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What can we do when worst case analysis is too pessimistic?
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What is the smoothed complexity of the k -means method?
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David Arthur, Bodo Manthey, Heiko Röglin k-Means has Polynomial Smoothed Complexity



Data Clustering

Input: point set X ⊆ R
d , |X | = n

number of clusters k

Output: partition C1, . . . ,Ck

centers c1, . . . , ck ∈ R
d

Goal: min
∑k

i=1

∑

x∈Ci
‖x − ci‖

2

Theory: The problem is NP-hard, but a PTAS exists.

(running time is exponential in k )

Practice: k-Means Method.

David Arthur, Bodo Manthey, Heiko Röglin k-Means has Polynomial Smoothed Complexity



Local Search

k-Means Method

Local search based on two observations:

1. clusters Ci fixed

⇒ centers ci =
1

|Ci |

∑

x∈Ci
x
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David Arthur, Bodo Manthey, Heiko Röglin k-Means has Polynomial Smoothed Complexity



Local Search

k-Means Method

Local search based on two observations:

1. clusters Ci fixed

⇒ centers ci =
1

|Ci |

∑

x∈Ci
x

2. centers ci fixed

⇒ clusters Ci fixed
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k-Means Method

k-Means Method

Input: X ⊆ R
d , k

1 Achoose c1, . . . , ck ∈ R
d

2 ARepeat

3 Apartition X into C1, . . . ,Ck

4 Aci ←
1

|Ci |
·
∑

x∈Ci
x

5 AUntil stable
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k-Means Method

Input: X ⊆ R
d , k

1 Achoose c1, . . . , ck ∈ R
d

2 ARepeat

3 Apartition X into C1, . . . ,Ck

4 Aci ←
1

|Ci |
·
∑

x∈Ci
x

5 AUntil stable

“by far the most popular clustering algorithm used in scientific and

industrial applications” (Berkhin 2002)

“in practice the number of iterations is generally much less than the

number of points” (Duda et al. 2001)
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k-Means Method – Theoretical Results

Running Time

Upper Bound: At most (k2n)kd iterations.

No clustering can occur twice.

Lower Bound: At least 2Ω(k) iterations for d ≥ 2.

[Andrea Vattani (SoCG’09)]
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k-Means Method – Theoretical Results

Running Time

Upper Bound: At most (k2n)kd iterations.

No clustering can occur twice.

Lower Bound: At least 2Ω(k) iterations for d ≥ 2.

[Andrea Vattani (SoCG’09)]

Quality

Local optima can be arbitrarily bad.

⇒ Huge discrepancy between theory and practice.

(Focus of this talk: running time.)
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Smoothed Analysis

Worst-case analysis is too pessimistic.

Typical instances are not adversarial.

Average-case analysis unrealistic.

What is the right probability

distribution?

Smoothed Analysis

Less powerful adversary:

1 Adversary chooses instance I.

2 Small amount of random noise is

added to I.

σ = amount of noise

T (n, σ) = max
I,|I|=n

E(running time(per
σ
(I)))

models, e.g., measurement errors or numerical imprecision

Smoothed compl. low⇒ bad performance unlikely in practice
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Smoothed Analysis of k-Means

Model: Every point is perturbed by independent d-dimensional

Gaussian with standard deviation σ.

T (n, σ) = max
X ,|X |=n

E(#Iterations(per
σ
(X)))
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Model: Every point is perturbed by independent d-dimensional

Gaussian with standard deviation σ.

T (n, σ) = max
X ,|X |=n

E(#Iterations(per
σ
(X)))

Arthur, Vassilvitskii (FOCS 2006)

Smoothed number of iterations is at most poly(nk , 1/σ) .

Manthey, Röglin (SODA 2009)

Smoothed number of iterations is at most

poly(n
√

k , 1/σ)

k
kd
· poly(n, 1/σ)
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Smoothed Analysis of k-Means

Model: Every point is perturbed by independent d-dimensional

Gaussian with standard deviation σ.

T (n, σ) = max
X ,|X |=n

E(#Iterations(per
σ
(X)))

Arthur, Vassilvitskii (FOCS 2006)

Smoothed number of iterations is at most poly(nk , 1/σ) .

Manthey, Röglin (SODA 2009)

Smoothed number of iterations is at most

poly(n
√

k , 1/σ)

k
kd
· poly(n, 1/σ)

Our Result (FOCS 2009)

Smoothed number of iterations is poly(n, 1/σ) .
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General Approach

1 Initial Potential: After first iteration whp

Φ =
∑k

i=1

∑

x∈Ci
‖x − ci‖

2 = O(poly(n))
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General Approach

1 Initial Potential: After first iteration whp

Φ =
∑k

i=1

∑

x∈Ci
‖x − ci‖

2 = O(poly(n))
2 Define smallest possible improvement:

∆ = min
iteration: C → succ(C)

(Φ(C)− Φ(succ(C))) .

⇒ at most O(poly(n)/∆) steps.

In the worst case: ∆ arbitrarily small.

Lemma

For d ≥ 2, for every X ⊆ [0, 1]d , in the model of smoothed analysis:

E

[
1

∆

]

= poly(n, 1/σ) .

⇒ max
X ,|X |=n

E(#Iterations(per
σ
(X))) = poly(n, 1/σ) .

David Arthur, Bodo Manthey, Heiko Röglin k-Means has Polynomial Smoothed Complexity



When does the potential drop?

When does the potential drop?

1) center moves by ε

ε

⇒ improvement by ε2

David Arthur, Bodo Manthey, Heiko Röglin k-Means has Polynomial Smoothed Complexity



When does the potential drop?

When does the potential drop?

1) center moves by ε

ε

⇒ improvement by ε2

2) point with distance ε to

bisector changes assignment

ε

δ

⇒ improvement by 2εδ
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When does the potential drop?

When does the potential drop?

1) center moves by ε

ε

⇒ improvement by ε2

2) point with distance ε to

bisector changes assignment

ε

δ

⇒ improvement by 2εδ

Goal: Show that in every iteration

1 either a center moves significantly

2 or a reassigned point is significantly far from bisector.
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How large is ∆?

Configuration C is ε-bad if Φ(C)− Φ(succ(C)) ≤ ε.

Naive approach: Union Bound over all configurations.

Pr [∃Configuration C : C is ε-bad] ≤
∑

Configuration C

Pr [C is ε-bad]
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How large is ∆?

Configuration C is ε-bad if Φ(C)− Φ(succ(C)) ≤ ε.

Naive approach: Union Bound over all configurations.

Pr [∃Configuration C : C is ε-bad] ≤
∑

Configuration C

Pr [C is ε-bad]

Problem: Too many configurations: kn.

space of all configurations

F1 F2

F3

F4

F5

Pr [∃Configuration C : C is ε-bad] ≤

5∑

i=1

Pr [Fi ]
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Transition Graph

Transition Graph G = (V , E):
V : clusters E : labeled directed edge for each reassigned point

C succ(C)
G = (V ,E)
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David Arthur, Bodo Manthey, Heiko Röglin k-Means has Polynomial Smoothed Complexity



Transition Graph

Transition Graph G = (V , E):
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Approach: Union bound over different transition blueprints.

First glance: Natural idea.
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Transition Graph

Transition Graph G = (V , E):
V : clusters E : labeled directed edge for each reassigned point

C succ(C)
G = (V ,E)

Approach: Union bound over different transition blueprints.

First glance: Natural idea.

Second glance: Not enough information.

E.g.: No information about positions of centers and bisectors.

Third glance: Enough information!
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Approximate Centers

Goal: Show that in every iteration

1 either a center moves significantly

2 or a reassigned point is significantly far from bisector.

B A C → (C ∪ A) \ B

‖cm((C∪A)\B)−cm(C)‖ ≥
1

n2

∥
∥
∥ cm(C)−

approx(A,B)
︷ ︸︸ ︷(
|B| cm(B)− |A| cm(A)

|B| − |A|

)∥
∥
∥
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Approximate Centers

Goal: Show that in every iteration

1 either a center moves significantly

2 or a reassigned point is significantly far from bisector.

B A C → (C ∪ A) \ B

‖cm((C∪A)\B)−cm(C)‖ ≥
1

n2

∥
∥
∥ cm(C)−

approx(A,B)
︷ ︸︸ ︷(
|B| cm(B)− |A| cm(A)

|B| − |A|

)∥
∥
∥

small potential drop⇒ cm(C) must be close to approx(A,B)
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Proof of Main Theorem

Theorem

Smoothed number of iterations is poly(n, 1/σ) .
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probability that a fixed data point has distance at most ε from its

approximate bisector: ≤ ε/σ.

probability that all m data points are ε-close to their approximate

bisectors: ≤ (ε/σ)m

Union Bound:

Pr [∃ε-bad blueprint] ≤ (k2n)m · (ε/σ)m

Very unlikely for ε = 1/poly(n, 1/σ).
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Proof of Main Theorem

Theorem

Smoothed number of iterations is poly(n, 1/σ) .

number of blueprints with m edges: (k2n)m.

probability that a fixed data point has distance at most ε from its

approximate bisector: ≤ ε/σ.

probability that all m data points are ε-close to their approximate

bisectors: ≤ (ε/σ)m

Union Bound:

Pr [∃ε-bad blueprint] ≤ (k2n)m · (ε/σ)m

Very unlikely for ε = 1/poly(n, 1/σ).

Technical Difficulties: Data points are not independent from approx.

bisectors, approximate centers not defined for balanced clusters,

blueprints must have enough edges, . . .
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Main Questions

1 Data Clustering

What is the k -means method?

2 Smoothed Analysis

What can we do when worst case analysis is too pessimistic?

3 Smoothed Analysis of k -Means Method

What is the smoothed complexity of the k -means method?

4 Extensions and Conclusions
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Kullback-Leibler Divergence

Text Classification and Bag-of-Words Model:

S set of all words

count words and normalize:

prob. distribution p : S → [0, 1]
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Kullback-Leibler Divergence

Text Classification and Bag-of-Words Model:

S set of all words

count words and normalize:

prob. distribution p : S → [0, 1]

Kullback-Leibler divergence (relative entropy):

KLD(p, q) =

d∑

i=1

pi log

(
pi

qi

)

= number of bits to encode p with Huffman code for q

− number of bits to encode p with Huffman code for p
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Bregman Divergences

Bregman divergences are distance measures that generalize

squared Euclidean distances and the Kullback-Leibler divergence.

Ackermann, Blömer, Sohler (SODA 2008)

Approximation Scheme for special cases of Bregman divergences

(e.g., Kullback-Leibler divergence).
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Bregman Divergences

Bregman divergences are distance measures that generalize

squared Euclidean distances and the Kullback-Leibler divergence.

Ackermann, Blömer, Sohler (SODA 2008)

Approximation Scheme for special cases of Bregman divergences

(e.g., Kullback-Leibler divergence).

Manthey, Röglin (ISAAC 2009)

For any well-behaved Bregman divergence:

Smoothed number of iterations is at most

poly(n
√

k , 1/σ)

k
kd
· poly(n, 1/σ)

poly(n, 1/σ) if d , k = O(
√

log n/ log log n) (or d = 1)
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Bregman Divergences

Bregman divergences are distance measures that generalize

squared Euclidean distances and the Kullback-Leibler divergence.

Ackermann, Blömer, Sohler (SODA 2008)

Approximation Scheme for special cases of Bregman divergences

(e.g., Kullback-Leibler divergence).

Manthey, Röglin (ISAAC 2009)

For any well-behaved Bregman divergence:

Smoothed number of iterations is at most

poly(n
√

k , 1/σ)

k
kd
· poly(n, 1/σ)

poly(n, 1/σ) if d , k = O(
√

log n/ log log n) (or d = 1)

Polynomial bound does not extend as it uses special properties of

Gaussian perturbations.
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Further Results and Open Questions

Summary:

Worst-case instances are often fragile.

Smoothed Analysis often leads to better understanding of

observed practical behavior.
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Further Results and Open Questions

Summary:

Worst-case instances are often fragile.

Smoothed Analysis often leads to better understanding of

observed practical behavior.

Future Research:

improve exponents for k -means (currently ≈ n30)

better understanding of dynamics seems necessary for this

explanation for good approximation ratio

better analysis of Bregman divergences

more systematic theory of smoothed local search

Are all local search problems in PLS easy in smoothed analysis?
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Thank you for your attention!

Questions?
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