.64(19) 3.13(41)

8 0.67(10) -0.19(18) 2.61(19) 3.09(41)

Table 17: Comparison of mass difference from different types of diagrams on the 243 lattice.

We choose ∆min = 8, which is the minimum separation between the kaon sources and the

weak Hamiltonians. These results are obtained on the 243 lattice. All the numbers here are

in units of 10−15 GeV.

Diagrams Fitting range Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

Type 1 [9,16] 1.330(7) 0.075(32) -0.978(58) 0.427(91)

Type 2 [12,16] 0.164(3) 1.600(24) 4.807(50) 6.572(75)

Type 3 [7,16] 0.009(3) 0.187(17) 0.619(32) 0.816(47)

Type 4 [7,16] -0.541(21) -1.77(10) -1.33(18) -3.64(29)
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Table 18: Comparison of mass difference for different values of cs. The value of cp is chosen

to be 1. cs and cp are defined in Eq. 6.1. The value of cs = −1.14(26) will eliminate the

η intermediate state. We choose ∆min = 6, which is the minimum separation between the

kaon sources and the weak Hamiltonians. The minimal fitting time Tmin is 7. These results

are obtained on the 243 lattice. All the numbers here are in units of 10−15 GeV.

cs Q1 ·Q1 Q1 ·Q2 Q2 ·Q2 ∆MK

-1 0.68(12) -0.20(21) 2.63(27) 3.12(40)

0 0.68(10) -0.18(18) 2.69(19) 3.19(41)

1 0.672(88) -0.15(28) 2.69(25) 3.21(59)

-1.14(26) 0.661(58) -0.14(19) 2.70(19) 3.22(40)

Table 19: The mass difference for cs = 1 and cp = 0. cs and cp are defined in Eq. 6.1. ∆min

is the minimum separation between the kaon sources and the weak Hamiltonians. These

results are obtained on the 243 lattice. All the numbers here are in units of 10−15 GeV.

∆min Fitting range ∆M11 ∆M12 ∆M22 ∆MK

6 [7,12] 0.56(10) -1.35(19) -0.79(23) -1.57(44)

10 [7,12] 0.55(11) -1.43(22) -0.78(32) -1.66(55)

Table 20: Contribution to the mass differences from the π0 and the vacuum states. We do

not add s̄d or s̄γ5d operators to the weak Hamiltonian while evaluating these values. These

results are obtained on the 243 lattice. All the numbers are in units of 10−15 GeV.

State ∆M11 ∆M12 ∆M22 ∆MK

π0 0.00609(15) -0.1258(13) 0.6498(41) 0.5301(47)

η 0.330(99) 0.07(14) 0.04(14) 0.40(23)

vacuum -0.863(40) -9.630(31) -26.866(78) -37.36(11)
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Figure 1: K0 −K
0
mixing in the standard model through the box diagram.
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Figure 2: Examples of diagrams contributing to the K0−K
0
mixing in the standard model.

The W bosons have been integrated out and the weak interaction is described by two local

four-quark ∆S = 1 operators.
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K0
K

0π0, η, η′

K0
K

0

π

π

(a). Single meson channel (b). Two pion channel

Figure 3: Example of long distance contributions to the K0-K
0
mixing process.
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K0†(ti) K

0
(tf)
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Figure 4: One type of diagram contributing to A in Eq. 3.6. Here t2 and t1 are integrated

over the time interval [ta, tb], represented by the shaded region.
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Figure 5: Diagrams for type 1 contractions. The two two-quark vertices associated with

the kaon sources correspond to a spinor product including a γ5 matrix. Each of the four

two-quark vertices associated with four quark operators correspond to a contraction of color

indices. The spinor products, which include the matrix γµ(1 − γ5), connect incoming and

outgoing quark lines which carry the same electric charge. Vertices where the quark lines

are joined in this fashion then have the color and spin contracted in the same pattern and

correspond to the operator Q1. Where the quark lines and corresponding color contractions

for quarks with different electric charges are joined, the operator Q2 appears.
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Figure 6: Diagrams for type 2 contractions. The conventions used here are the same as those

explained in the caption to Fig. 5.
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Figure 7: Diagrams for type 3 contractions. The conventions used here are the same as those

explained in the caption to Fig. 5.
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Figure 8: Diagrams for type 3 contractions. The conventions used here are the same as those

explained in the caption to Fig. 5.
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Figure 9: Diagrams for type 3-scalar contractions. The conventions used here are the same

as those explained in the caption to Fig. 5.
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Figure 10: Diagrams for type 4-scalar contractions. The conventions used here are the same

as those explained in the caption to Fig. 5.
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Figure 11: Diagrams contributing to the 〈0|K0(tK)O(tO)π
0(tπ|0〉 correlator. There will be a

γ5 insertion for the kaon and pion sources. Each of the two quark vertices associated with

the four quark operators include a γµ(1− γ5) insertion. The operator in the last diagram is

the scalar operator s̄d.
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Figure 12: Diagrams contributing to the 〈0|K0(tK)O(tO)|0〉 correlator. There will be a γ5

insertion for the kaon and pion sources. Each of the two quark vertices associated with the

four quark operators include a γµ(1− γ5) insertion. The operator represented by the vertex

on the right in the last diagram is the pseudoscalar operator s̄γ5d.
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Figure 13: A plot of the kaon effective mass found from the two point correlator between a

wall source and a wall-sink using ml = 0.01 and ms = 0.032 on the 163 lattice. The blue line

shows the result of a hyperbolic cosine fit to the correlator in the time interval [6, 26].
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(b)

Figure 14: The integrated correlator as a function of integration time interval T on the 163

lattice. (a) The original result without any artificial position-space cutoff; (b) The result

with a cutoff radius of 5. The red squares and blue diamonds are the results before and

after the subtraction of the exponentially growing π0 term, respectively. For both plots we

include only the operator combination Q1 ·Q1.
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Figure 15: The mass difference ∆M11
K defined in Eq. (5.6) for different values of the cutoff

radius R on the 163 lattice. The blue curve is the two parameter fit to a 1/R2 behavior as

defined in Eq. (5.7)
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Figure 16: The integrated correlator after GIM cancellation with a 0.863 GeV valence charm

quark on the 163 lattice. The red squares and blue diamonds are the results before and after

the subtraction of the exponentially increasing π0 term respectively. We include only the

Q1 ·Q1 operator combination in this plot.
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Figure 17: The mass difference ∆M11
K , defined in Eq. (5.6) after GIM cancellation as a

function of the valence charm quark mass. These results are obtained on the 163 lattice.
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Figure 18: A plot of the unintegrated correlator G and resulting effective mass for the

combination of operators Q1 ·Q1 and a kaon mass MK = 0.4848(8) on the 163 lattice. Only

the product of the parity even components of the two operators is included. In the left-hand

plot, the red diamonds and blue squares show the result before and after subtraction of the

π0 term. In the right-hand plot, the red diamonds are effective masses obtained from the

integrated correlator. The blue horizontal line shows the “exact” value of Mπ−MK obtained

from the two point correlator calculation.
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Figure 19: Plots of the unintegrated correlator G and corresponding effective mass for the

operator combination Q1 · Q2 at a kaon mass MK = 0.4848(8) on the 163 lattice. Only the

product of the parity even components of the two operators is included.
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Figure 20: Plots of the unintegrated correlator and corresponding effective mass for the

operator combination Q2 · Q2 at a kaon mass MK = 0.4848(8) on the 163 lattice. Only the

product of the parity even components of the two operators is included.
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Figure 21: Intermediate state masses determined for all eight kaon masses from the unin-

tegrated correlators of the parity even portion of the operators Q1 · Q1. The red diamonds

are the fitting results and should correspond to the difference MX −MK . The blue squares

are obtained from the results for MX −MK by adding the result for MK obtained from the

two-point kaon correlators. The blue horizontal line is the “exact” pion mass given by the

two point function calculation. These results are obtained on the 163 lattice.
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Figure 22: A plot of the unintegrated correlator G and resulting effective mass for the

combination of operators Q1 ·Q1 and a kaon mass MK = 0.4848(8) on the 163 lattice. Only

the product of the parity odd components of the two operators is included. In the left-hand

plot, the red diamonds and blue squares show the full results and the results from the type

2 diagrams only. In the right-hand plot, the red diamonds are effective masses obtained

from the type 2 diagrams. The blue horizontal line shows the “exact” value of 2Mπ −MK

obtained from the two point correlator calculation.
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Figure 23: Plots of the unintegrated correlator G and corresponding effective mass for the

operator combination Q1 · Q2 at a kaon mass MK = 0.4848(8) on the 163 lattice. Only the

product of the parity odd components of the two operators is included. The effective mass

is obtained from the type 2 diagrams alone.



113

2 4 6 8 10 12 14 16 18
−5

−4

−3

−2

−1

0

1
x 10

−3

T
H

U
ni

nt
eg

ra
te

d 
co

rr
el

at
or

 

 

Type1+Type2
Type2

4 6 8 10 12 14 16 18
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

T
H

M
ef

f

 

 

effctive mass
2Mπ−M

K

Figure 24: Plots of the unintegrated correlator and corresponding effective mass for the

operator combination Q2 · Q2 at a kaon mass MK = 0.4848(8) on the 163 lattice. Only the

product of the parity odd components of the two operators is included. The effective mass

is obtained from the type 2 diagrams alone.
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Figure 25: Intermediate state masses determined for all eight kaon masses from the unin-

tegrated correlators of the parity odd portion of the operators Q1 · Q1. The results shown

in this last plot are obtained from fitting the type 2 diagrams alone. Because the type 2

diagrams shown in the last plot are only a subset of those needed for a physical calculation,

we do not expect the effective mass shown in this last plot to be either the I = 0 or I = 2

finite volume π− π energy. We view the agreement with 2mπ as coincidental. These results

are obtained on the 163 lattice.
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Figure 26: Lattice results for the integrated correlator given in Eq. 3.7 and the corresponding

effective slope plots for the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2 in the case

MK = 563 MeV on the 163 lattice. The three lines in the upper panel give the linear fits to

the data in the time interval [9,18] used to extract the corresponding values given in Tab. 9.

The horizontal lines with error bands in the lower panel show slopes from the same three

linear fits with errors. (Note the slope of the integrated correlator as a function of the time

T given in Eq. (3.7) must be multiplied by −2 to obtain the corresponding contribution to

∆MK .)
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Figure 27: Lattice results for the integrated correlator given in Eq. 3.7 and the corresponding

effective slope plots for the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2 in the case

MK = 707 MeV on the 163 lattice. The three lines in the upper panel give the linear fits to

the data in the time interval [9,18] used to extract the corresponding values given in Tab. 9.

The horizontal lines with error bands in the lower panel show slopes from the same three

linear fits with errors. (Note the slope of the integrated correlator as a function of the time

T given in Eq. (3.7) must be multiplied by −2 to obtain the corresponding contribution to

∆MK .)
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Figure 28: Lattice results for the integrated correlator given in Eq. 3.7 and the corresponding

effective slope plots for the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2 in the case

MK = 775 MeV on the 163 lattice. The three lines in the upper panel give the linear fits to

the data in the time interval [9,18] used to extract the corresponding values given in Tab. 9.

The horizontal lines with error bands in the lower panel show slopes from the same three

linear fits with errors. (Note the slope of the integrated correlator as a function of the time

T given in Eq. (3.7) must be multiplied by −2 to obtain the corresponding contribution to

∆MK .)
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Figure 29: Lattice results for the integrated correlator given in Eq. 3.7 and the corresponding

effective slope plots for the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2 in the case

MK = 834 MeV on the 163 lattice. The three lines in the upper panel give the linear fits to

the data in the time interval [9,18] used to extract the corresponding values given in Tab. 9.

The horizontal lines with error bands in the lower panel show slopes from the same three

linear fits with errors. (Note the slope of the integrated correlator as a function of the time

T given in Eq. (3.7) must be multiplied by −2 to obtain the corresponding contribution to

∆MK .)
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Figure 30: Lattice results for the integrated correlator given in Eq. 3.7 and the corresponding

effective slope plots for the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2 in the case

MK = 918 MeV on the 163 lattice. The three lines in the upper panel give the linear fits to

the data in the time interval [9,18] used to extract the corresponding values given in Tab. 9.

The horizontal lines with error bands in the lower panel show slopes from the same three

linear fits with errors. (Note the slope of the integrated correlator as a function of the time

T given in Eq. (3.7) must be multiplied by −2 to obtain the corresponding contribution to

∆MK .)
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Figure 31: Lattice results for the integrated correlator given in Eq. 3.7 and the corresponding

effective slope plots for the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2 in the case

MK = 993 MeV on the 163 lattice. The three lines in the upper panel give the linear fits to

the data in the time interval [9,18] used to extract the corresponding values given in Tab. 9.

The horizontal lines with error bands in the lower panel show slopes from the same three

linear fits with errors. (Note the slope of the integrated correlator as a function of the time

T given in Eq. (3.7) must be multiplied by −2 to obtain the corresponding contribution to

∆MK .)
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Figure 32: Lattice results for the integrated correlator given in Eq. 3.7 and the corresponding

effective slope plots for the three operator products Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2 in the case

MK = 1162 MeV on the 163 lattice. The three lines in the upper panel give the linear fits to

the data in the time interval [9,18] used to extract the corresponding values given in Tab. 9.

The horizontal lines with error bands in the lower panel show slopes from the same three

linear fits with errors. (Note the slope of the integrated correlator as a function of the time

T given in Eq. (3.7) must be multiplied by −2 to obtain the corresponding contribution to

∆MK .)
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Figure 33: The lattice results for ∆MK plotted as a function of mc for the single kaon mass

MK = 563 on the 163 lattice. Here the charm quark mass is defined in the MS scheme at

a scale µ = 2 GeV. The top solid curve is the result of a correlated fit to the ansatz given

in Eq. (5.16). The same result but with the long distance constant a omitted gives the

lowest, solid curve. The dotted and dashed lines give the perturbative result for the choices

of matching scale µc = 1 and 1.5 GeV respectively. Finally the dash-dot curve corresponds

to the choice µ = mc.
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Figure 34: Integrated correlators and the corresponding effective slope plots for the three

products of operators Q1 ·Q1, Q1 ·Q2 and Q2 ·Q2. We choose ∆min = 6, which is the minimum

separation between kaon sources and the effective Hamiltonian densities. The three lines in

the upper panel give the linear fits to the data in the time interval [7, 20]. The horizontal

lines with error bands in the lower panel show slopes from the same three linear fits with

their errors. These results are obtained on the 243 lattice.
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Figure 35: Integrated correlators and the corresponding effective slope plots from type 1

diagrams. We choose ∆min = 6, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [9, 20]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.
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Figure 36: Integrated correlators and the corresponding effective slope plots from type 2

diagrams. We choose ∆min = 6, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [12, 20]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.



126

2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6
x 10

−4

T

In
te

gr
at

ed
 C

or
re

la
to

r

 

 

Q
1
⋅ Q

1
, χ2/d.o.f= 2.53(0.93)

Q
1
⋅ Q

2
, χ2/d.o.f= 3.90(1.20)

Q
2
⋅ Q

2
, χ2/d.o.f= 2.83(1.01)

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

4

5
x 10

−5

T

E
ffe

ct
iv

e 
sl

op
e

 

 
Q

1
⋅ Q

1

Q
1
⋅ Q

2

Q
2
⋅ Q

2

Figure 37: Integrated correlators and the corresponding effective slope plots from type 3

diagrams. We choose ∆min = 6, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [7, 20]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.
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Figure 38: Integrated correlators and the corresponding effective slope plots from type 4

diagrams. We choose ∆min = 6, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [7, 20]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.
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Figure 39: Integrated correlators and the corresponding effective slope plots from type 1

diagrams. We choose ∆min = 8, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [9, 16]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.
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Figure 40: Integrated correlators and the corresponding effective slope plots from type 2

diagrams. We choose ∆min = 8, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [12, 16]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.
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Figure 41: Integrated correlators and the corresponding effective slope plots from type 3

diagrams. We choose ∆min = 8, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [7, 16]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.
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Figure 42: Integrated correlators and the corresponding effective slope plots from type 4

diagrams. We choose ∆min = 8, which is the minimum separation between kaon sources and

the effective Hamiltonian densities. The three lines in the upper panel give the linear fits to

the data in the time interval [7, 16]. The horizontal lines with error bands in the lower panel

show slopes from the same three linear fits with their errors. These results are obtained on

the 243 lattice.
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Figure 43: Integrated correlators for the operator products (Qi · s̄d) and (s̄d · s̄d). We

choose ∆min = 6, which is the minimum separation between the kaon sources and the weak

Hamiltonians. These results are obtained from the 243 lattice.



133

0 2 4 6 8 10 12 14 16 18 20
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

T

In
te

gr
at

ed
 C

or
re

la
to

r

 

 

Q
1
⋅ Q

1
, χ2/d.o.f= 1.00(0.60)

Q
1
⋅ Q

2
, χ2/d.o.f= 0.89(0.56)

Q
2
⋅ Q

2
, χ2/d.o.f= 0.59(0.46)

0 2 4 6 8 10 12 14 16 18 20
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−4

T

E
ffe

ct
iv

e 
sl

op
e

 

 
Q

1
⋅ Q

1

Q
1
⋅ Q

2

Q
2
⋅ Q

2

Figure 44: Integrated correlators and the corresponding effective slope plots for cp = 1 and

cs = −1. cs and cp are defined in Eq.6.1. We choose ∆min = 6, which is the minimum

separation between kaon sources and the effective Hamiltonian densities. The three lines in

the upper panel give the linear fits to the data in the time interval [7, 20]. The horizontal

lines with error bands in the lower panel show slopes from the same three linear fits with

their errors. These results are obtained on the 243 lattice.
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Figure 45: Integrated correlators and the corresponding effective slope plots for cp = 1 and

cs = 1. cs and cp are defined in Eq.6.1. We choose ∆min = 6, which is the minimum

separation between kaon sources and the effective Hamiltonian densities. The three lines in

the upper panel give the linear fits to the data in the time interval [7, 20]. The horizontal

lines with error bands in the lower panel show slopes from the same three linear fits with

their errors. These results are obtained on the 243 lattice.
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Figure 46: Integrated correlators and the corresponding effective slope plots for cp = 1 and

cs = −1.14(26). cs and cp are defined in Eq.6.1. This value of cs will eliminate the η

intermediate state. We choose ∆min = 6, which is the minimum separation between kaon

sources and the effective Hamiltonian densities. The three lines in the upper panel give the

linear fits to the data in the time interval [7, 20]. The horizontal lines with error bands in

the lower panel show slopes from the same three linear fits with their errors. These results

are obtained on the 243 lattice.
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Figure 47: Mass difference for different choice of cs while fixing cp = 1. We choose ∆min = 6,

which is the minimum separation between the kaon sources and the weak Hamiltonians. The

minimal fitting time Tmin is 7. Results are given for different operator products and for their

sum. These results are obtained on the 243 lattice.
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Figure 48: Integrated correlator for cp = 0 and cs = 0. We give the results for both ∆min = 6

and ∆min = 10. ∆min is the minimum separation between the kaon sources and the weak

Hamiltonians. All the standard exponentially increasing terms have been removed. The

straight lines give the linear fits to the data in the time interval [7,12]. These results are

obtained on the 243 lattice.
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Figure 49: Mass difference for different choice of cp while fixing cs = 0. We choose ∆min = 10,

which is the minimum separation between the kaon sources and the weak Hamiltonians. The

minimal fitting time Tmin is 7. Results are given for different operator products and for their

sum. These results are obtained on the 243 lattice.
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Figure 50: fqq̄ as a function of quark mass mq on the 243 lattice. The quantity fqq̄ is the

product of the pseudoscalar decay constant and the normalizaiton factor of the gauge fixed

wall source. (The author thanks Ziyuan Bai for providing this figure.)


