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ABSTRACT 

The power of k-means algorithm is due to its computational 

efficiency and the nature of ease at which it can be used. 

Distance metrics are used to find similar data objects that lead 

to develop robust algorithms for the data mining 

functionalities such as classification and clustering. In this 

paper, the results obtained by implementing the k-means 

algorithm using three different metrics Euclidean, Manhattan 

and Minkowski distance metrics along with the comparative 

study of results of basic k-means algorithm which is 

implemented through Euclidian distance metric for two-

dimensional data, are discussed. Results are displayed with 

the help of histograms.   
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1. INTRODUCTION 
CLUSTERING is a technique to categorize the data into groups. 

Distance metrics plays a very important role in the clustering 

process. The more the similarity among the data in clusters, 

more the chances of particular data-items to belong to 

particular group. There are number of algorithms which are 

available for clustering. In general, K-means is a heuristic 

algorithm that partitions a data set into K clusters by 

minimizing the sum of squared distance in each cluster. The 

algorithm consists of three main steps: a) initialization by 

setting center points (or initial centroids) with a given K, b) 

Dividing all data points into K clusters based on K current 

centroids, and c) updating K centroids based on newly formed 

clusters. It is clear that the algorithm always converges after 

several iterations of repeating steps b) and c). In this paper, 

the simulation of basic k-means algorithm is done, which is 

implemented using Euclidian distance metric.  

In the proposed paper,  the k-means algorithm using 

Manhattan distance metrics and Minkowski distance metric is 

implemented and also the results obtained through both the 

methods with the basic k-mean’s result are compared. 

2. DISTANCE METRICS OVERVIEW 

In order to measure the similarity or regularity among the 

data-items, distance metrics plays a very important role. It is 

necessary to identify, in what manner the data are inter-

related, how various data dissimilar or similar with each other 
and what measures are considered for their comparison. The 

main purpose of metric calculation in specific problem is to 

obtain an appropriate distance /similarity function. Metric 

learning has emerged as a popular issue in many learning 

tasks and also it can be applied in a wide variety of settings, 

since many learning problems involve a definite notion of 

distance or similarity [1,4].  A metric function or distance 

function is a function which defines a distance between 

elements/objects of a set [4,5]. A set with a metric is known as 

metric space. This distance metric plays a very important role 

in clustering techniques. The numerous methods are available 

for clustering. In the current paper,  the solution of k-means 

clustering algorithm using Manhattan distance metric is 

proposed. Normally, the task is to define a function 

Similarity(X,Y), where X and  Y are two objects or sets of a 

certain class, and the value of  the function represents the 

degree of “similarity” between the two.  Formally, a distance 

function is a function Dist with positive real values, defined 

on the Cartesian product X x X of a set X. It is called a metric 

of X if for each  x, y, z ε X: 

-  Dist(x,y)=0 if x=y (the identity axiom); 

-  Dist(x,y) + Dist(y,z) ≥ Dist(x,z) (the triangle axiom); 

-  Dist(x,y)=Dist(y,x) (the symmetry axiom). 

Metric space metric provides a set X. 

2.1 Euclidean Distance  

Euclidean distance computes the root of square difference 

between co-ordinates of pair of objects.  

 

2.2 Manhattan Distance 

Manhattan distance computes the absolute differences 

between coordinates of pair of objects 

 

2.3 Chebychev Distance 

Chebychev Distance is also known as maximum value 

distance and is computed as the absolute magnitude of the 

differences between coordinate of a pair of objects.  
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2.4 Minkowski Distance 

Minkowski Distance is the generalized metric distance.  

 

Note that when p=2, the distance becomes the Euclidean 

distance. When p=1 it becomes city block distance. 

Chebyshev distance is a variant of Minkowski distance where 

p=∞ (taking a limit). This distance can be used for both 

ordinal and quantitative variables. 

3. CLUSTER ANALYSIS TECHNIQUE 

As a data mining function, clustering can be used for 

distribution of data, to observe the characteristics of each 

cluster, and to focus on a particular set of clusters for further 

analysis. Clustering is one of the most fundamental issues in 

data recognition. It plays a very important role in searching 

for structures in data. It may serve as a pre-processing step for 

other algorithms, which will operate on the identified clusters. 

In general, clustering algorithms are used to group some given 

objects defined by a set of numerical properties in such a way 

that the objects within a group are more similar than the 

objects in different groups. Therefore, a specific clustering 

algorithm needs to be provided with, a criterion to measure 

the similarity of objects, how to cluster the objects or points 

into clusters. The k-means clustering algorithm uses the 

Euclidean distance [1,4] to measure the similarities between 

objects. Both iterative algorithm and adaptive algorithm exist 

for the standard k-means clustering. K-means clustering 

algorithms need to assume that the number of groups 

(clusters) is known a priori. 

An important step in clustering is to select a distance metric, 

which will determine how the Similarity of two elements is 

calculated.  

3.1 Algorithm K-means : Basic Euclidean 

distance metric 

Let  X = {x1,x2,x3,……..,xn} be the set of data points and V 

= {v1,v2,…….,vc} be the set of centers. 

1. Select ‘c’ cluster centers randomly. 

2. Calculate the distance between each data point and cluster 

centers using the Euclidean distance metric as follows 

 
 

3. Data point is assigned to the cluster center whose distance 

from the cluster center is minimum of all the cluster centers. 

4. New cluster center is calculated using:  

 

where, ‘ci’ denotes the number of data points in ith cluster. 

5. The distance between each data point and new obtained 

cluster centers is recalculated. 

6. If no data point was reassigned then stop, otherwise repeat 

steps from 3 to 5. 

 

3.2 Algorithm K-means: Manhattan distance 

metric 

Let  X = {x1,x2,x3,……..,xn} be the set of data points and V 

= {v1,v2,…….,vc} be the set of centers. 

1. Select ‘c’ cluster centers randomly. 

2. Calculate the distance between each data point and cluster 

centers using the Manhattan distance metric as follows 

 

3. Data point is assigned to the cluster center whose distance 

from the cluster center is minimum of all the cluster centers. 

4. New cluster center is calculated using: 

 
where, ‘ci’ denotes the number of data points in ith cluster. 

5. The distance between each data point and new obtained 

cluster centers is recalculated. 

6. If no data point was reassigned then stop, otherwise repeat 

steps from 3 to 5. 

 

3.3 Algorithm K-means: Minkowski distance 

metric 

Let  X = {x1,x2,x3,……..,xn} be the set of data points and V 

= {v1,v2,…….,vc} be the set of centers. 

1. Select ‘c’ cluster centers randomly. 

2. Calculate the distance between each data point and cluster 

centers using the Minkowski distance metric as follows 

 

3. Data point is assigned to the cluster center whose distance 

from the cluster center is minimum of all the cluster centers. 

4. New cluster center is calculated using: 

 
where, ‘ci’ denotes the number of data points in ith cluster. 

5. The distance between each data point and new obtained 

cluster centers is recalculated. 

6. If no data point was reassigned then stop, otherwise repeat 

steps from 3 to 5. 

 

Advantages 

1. Fast, robust and easier to understand. 

2. Relatively efficient: O(tknd), where n is number of objects, 

k is number of clusters, d is number of dimension of each 

object, and t  is number of  iterations. Normally, k, t d < n. 

3. Gives best result when data set are distinct or well 

separated from each other. 

Disadvantages 

1. The learning algorithm requires a priori specification of the 

number of cluster centers.  
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2. The use of Exclusive Assignment - If there are two highly 

overlapping data then k-means will not be able to resolve that 

there are two clusters. 

3. The learning algorithm is not invariant to non-linear 

transformations i.e. with another representation of data 

different results are obtained (data represented in form of 

Cartesian co-ordinates and polar co-ordinates will give 

different results). 

4. Euclidean distance measures can unequally weight 

underlying factors.  

5. The learning algorithm provides the local optima of the 

squared error function.  

6. Randomly choosing of the cluster center cannot lead us to 

the fruitful result. 

7. This algorithm does not work well for categorical data i.e. it 

is applicable only when mean is defined. 

8. Unable to handle noisy data and outliers.  

9. Algorithm fails for non-linear data set. 

 

4. RESULTS AND EXPERIMENTS 
Results that are obtained after the implementation of K-means 

using 3 various distance metrics are shown using histograms. 

All the experiments are performed on dummy data. The 

results obtained by using Euclidean distance metric i.e. basic 

k-means are shown in fig 4.1.  

The comparative graph of distortion in both techniques is 

displayed in fig 4.9. Through graph it is clear that the k-means 

using Euclidian distance metric gives better results as 

compared to Manhattan k-means[4,7]. 

 

Fig: 4.1 Output Basic K-means 

The results obtained by using Manhattan distance metrics are 

shown in figure 4.2. In both the methods the clusters have 

almost same values but the distortion in Manhattan k-means is 

more as compared to basic k-means. And it is known that 

minimum distortion is considered best for good clustering of 

data-items. 

 

Fig: 4.2 Output Manhattan k-means 

The results obtained by K-means based on Minkowski 

distance metrics for different values of P are displayed in 

figures from fig 4.3 to 4.8. And the results at P=1 are same as 

results using Manhattan distance metric because formula for 

Manhattan distance metric is derived by taking P=1. 

Similarly, the results at P=2 are same as results using 

Euclidian distance metric because formula for Eulidean 

distance metric is derived by taking P=2 in Minkowski 

distance metric formula. 

 

Fig: 4.3 Output Minkowski Distance at P=4 

 

Fig: 4.4 Output Minkowski Distance at P=6 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 67– No.10, April 2013 

16 

 

Fig: 4.5 Output Minkowski Distance at P=8 

 

 

Fig: 4.6 Output Minkowski Distance at P=10 

 

 

Fig: 4.7 Output Minkowski Distance at P=12 

 

 

 

 

 

 

Fig: 4.8 Output Minkowski Distance at P=14 

 

 

Fig: 4.9 Comparative graph of distortion in basic k-means 

and Manhattan K-means 

The comparative graph of distortion in K-means algorithm, 

using Minkowski distance metric is displayed in fig: 4.10. As 

the value of P increases, value of the distortion decreases and 

the results starts converging at P=10 and greater. 

Minkowski distance metric gives similar results for larger 

values of P but it converges slowly as compared to basic k-

means algorithm. So, in terms of performance basic k-means 

gives best results. 

Fig: 4.10 Comparative graph of distortion in Minkowski 

K-means for different values of P 
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5. CONCLUSION 
K means is a heuristic algorithm that partitions a data set into 

K clusters by minimizing the sum of squared distance in each 

cluster. During the implementation of k-means with three 

different distance metrics, it is observed that selection of 

distance metric plays a very important role in clustering. So, 

the selection of distance metric should be made carefully. The 

distortion in k-means using Manhattan distance metric is less 

than that of k-means using Euclidean distance metric. 

As a conclusion, the K-means, which is implemented using 

Euclidean distance metric gives best result and K-means 

based on Manhattan distance metric’s performance, is worst. 
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