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At present, the explosive growth of data and the mass storage state have brought many problems such as computational
complexity and insufficient computational power to clustering research. )e distributed computing platform through load
balancing dynamically configures a large number of virtual computing resources, effectively breaking through the bottleneck of
time and energy consumption, and embodies its unique advantages in massive data mining. )is paper studies the parallel k-
means extensively. )is article first initializes random sampling and second parallelizes the distance calculation process that
provides independence between the data objects to perform cluster analysis in parallel. After the parallel processing of the
MapReduce, we use many nodes to calculate distance, which speeds up the efficiency of the algorithm. Finally, the clustering of
data objects is parallelized. Results show that our method can provide services efficiently and stably and have good convergence.

1. Introduction

Data consumption and services have become the mainstream of
today’s information age [1]. Because of the huge amount of data
and the complexity of iterative calculations in operation, tra-
ditional computing models have already become more difficult
to deal with exponentially increasing data volumes. )erefore,
the clustering algorithm for distributed cluster platforms has
become an urgent problem to be solved [2, 3].

However, data analysis and knowledge discovery face
greater challenges. Data mining usually uses algorithms to
find the deepmeaning hidden under the explicit features from
massive data [4]. Most of the existing big data platforms are
built based on distributed computing and distributed storage
components. )e computing resources of the big data plat-
form are used to support big data analysis; most of the
common practices are to parallelize the algorithm [5, 6]. It can
be seen that in a big data environment, the distributed parallel
computing framework can optimize related data-mining

algorithms, parallelize them in the distributed computing
environment, and provide more time for big data analysis and
knowledge discovery analytical services to expand the scope
and timeliness of big data applications.

Whether it is traditional data mining or data analysis in a
big data environment, clustering, as a basic process of au-
tomatically categorizing unknown data, can be used in the
data preprocessing stage as well as in data-mining pro-
cessing. However, in the big data environment, cluster
analysis faces many challenges. Some of these challenges are
inherent to the clustering algorithm, while others are caused
by the complex data environment. )ese challenges have
brought new difficulties to cluster analysis in the big data
environment, including the ability to handle diversified data
types, ultra-high-dimensional data, and uneven data; the
iterative execution efficiency of clustering algorithms; the
algorithm extensible ability and clustering effect evaluation
model; and many other issues. )e k-means [7] can handle
the clustering problem.
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In summary, in a big data environment, data has char-
acteristics such as massiveness, sparseness, and high di-
mensionality. Moreover, the big data processing platform
based on the distributed system provides abundant com-
puting and storage resources for the processing of massive
information. How to effectively use the computing power of
the distributed parallel computing framework to effectively
improve the mining effect of traditional data mining algo-
rithms and provide more timely data analysis services in the
complex big data environment has become an urgent problem
to be solved. In this paper, in view of many problems in k-
means, combined with the MapReduce, the optimization
strategy of k-means is studied. How to effectively apply
traditional data mining algorithms to data analysis in a big
data environment has universal reference significance. Our
method was improved in three directions. We show this in
detail in Section 3. )e results prove that our method can
provide accurate matching rate and real-time performance.

2. Related Technology

With the development of the Internet in recent years, the
information that people can access has also increased ex-
ponentially. How to obtain knowledge from massive
amounts of information is one of the current research fo-
cuses on computer information theory. As an important
branch of data mining, clustering has gradually attracted
widespread attention in recent years. Compared with other
data mining methods, clustering has the advantage of not
requiring prior knowledge, and knowledge can be obtained
based on the natural distribution of data [8]. Clustering
algorithms are divided into types based on partition, density,
stratification, grid, and model.

Cluster analysis can divide the data set into several
clusters [9]. )e k-means is suitable for data sets with large
amounts of data and high feature dimensions, and its de-
pendence on data is low. )erefore, k-means has become a
widely used clustering method [10]. However, K of the
traditional k-means that needs to be determined in advance
when it is initialized is determined only by the experience of
the developer, and such subjectivity will affect the clustering
efficiency and the credibility of the results [11]. )e random
selection of the initial clustering center will cause the in-
stability of the clustering results [12, 13].

In recent years, based on the big data platform, there has
been a lot of research work to implement the traditional data
mining algorithm in parallel on the distributed platform and
optimize the algorithm according to actual needs. )erefore,
in response to the problem of selecting the initial center,
Kumar et al. [14] performed a k-means analysis on the
massive book circulation data on the Hadoop platform.
From the beginning of k-means, the initial centroid selection
was improved, and MapReduce was used to complete the
parallel design of k-means for clustering book circulation
data. Geng and Zhang [15] provided a data-mining method
to solve the flood of weblog information. )e algorithm was
implemented on the Hadoop platform and used to analyze
huge weblog information, which was verified from the three
aspects such as effectiveness, speedup, and optimization rate.

Xu and Ma [16] designed parallelized Bayes and Canopy
algorithms based on the Hadoop platform and made a
comparative analysis on the efficiency and scalability of
classification and clustering algorithms. In order to solve the
uncertainty and contingency of the selection of the central K
value better, Yang et al. [17] made a density-based method. It
can effectively eliminate orphan points and parallelize them.
In response to the problem of too many iterations of the k-
means clustering algorithm, Gopalani et al. [18] based on the
k-means algorithm’s characteristics of too many iterations
and too low execution efficiency proposed a distributed
computing framework based on Spark and applied it in the
parallel algorithm of k-means text clustering. )en,
according to RDD, k-means requirements for complex
operations that need to be iterated are solved. Yu et al. [19]
applied the MPI parallel computing framework to the
wavelet clustering algorithm and proposed the MPI-wave
cluster algorithm. Cui et al. [20] proposed a parallel genetic
k-means to improve the efficiency of the overall operation.

However, k-means randomly selecting the initial center
will lead to a local optimum. Values are unstable and it-
erative and time-consuming. In order to overcome the above
problems, Sardar and Ansari [21] used a MapReduce
computing framework combined with the K-selection
sorting algorithm for parallel sampling to improve sampling
efficiency and adopted a sample-based preprocessing
strategy to obtain the initial center point to obtain a higher
accuracy rate. Zhao et al. [22] designed map and reduce
functions to realize the parallelization of the k-means al-
gorithm. Xia et al. [23] proposed k-means local optimality.
)e algorithm uses the intersection between the subclusters
of different clustering results to construct the weighted
connected graph of the subclusters and then merges the
subclusters through their connectivity. )is algorithm im-
proves the accuracy and efficiency of clustering to a certain
extent, but because the algorithm does not have enough
grasp of the clustering elements, the clustering accuracy still
needs to be improved. Jin et al. [24] proposed a k-means
initial clustering center selection algorithm based on optimal
partitioning.)e algorithm first divides the data samples and
then determines the initial cluster centers according to the
characteristics of the sample distribution. )is algorithm
improves the accuracy and efficiency of clustering, but for
ultra-high-dimensional sample spaces, the algorithm will
increase the number of recursions, making the calculations
too complex and reducing the efficiency.

In summary, k-means has achieved results on how to
select the initial center K value and reduce the number of
iterations [25–30]. However, due to the blindness of the
initial center K value selection, the cluster number needs to
be determined in advance, and there are problems such as
local optimization. )erefore, on the basis of the existing
work, we conducted research on the more efficient and
accurate k-means to bring sparseness and high latitude.

3. Methods

3.1. Distributed Computing Platform. Map reduce is one of
the parallel programming models. Map reduce programs are
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often used to parallelize massive amounts of data.)e design
idea is to convert the problem of divide and conquer, which
is usually the processing of flood data sources, into the
processing of multiple small data sources at the same time
[31–33]. Finally, the intermediate results of each paralleli-
zation process are summarized to obtain the final result. It is
one of the core distributed computing models and also a
simple and easy-to-use distributed programming model.
)erefore, this paper selects MapReduces as the distributed
computing platform (Figure 1).

)ere are four entities at the top of the whole model, and
the client is mainly responsible for submitting jobs to the
MapReduce framework. JobTracker is solely responsible for
scheduling the operation of the job. TaskTracker is re-
sponsible for running the input slice data and executing

specific tasks. )e distributed file system (HDFS) provides
actual storage services and is used to share the resources
required for operations with all nodes.

3.1.1. Traditional k-Means Algorithm. As a typical algorithm
for calculating clusters, k-means is relatively efficient
[34–36]. )erefore, it is used on a large scale in both the-
oretical research and actual production, with high status and
influence; our method follows the methods of Li and Li [37].

To facilitate the description, this paper introduces a
symbol D � yi ∈ Rn, i � 1, . . . , n{ }. )e symbol
k1, . . . , kk{ } represents K cluster centers. )e symbol
c1, . . . , ck{ } represents K different classes. )e distance be-
tween data is as follows:

dis y1, yn( ) � lim
λ⟶0

�����������������
∑
i

yi(p), yi+1(p)( )2
√

, λ � max yi+1(p) − yi(p)
∣∣∣∣ ∣∣∣∣{ }. (1)

)e center point can be defined using the following
equation:

kj � lim
n⟶∞

∑yi(p)
nj

, (2)

where nj refers to the number of same class.
)e convergence flag can use the following formula to

compute

l �∑∑ lim
λ⟶0

�����������������
∑
n−1

i�1

yi(p), yi+1(p)( )2
√√

. (3)

k-means [38, 39] is an iterative solution. We set cluster
value K. )en the clustering center is constantly updated.
However, there are still many problems with the process:

(1) Due to the influence of initial value and outliers, the
results are not stable every time

(2) easy to converge to the local optimal solution

(3) )e number of clusters needs to be preset

(4) Clustering center U does not necessarily belong to
the data set

(5) k-means is easily affected by noise due to the use of
the L2 distance function

In order to solve these problems, we have improved k-
means.

3.1.2. Parallel Random Sampling. Traditional k-means uses
all the data for clustering. )is process takes a lot of time.
)erefore, we first preprocess the data sources to reduce the
amount of data used during the algorithm operation, thereby
reducing the time consumption of the algorithm.

At present, there are two kinds of random sampling
methods. One is traversal sampling, and the other is byte

offset sampling. )e characteristic of traversal is that the
initial data is still selected in the sampling process without
any operation, which is time-consuming, especially if the
data set is large. It is a random sample, but the operation is
still huge.)erefore, this method cannot be used for the data
in this article. Although byte migration can process large
quantities of data, the algorithm is not efficient.

In order to obtain more efficiency, we propose a parallel
random samplingmethod on the basis of the abovemethods.
Because the method is to operate on the parallel unit, it is
more efficient and less time-consuming. )e sampling
procedure is as follows:

(1) First, assign values to all data. At the same time, the
unified processing is carried out in the format of
keyword.

(2) Sort the above data in order from the largest to the
smallest.

(3) Select the smallest data after sorting as the center
point of the initialization class cluster. )e calcula-
tion formula is as follows:

pre 1 � ∑
n

b�1

dis da1, db( ),

pre 2 � ∑
n

a�1

∑
n

b�1

dis da, db( ),

pre � 0.35 · pre 1 + 0.65 · pre 2.

(4)

3.1.3. Distance of Parallelization. Traditional k-means ach-
ieves the purpose of clustering by carrying out the cyclic
calculation on all the data. However, this process takes a lot
of time. )erefore, parallelizing it is a very good approach.
)e way parallelization is done is to take advantage of the
independence of data from one data to another.
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)emap function in MapReduce is used to map the data.
First, the independence of data is used to map the data to
different Reducer units in the form of keywords. )en,
parallel clustering computation is carried out in these dif-
ferent units.

In this way, the independence between data can be ef-
fectively utilized. At the same time, the efficiency of clus-
tering can be accelerated using multiunit simultaneous
processing.

3.1.4. Parallelization of Data Object Clustering. Generally
speaking, data can be mapped to the Reducer of their re-
spective class clusters by the Mapper process according to
the length of the distance. In order to adaptively obtain the
corresponding Reducer of each class cluster, we set the value
of parallelism as k. In the Reducer, the value of the initial
center point of our method is calculated using random
sampling and the sum of squares of Euclidean distance. Sort
them, select the smallest value as the center point of the next
round, and so on. )e improved parallel structure is shown
in Figure 2.

First, each cluster has its own Reducer. )erefore, we
need to execute the parallelization strategy for all data. )en,
we take all chosen data to process and set the focus dot of the
class cluster. )en, Euclidean distance between many data
and the current focus dot is meant. Finally, the minimum
dot of the sum of squares is selected as the new center dot.

We adopt characteristics of MapReduce to optimize the
calculation of minimum Euclidean distance. Because the
comparison function and the key in the comparison func-
tion can calculate the value between the keys for sorting
processing. )e sort mechanism not only simplifies the
problems faced by the algorithm but also facilitates the
computing power of distributed clusters and speeds up the
execution efficiency of selecting the minimum Euclidean

distance sum (Figure 3). Combining the above features, k-
means uses element number as value to realize the Euclidean
distance sorting function. )e structure of our method is
shown in Figure 4. Our method’s complexity is O (n).

4. Results and Discussion

4.1. Experimental Data. To imitate the real environment, a
total of 6 PCs are used.

Hardware configuration: AMD Athlon (TM) X4 with
3.10GHz CPU, 4GB memory, and 500GB disk space.

Software environment: Linux operating system is Cen-
tOS, and JAVA, ZooKeeper, Hadoop, and dBase are also
used.

To test the performance, a data set is used, and the
modified data set is divided into 5 groups. Each group has 50
samples, which have 4 attributes. )is experiment generated
a total of 5 parts. )e detail of the random data set can be
seen in Table 1.

4.1.1. Convergence Performance. )e effectiveness of our
method is verified by comparing the convergence between
the traditional k-means method and the proposed method.
We use the same data set in the single machine experiment
environment and calculate the number of iterations when
the convergence state is reached. Two methods are used in a
single computer environment. At the same time, data set 1 is
used as the raw data set. )e result is shown in Figure 5. Our
method achieves fewer iterations in a single computer en-
vironment. It is further explained that the reason why our
method converges fast is that preprocessing can have focus
dot better than traditional k-means.

4.1.2. Correct Rate Comparison. To verify the accuracy of the
primitive k-means, density k-means, MPI-wave, and our
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method, we design the following experiments. )e effects of
the four methods are shown in Figures 6 and 7 .

Accuracy and recall are higher than the comparison as
the size of the data continues to expand on different data
sets. Primitive k-means is prone to produce local optimal
results, so its accuracy is significantly lower than other
comparison algorithms. )e k-means algorithm selects the
two points with the largest distance as the two initial points
selected for the first time. )e initial point selection is too
fixed, which is not the best clustering center that easily
leads to inaccurate clustering results. Compared with the
MPI-wave cluster algorithm, when there are 100 to 150 data
sets, the overall algorithm has a trend of decreasing ac-
curacy. )e reason is that the k-means algorithm has de-
fects in its algorithm, and there is a local optimum. As the
amount of data continues to increase, the clustering effect
will improve, and the local optimal situation will be

improved. )is is because our method effectively reduces
the randomness of the selection of the initial center point
by removing the interference data at first. )erefore, the
accuracy of clustering can be improved.

4.1.3. Operational Efficiency Comparison. In order to verify
the advantages ofMapReduce distributed clusters over Spark
in iterative computing, this experiment was performed on
MapReduce and Spark clusters. )e primitive k-means and
our method are in the same machine configuration envi-
ronment.)e running time of the two with the same number
of computing nodes is compared to reflect their respective
operating performance.

In Figure 8, in primitive k-means and our method, the
running time of Spark is slightly higher than that of
MapReduce. However, as the amount of data increases,
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starting from 150 pieces of data, the running time of the
same amount of data is shorter on the MapReduce platform
than on the Spark platform. Moreover, as the scale of data
processing increases, MapReduce has a higher processing
efficiency than Spark and a more obvious upward trend.)is
is because Spark must revisit HDFS when it reads a set of
data objects into local memory during each iteration of the
calculation process. Map reduce is based on memory cal-
culations, which greatly reduces the time overhead rate of
data I/O in iterative calculations. )erefore, in the Map-
Reduce platform environment, the running time is signifi-
cantly reduced compared with the Spark platform.

4.1.4. Cluster Environment Speedup Verification. Our al-
gorithm uses a parallel structure.We use the speedup ratio to
verify the real-time performance. By testing the acceleration
of our algorithm, the real-time performance of our algo-
rithm is verified. Its calculation formula is as follows:

ratio �
Timesingle + 1

Timemulti − 1
, (5)

where Timesingle is the run time in one unit, and Timemulti is
the run time in many units. )e greater the value of the
acceleration ratio is, the greater the efficiency can be ef-
fectively improved in the distributed cluster environment.
Speedup experiment data is shown in Figure 9.

)e acceleration ratio can increase with many data. )is
condition indicates that our method can improve accuracy.
At the same time, it can be used in big data sets.

5. Conclusions

)e random selection of the focus dot by k-means will lead to
local optimization and unstable iteration time of clustering
results. To overcome the problems, this paper proposes a k-
means with improvement. First, random sampling is
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Table 1: )e data set we used.

Data sets Size (MB) Items Dimension Cluster center points

Data set 1 0.32 9,600 4 5
Data set 2 112 9,600,000 4 5
Data set 3 401 28,800,000 4 5
Data set 4 1,421 67,100,000 4 5
Data set 5 3,267 173,560,000 4 5
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initialized. Second, the distance of many data is calculated in
parallel. Finally, data is clustered and parallelized. Results
show that our method has high clustering accuracy.

Although our method can deal with large-scale data, it
still has problems when dealing with high-dimensional data
sets. )erefore, our next research plan is to further improve
our algorithm so that it can adapt to high-dimensional data
sets.
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